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 Social network analysts study the structural patterning of the ties that 
link social actors.  For the most part, they seek to uncover two kinds of 
patterns: (1) those that reveal subsets of actors that are organized into 
cohesive social groups, and (2) those that reveal subsets of actors that 
occupy equivalent social positions, or roles.   

To uncover patterns of those kinds, network analysts collect and 
examine data on actor-to-actor ties.  Such data record who is connected to 
whom and/or how closely they are connected.  Typically, the data are 
organized into square, N-dimensional, N-by-N matrices where the N rows 
and the N columns both refer to the social actors being studied.  Cell entries 
in these matrices indicate either the presence/absence or the strength of some 
social relationship linking the row actor to the column actor.  In the present 
discussion, we will deal only with symmetric relationships where, given a 
connection from actor i to actor j, actor j is also connected to i in the same 
way. 
 
 Network analysts sometimes use standard statistical procedures in 
examining their actor-by-actor matrices.  And there are several statistical 
modeling tools that have been developed specifically for network data 
(Holland and Leinhardt, 1981; Wasserman and Pattison, 1996).  But these 
tools were designed primarily for testing hypotheses.  They do not provide a 
simple direct way to explore the patterning of network data—one that will 
permit an investigator to “see” groups and positions.   
 
 The aim of the present paper is to introduce and illustrate such an 
exploratory device.  In the next section, I will show some ways to create 
visual images that can be used to display the kinds of structure of interest to 
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network analysts.  Then, following that, I will show how those images can 
be adapted to help to uncover both the antecedents and the consequences of 
observed network structure. 
 
 
Visual Images 
 
 Jacob Moreno (1932, 1934) was the first to use visual images to 
display the patterning of linkages among social actors.  In Moreno’ s images, 
each actor was represented by a point, and each link was shown by a line 
connecting a pair of points.  One of his earliest images (Moreno 1932, p. 
101) is reproduced as Figure 1.  He characterized that image as showing “a 
group in which two dominating individuals are strongly united both directly 
and indirectly through other individuals.”  Thus, Moreno viewed that picture 
as a display of both cohesiveness (“strongly united”) and social roles 
(“dominating individuals”).  

 

 

Figure 1.  Moreno’s Early Image 
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In this early work Moreno demonstrated “that variations in the 
locations of points could be used to stress important structural patterns in the 
data” (Freeman, 2000).  Figure 2, for example, shows his image of 
friendship choices among fourth graders (Moreno 1934, p. 38).  There he 
used triangles to designate boys, and circles to designate girls.  He also used 
directed lines with arrowheads to show which child was the chooser and 
which the chosen.  The important point, however, is that in order to stress 
the enormous tendency for children of that age to generate same-gender 
choices, Moreno located all the boys on the left of the picture and all the 
girls on the right.   

 

Figure 2.  Moreno’s Image of Fourth Grade Friendship Choices 

 

Moreno developed a great many procedures for arranging points that 
succeeded in emphasizing the structural features of the data that he wanted 
to stress.  But those procedures were all essentially ad hoc.  Moreno did not 
introduce any systematic general procedure for locating points in images.  
Instead, he developed different procedures—each tailored to the demands of 
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each new data set.  In any particular image, the placement of points 
depended on the point Moreno wanted to make about a particular data set. 

Later analysts continue to use visual images and they continue to 
develop procedures for placing points in ways designed to reveal structural 
patterning.  But a central aim of this newer work has been to develop 
principled procedures—procedures that are specified in exact terms and that 
will produce the same results when they are applied again and again or by   

Most of this newer work embodies a fundamental assumption.  It 
assumes that a display of a social pattern should preserve the pattern.  Thus, 
the points in a visual image should be located in such a way that the 
observed strengths of the inter-actor ties are preserved.  Those pairs that are 
socially closest in the observed data should be spatially closest in the graphic 
image.  And those pairs that are the most socially remote in the data should 
be the farthest apart in the image. 

This aim raises a non-trivial problem.  I indicated above that network 
data come in the form an N-by-N matrix of observed social proximities.  
Such a matrix is N-dimensional.  That is, each social actor in the data set is 
at some specified closeness or social proximity to every actor in the set.  We 
can assume that the actors are all closest to themselves.  And an actor’s 
proximity to each of the N-1 other actors will take some smaller numeric 
value, based on reports, or observations.  Thus, it is clear that each actor is 
assigned a score on each of N variables, and each of these scores specifies an 
inter- or intra-actor social proximity. 

In general, then, to specify all these proximities exactly, we need to 
use N dimensions—as many as there are actors.  But, if we are dealing with 
more than three actors, this might raise a problem.  We can actually view a 
picture of spatial proximities in a collection of points only if they are arrayed 
in one-, two-, or three-dimensions.  So, in order to create a visual display, we 
need a way of simplifying the social proximities recorded in the data—of 
reducing its dimensionality.  What we are seeking, therefore, is some 
systematic procedure that will specify a location for each point in a picture 
with no more than three dimensions.  Moreover, the pattern of spatial 
proximities of the points in that picture must reflect, as closely as possible, 
the pattern of social proximities of the actors in the original N-dimensional 
data matrix.   
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Two main approaches are used to construct such images.  The first is 

based in a search algorithm.  It is called multidimensional scaling,  smallest 
space analysis or spring embedding.  These are simply variations on a 
common approach.  They are simply variations on a common theme.  So, 
here I will lump them all together and refer to them simply as 
multidimensional scaling (MDS).   

 
MDS requires that the investigator specify a desired dimensionality—

typically, one, two or three.  Then, given that specified number of 
dimensions, MDS uses a search procedure to try to find optimal locations at 
which to place the points.  Optimal locations are either (1) those that come 
closest to reproducing the pattern of the original N-dimensional social 
proximities contained in the data matrix (metric MDS), or (2) those that 
come closest to reproducing the order, but not necessarily the exact 
magnitudes, of the original proximities (non-metric MDS).  

 
A number of different procedures have been developed to search for 

optimal locations for points (Krempel, 1999).  And there are several ways to 
evaluate how closely the pattern of a given set of MDS proximities 
corresponds to the pattern of proximities in the original data matrix (Kruskal 
and Wish, 1978)i.  But all of the MDS procedures share a general approach; 
all involve a search for an optimal arrangement. 
 
 The second approach is determinate.  It is based on an algebraic 
procedure, singular value decomposition (SVD)ii.  SVD transforms the N 
original variables into N new variables, or dimensions.  These new 
dimensions are ordered from largest to smallest in terms how much of the 
variance, or patterning, in the original data is associated with each.  The 
most variance is always associated with the first dimension.  Each 
succeeding dimension is, in turn, associated with progressively less of the 
variance.   
 

If a one, two or three dimensional visual image is going to be useful, 
the hope is that the first two or three of these new dimensions will be 
associated with virtually all of the variance contained in the original data 
(Weller and Romney, 1990).  If, in contrast, the first few dimensions are 
associated with very little of the original variance, SVD will not yield useful 
results.  
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 As was the case with MDS, there are several ways of getting SVD 
solutions.  SVD itself is always calculated the same way, but there are 
differences in the ways the data are pre-processed before SVD is run.  One 
standard pre-processor removes the effects of differences in the sizes of the 
row and column totals.  When that approach is taken, the results are said to 
be produced by correspondence analysis.  Another pre-processor—perhaps 
the best known one—removes the effects of differences in means and the 
variances in rows and columns.  When that is done, the results are described 
as produced by principal components analysis.  
 

 
The Search for Structure 
 

In every case, whether we use MDS or SVD to explore data, the first 
problem will always be to determine whether the data embody any 
interesting patterning at all.  To examine this question, I will draw upon a 
data set collected on a beach by Freeman, Freeman and Michaelson (1988).  
We asked 43 regular beach goers to sort cards naming beach people into 
piles in terms of who was socially close to whom.  These sorts were used to 
produce a matrix in which each cell contained a tally of the number of times 
the row person had been grouped together with the column person.  This 
matrix of judged social proximities was used as input to MDS and the two-
dimensional image reproduced in Figure 3 was produced. 
 
 The arrangement of points in Figure 3 divides most of the points into 
two fairly dense clusters on the right and the left.  Each of these clusters has 
core members located near the center of the cluster.  And each has peripheral 
points that surround the core.  In addition, several points (27, 30, 32, 40 and 
43) fall in the center, between the two main clusters. Thus, this image seems 
to display social groups as clusters.  Moreover, it places individuals in core 
and peripheral positions within each group, and it suggests that some actors 
occupy “bridging” positions between the two groups.  This arrangement is 
completely consistent with the ethnographic data and the systematic 
observations originally reported by Freeman, Freeman and Michaelson. 
 
 Beyond shape, another feature of this MDS output is important.  Most 
MDS programs report an index of “stress.”   Higher values of stress indicate 
that the proximities calculated by MDS do not correspond very well to the 
original N-dimensional proximities.   In this case, the stress  = .17.  This is 
reasonable for a 43 by 43 data matrix. 
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Figure 3.  MDS of Freeman, Freeman and Michaelson’s Beach Data 

 
Now let us compare that image with one in which there is no 

systematic social patterning.  We can construct such an image from the data 
that produced Figure 3.  We first remove all the entries from the 43 by 43 
data matrix and save them.  Then we return each of these frequencies to a 
randomly chosen cell—preserving symmetry.  The result is a new matrix in 
which the overall distribution of cell entries is identical to that of the original 
data.  But in this new matrix actors are paired at random.   

 
The result of applying MDS to this new matrix is shown in Figure 4.  

There, the points form into an almost circular disk.  This shape is critical.  
Generally, any MDS image that is shaped like a disk in two dimensions or a 
sphere in three, suggests that the links are unpatterned.  Moreover, the stress 
index is .36.  This high value confirms that there is little of patterning here. 
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Figure 4.  MDS of Randomized Data 
 
 
 SVD can be applied to the same data—with similar results.  See, for 
example, the image in Figure 5.  The same beach data that produced Figure 
3 were used to produce Figure 5.  They were preprocessed (using 
correlations) to remove the effects of differences in means and variances.  
Then they were processed using SVD.  The result is called principle 
components analysis. 
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Figure 5.  SVD of the Beach Data Using Principle Components  
   

 
This SVD image of the beach data yields an even more dramatic 

display of the two main groups of beach goers.  Core and peripheral group 
members are still shown, as are the bridging members.  Note that which 
actors are clustered together and which are pulled apart is consistent with the 
MDS image.   

 
The proportion of variance associated with the first two dimensions 

here provides further evidence that structure is present.  For these data, the 
first two dimensions are associated with 36% of the variance.  This is a 
substantial proportion.  Clearly, SVD has captured the structure in these 
data.   

 
When the random data are entered into SVD we again see a disk-like 

pattern.  This time the pattern is somewhat more irregular than the one 
produced by MDS, but it is still essentially an amorphous disk.   And, in the 
present case, somewhat less than 11% of the total variance is displayed in 
the two dimensions shown in the figure.  This is a relatively small proportion 
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and, because it is so small, it provides further evidence that the image 
contains little important structural information. 
 

 
 
Figure 6.  SVD of the Randomized Beach Data 

 
 Thus, in the general case—using either MDS or SVD—it is relatively 
simple to determine whether a data set has, or does not have interesting 
structural properties.  If the plot produces an image that is shaped like a disk 
or a globe, it is generally not interesting from a structural perspective.  But, 
to the degree that it departs from these forms, it displays important structural 
properties.  This approach, then, can be used for the first step in the 
exploratory analysis of network data. 
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Finding Correlates of Structural Patterns 
 
 When we uncover a data set that has an interesting structural form, we 
are just beginning.  We are simply ready for the next step in exploratory 
analysis.  The really interesting questions involve finding the antecedents 
and the consequences of observed structural patterns.   

The basic approach I will use to finding these features is not new.  
Bock and Husain (1952) used it to show how a class of ninth graders chose 
partners for an assignment.  They asked each of the 16 members of a ninth 
grade class to rank all of the others in terms of their desirability as 
collaborators on a joint research project. Then they calculated principle 
components and produced the image shown in Figure 7. 

 

 
 

Figure 7.  Bock and Husain’s Ninth Graders 
 
Bock and Husain plotted the student’s partner choices in two 

dimensions.  Moreover, they used gender symbols to emphasize the 
differences between the choices made by females and those made by males.  
In this case, the males and females formed distinct clusters in which males 
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chose other males and females, other females.  The point of the labeling was 
to call attention to the fact that the main basis for partner choice was gender. 

 
In the 1950s this device of identifying subsets of points in a structural 

display according to the various characteristics of the actors involved was 
difficult.  It involved manually specifying the locations of points, hiring a 
draftsman and photographically reproducing the final drawing for printing.   

 
Today, the whole process has been simplified with the use of personal 

computers.  Using standard computer programs we can automatically 
produce images that call attention to particular subsets of points by assigning 
distinct symbols or colors to identify them.  In the work described below I 
have used a program called MAGE (Richardson and Richardson, 1992).iii  It 
is excellent for exploratory work in social network analysis (Freeman, 
Webster and Kirke, 1998).  Like the picture produced by Bock and Husain, 
images produced by MAGE can be used to communicate findings in 
published reports.iv  But, more important, they can be generated with such 
ease that investigators can use them for exploratory work.  Images in which 
subsets of points are identified can be used to explore the impact of any 
number of external variables on a structural pattern.     

 
In the next three sections, I will show how MAGE has been used to 

explore these questions.  These sections will illustrate three applications of 
visual analysis.  They will show how graphic techniques can help in: (1) 
pure exploratory research, (2) examining an a priori hunch and (3) 
validating a model.  Finally, in the last section I will illustrate another 
approach.  There I will show how animation can be used to generate new 
post hoc structural insights. 
 
 
Exploratory Research 
 
 One of my students, Marbella Canales, worked in the cosmetics 
department of an upscale department store.  She asked each of her fellow 
employees to list any of the others with whom she or he spent leisure time.  
This produced a binary, on/off, matrix of social links.  That matrix was used 
to calculate the lengths of the shortest paths—from actor, through social 
link, to actor, through link, etc.—linking each pair of employees.  Those 
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distances were entered into the MDS program.  And a three-dimensional 
MDS produced the arrangement shown in Figure 8. 
 
 

 
 
Figure 8.  MDS of Department Store Data 
 
 Figure 8 is not a disk.  It shows that patterning is present in these data.  
That patterning is even more evident when we add the actor-to-actor ties 
reported by the employees.  See Figure 9.  There the pattern of linkages 
forms a horseshoe shape.  This is commonly seen in MDS; it indicates that 
the actors are laid out into an almost-linear string. 
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Figure 9.  MDS of Department Store Data Showing Ties 
 
 Canales had collected the usual sociological “face sheet” data from 
her co-workers.  She was interested in the degree to which age, gender, 
ethnicity and so on might be entailed in the choices of partners for leisure 
time interaction.  To answer these questions, she colored points in the 
display so that she could pinpoint the locations of actors who possessed 
particular attributes.  In Figure 10, for example, all the actors who had 
middle-eastern ethnic backgrounds were colored blue.  Clearly, the blue 
points are distributed all over the figure, and partner choices are not based 
on that ethnic factor.   
 

The same was true for other ethnicities.  In Figure 11, the two 
employees with Asian backgrounds are shown in green.  They are widely 
separated.  Marital status seems also to have had no effect.  In Figure 12 
married actors are colored yellow.  And they too turn out to be widely 
separated in the image. 
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Figure 10.  MDS of Department Store Data Showing Actors with 
Middle-Eastern Ethnic Backgrounds 

 
 

 
 
Figure 11.  MDS of Department Store Data Showing Actors with Asian 
Backgrounds 
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Figure 12.  MDS of Department Store Data Showing Married Actors 
 

 
Age, however, turned out to be important.  In Figure 13, those actors 

who were aged 30 or less are blue, those more than 30 but 40 or less are 
yellow and those more than 40 are red.  These three categories are distinctly 
separated in the image.  Thus, age turns out to be one characteristic that is 
important to these individuals when it comes to choosing partners for 
interaction.  It was the only face-sheet variable to display a systematic 
patterning.  Using strictly visual techniques, then, Canales was able to 
discover an important correlate of interaction among her coworkers. 
 

 
 
Figure 13.  MDS of Department Store Data Showing Actors’ Age 
Grades 
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Examining an a priori Hunch 
 

Another of my students, Laticia Oseguera, was a collegiate basketball 
star.  She had an intuitive idea that athletes would confide in their teammates 
more or less according whether theirs was a team sport like basketball or an 
individual sport like tennis.  Co-participants in individual sports, she 
thought, would be more willing to confide in teammates.   
 

Oseguera collected data among 191 athletes in thirteen sports at her 
university.  All members of the men’s and women’s basketball teams, the 
men’s and women’s soccer teams, the men’s water polo team, the women’s 
volleyball team, the men’s and women’s tennis teams, the men’s and 
women’s track teams, the men’s and women’s swimming teams, and the 
men’s golf team were surveyed.  Each was asked to name any other athletes 
with whom he or she had discussed important personal problems.  Then the 
resulting matrix was used as input for the principal components version of 
SVD.  The two-dimensional result is shown in Figure 14.   

 
 

 
 
Figure 14.  SVD of Athletes 
 

 Although there is a somewhat globe-like clump in the center, the three 
long arms show a dramatic structural patterning in this data set.  Athletes on 
these arms chose one another along the arm; those near the center were 
apparently less exclusive.  If Oseguera’s idea is correct athletes from all the 
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individual sports should fall along the arms and the team-sport athletes 
should cluster near the middle of the image.  She explored this notion by 
coloring individuals in terms of their sport.   
 

In Figure 15, members of the men’s tennis team are colored blue.  
Tennis is an individual sport and their position at the extreme periphery 
suggests that Oseguera’s idea was correct for them.  Most of their confidants 
are fellow tennis players, but they are also adjacent to another cluster of 
athletes with whom they apparently sometimes communicate.   
 

 

 
 
 
Figure 15.  SVD of Athletes; Male Tennis Players are Blue 
 
  
 That other collection is colored yellow in Figure 16.  They turn out to 
be members of the female tennis team.  Like their male counterparts, they 
are involved in an individual sport, and they are peripheral.  Among the 
tennis players, the women are not as peripheral as the men, but they are still 
distinctly separated from the main body of athletes.  This provides further 
support for Oseguera’s idea.   
 

But the really interesting feature here is that the female tennis players 
are in a position where they bridge between their male tennis counterparts 
and the rest of the athletes.  Certainly their bridging position is consistent 
with the observation that women usually provide the links between 
otherwise unconnected social networks (Bernard, 19**). 
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Figure 16.  SVD of Athletes; Female Tennis Players are Yellow 
 
 
  In Figure 17, the green points are the male soccer players.  They 
are involved in a team sport, and their position, at the end of an arm 
contradicts Oseguera’s idea.  Apparently they confide in one another.   

 

 
 

Figure 17.  SVD of Athletes; Male Soccer Players are Green 
 
 
 The points colored purple in Figure 18 are the members of the 
women’s soccer team.  And, like the male soccer players, they contradict 
Oseguera’s idea by being both involved in a team sport and confiding in 
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their fellow team members.  But, like the female tennis players, they occupy 
an intermediate position on the same arm as their male counterparts and they 
are a bridge between the members of the men’s soccer team and the center. 
   
  

 
 

Figure 18.  SVD of Athletes; Female Soccer Players are Purple 
 
 
 The gold points in Figure 19 are members of the men’s golf team.  
They are involved in an individual-sport and their peripheral position is, 
again, consistent with Oseguera’s original idea.   
 

 
 

Figure 19.  SVD of Athletes; Male Golfers are Gold 
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And finally, the dark blue points in Figure 20 are members of the 

men’s water polo team.  This is another team-sport and its position 
contradicts Oseguera’s original idea.  Moreover, since there is no female 
golf team, the bridging position with respect to the golfers is occupied by the 
water polo players. 
 

 

 
 
Figure 20.  SVD of Athletes; Male Water Polo Players are Dark Blue 
 

The remaining athletes, male and female basketball players, members 
of the men’s and women’s swimming team, the male and female track team 
members and the women’s volleyball team are all clustered closely together 
in the center.  Since some of these athletes are involved in team sports and 
some in individual sports, and since the athletes found in peripheral 
positions also represent each of these categories, Oseguera ended up 
rejecting her intuitive idea.   

 
But, after a look at the data, she was able to come up with a new post-

hoc idea.  She was able to demonstrate a tendency for female athletes to 
bridge between the male athletes who were involved in the same sport and 
the main body of athletes from other sports. 
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Validating a Model 
 

Cynthia Webster had been working on the development of a new 
procedure for uncovering small close-knit groups in social network data.  
She wanted to determine how well it worked when applied to data.  She had 
already collected a large data set on friendship in an Australian residential 
college.  In that study, she had interviewed all 217 residents individually and 
asked them to name their friends within the college. The residents had also 
indicated the strength of each friendship tie.  In all, five levels of friendship 
were designated (5=best friend, 4=close friend, 3=friend, 2=friendly 
acquaintance, 1=acquaintance).  
 

Webster symmetrized that original matrix and then applied her new 
method to uncover all the tightly connected subsets of residents.  She 
assigned each group a name based on her ethnographic experience in the 
setting.   

 
Webster reasoned that in order to validate her new procedure she had to 

demonstrate that her groups were tightly knit when the data were analyzed 
using an independent procedure.  She set about, then, to determine the 
relation between the proximity structure of her data as displayed by SVD 
and the groups she had uncovered using her new method.   

 
She pre-processed the data to remove the effects of means and variances 

and calculated a three dimensional SVD (Freeman, Webster and Kirke, 
1998).  The first two axes are shown in Figure 21. 
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Figure 21.  SVD of Friendships in a Residence Hall 

 
The points in the image are clearly arranged into a four-pronged 

propeller-like object.  Webster reasoned that if her method agreed with the 
SVD result, each of her groups would be found together in a tight cluster of 
points in the image.  In particular, the four outlying clusters in the image 
would correspond to distinct groups she had uncovered with her new 
method.   

 

 
 
Figure 22.  The Outlying Points in the Residence Hall 
 
So she colored points according to group memberships and discovered 

that the outlying clusters were easily identifiable in terms of her groups.  
Figure 22 shows in dark blue the points included in a group she named “the 
grunges.”  They were a collection of rebellious “hippie” students.  A group 
of students who were preoccupied with religion are pictured in yellow.  And 
the interesting feature is that they are bi-polar to the grunges.  This polarity 
makes a certain amount of sense.   A group colored light blue identifies a 
third extreme in the image.  Webster called these students “the women.”  
They were the somewhat-proper female social leaders in the community.  
And finally, the fourth extreme in the image is occupied by the students 
Webster called “math heads.”  They are gray.  These were the non-social 
“nerds” in this student residence.  And again, it makes sense that these “math 
heads” would fall at the opposite pole from “the women.”   
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All in all, then, this exercise shows that, at least so far as the extremes are 
concerned, Webster’s grouping method produces groups that are consistent 
with the spatial patterns displayed by SVD. 
 
 
A Post hoc Analysis 
 
 The final example involves a network study by Freeman and Freeman 
(1980).  In the late 1970s, we examined the impacts of EIES, a computer 
communication system that worked much as the internet does today.  It 
facilitated an email-like message transmission and the development of 
conferences, or discussion groups.  Subjects were from the US and Canada 
and all were involved in the study of social networks. 
 
 Before the computer hookup was inaugurated, the participants were 
given a questionnaire in which they identified those others whom they knew 
about, those they had met, those who were friends and those they considered 
to be close personal friends.  Then, after eight months of computer 
connection, they were queried again.   
 

The fact that we had two waves of data permitted us to study the 
changes in interpersonal ties during the six months of computer 
communication.  So we stacked the two matrices—before and after—
normalized to remove the effects of differences in row and column totals and 
entered the combined data into SVD.  The resulting image showed the 
changes in the proximities between pairs of network analysts that occurred 
during the six-month period. 

 
To examine these changes, I used an animation program, 

MOVIEMOL.v  The initial proximities are shown in Figure 23.  They are 
patterned in a way that suggests the presence of two main clusters. 

 
But in this case I was primarily concerned with change.  So I 

examined the before-after transition using MOVIEMOL animation. And I 
began to see a pattern; the points could be divided into four distinct 
categories according to the direction of their movement.  Some moved 
greater distances and some smaller distances, but the directions were 
patterned.  These directions are shown in Figure 24. 
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Figure 23.  Initial Proximities among Network Investigators   
 

 
 
Figure 24.  Directions of Movement among Network Investigators   
 
So I colored those points according to their directions of movement.  

Those that moved up and to the left were colored yellow.  Those that moved 
down and to the right were green.  Those that dropped toward the lower left 
were red.  And the remaining two points that did not move remained blue.  
You can see their final locations in Figure 25.   
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Figure 25.  Movement Classes among Network Investigators   
 
After identifying the points of various colors, it was clear what the 

various directions of movement implied.  The red points were individuals 
who did not participate and who dropped out of network research during the 
experimental period.  The blue pair did not participate in the internet at all, 
but they did remain in the network research area.  The gold points 
represented individuals from several fields who at that time were in the 
process of organizing an interdisciplinary social networks specialty.  And the 
green points were sociologists who objected to forming a new specialty and 
who were anxious to define network research simply as a sub-area of 
sociology.  In this case, then, watching the animation yielded a new post-hoc 
insight that helped to make sense of a data set.   
 
  
Conclusions 
 
 In this paper, I have demonstrated a simple and straightforward 
approach to exploratory analysis of social network data.  This approach uses 
a search procedure (MDS) and/or an algebraic data reduction scheme (SVD) 
along with easily available programs for graphic display (MAGE and 
MOVIEMOL).  With these tools, an investigator can determine whether or 
not a given data set contains any interesting structural features.  These 
features are revealed simply by looking at visual images.  This approach 
makes it simple to develop new insights based on characteristics of the data.  
In addition, it can be used to conduct preliminary tests of a priori ideas, to 
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explore the fit of models to data and, using animation, to examine dynamic 
processes. 
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Footnotes 
                                           
i In the present paper I used the procedures built in to the MDS program that 
is part of the UCINET 5 package (Borgatti, Everett and Freeman, 1999). 
Similar MDS programs are included in many standard statistical packages. 
 
ii I have used the SVD program in UCINET 5 (Borgatti, Everett and 
Freeman, 1999).  But any other standard statistical package might just as 
well have been used. 
 
iii This program can be downloaded free from: 
ftp://kinemage.biochem.duke.edu/ 
 
iv MAGE is designed to make it easy to construct and manipulate network 
images on a computer screen, but it is limited in its ability to produce images 
for the printed page.  Therefore, although the work described below was 
done using MAGE, it is presented here using bitmap images produced 
another program that generates XML. 
 
v MOVIEMOL can be downloaded free from the following url: 
http://www.fos.su.se/moviemol.html 
 

ftp://kinemage.biochem.duke.edu/
http://www.fos.su.se/moviemol.html



