
The labeled cell classifier:
a fast approximation to k nearest neighbors ∗

Alessandro M. Palau and Robert R. Snapp
Department of Computer Science

University of Vermont
Burlington, VT 05405 U.S.A.

(palau@cs.uvm.edu and snapp@cs.uvm.edu)

December 10, 1997

Abstract

A k-nearest-neighbor classifier is approximated by a labeled cell classifier that recur-
sively labels the nodes of a hierarchically organized reference sample (e.g., a k-d tree) if
a local estimate of the conditional Bayes risk is sufficiently small. Simulations suggest
that the labeled cell classifier is significantly faster than k-d tree implementations for
problems with small Bayes risk; and may be more accurate as a larger reference sample
can be examined in a fixed amount of time.

Key words: k nearest neighbor classifier, k-d tree.

1 INTRODUCTION

The k-nearest neighbor classifier (Fix and Hodges, [5]) continues to serve as a solution to

practical recognition problems (Smith et al. [12]), as a basis for developing new pattern

classifiers (Hastie and Tibshirani [11]), and as a framework for illuminating fundamental

aspects of pattern recognition. This algorithm has simple implementations, is analytically

tractable, and is nearly optimal in the large sample limit (Cover and Hart [3]). The main

disadvantage of this algorithm is that, as a nonparametric algorithm, it needs to consult a

∗Submitted to the 14th ICPR’98 (Algorithms and Techniques). Please direct all correspondence to the
second author.

1

reference sample during each classification. Consequently, the average classification time

increases with the size of the reference sample.

Many studies have produced efficient implementations of the k-nearest-neighbor algo-

rithm. Exact implementations organize the reference sample into hierarchical data structures

that can be quickly accessed (Friedman, Baskett, and Shustek [6], Fukunaga and Narenda [8],

Kim and Park [10]). An implementation using a multidimensional binary search tree 1 (Fried-

man, Bentley, and Finkel [7]), for example, can classify an n-dimensional input pattern, using

a reference sample of m classified patterns, within an average of O((n
√
k + 1)n logm) dis-

tance computations. Approximate implementations accelerate classification by editing the

reference sample (Hart [9], Wilson [13]), or by truncating the search algorithm (Ayra and

Mount [1]). The present study, which began as an evaluation of the computational efficiency

of existing methods, introduces a fast and simple approximation of the k-nearest-neighbor

classifier. Simulations suggest that this implementation, which we call the labeled cell clas-

sifier, is useful for problems that provide an abundant supply of classified patterns, are

described by smooth probability distributions, and have a small Bayes risk (e.g., pixel classi-

fication of satellite images).

The labeled cell classifier is loosely based on Friedman, Bentley, and Finkel’s implemen-

tation, in that a classified reference sample is organized into a k-d tree.2 Each node in the

tree, which corresponds to a hierarchical cell (or volume) in the feature space, is assigned a

class label (during preprocessing) if a recursive local estimate of the conditional Bayes risk is

sufficiently small. If during classification, an input pattern falls within a labeled cell, then the

pattern is immediately assigned to the indicated class. Otherwise, the class is determined

from the exact set of k nearest neighbors in the k-d tree.

The classes assigned to patterns that fall within the labeled cells may differ occasionally

from the results of the k-nearest neighbor algorithm. Thus, like Hart’s condensed nearest

1This is commonly called a k-d tree, where k in this context denotes the dimensionality of the search
space, not the number of nearest neighbors[2].

2Note that analogous classifiers can be built on top of other hierarchical implementations, such as the
ordered-partition classifier of Kim and Park [10]

2

neighbor rule [9], the labeled cell classifier only approximates the classic algorithm. However,

computer experiments suggest that if a classification needs to be performed in a fixed amount

of time, then the new algorithm may attain greater accuracy than other implementations of

the k-nearest-neighbor classifier, as the computation saved in the labeled cells allows this

new algorithm to process a larger reference sample.

Section 2 reviews the k-nearest-neighbor classifier, and its implementation using k-d

trees. Section 3 describes the labeled cell classifier, including the method used to label

the cells. Section 4 describes our computer experiments, both with artificial data, and data

extracted from a multispectral thematic mapper image. Concluding remarks appear in Sec-

tion 5.

1.1 Notation

Following popular convention (cf., Duda and Hart [4]), we assume that patterns are repre-

sented as feature vectors in an n-dimensional Euclidean metric space. Each dimension of

the feature space corresponds to a measurable attribute of a pattern. Furthermore, we as-

sume that each pattern is generated from a unique state of nature, or pattern class. Feature

vectors are denoted by bold roman letters, as in x ∈ Rn; class labels, by script letters, as in

` ∈ {1, . . . , C}, where C > 1 denotes the number of pattern classes. A reference sample of

m labeled feature vectors is thus represented as,

Xm = {(xi, `i) ∈ Rn × {1, . . . , C} | i = 1,2, . . . ,m}.

We use superscripts to distinguish different feature vectors, and subscripts to distinguish

their components. Thus xij denotes the j-th component of xi.

3

Figure 1: The jagged curve represents the decision boundary induced by a k-nearest neighbor clas-
sifier, assuming a Euclidean metric in R2, k = 3, and the reference sample indicated by the small
gray and white circles, the interior color represents the class label. The two squares represent two
hypothetical input patterns, each connected to its three nearest neighbors with a dashed line. The
left square is thus assigned to the gray class, and the right square, to the white class.

2 THE k-NEAREST-NEIGHBOR CLASSIFIER

The k-nearest-neighbor classifier, as described by Fix and Hodges [5], requires a metric d,

a positive integer k, and a reference sample Xm of m labeled patterns. A new input vector

x ∈ Rn is classified using the subset of k-feature vectors of Xm that are closest to x with

respect to the given metric d. Pattern x is then assigned to the class that appears most

frequently within the k-subset. (Ties are resolved by an arbitrary procedure.) A simple

illustration using a reference sample of twenty reference vectors appears in Fig. 1.

2.1 The k-d tree implementation

The labeled cell algorithm, described in Section 3, is based on the implementation of Fried-

man, Bentley, and Finkel[7] that organizes the reference sample Xm into an n-dimensional

binary tree, such that the root node represents the entire feature space, and each node in the

tree represents an isothetic cell that contains a subset of Xm. The two descendants of each

nonterminal node divide the parent cell along one coordinate, called the key, such that the

number of reference patterns in each child cell differs at most by one. The key may be the

coordinate of greatest variation of the reference vectors in the parent cell, and the threshold

may be the median of their projections along the chosen coordinate. Pairs of descendants

4

(a) (b)

(c) (d)

α

β

ε

γ δ

ζ η

θ

α β ε ζ γ δ η θ

(e)

t7

t1

x 1
<
t 1

x
1 á
t1

t2

t3

t4

t5

t6

x 2
<
t 2

x
2 á
t2 x 2

<
t 3

x
2 á
t3

x 1
<
t 4

x
1 á
t4 x 2

<
t 5

x
2 á
t5 x 2

<
t 6

x
2 á
t6 x 1

<
t 7

x
1 á
t7

Figure 2: (a) A k-d tree of depth three is constructed from this set of sixteen feature vectors in
R2 that forms the root of the tree. (b) The set is bisected into left and right portions, forming the
two descendent nodes of the root, as the largest variation appears along the horizontal coordinate.
(c) Each resulting subset is further divided into two equal partitions along the vertical coordinate,
forming the four nodes at depth two in the tree. (d) Each resulting subset is then divided along the
coordinate of greatest variation. Each resulting cell, labeled with a greek letter, contains two feature
vectors, and forms a leaf node of the k-d tree (e).

are added recursively until the number of vectors in a cell does not exceed a bucket size b.

Note that the nodes at a constant depth represent a partition of the feature space, as do the

leaf nodes. Fig. 2 displays a k-d tree constructed from a reference sample of 16 points in R2,

with b = 2.

After the tree is completed, the k feature vectors in the tree that are nearest to a given

input pattern x can be identified. A priority queue is used to maintain the k feature vectors

encountered so far that are closest to x. Beginning with the root, nodes in the tree are

examined recursively until it is certain that the k nearest neighbors have been found. If the

current node is a leaf node, then the priority queue is updated after examining its b or fewer

feature vectors. Otherwise the key i and threshold value t of the node are examined, and the

recursive procedure is applied first to the descendant that falls on the same side of t as xi,

and then to its sibling. For efficiency, nodes are only examined if their cell boundaries are

closer to x than the k-th nearest neighbor found so far (the bounds-overlap-ball test); and

the search is stopped as soon as the k-th nearest neighbor is closer to x than the boundaries

5

of every unexamined cell (the ball-within-bounds test).

The average number of leaves (or buckets) examined is bounded above by (n
√
G(n)k/b+

1)n, where G(n) is a geometric factor that represents the ratio of the volume of an n-

dimensional hypercube to that of the largest ball it encloses[7]. (For a Euclidean metric,

G(n) = (4/π)n/2Γ(n/2 + 1).) Thus the average number of feature vectors examined is less

than b(n
√
G(n)k/b + 1)n. In practice, it is often desirable for k to be an increasing function

of m.

3 THE LABELED CELL CLASSIFIER

The labeled cell algorithm is designed to reduce the number of feature vectors examined

during each classification. As in the previous implementation, the reference sample is orga-

nized into a multidimensional binary search tree using the coordinates of the feature vectors

as keys. An integer k′ ≥ k and a fraction α > 0 are selected. A central test vector from each

leaf cell is then classified with an exact k′-nearest-neighbor classifier (e.g., the previous im-

plementation). This test vector could be the centroid of the leaf cell (assuming it is compact),

or the sample mean of its reference vectors. If the number of k′-nearest-neighbors that be-

long to the most frequent class exceeds bαk′c, then the leaf cell is given the label of that

class.3 (Otherwise, it remains unlabeled.) Nonterminal nodes are examined recursively: if

two siblings share a common class label, then their parent is assigned the same label.

Input patterns are classified by the k-d tree algorithm, with one important exception:

if an input pattern belongs to a cell that is labeled, then it is immediately assigned to the

indicated class. Thus no reference vectors are examined if an input falls within a labeled

cell. For different values of α, k′, and k, the labeled cell algorithm implements a variety

of classifiers: α = 1 yields an exact k-nearest neighbor classifier, and α ≤ 1/C , a pure cell

3For simplicity, we assume a zero-one loss matrix, so cells are labeled if their local estimate of the condi-
tional risk is less than 1 − α. It is straightforward to generalize the algorithm to a asymmetric, multiclass,
risk function.

6

0 1 2 3 4 5 6 7
1

10

100

1000

O
p

er
at

io
n

s
Pe

r
C

la
ss

if
ic

at
io

n

Class Separation (2µ/σ)

k-d Tree
α = 0.9
α = 0.7
α = 0.5

Figure 3: A semilogarithmic plot obtained from a classification problem with two normally dis-
tributed classes in R3. The circular, triangular, and square markers describe the average perfor-
mance of hundreds of labeled cell classifiers with α equal to 0.9, 0.7, and 0.5 (a pure cell classifier)
respectively. In all cases k = k′ = 11. The five-pointed stars describe the performance of an k-d tree
implementation of an 11-nearest-neighbor classifier. Vertical error bars all lie within each marker.

classifier.

4 EMPIRICAL ANALYSIS

Two problems illustrate the differences in performance and accuracy between labeled cell

and exact k-d tree implementations of the k-nearest neighbor classifier. The first, assumes

two equally probable, normally distributed classes in R3. Thus the class-conditional proba-

bility densities are

f`(x) = 1
(2πσ 2)3/2

e−((x1+(−1)`µ)2+x2
2+x2

3)/2σ
2
,

for ` ∈ {1,2}. The classification accuracy (i.e., the expected probability of error), and the

expected number of operations per classification are empirically estimated from a sequence

of independent trials. For each trial a random reference sample of m = 10,000 patterns

is used to classify several thousand independent input vectors. The number of operations

is estimated heuristically: each comparison and addition count as one operation, and each

multiplication as two. (Qualitatively similar results are obtained with a variety of weighting

factors.) Results for k = 11, a Euclidean metric, and eight values of 2µ/σ are displayed in

7

10 30 100 300 1000 3000 10000

0.06

0.07

0.08

0.09

0.10 k-d Tree
α = 0.9
α = 0.8
α = 0.7
α = 0.5

Operations Per Classification

Pr
o
b

ab
il

it
y

o
f

Er
ro

r

0.5

0.5

0.5

0.5
0.5

2

10

60

60
60 60 60

10
10

10
10

2

2
2

2

Figure 4: Results of the second experiment in which six-dimensional pixels, belonging to two dif-
ferent classes were classified by three different labeled cell classifiers (k′ = k = 7), and a k-d tree
implementation of a 7-nearest-neighbor classifier. The reference sample size appears to the right of
each marker in thousands. The horizontal axis is logarithmic.

Fig. 3. In this example, the greatest absolute deviation in accuracy between two implemen-

tations occurs at 2µ/σ = 6 and α = 0.5, where the labeled cell classifier misclassifies 0.15%

of the independent test patterns, and the k-d tree implementation misclassifies 0.14%. Note

in particular, how the recursive labeling scheme accelerates the performance as the class

separation is increased, with little degradation in accuracy.

The second problem, uses data extracted from a seven-band digital image. We let each

pixel define an independent pattern. The first band is quantized about the median to obtain

a binary class label. A six-dimensional feature vector is formed with the remaining spectral

bands. Reference and test patterns are selected independently from the image. Fig. 4 dis-

plays the trade-off between the classification accuracy and the computational cost for four

different reference sample sizes as well as four different values of α. These results suggest

that the recursive labeling scheme accelerates classification with only a small reduction in

accuracy. Note that by increasing the size of the reference sample, it is possible to obtain

a labeled cell classifier that is both significantly faster and more accurate than a k-d tree

classifier. Thus the new algorithm may be useful for real-time applications that provide an

abundant supply of classified data. The estimates, redisplayed in Fig. 5, validate that the

average classification time of labeled cell classifiers is also O(logm), but with smaller con-

8

500 2000 10000 60000
0

1000

2000

3000

4000

5000 k-d Tree
α = 0.9
α = 0.8
α = 0.7
α = 0.5

Size of the Reference Sample (m)
O

p
er

at
io

n
s

Pe
r

C
la

ss
if

ic
at

io
n

β = 5.44

β = 144

β = 312

β = 552

β = 852

Figure 5:Empirical estimates of the average number of operations required for each classification as
a function of the sample sizem for the second experiment. The linear graphs represent least-square
fits of the form β log10m+ γ. (Note that the horizontal axis is logarithmic.)

stants of proportionality β. Preliminary comparative experiments suggest that the labeled

cell classifier is competitive with other approximations of the k nearest neighbor algorithm.

Moreover, recursive labeling can be combined with early truncation (Arya and Mount [1]) to

yield even faster implementations.

5 CONCLUSION

The amount of effort that we employ in real-time decisions usually depends upon our per-

ception of the inherent risk. Decisions of high risk, such as critical medical diagnoses, are

fraught with more deliberation and information gathering than those of lesser consequence.

The labeled cell classifier applies this principle using a local estimate of the conditional risk,

resulting in an especially efficient approximation to the k-nearest-neighbor algorithm. This

study also illustrates how a classic pattern classifier can be modified to achieve greater ef-

ficiency for problems of low Bayes risk. Since many perceptual problems are solved with

minimal ambiguity, this approach might be useful for other pattern recognition algorithms.

9

Acknowledgments

This research was sponsored by Rome Laboratory, Air Force Material Command, USAF, under

grant number F30602–94–1–0010.

References

[1] S. Arya and D. M. Mount, “Approximate nearest neighbor queries in fixed dimensions,” in Pro-
ceedings of the 4th ACM-SIAM Symposium on Discrete Algorithms, 1993, pp. 271–280.

[2] J. L. Bentley, “Multidimensional binary search trees used for associative searching,” Communi-
cations of the ACM, vol. 18, 1975, pp. 509–517.

[3] T. M. Cover and P. E. Hart, “Nearest neighbor pattern classification,” IEEE Trans. Inform. Theory,
vol. IT–13, 1967, pp. 21–27.

[4] R. O. Duda and P. E. Hart, Pattern Classification and Scene Analysis. New York, New York: John
Wiley & Sons, 1973.

[5] E. Fix and J. L. Hodges, Jr., “Discriminatory Analysis — Nonparametric Discrimination: Consis-
tency Properties,” Project 21–49–004, Report No. 4, USAF School of Aviation Medicine, Randolf
Field, TX, 1951, pp. 261–279.

[6] J. H. Friedman, F. Baskett, and L. J. Shustek, “An Algorithm for Finding Nearest Neighbors,” IEEE
Trans. Comput., vol. C–24, 1975, pp. 1000–1006.

[7] J. H. Friedman, J. L. Bentley, and R. A. Finkel, “An algorithm for finding best matches in logarith-
mic expected time,” ACM Transactions on Mathematical Software, vol. 3, 1977, pp. 209–226.

[8] K. Fukunaga and P. M. Narendra, “A Branch and Bound Algorithm for Computing k-Nearest
Neighbors,” IEEE Trans. Comput., vol. C–24, 1975, pp. 750–753.

[9] P. E. Hart, “The condensed nearest neighbor rule,” IEEE Trans. Inform. Theory, vol. IT–1, 1968,
pp. 515–516.

[10] B. S. Kim and S. B. Park, “A fast k nearest neighbor finding algorithm based on the ordered
partition,” IEEE Trans. Pattern Anal. and Mach. Intell., vol. PAMI–8, 1986, pp. 761–766.

[11] T. Hastie and R. Tibshirani, “Discriminant Adaptive Nearest Neighbor Classification and Re-
gression,” in D. S. Touretzky et al., Advances in Neural Information Processing Systems 8, MIT
Press: Cambridge, MA, 1996, pp. 409–415.

[12] S. J. Smith, M. O. Bourgoin, K. Sims, H. L. Voorhees, “Handwritten character classification using
nearest neighbor in large databases,” IEEE Trans. Pattern Anal. and Mach. Intell., vol. PAMI–16,
1994, pp. 915–919.

[13] D. L. Wilson, “Asymptotic properties of nearest neighbor rules using edited data,” IEEE Trans.
Systems, Man, and Cybernetics, vol. SMC–2, 1972, pp. 408–421.

10

	1 INTRODUCTION
	1.1 Notation

	2 THE k-NEAREST-NEIGHBOR CLASSIFIER
	2.1 The k-d tree implementation

	3 THE LABELED CELL CLASSIFIER
	4 EMPIRICAL ANALYSIS
	5 CONCLUSION
	Acknowledgments
	References
	Figure 1:
	Figure 2:
	Figure 3:
	Figure 4:
	Figure 5

