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Abstract—In this paper, we study the effect of users’ trans-
mission ordering on the common rate and sum rate of pair-
wise multiway relay channels (MWRCs) with functional-decode-
forward strategy. To this end, we first develop a graphical
model for the data transmission in a pairwise MWRC. Using
this model, we then find the optimal orderings that achieve
the maximum common rate and sum rate of the system. The
achieved maximum common/sum rate is also found. Moreover,
we show that the performance gap between optimal orderings
and a random ordering vanishes when SNR increases. Computer
simulations are presented for better illustration of the results.

I. I NTRODUCTION

A multiway relay channel (MWRC) [1] is an extension of
a two-way relay channel [2]–[6] in whichN ≥ 2 users com-
municate with each other by means of a relay. There is often
no direct link between users and they merely communicate
with the relay. Conference calls, file sharing, and multi-player
gaming [7] are potential applications of MWRCs.

Depending on the relay’s strategy for forming its down-
link message, several relaying schemes have been considered
for MWRCs, namelyamplify-and-forward (AF), decode-and-
forward (DF), compress-and-forward (CF) and functional-
decode-forward (FDF) [1], [8]. Among these schemes, FDF
is the most recent where instead of decoding users’ messages
separately, the relay directly decodes a function (commonly
the sum) of the users’ messages.

FDF is commonly employed along with a pairwise trans-
mission scheme [8] where similar to two-way relaying, a pair
of users transmit their data simultaneously to the relay in each
uplink phase. This is then followed by a downlink phase in
which the relay broadcasts a function of the received informa-
tion in the uplink phase to all users. Pairwise transmissions
continue until all users are capable of decoding the data of
others. Pairwise relaying not only does have a lower decoding
complexity than full decoding, but also possesses interesting
capacity-achieving properties in different setups [8]–[11].

In a pairwise MWRC, the way that users are paired for
transmission is referred to asuser’s ordering. As argued in [7],
for an asymmetric MWRC, this ordering directly affects the
achievable data rates of the users. To this end, the authors find
the optimal ordering to maximize the achievable common rate
of the users for an MWRC with asymmetric Gaussian channels
under the assumption that each user transmits in at most two
uplink phases. For relaying strategy, they considered pairwise

FDF and DF relaying and show that the optimal ordering for
each strategy is different than the other.

In this work, we go one step further than the work in [7]
and address the effect of ordering for a more general pairwise
MWRC scenario. More precisely, we consider a pairwise FDF
scenario where there is no restriction on the number of uplink
transmissions by the users. In this case, we first discuss that
there existNN−2 distinct orderings which makes finding
the optimal ordering through brute-force search expensivefor
largeN . Then, under a reasonable assumption on user’s SNR,
we analytically find the optimal orderings for the common
rate and the sum rate. Using the optimal ordering, we find
the maximum achievable common and sum rates. Further, we
study the asymptotic behavior of the sum rate for high SNR.
This reveals that a randomly chosen ordering performs well
for high SNR regimes while the significance of our proposed
optimal orderings is more pronounced in low SNRs.

The rest of the paper is organized as follows. In Section II,
we describe the system model and introduce a novel graphical
interpretation for data transmission in pairwise MWRCs. The
sum rate and common rate maximization problems for FDF
MWRC are described in Section III. The solution to these
problems along with the asymptotic study of the sum rate is
presented in Section IV. We compare the performance of our
proposed orderings with those of randomly chosen orderings
via simulations in Section V. Finally, Section VI concludes
the paper.

II. PRILIMINIARIES

A. System Model

We consider an MWRC withN users, denoted by
U1, U2, . . . , UN , where each userUi wants to share its message
Xi with other users. Users cannot directly communicate with
each other, thus, relayR is used to assist them. The channel
from Ui to R is a half-duplex reciprocal channel denoted by
CiR with gaingiR. Also, transmitted signals are contaminated
by a Gaussian noise with varianceσ2.

In a pairwise scheme, the users are divided intoM pairs
which are not necessarily disjoint. A division of the users
to subsets of pairs is called anordering of the users and
is denoted byO = {{u11, u12}, . . . , {uM1, uM2}} where
ui1, ui2 ∈ {U1, U2, . . . , UN}. The users exchange their data
in one communication round consisting ofM uplink andM
downlink phases. During each uplink phase, users in one of
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Fig. 1. A pairwise ordering withM = N = 3

the pairs transmit their data to the relay. After receiving the
users’ signal, relay directly decodes the sum of their messages
[12] and broadcasts the sum to all users in a downlink phase.
This means that ifXi andXj are vectors with elements chosen
from a fieldF, then the relay directly decodesXi⊕Xi where
⊕ means element-wise summation ofXi andXj overF. We
consider AWGN channels such that⊕ means element-wise
summation over real numbers. These pairwise transmissions
continue until the last pair of the ordering. Having its own
data, each user is able to decode the data of others at the
end of each round. The transmit power ofUi during an uplink
phase is assumed to bePi. That said, a signal to noise ratio for
userUi, namelyxi, is defined asxi ,

Pi|giR|2

σ2 . Without loss
of generality, we assume thatxN ≥ xN−1 ≥ · · · ≥ x1 > 0.

Fig. 1 illustrates a pairwise MWRC whenN = 3. After a
round of communication, each user has the following set of
equations:

X1 ⊕X2 = C1

X2 ⊕X3 = C2

X3 ⊕X1 = C3

(1)

whereC1, C2 andC3 are the signals transmitted by the relay.
One can see that the system of equations at each user is
solvable using the knowledge of its own data. In a general
N -user MWRC, if the system of equations at each user is
solvable, we say that the corresponding ordering isfeasible.
This feasibility implies thatM should not be less thanN − 1
because each user needs to findN − 1 other users’ messages.

In a pairwise MWRC with M pairs, a rate tuple
(R1, R2, . . . , RN ) is achievable ifUi can reliably (with ar-
bitrarily small probability of error) transmit its data to all
other users with rateRi after each round’sM uplink and
downlink phases. The achievable rate tuple depends on the
transmit power of the users and the relay as well as the channel

gains and the noise power. Here, we assume that the data rates
are limited by the uplink phase, not by the downlink phase.
This commonly holds for most wireless systems where users
are low-power mobile devices.

WhenUi participates in a pairwise transmission, say with
Uj, during an uplink phase,Ri is limited by the following
achievable bound [7], [12]

Ri ≤ max

{

0,
1

2M
log2

(

xi

xi + xj

+ xi

)}

. (2)

and to the best of our knowledge, this is the tightest
achievable bound forRi with FDF relaying. The maximum
achievable upper bound onRi can be found by calculating
upper bounds, given by (2), forRi over all pairs thatUi is
part of and then taking the minimum of these bounds. In this
paper, instead of focusing on the individuals’ rates, we study
the system common rate and sum rate. For an achievable rate
tuple(R1, . . . , RN ), the user’s common rate,CR, and the sum
rate,SR, are defined asCR , miniRi andSR ,

∑N

i=1 Ri.
As seen from (2), the upper bounds onRi’s, and consequently
the systems common rate and sum rate depend on the ordering
of the users. Our goal in this work is to find the orderings that
attains the maximum possible common rate and sum rate in
the system. This is discussed in more detail later.

B. Graphical Representation

Here, we introduce the concept ofclient graph that provides
a convenient representation of the users’ transmission ordering.
This model is later used to find the optimal ordering to
maximizeCR andSR.

A client graphGO = (V,E) for a given pairwise ordering
O consists of a set of verticesV = {v1, v2, . . . , vN} and a set
of edgesE. Vertex vi is associated withUi andvivj ∈ E iff
{Ui, Uj} ∈ O. If vivj ∈ E, we sayvj is adjacent tovi. The set
of adjacent vertices ofvi, denoted byAG

i , is called the set of
neighbors ofvi. Also the degree of nodevi is deg(vi) = |AG

i |.
The adjacency matrix ofGO(V,E), denoted byA = (aij), is
an N ×N matrix in whichaij = 1 iff vivj ∈ E, andaij is
0 otherwise. Note that there is a one-to-one mapping between
all possible client graphs and all possible orderings.

The overall energy consumed in a communication round is
directly proportional to the number of pairs. As a result, we
are interested in identifying feasible orderings with minimum
number of pairs which, as we mentioned, isM = N − 1. To
this end, we state the following theorem.

Theorem 1. An ordering with M = N − 1 pairs is feasible
iff the corresponding client graph is a tree.

Proof: Fist, we show that if there is a cycle in the client
graphGO, the feasibility of the system will not change if we
remove one of the edges from that cycle. Assume thatC =
{vi1vi2 , vi2vi3 , . . . , vinvi1} is a cycle inGO. The equations



corresponding to the edges in this cycle are:

Xi1 ⊕Xi2 = C1

Xi2 ⊕Xi3 = C2 (3)
...

Xin ⊕Xi1 = Cn.

The jth equation in the system of equations (3) is not
independent of the others. In other words, if we sum over
all of the equations but thejth one, we wind up with:

Xij ⊕Xij+1
=
⊕

i6=j

Ci. (4)

This shows that removingvijvij+1
from the cycleC, has no

effect on the feasibility of the system of equations (3).
Then, we just need to prove the theorem for client graphs

with no cycle. In order for system of equations to be feasible,
each user needs to have at leastN − 1 equations, except its
own data. It means thatGO has at leastN − 1 edges. Since
GO has no cycle, it should be a tree.

In the rest of this paper, we assumeM = N − 1 and use
the terms client tree and client graph, interchangeably.

III. PROBLEM DEFINITION

In this section, we define rate maximization problems. Here,
we denote the maximum achievable common rate and sum rate
for a client graphGO by CR(GO) andSR(GO), respectively.

By common rate maximization problem, we mean finding
the feasible ordering that maximizesCR(GO). More formally,
if we denote the set of all feasible orderings byO, then the
common rate maximization problem translates into

OCR = argmax
O∈O

CR(GO) (5)

Similarly, a sum rate maximization is defined as follows

OSR = argmax
O∈O

SR(GO) (6)

One way to solve the aforementioned problems is to search
over all possible client trees and find the one that maximizes
the common rate and sum rate. This, according to Cayley’s
formula [13], necessitates searching over allNN−2 feasible
client trees which is impractical even if the number of users
is not very large. This motivates us to find efficient solutions
for identifying the optimal client trees.

In order to find an ordering with maximum sum rate, we
consider the case where the user’s SNR is not too low which
is the case for most practical settings. To this end, the upper
bound on the rate ofUi when it transmits withUj is given by

Ri ≤
1

2(N − 1)
log2

(

xi

xi + xj

+ xi

)

. (7)

One can easily verify that ifx1 + x1

x1+xN
≥ 1, (7) and (2)

are equivalent. For instance, if all SNRs of the users are more
than 1, the bound in (7) is equivalent to (2). For common
rate maximization, we also assume that the user’s SNR is not
too low and consider (7). We are not interested in cases that
common rate is equal to zero.

U1 U2 U3 UN

. . .

Fig. 2. Client tree that maximizesCR(GO) for a pairwise MWRC with
FDF relaying

IV. PROBLEM SOLUTION

In this section, we provide solutions to common rate and
sum rate maximization problems for FDF relaying. We also
show that in high SNR regimes, the performance of a randomly
chosen ordering asymptotically approaches the rate perfor-
mance of the optimal ordering.

A. Common Rate Maximization

Theorem 2. CR(GO) is maximized when the ordering is

OCR={{U1,U2}, {U2,U3}, {U3,U4}, . . . , {UN−1,UN}}.

Also, the maximum achievable common rate is

CR(GO)= min
i∈{1,...,N}

{

1

2(N − 1)
log2

(

xi+
xi

xi+xi+1

)}

.

Proof: Here, by an optimal tree, we mean a client tree that
achieves the maximumCR with respect to (2). There are two
statements regarding (2) which we use to prove the theorem:

1) The functionf(x) = x
(

1 + 1
x+α

)

is an increasing
function ofx.

2) The functiong(x) =
(

1 + 1
α+x

)

is a decreasing func-
tion of x.

Given a client tree,GO(V,E), with an FDF MWRC, we have

CR(GO) = min
i,j

{

1

2(N − 1)
log2

(

xi +
xi

xi + xj

)}

. (8)

where xi ≤ xj and vivj ∈ E. Using (8), we prove the
following lemma.

Lemma 1. There exists an optimal tree ,GO(V,E), in which
AGO

1 = {v2}.

Proof: We adaptGO′(V,E′) from GO such that we
disconnect all of the neighbors ofv1 from v1 and connect them
to v2. We also makev1 andv2 neighbors. More precisely,

E′ = (E−{v1vi|vi ∈ AGO

1 })∪{v2vi|vi ∈ AGO

1 ; i 6= 2}∪{v1v2}
(9)

Because of monotonicity off(x) and g(x), to verify that
CR(GO) ≤ CR(GO′ ) we just need to show

x1

(

1 +
1

x1 + xmin

)

≤ x2

(

1 +
1

x2 + x1

)

(10)

where,xmin = min{xi|vi ∈ AGO

1 }. After some manipulation,
we find that (10) is equivalent to

0 ≤ (x2 − x1)(x1 + xmin)(x2 + x1) + x2xmin − x2
1 (11)

which, according to the fact thatx1 ≤ xmin, is true.
We prove the theorem by induction. IfN = 2 the theorem

obviously holds. Now, assume that the statement of the the-
orem holds for every FDF MWRC withN = k. We show
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Fig. 3. Client tree that maximizesSR(GO) for a pairwise MWRC with
FDF relaying subject to the weakened upper bound given by (7)

that it also holds for any FDF MWRC withN = k + 1. For
N = k + 1, according to Lemma (1), there exists an optimal
treeGO(V,E) in which AGO

1 = {v2}. From equation (8), we
also have:

CR(GO)=min
i,j

{

1

2(N−1)
log2

(

xi+
xi

xi+xj

)

|1<i≤j; vivj∈E

}

∪

{

1

2(N − 1)
log2

(

x1 +
x1

x1 + x2

)}

(12)

If the second term in (12) is the limiting term in all of the
possible client trees withAGO

1 = {v2}, the proposed ordering
is optimal. Otherwise, maximizingCR(GO) is equivalent

to maximizing min
{

xi

(

1 + 1
xi+xj

)

|1 < i ≤ j; vivj ∈ E
}

.

It is equivalent to maximizing theCR for GO′(V ′, E′), in
which V ′ = V − {v1} andE′ = E − {v1vm|vm ∈ AGO

1 }.
According to the induction hypothesis, it happens whenO′ =
{{v2v3}, {v3v4}, . . . , {vN−1vN}} and as a reslut

O = {{v1v2}, {v2v3}, . . . , {vN−1vN}} (13)

Fig. 2 illustrates the optimal ordering for an FDF MWRC
that achieves the maximumCR.

B. Sum Rate Maximization

Theorem 3. O = {{U2, U1}, {U3, U1}, . . . , {UN , U1}} is
the optimal ordering maximizing the sum rate subject to (7).
Moreover, the maximum sum rate for this ordering is

SR(GO)=
1

2(N−1)
log2

(

max

{

1,

(

x1 +
x1

x1 + xN

)}

×

N
∏

i=2

max

{

1,
xi

xi+x1
+xi

}

)

. (14)

To prove the theorem, we first show that there is an optimal
tree withdeg(vN ) = 1 (Lemma (2)). Then we prove that in the
optimal tree each node needs to have only one neighbor among
nodes with a lower SNR (Lemma (3)). We then show that there
exist an optimal tree withdeg(vN ) = deg(vN−1) = 1 (Lemma
(4)). In the next step, we prove that in an optimal tree for two
nodes of degree one, sayvi and vj , if vi has a higher SNR
than vj then the neighbor ofvi has a higher SNR than the
neighbor ofvj (Lemma (5)). Then we prove the theorem by
induction (Lemma (6))

Proof: We use the following convention for the rest of
this proof:

di , 22(N−1)Ri . (15)

vjvj

vivi

vkvk

. . . . . .

. . .

. . . . . .

. . .

→

Fig. 4. Operation ofV -transform,V (G, vi, vj , vK)

As a result, the bound given by (7) is equivalent to

di ≤ xi

(

1 +
1

xi + xj

)

. (16)

We also defineDs(GO) = max
∏N

i=1 di = 22(N−1)SR(GO).
Assume thatG(V,E) is a tree such that{vi, vj , vk} ⊆ V
and{vivj , vivk} ⊆ E. We define aV -transform onG in
such a way thatV (G, vi, vj , vk) = G′(V,E′) and E′ =
(E − {vivk}) ∪ {vjvk}. Fig. 4 shows the operation of aV -
transform.

Lemma 2. There exists an optimal tree in which deg(vN ) = 1.

Proof: Assume GO is an optimal tree in which
deg(vN ) > 1 and vi and vj are two neighbors ofvN
and xj is the minimum SNR value of the neighbors ofVn.
Consequently, we havexi ≥ xj . It is straightforward to show
that by performing aV -transform onGO and transform it
to GO′ = V (GO, vN , vi, vj), we haveDs(GO′ )

Ds(GO) ≥ 1. It means
that the sum rate ofGO′ is not less than sum rate ofGO. Note
that, after applying thisV -transform, we have reduced degree
of vN by one. After applyingdeg(vN )−2 moreV -transforms,
we end up with an optimal tree withdeg(vN ) = 1. Fig. 5
illustrates an hypothetical optimal tree withdeg(vN ) = 4. It
shows how we apply3 V -transforms to get an optimal tree
with deg(vN ) = 1.

vNvN

vNvN

vj vj

vjvj

. . . . . .. . . . . .

. . . . . .. . . . . .

→

→→

Fig. 5. Applying 3V -transform on an optimal tree withdeg(vN ) = 4

Lemma 3. There exists an optimal tree, GO(V,E), such that
for any 0 < i < N − 1, deg(vN−i) ≤ i+ 1.Furthermore, the
number of neighbors of vN−i with a lower SNR than VN−i

is at most one and consequently, the number of neighbors



of vN−i which have higher SNR than xN−i is at least
deg(vN−i)− 1.

Proof: If the number of those neighbors ofvN−i that
have a lower SNR value thanxN−i is a, after applyinga −
1 V -transforms, we end up with an optimal tree in which
deg(vN−i) ≤ i+ 1. Thesea− 1 V -transforms have the form
V (G, VN−i, vi, vk) andvk has the highest SNR value among
all of the neighbors ofvN−i.

Now, assume thatdeg(vN−i) ≤ i+1 andvN−i has at most
one neighborvj such thatj < N − i. Then, we have that the
number of neighbors ofvN−i that have a higher SNR than
xN−i is ≥ |AGO

N−i| − 1 = deg(vN−i)− 1.

Lemma 4. There exists an optimal tree, GO(V,E), in which
deg(vN ) = deg(vN−1) = 1. Moreover, if vj is the only
neighbor of vN−1 and vi is the only neighbor of vN , then
xi ≥ xj

Proof: If deg(vN−1) = 2, according to Lemma (3)
and (2), there exists an optimal treeGO(V,E) in which
deg(vN ) = 1 and vNvN−1 ∈ E. Let the other neighbor of
vN−1 bevj . Then,GO′ = V (GO, vN , vi, vj) is an optimal tree
in which deg(vN−1) = 1. So, there always exists an optimal
tree GO, with deg(vN ) = deg(vN−1) = 1. Assume that the
only neighbor ofvN−1 is vj . If vj = vN , the graph will be
disconnected. Otherwise, if the only neighbor ofvN is vi, we
want to prove thatxi ≥ xj . We also assumexN 6= xN−1;
otherwise, one can rename the nodes in such a way that
theorem holds. Assume thatGO′′ (V,E′′) is a client tree in
which:

E′′ = (E − {vNvi, vN−1vj}) ∪ {vNvj , vN−1vi}. (17)

It is easy to show thatDs(GO′′ ) ≤ Ds(GO) iff xi ≥ xj .
Next lemma, is a generalization of Lemma (4) and we prove

it in a similar way. It roughly says that in an optimal tree a
node with a higher SNR has a neighbor with a higher SNR.

Lemma 5. Assume that GO(V,E) is an optimal tree in which
deg(vN ) = deg(vN−1) = · · · = deg(vN−i) = 1 and i < N −
1. Also, assume that q < p ≤ i and {vjvN−p, vkvN−q} ∈ E.
Then xj ≤ xk .

Proof: It is obvious thatj > N − i and k > N − i,
otherwise the graph is disconnected. Now, ifxk < xj ,
according to Lemma (4), the graphGO′(V,E′) with E′ =
(E − {vjvN−p, vkvN−q}) ∪ {vjvN−q, vkvN−p} has a greater
sum rate which contradicts the fact thatGO is optimal.

Lemma 6. Assume GO(V,E) is an optimal tree and i is the
largest integer that

deg(vN ) = deg(vN−1) = · · · = deg(vN−i) = 1. (18)

If i < N − 1, then there exists an optimal tree GO′(V,E′) in
which

deg(vN ) = deg(vN−1) = · · · = deg(vN−i+1) = 1. (19)

 

 

Random ordering,N = 8

Optimal ordering,N = 8

Upper bound,N = 8

Random ordering,N = 4

Optimal ordering,N = 4

Upper bound,N = 4

C
R

(b
its

o
fi

n
fo

rm
at

io
n

p
er

M
W

R
C

p
h

as
e)

1/σ2 (dB)
1 3 5 7 9 11 13 15

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Fig. 6. Comparison between the common rate of the optimal ordering and
random ordering in MWRC with FDF relaying forN = 4 and8

Proof: Assume thatAGO

N−i+1 ∩ {vN , vN−1, . . . , vN−i} =
{vm1

, vm2
, . . . , vmn

} wherem1 > m2 > · · · > mn. Define

B = AGO

N−i+1 − {vN , vN−1, . . . , vN−i}. (20)

According to Lemma (3), we assume that|B| ≤ 1. If |B| = 0,
GO is disconnected. AssumeB = {vj}. ConsiderGO′(V,E′)
such that

E′ = (E − {vm1
vN−i+1, vm2

vN−i+1, . . . , vmn
vN−i+1})

∪{vm1
vj , vm2

vj , . . . , vmn
vj}.

(21)

Then, one can conclude thatDs(GO)
Ds(GO′ )

≥ 1.
According to Lemma (6), there exists an optimal tree with

respect to (7) in which

deg(vN ) = deg(vN−1) = · · · = deg(v2) = 1. (22)

As a result,O is an optimal solution with respect to (7).
The muximum achievable sum rate,SR(GO), could be found
directly from (14).

Fig. 3 illustrates the optimal ordering for an FDF MWRC
that achieves the maximumSR.

C. Asymptotic Behavior

Using Theorem 2, it is straightforward to show that

CR(GO)− CR(GO′) ≤
1

2(N − 1)
log2

(

1 + 2xN

2x1

)

(23)

whereO andO′ refer to the optimal ordering and a random
ordering, respectively. Now, ifxN ∼ x1

1, one can conclude
that

lim
x1→∞

(CR(GO)− CR(GO′)) = 0. (24)

Similarly, for high SNR regimes, we have

SR(GO)− SR(GO′ ) ≤
1

2
log2

(

xN (1 + 2x1)

x1(1 + 2xN )

)

(25)

1f(x) is on the order ofg(x), f(x) ∼ g(x), if the asymptotic limit of
their ratio approaches 1.
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and consequently

lim
x1→∞

(SR(GO)− SR(GO′ )) = 0. (26)

In summary, equations (24) and (26) show that for FDF
relaying, the performance of a randomly chosen ordering
approaches the one for optimal ordering in high SNR regimes.

V. SIMULATION RESULTS

In this section, we investigate the performance of the
optimal ordering in comparison with random orderings. We
use Monte Carlo simulation to compare the optimal ordering
and a randomly selected ordering. For each simulation round,
random ordering is selected uniformly at random from all
of the feasible client trees. We again assume that the data
rates are limited by the uplink phase. Similar to [7], it is
assumed that the channels between the users and the relay
are Rayleigh fading with parameter 1. The number of users
is set toN = 4 and 8. In order to illustrate the difference
between optimal ordering and random orderings, we define the
common rate gap [7] of random ordering and optimal ordering
asGC = CR(GO)−CR(GO′ )

CR(GO) where, by abuse of notation, we
denote the average of common rate over all of the simulation
rounds byCR(·). The subscriptsO andO′ denote optimal or-
dering and randomly chosen orderings, respectively. Similarly,
we define thesum rate gap asGS = SR(GO)−SR(GO′ )

SR(GO) .
Fig. 6 and 7 depict the comparison between the common

rate and sum rate of the optimal ordering and random ordering
for FDF relaying in low to high SNR regimes. The upper
bounds are given by max-flow min-cut theorem [14]. Fig. 8
illustrates the aforementioned gap parameter and feature the
effect of optimal ordering on both common rate and sum
rate. However, these figures show that the ordering effect
on FDF relaying is not significant in higher SNR regimes,
as we showed earlier. The real and imaginary parts of the
channel responses during each phase are modeled by indepen-
dent and identically distributed zero-mean Gaussian variables
with variance 1/2. Decreasing this variance will increase

the aforementioned gap parameters in low SNR regimes. In
other words, the ordering becomes more important for higher
variance of channel or in lower SNR regimes. Fig. 9 illustrates
the gap parameter for channel realizations with variance1 and
1
2 for N = 4 users.
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Fig. 8. Common rate and sum rate gap between optimal orderingand random
ordering forN = 4 and8
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Fig. 9. Common rate and sum rate gap between optimal orderingand random
ordering for2 different channel variances withN = 4

VI. CONCLUSION

In this paper, we studied the effect of users’ transmission
ordering on the common rate and sum rate of a pairwise
MWRC with FDF relaying. First, we suggested a graphical
model for the data communication between the users. Then,
using this model, optimal orderings were found that maximize
common rate and sum rate in the system. Moreover, we
showed that for high SNR regimes, the effect of ordering be-
comes less important. Our claims were supported and verified
by computer simulations.
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