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Abstract

In this paper we investigate the use of the outgoing
link capacity information in the H∞ controller design
for rate based flow control in a communication network
for the case of a single bottleneck node and a single
source. In the previous works in this line of research
it was assumed that the controller implemented at the
bottleneck node has access to queue length information,
and robust controllers were designed for queue man-
agement, under time varying time delay uncertainties.
Here we assume that, besides the queue information,
the controller has access to the outgoing link capac-
ity. On top of the existing robust controller, we use an
additional controller term, acting on the capacity in-
formation. We investigate optimal ways to design such
additional controller term.

1 Introduction

A concern in the design of modern high speed data com-
munication networks is the avoidance of traffic conges-
tion. Flow control, by means of regulating the rate of
data packets generated by the sources, aims at achiev-
ing this property, thus ensuring a good quality of ser-
vice to the users of the network. This problem has been
studied thoroughly in computer networks and commu-
nication literature, see for example [1, 2, 3, 4] and their
references.

“Rate-based” flow control has been chosen by the ATM
forum [5] as the control scheme in the Asynchronous
Transfer Mode switching networks. In this scheme
the congestion control is carried out at the bottle-
neck nodes, which compute and send the feedback sig-
nals (assigned rates) to the sources. Several papers in
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the literature deal with this problem, see for example
[6, 7, 8, 9, 10, 11, 12] and their references.

In a recent work [13] an H∞ based robust controller
was designed solving such rate feedback flow control
problem for the case of a network with a single bot-
tleneck node and multiple sources. The controller was
robust to uncertain time varying multiple time delays
in different channels. The controller used the queue
length information provided at the bottleneck node to
force the queue length to a desired steady-state value.
In the present paper, we explore a way to use the ca-
pacity of the bottleneck node (outgoing flow rate) in
addition to the queue length information in the design
of the controller for the case of a single source. We
show that the use of this extra information brings the
system to its steady-state more rapidly, and it leads to
smaller steady-state tracking error.

2 Problem Formulation

R

Backward time delay Controller

Forward time delay
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�eq(t)r(t)
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q(t)

qd(t)

Source

Figure 1: The feedback control system

Consider the single bottlenecked network with one
source depicted in Figure 1. Let q(t) ≥ 0 denote the
queue length at the bottleneck node, and r(t) ≥ 0 be
the flow rate assigned by the controller. The capacity,
c(t), is the rate at which data is sent out from the node.
A simple dynamical model of the system is

q̇(t) = r(t − τ) − c(t) (1)

where τ is the return trip time delay between the source
and the bottleneck node (addition of forward and back-
ward delays). Assume that the time delay, τ , is con-
stant and known (the discussion can be easily extended
to time varying uncertain time delays, as in [13]). First,
8



99
consider the single output case:

eq(t) := qd(t) − q(t)

where qd(t) is the desired queue length, and let the
controller, K1, determines r(t) from eq(t), i.e.

R(s) = K1(s)Eq(s). (2)

Note that the design objectives

(i) robust stability in the presence of delay uncer-
tainty and

(ii) queue regulation (e.g. trying to make ‖eq‖2

small)

can be combined to define a single cost function to be
minimized:

γ(K1) =
∥∥∥∥[

W1S1

W2K1S1

]∥∥∥∥
∞

where S1 = (1 + K1P )−1, P (s) = e−τs

s and the
weights W1 and W2 are determined from the uncer-
tainty magnitude over the frequency range of interest,
the weighted tracking error for queue regulation, and
the relative importance of these two objectives. See,
[14, 15, 13] for details.

Now, we modify the measured output to include the

capacity information: y(t) =
[

eq(t)
c(t)

]
. In particular

we let

R(s) = K1(s)Eq(s) + Knew(s)C(s). (3)

Clearly, in the new setting we can have smaller tracking
error by using the capacity information. How much can
we reduce the tracking error in the new setting, and
what should be the optimal use of c(t) information?
More precisely, how do we choose Knew for a given
fixed K1 to improve the tracking performance? This is
the problem studied in the present paper.

3 Performance Improvement with a Capacity
Predictor

Let
r(t) = ro(t) + ĉ(t) (4)

where ĉ(t) is a causal estimate of c(t + τ), and

Ro(s) = K1(s)Eq(s) + K2(s)Ec(s) (5)

with ec(t) = c(t)− ĉ(t− τ). This leads to q̇(t) = ro(t−
τ)−ec(t). The predictor is a linear time invariant filter,
which is part of the feedback controller, i.e.,

Ĉ(s) = Kc(s)C(s), (6)
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with the LTI filter Kc being the predictor. Suppose
that the desired queue length and capacity are signals
that are generated according to

C(s) = Wc(s)C̃(s) and Qd(s) = Wq(s)Q̃(s)

where c̃(t) and q̃(t) are external signals (they may be
considered as noise or reference generating finite en-
ergy signals), and Wc and Wq are proper filters putting
a frequency weighting on these external signals. The
predictor will be designed to minimize the following
H∞-cost function

J∞(Kc) := supec6=0

‖ec‖2

‖c̃‖2
= ‖Wc(1 − DKc)‖∞ (7)

where D(s) = e−τs is the transfer function of the pure
delay system. We will come back to the issue of de-
signing the H∞ predictor Kc(s). Next we discuss the
design of K2. Observe that in terms of the external
signals the tracking error can be expressed as

Eq(s) = S1(s)
[
Wq(s) M(s)

1
s
Wc(s)

] [
Q̃(s)
C̃(s)

]

where M(s) = (1−D(s)K2(s)) (1−D(s)Kc(s)). Note
that when we do not use the capacity information in
the controller we have Kc(s) = K2(s) = 0, and in that
case M(s) = 1. Let us define

Sold(s) = S1(s)
[
Wq(s)

1
s

Wc(s)
]

Snew(s) = S1(s)
[
Wq(s) M(s)

1
s

Wc(s)
]

.

The H∞ cost function to be minimized (for queue
tracking) is

sup2
4 q̃

c̃

3
56=0

‖eq‖2∥∥∥∥[
q̃
c̃

]∥∥∥∥
2

= ‖S‖∞.

In the old setting (where we have feedback from the
queue only) S = Sold, and in the new setting where we
use capacity information as defined above S = Snew.
Given a frequency weighting |Wx(jω)|, defining the de-
sired performance improvement, we want to design K2

in such a way that

‖Snew(jω)‖
‖Sold(jω)‖ ≤ |Wx(jω)| for all ω. (8)

For uniform performance improvement we would like
to have |Wx(jω)| < 1 for all ω. In fact, the smaller
the magnitude of Wx the better the new performance.
Note that in the limit as ω → ∞ the ratio in the left
hand side of (8) cannot be made strictly less than unity
with a proper controller (this is due to the essential



norm of the Hankel operator associated with sensitivity
minimization problems for delay systems, see [16] for
details). In practice we would be interested in sensitiv-
ity reduction at low frequencies, and we can live with
slightly worse or about the same sensitivity magnitude
at mid and high frequency range. In the following we
first consider the capacity predictor design correspond-
ing to the problem defined in (7). Then we use this re-
sult to design a desired performance improvement Wx.
Equation (8) then defines an H∞ control problem from
which K2 is determined.

3.1 Capacity predictor design
The H∞ problem (7)

γc := inf
Kc∈H∞

‖Wc(1 − DKc)‖∞ (9)

with Wc(s) = 1
s has the optimal solution (see [16])

Kc,opt(s) =
1 + ( 2τ

π )2s2

2τ
π s + e−τs

, (10)

with
γc =

2τ

π
.

Note that Kc,opt is improper. In order to make the
capacity predictor implementable we replace Kc,opt by

Kc(s) =
1

1 + αs
Kc,opt(s), (11)

where α > 0 is a design parameter. It is easy to check
that J∞(Kc) =

(
2τ
π + α

)
. So α needs to be small com-

pared to τ for capacity prediction error to be close to
the minimum. But, when we use K2 for performance
improvement, such a choice may not be optimal, as we
will see in the next section.

3.2 Performance improvement
We assume that

Wq(s)
Wc(s)

=
ρ

1 + βs

(where ρ > 0 and β > 0 are given parameters), which
means that c(t) may have larger high frequency content
relative to qd(t) and consider Wx to be in the form

Wx(s) =

√
ρ2 + δ2s

1 +
√

ρ2 + β2s
for some δ > 0. (12)

It can be shown that if K2 satisfies∥∥∥∥(
βs + 1
αs + 1

) (
1 − e−τsK2(s)

)∥∥∥∥
∞

≤ δ
2τ
π + α

(13)

then it also satisfies (8) with Wx defined in (12). Now,
let’s define

γmin = inf
K2∈H∞

∥∥∥∥(
βs + 1
αs + 1

) (
1 − e−τsK2(s)

)∥∥∥∥
∞

(14)
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and
γ(δ) =

δ
2τ
π + α

.

So, for a given set of parameters τ , α, β and ρ, (8) is
satisfied if

γmin ≤ γ(δ). (15)

Since we want δ to be as small as possible (to have
the best performance improvement à la (12)), we are
interested in the smallest δ that guarantees (15), which
is

δmin = γmin

(
2τ

π
+ α

)
.

If α ≤ β then βs+1
αs+1 is a high pass filter and we have

(see [16]) γmin = β
α . In that case, a controller K2 that

achieves γmin is K2 = 0. If α > β, then (see [16]) the
optimal controller K2 that achieves (14) is

K2opt =
(

1 − γ2
min + (γ2

minα2 − β2)s2

γmin(1 + βs)(1 + αs)

)
· 1
1 + e−τs 1−βs

γmin(1+αs)

(16)

with

γmin =

√√√√√1 +
(

β
α

)2

x2
γ

x2
γ + 1

(17)

where xγ is the unique solution of( τ

α

)
xγ + tan−1

(
β

α
xγ

)
+ tan−1 xγ = π.

In order to determine the best value of α, the last design
parameter still to be chosen, it is interesting to look at
the plot of δmin

β as a function of β
α and τ

α . Note that if
α ≤ β, then

δmin

β
=

2
π

τ

α
+ 1, (18)

and if α > β, then

δmin

β
=

γmin

β
α

(
1 +

2
π

τ

α

)
(19)

where γmin is determined from (17), and it satisfies
β
α < γmin < 1. Figure (2) shows the plot of δmin

β as
a function of β

α and τ
α . We clearly see the following

compromise for the choice of α in order to have δmin
β

small: α should be chosen large with respect to τ , but it
should be chosen small with respect to β. Considering
the performance of the capacity predictor (see section
3.1), we see a compromise here. In conclusion, if α is
small with respect to τ and β we have K2 = 0, which
means that we use Kc only, and in this case the per-
formance improvement is not very good (18). But if
a large α value is used compared to β and τ , we have
a non zero K2 compensating for the loss in predictor
performance, and achieving a sensitivity performance
improvement quantified by (19).
00
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β as a function of β

α and τ
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4 Implementation issues

In this section we are concerned about the implemen-
tation of Kc and K2opt defined in (11) and (16).

4.1 Implementation of K2opt

Note that K2opt in (16) can be written as

K2opt(s) =
γ2
minα2 − β2

γminαβ

1
1 + H(s)

(20)

where

H(s) =

(
1
α + s

) (
1
β + s

)
−

(
x2

γ

α2 + s2
)

s2 +
x2

γ

α2

+
1

γminαβ

1 − β2s2

s2 +
x2

γ

α2

e−τs (21)

is a finite impulse response filter which impulse re-
sponse h(t) satisfies

h(t) =


(

1
α + 1

β

)
cos

(xγ

α t
)

+
(

1
βxγ

− xγ

α

)
sin

(xγ

α t
)

for t ∈ [0, τ ]
0 for t > τ

.

(22)

4.2 Implementation of Kc

The capacity predictor Kc defined in (11) can be writ-
ten as

Kc(s) =
(

2τ

πα

)
1

1 + Fc(s)
(23)

where

Fc(s) =

(
s
α − (

π
2τ

)2
)

+ π
2τ

(
1
α + s

)
e−τs(

π
2τ

)2 + s2
(24)
60
is a finite impulse response filter which impulse re-
sponse fc(t) satisfies

fc(t) =
{

1
α cos

(
π
2τ t

) − π
2τ sin

(
π
2τ t

)
for t ∈ [0, τ ]

0 for t > τ
.

(25)

Note that the above finite impulse response filters can
be digitally implemented easily by making use of their
impulse response expression.

4.3 Block diagrams of the controller
From (4), (5) and (6) the assigned rate R can be ex-
pressed as

R(s) = K1(s)Eq(s)

+
(
K2(s) − e−τsK2(s)Kc(s) + Kc(s)

)
C(s), (26)

which can be implemented as shown in Figure 3. In
fact, because of the symmetry in (26), K2 and Kc can
be interchanged in this figure.

K2

e��s

Kc

+ +

K1

bC(t)C(t) r(t)

eq(t) = qd(t)� q(t)

+++

�

Figure 3: Overall controller implementation

5 Simulations

5.1 Improvement using the new controller
We would like to compare the control schemes defined
by (2) and (3) by carrying out simulink simulations.
The following parameters are used for the simulation:

c(t) = 1000 + 100 sin(0.1t) t ≥ 0
qd(t) = 100 t ≥ 0

τ = 1, α = 1, β = 10−3.

The saturation of the queue is taken into consideration
in the simulation, 0 ≤ q(t) ≤ 1000. Figure 4 shows the
plots of the queue length and the source sending rate
as a function of time for both cases. It can be seen that
the system reaches the steady-state more rapidly when
(3) is used, and that we can better reject the influence
of variations in capacity on the queue length and source
rate dynamics.
1
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Figure 4: Performance improvement using the new con-
troller

5.2 Use of different controllers
One could envision three different control schemes:

Case 1 : Rc(s) = K1(s)Eq(s) + C(s)
Case 2 : Rbc(s) = K1(s)Eq(s) + Ĉ(s)
Case 3 : R(s) = K1(s)Eq(s) + Knew(s)C(s),

the third case being the one discussed in Section 3.
Let’s examine what are the consequences of such
choices on the dynamics of the system. See Figure 5
for the plots of eq(t) versus time t. In this study we

10 20 30 40 50 60 70 80 90 100

−20

0

20

40

60

80

100

time in sec

e q(t
)

   
   

c(t) only
Capacity estimate
K2 and Kc

Figure 5: Queue tracking error for different controllers

used:

c(t) = 1000 + 200 sin(0.1t) t ≥ 0
qd(t) = 100 t ≥ 0

τ = 1.

The dashed line corresponds to Case 1. The dotted line
corresponds to Case 2 where α = 10−2. In this case, as
60
we discussed in section 3.1, since only Kc is used, we
are not constrained by the design of K2 for the choice
of α. We can thus take a very small α in order to mini-
mize the predictor performance degradation due to the
introduction of the filter 1

1+αs . The solid line corre-
sponds to Case 3 with α = 102 and β = 10−3. It can
be noticed that the last design exhibits a behavior sim-
ilar to the one we have seen in Case 2. In other words,
having K2 = 0 and Kc with a small value of α, and
having K2 6= 0 and Kc with a large value of α pro-
duce similar results. The reason for this phenomenon
is the symmetry pointed out in Section 4.3, which has
the interpretation that in Case 3 K2 takes care of the
prediction of c(t), while the effect of Kc is small in that
case due to large value of α.

Let’s now examine the effects of tuning the parameter
α on the performance of the system for the previous
three cases. In the following we use:

β = 10−1, τ = 1,
qd(t) = 100 t ≥ 0
c(t) = 100 sin(0.1t) + N (0, 200) + w(t) t ≥ 0

where N (M, V ) is a normally distributed random noise
with mean M and variance V , w(t) is obtained by pass-
ing the signal Sat+

(
e−0.1tN (0, 10)

)
through the filter

80(1+βs)
s , and the function Sat+ saturates the negative

values to zero. To compare the performance of different
control schemes we examine the cost function

Z(t) =

√∫ t

0

|eq(η)|2dη.

We have the following results:

• Case 1: limt→∞ Z(t) = 250

• Case 2:

α = 10−2 α = 10−1 α = 1
limt→∞ Z(t) 795 210 315

• Case 3:

α = 101 α = 102 α = 103

limt→∞ Z(t) 212 203 201

It can be noticed that for Case 3 the performance of
the system keeps improving while α is increased, but
for Case 2 we do not have this consistency, and the
value of α needs more tuning. We are thus better off
using the controller defined in Case 3.

5.3 ns simulations
Figure 6 shows a ns [17] simulation for the following
configuration: out-going link capacity of 10 Mbps plus
2



a uniform distribution from -10kbps to +10kbps, de-
sired queue length of 20 packets, round-trip time de-
lay of 200ms, packet size of 53 bytes and a sampling
frequency of 1000 samples per round-trip time for the
controller implementation. Note that in the simulation
the rising time is around 3 seconds, which is due to a
steady-state error between the estimated capacity and
the actual one. This error is due to our digital im-
plementation of (23). We noticed that if we increase
the sampling frequency this error decreases and conse-
quently the rising time is shorter, and it also decreases
as the value of the outgoing link capacity is smaller.
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Figure 6: ns simulation

6 Concluding remarks

The performance improvement obtained by using the
capacity information is quantified in this paper. The
extra controller term acting on the capacity is added to
the robust controller designed in earlier works, [13], and
the improvement in the queue tracking is demonstrated
via simulink simulations.
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rate-based congestion control in high speed networks:
design of an H∞ based flow controller for single bot-
tleneck,” in Proc. of the American Control Conference,
vol. 4, pp. 2376 –2380, 24-26 June 1998.
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