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Abstract

This work on cognitive radio access ventures beyond the moretraditional “listen-before-talk” paradigm that

underlies many cognitive radio access proposals. We exploit the bi-directional interaction of most primary com-

munication links. By intelligently controlling their access parameters based on the inference from observed link

control signals of primary user (PU) communications, cognitive secondary users (SUs) can achieve higher spectrum

efficiency while limiting their interference to the PU network. In one specific implementation, we let the SUs listen

to the PU’s feedback channel to assess their own interference on the primary receiver, and adjust radio power

accordingly to satisfy the PU’s interference constraint. We propose a discounted distributed power control algorithm

to achieve non-intrusive secondary spectrum access without either a centralized controller or active PU cooperation.

We present an analytical study of its convergence property.We show that the link control feedback information

inherent in many two-way primary systems can be used as important reference signal among multiple SU pairs to

distributively achieve a joint performance assurance for primary receiver’s quality of service.

Index Terms

Wireless communications, inference for opportunistic spectrum access, dynamic spectrum access control,

distributed algorithm, cognitive radio networks.

I. INTRODUCTION

Because of its potential to alleviate spectrum scarcity, the overlay of cognitive radio networks over the

spectrum of high priority primary user (PU) networks has recently attracted a high level of research interest.

Most existing works on cognitive overlay centers on the listen-before-talk (LBT) concept which relies on

(cooperative) spectrum sensing of primary user activities(e.g., [1], [2], [3]). LBT requires secondary users

(SUs) to detect the absence of primary user signals before channel access. The finding by the FCC that

most LBT-based devices do not degrade TV reception quality [4] provided a major boost to the cognitive
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radio concept. Though conceptually simple, LBT focuses on the sensing of primary transmission signals

instead of on determining the potential effect of secondaryuser access on primary receiver’s performance.

Because of the focus on primary transmitters rather than their receivers, LBT-based cognitive protocols

need to be more conservative in limiting SU transmission forthe protection of primary users (PUs) from

SU interference. First, it needs to assume the least favorable fading environment (i.e., strong interference

channel against weak primary channel). For instance, the threshold for the LBT devices was set at 30dB

below the DTV reception threshold in the FCC TV white space testing [4]. Second, it has to anticipate

the worst sum interference at the primary receiver (PU-Rx) from multiple potential SU devices. Third, it

does not allow SU systems to exploit any extra capacity when aPU system, not fully loaded, can tolerate

substantial interference (e.g., through forward error correction, beamforming, or spectrum spreading). On

the other hand, LBT may also be too aggressive within the wellknown hidden node environment.

To overcome the shortcomings of LBT, we propose and advocatea different framework that incorpo-

rates the inherent feedback information in typicaltwo-way PU communication links. Such link control

information is available in many practical systems in the form of, e.g., power control feedback in CDMA

cellular [5], channel quality indicator feedback in HSDPA [5], ACK/NAK feedback in cellular or WiFi

networks [5], [6]. Such feedback information from the PU-Rxcan provide a good indicator of the actual

(often aggregated) impact of the SU interferences on the reception quality of the PU communication link.

Figure 1 provides a simple illustration of SUs being able to overhear the feedback from the PU-Rx to

the PU transmitter (PU-Tx). This feedback information enables an SU to monitor the performance of PU-

Rx (affected by one or more SUs), and adjust accordingly its own access parameters based on inference.

The benefits of inference based on such link level feedback information are multi-folds: (i) It enables

explicit protection of the PU-Rx through feedback monitoring, especially in the presence of multiple SU

pairs; (ii) It facilitatesdistributed access controlof multiple SUs based on the PU-Rx response to the

sum SU interference; (iii) It permits different levels of interaction between PUs and SUs; (iv) It leads to

more efficient spectrum usage through learning; (v) It is robust and adaptive to changes due to network

load fluctuation and radio environment dynamics.

The proposed new framework requires that secondary radios be “cognitive” enough to receive and

decode link control information from primary networks requiring strict interference constraint. This new

framework is particularly suitable for cases where both primary and secondary networks belong to the same

operator or interest group. In particular, given the ability to decode PU-Rx feedback information, secondary

networks of lower priority opportunistically access spectrum nominally but not fully occupied by (legacy)

PUs of higher QoS/access priorities. The DARPA XG project isone such example where secondary
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cognitive radios access underutilized spectrum of legacy users. Another example involves cognitive femto

cells to improve indoor cellular coverage. Such applications offer clear incentives for PUs to conditionally

allow cognitive SU access and to permit more flexible and effective spectrum sharing, often without

fundamental regulatory changes.

We focus on decentralized control of SUs in order to accommodate broader applications for which

centralized control may be costly or infeasible. In other cases, the cost to retrofit existing infrastructure

may be expensive, time consuming, or disruptive. These cases call for distributed intelligent SU access

protocols. As a concrete step toward this goal, we study a primary system with an outage probability

QoS requirement. The PU pairs exchange 1-bit outage feedback information that can be overheard and

exploited by (multiple) SUs. The objective of the SUs is to maximize its utility while satisfying the outage

probability constraint set by the PU operator. The key challenge is to achieve this goal in a distributed

manner at the multiple SUs without PU cooperation and with minimum SU coordination.

Our contributions are as follows: 1) we present a novel framework for cognitive spectrum access

under PU link quality constraint based on PU-Rx feedbacks; 2) we formulate the cognitive spectrum

utilization problem as a convex optimization problem through practical approximation; 3) we propose a

discounted distributed power control (DDPC) algorithm andanalyze its performance for individual SUs

without explicit central control; 4) we show the convergence property of the proposed DDPC algorithm

for networks of synchronous and asynchronous SUs.

II. RELATED WORK

Distributed power control for cellular systems has been studied in the literature. In [7], the authors

studied the convergence of a simple distributed power control algorithm to a feasible solution that

satisfies the target signal-to-interference ratio (SIR) requirement for each user. The authors of [8] proposed

a framework for the joint optimization on cell selection andpower control of cellular uplinks. For

wireless multihop networks, the authors of [9] proposed setting both power price and external interference

price/compensation to adjust transmit power in a distributed way. The work of [10] involves a joint

optimization problem of adjusting the flow rate and the transmit power. In these works, either the Lagrange

multiplier on the resource constraints or the external interference price must be exchanged among different

participating nodes [9], [10]. While the aforementioned works assume static wireless channels, power

control with outage probability requirement has been considered for Rayleigh fading channels in [11].

There are also power control algorithms for cognitive radios to achieve efficient and fair usage on the

shared spectrum resources without explicit protection constraint on the PU QoS (e.g., [12]). In our problem

setting, the PUs have strict QoS requirement and do not participate in the power control algorithm.
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There are also studies on overlaying cognitive radio networks that propose the SUs participate the

transmission of the PU traffic in forms of dirty paper coding (e.g., [13], [14], [15]), distributed space-time

coding (e.g, [16]), cognitive relay (e.g., [17]) among others. Such schemes require that the SU decode

the signal transmitted from the PU-Tx and perform precodingto guarantee the transmission rate of the

PU in the exchange of spectrum opportunities. They also require the awareness of the PU-Rx on the

existence of SU transmission. Here, we assume that the SUs transmit simultaneously with the PU and do

not help PU transmission. The PU treats the received signal from all SUs as interference. This simplifies

the transceiver design at the SU-Tx since it does not requirethe knowledge on the codebook used by the

PU as well as complicated precoder implementation. Here we focus on the design of distributed power

control algorithm for multiple SUs under the protection requirement from the PU.

Closely related to the framework in this manuscript is the use of power control for mitigating the

interference on PUs while maximizing the spectrum usage of SUs. For example, the authors of [18]

quantified the relationship between SU transmit power and the probability of spectrum opportunity based

on a Poisson model of the primary network traffic. They also studied the subtle interaction between

detecting the PU transmit signal and locating the spectrum opportunity. In [19], the authors proposed

adjusting SU transmit power based on the spectrum sensing results. In essence, these works belong

to the LBT category. In [20], the authors proposed an auction-based power allocation framework for

spread spectrum users to share spectrum with an interference temperature sensed at a measurement point,

whereas a central manager needs to collect bids from distributed users. The authors of [21], formulated a

power allocation game considering both the interference temperature constraint at the PUs and the QoS

requirement at the SUs. Monitor stations are required to report the value of the dual variable at every

iteration for the proposed algorithms.

The idea of applying PU feedback channel information has also been previously considered. For

example, in our preliminary work [22], we presented resultson utilizing the PU ACK/NAK information

to maximize the utility of a single SU without considering the interaction of multiple SUs. In [23], power

control message of the primary systems is used to improve theSU’s spectrum sensing accuracy. The idea

is to pro-actively send sounding signals and adjust its maximum transmit power based on the reaction

from the PU-Rx. In [24], the authors proposed the use of the ACK/NAK information on the PU feedback

channel by the SU to adjust its input rate in order to improve the spectrum efficiency while meeting the

PU’s target rate. However, both [23] and [24] consider only asingle SU.

Our work differs from previous works on cognitive radio power control in at least one of the following

aspects: 1) our system does not require a centralized controller or an interference monitor; instead, it
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depends explicitly on the inherent PU link feedback; 2) our SUs are not required to exchange coordination

information among themselves, thereby significantly lowering the overhead cost and protocol complexity;

3) our access objective is to maximize the total SU spectrum utility instead of individual SU utility while

jointly but distributively satisfying the outage requirement of the PU.

In our earlier work [25], we presented a framework for multiple SUs to perform distributed power

control based on observation from PU feedbacks. In this paper, we expand the framework and provide

convergence analysis on the discounted distributed power control (DDPC) algorithm to tackle the lack

of parameter update synchronization typically among usersin cognitive radio networks1. Other related

works on utility optimization without message passing among multiple participating nodes can be found

in [26], [27].

III. SYSTEM MODEL AND BASIC ASSUMPTIONS

A. Notations

We use bold fonts to denote vectors, the curly inequality symbol � to denote the component-wise

inequality, and1 to represent a vector with all of its elements 1 with appropriate length. SymbolE{·}

denotes expectation operation, andPr[·] represents the probability of a random event. In this paper,log(·)

is a natural logarithm function.

B. Power Control of Cognitive Overlay

We consider the scenario of a cognitive radio network overlaying on top of a legacy PU network in

which multiple SUs are allowed to share the spectrum designated for the high priority PU network in a

non-intrusive manner. The non-intrusiveness requirementof the cognitive users has dual meanings. First,

PU, given a higher spectrum access priority, is able to set the permissible level of interference or disruption

from SU transmissions. This level of tolerance is controllable and can be used by the PU networks to set

a price for SU access. Second, the legacy PUs do not actively cooperate with or help the SUs. In other

word, such a cognitive network overlay requires no modification to PU’s normal operation. Deployment

of such SU networks is easier for legacy networks to accommodate as they are usually easier to set up,

less disruptive, and less costly.

Let us consider a PU link comprising two network nodes that communicate via a forward link and

a reverse link. The forward link carries primary traffic datafrom the PU-Tx to the PU-Rx, whereas the

reverse link returns feedback control information from thePU-Rx to the PU-Tx. Denote the forward

1All results in Section V are new.
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transmission power of the PU-Tx asP0. For the cognitive network, we considerM secondary transmitters

(SU-Tx’s) geographically distributed around the PU nodes.This cognitive network overlays on the primary

forward link spectrum and desires to access the forward linkchannel with minimum disruption to the

primary forward link. LetP = [P1, · · · , PM ] denote the transmit powers of theM SUs, respectively. The

SUs control their own access of the shared spectral band on the forward link through power control. For

convenience here, we further assume that the primary channel utilization is time-slotted. The cognitive

SUs have synchronized their spectrum access to the time-slot clock by, e.g., listening to the timing pilot

on a broadcast control channel of the PU network (see, e.g., [28]).

C. Primary Outage Constraint

To determine the interference level at the PU-Rx due to SU transmissions, letGi be the transceiver

processing gain between the SU-Txi and the PU-Rx. LetFi further denote its corresponding small-scale

fading channel gain due to multipath and mobility. Note thatwe reserved the special indexi = 0 for the

PU. We consider cases in whichGi remains almost unchanged whereasFi may vary from slot to slot.

We assume a non-line-of-sight (NLOS) radio transmission environment among all transmitters and the

PU-Rx. For example, the PU-Rx may be a mobile device covered by a wireless hotspot in urban areas. In

this case, we can adopt a Rayleigh fading channel model, in which Fi follows independent exponential

distribution with unit mean. In other words, the average power gains of the fading channels all equal to

1. Thus, the received power at the PU-Rx from SUi and its average are, respectively,

PiGiFi, and E[PiGiFi] = PiGi. (1)

Let N0 denote the white Gaussian noise power at the PU-Rx. The (random) signal-to-interference-noise-

ratio (SINR) at the PU-Rx as a result of the fading channel environment is:

γ =
P0G0F0

N0 +
∑M

i=1 PiGiFi

. (2)

Even without the SUs, random channel fading renders zero outage impossible, in which case the expo-

nential distribution ofF0 leads to the baseline PU-Rx outage probability of

η0 = 1 − exp(−
N0γth

P0G0
). (3)

whereγth is the desired SINR value. Obviously, SUs’ transmission when the PU is busy will result in

an increase on the outage probability perceived by the PU-Rx. To maintain its quality of service (QoS),

the PU would require its outage probability in the presence of SUs to stay below a certain thresholdη

(η ≥ η0) to control secondary access. This constraint can be expressed as:

Pr[γ < γth] ≤ η. (4)



7

We assume that the PU protection requirementη was announceda priori to the SUs. However, our

proposed DDPC algorithm does not need the SUs to knowη0, and it is able to adapt the change inη0.

D. Tradeoff between Primary QoS and Secondary Utility

There clearly exists a trade-off between the signal qualityat the PU-Rx characterized by its outage

probability and the spectrum utilization of the SUs. A desired trade-off can be achieved by choosing an

appropriate value forη to allow satisfactory QoS at the PU-Rx while still receivingmaximum possible

compensation from SUs that may be permitted to opportunistically access the shared bandwidth for

communications.

For the SUs to protect PU QoS, we exploit the feedback information from the PU-Rx to the PU-Tx for

its link quality control. Often, the PU-Rx sends 1-bit feedback to the PU-Tx, indicating whether or not an

outage (i.e.,γ < γth) has occurred during the last packet transmission. We assume that this information is

strong enough to be overheard (with potential error) by all the participating SUs. Based on inference from

such feedback information, SUs can then make learned decisions on their transmit powers in a distributed

manner to satisfy the PU outage probability.

We assume that SUs are deployed without coordination. They may not be aware of one another and

may have limited information on the overall overlay network. There is no central controller that has all

the channel information to perform joint power control for SUs. Each SU only knows its own channel

statistics. Nevertheless, interferences from multiple SU-Tx’s to the PU-Rx would accumulate. This imposes

a great challenge to the design of cognitive spectrum accesssince the joint PU protection guarantee has

to be achieved without all the interference channel gain information. The challenge is more severe when

both the number of SUs and the PU channel statistics are time-varying.

Note that for SUs that are within the interference range of each other, the optimal design of the

multiple access scheme under the PU protection constraint is an open question. Indeed, even for Gaussian

interference channels, the exact capacity region remains unknown [29]. It would be interesting to study

the impact of contentions and/or cooperation among SUs on the primary system and vice versa in our

future work. On the other hand, existing schemes such as TDMA, CSMA/CA or distributed power control

with message passing among SUs (e.g., [10]) proposed in literature can be used in combination of our

proposed DDPC algorithm (though suboptimal) to control themedium access among these interfering

SUs. Auction based approaches (e.g., [20]) can also be used.

In the rest of the paper, we focus on tackling the challenge ofmaximizing the total SU utility subject to

the constraint on the accumulated interruption to the PU-Rxvia distributed power control. For simplicity,
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we ignore the mutual interference among SUs. The results obtained can be directly used in judicious

deployments of SU networks in which the SUs sharing the same spectrum opportunities are located far

away from each other. To quantify the spectral utility of SUs, we assume that the satisfaction of thei-th

SU user pair can be characterized bylog(1 + hiPi), wherehi is the effective channel gain reflecting the

impacts such as modulation, interference level, and transmission distance of the SU transceiver pair. It is

clear that this utility definition is related to the information rate that can be reliably conveyed on thei-th

SU link. We also impose a physical limit to the transmission power, Pi ≤ Pmax, i = 1, · · · , M .

IV. D ISTRIBUTED POWER CONTROL ALGORITHMS

The challenges to implementing distributed power control algorithm for cognitive radio networks are

multi-folds: 1) PU is oblivious to SU activities and only reports its own outage; 2) SUs do not exchange

channel information among themselves; 3) Dynamic PU/SU traffic activities require SUs to adapt their

access algorithms.

A. Constrained Optimization Framework

For the SUs, the objective of performing power control is to maximize the total utility of all SU pairs

while satisfying the PU outage requirement. Definef(P) = Pr[γ < γth], the formal description of the

optimization problem is

maximize
P

M
∑

i=1

log(1 + hiPi)

subject to f(P) ≤ η,

P � Pmax1.

(5)

Definebi as the unit interference effect from SU-Txi to the PU-Rx, i.e.,

bi =
Giγth

P0G0
. (6)

For Rayleigh fading channel, the outage probability at the PU-Rx for a given SU transmit power vector

P is [11]:

f(P) = 1 − exp(−
N0γth

P0G0
)

M
∏

i=1

(1 + biPi)
−1. (7)

To simplify notations, we define:µ = (1 − η0)/(1 − η), which can be interpreted as the relative outage

margin to accommodate SU transmissions. Clearly, we expectµ ≥ 1. Thus, we can modify the outage

constraint onP = [P1, · · · , PM ] into
M
∏

i=1

(1 + biPi) ≤ µ, (8)

which is an upper bound on a posynomial function ofP.
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B. Algorithm Development

Note that the feasible set defined by (8) is non-convex. As a result, the optimization problem in (5)

remains nonlinear and non-convex. Adopting an approach similar to [10], we approximate the utility

function of the i-th SU by log(hiPi). The approximation on the utility function is justifiable when

the processing gain (e.g., using spreading spectrum, multiuser detection, or beamforming techniques)

at each secondary transceiver pair is large and when there are not too many nearby secondary stations. In

addition, such an approximation enables us to transform theoriginal problem into a convex optimization

problem (via variable transformation) for which we can effectively find the global optimum and derive

corresponding distributed algorithms. Another way to transform problem (5) into a convex optimization

problem is to keep the objective function aslog(1 + hiPi), by modifying the PU outage probability

constraint and imposing a constraint on the average interference power perceived at the PU-Rx using

the so-called certainty-equivalent margin (CEM) relaxation [11]. A lower bound and upper bound on the

average interference power
∑M

i PiGi is obtained in [25]. As a result, an upper bound and a lower bound

on the optimal total SU utility function can be obtained and used as comparison in Section VI to show the

effectiveness of the adopted approximation. The disadvantage of using CEM relaxation is that it requires

the PU-Rx to feedback the measured interference power on thecontrol channel. In comparison, we only

need a 1-bit outage event feedback. We also note that such an approximation has several limitations

sincehiPi ≫ 1 may not always hold, especially when there are many SUs in theneighborhood. In this

case, the solution obtained with the approximation can serve as an initial searching point for the original

non-convex utility maximization problem (5).

With the approximation, the objective function reduces to
∑

i log(hi) + log(Pi). Henceforth, without

loss of optimality, we can ignore the constants{hi}. Adopting the technique of geometric programming

[30], we can perform the following variable transformation,

xi = log(Pi), i = 1, · · · , M,

and transform the constraint (8) intolog-scale2. Denotingx = [x1, · · · , xM ]T , and x̄ = log Pmax, the

resulting optimization becomes

minimize
x

−
M
∑

i=1

xi

subject to
∑

i

log (1 + bie
xi) ≤ log µ,

x � x̄1.

(9)

2Such a transformation leads to an equivalent solution due tothe monotonic increasing property oflog(·) function.
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The objective function in (9) is affine inx, and the constraint is convex inx (the Hessian matrix of the

first constraint is a diagonal matrix of positive elements and the second constraint is affine inx). As a

result, we now have (9) as a convex optimization problem thatcan be solved numerically with efficiency

in a centralized manner and may be amenable to a distributed implementation.

We define the Lagrange function associated with the problem (9) as

L(λ,x) = −
M
∑

i=1

xi + λ(
M
∑

i=1

log (1 + bie
xi) − log µ), (10)

wherex � x̄1. The dual function can be obtained as

q(λ) = inf
x�x̄1

L(λ,x)

= −λ log µ + inf
x�x̄1

{
M
∑

i=1

λ log (1 + bie
xi) −

M
∑

i=1

xi}

= −λ log µ +
M
∑

i=1

inf
xi≤x̄

{λ log (1 + bie
xi) − xi}.

(11)

Note that here we exploit the advantageous structure of the separable problems: the minimization involved

in the calculation of the dual function is decomposed intoM simpler minimizations. Each minimization

requires only local channel information, i.e.,bi. We can then solve the minimization problem in (11) with

regard to any givenλ ≥ 0 as:

x∗
i (λ) = argminxi≤x̄{λ log (1 + bie

xi) − xi} =















min{− log((λ − 1)bi), x̄}, if λ > 1,

x̄, if 0 ≤ λ ≤ 1.

(12)

With x∗
i (λ), we can solve the dual optimization problem which is expressed as:

maximize q(λ)

subject to λ ≥ 0.
(13)

Note that we can set the transmit power of each SU to (or close to) zero such that the constraints in the

approximated optimization problem (9) can be satisfied strictly (assumingµ > 1). By the Slater constraint

qualification, the optimal duality gap is zero and there exists at least one (see Proposition 5.3.1 in [31])

geometrical multiplierλo. According to Proposition 5.1.5 in [31], the dual-primal pair (λo,xo) is optimal

if the following conditions are satisfied.

x
o � x̄1,

M
∑

i=1

log(1 + bie
xo

i ) − log µ ≤ 0, (Primal feasibility), (14)

λo ≥ 0, (Dual feasibility), (15)

x
o ∈ arg min

x�x̄1

L(x, λo), (Lagrangian optimality), (16)
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λo[
M
∑

i=1

log(1 + bie
xo

i ) − log µ] = 0, (Complementary slackness). (17)

On one hand, if the effective channel gainsbis are such that
∑M

i=1 log(1 + bie
x̄) < log µ, the solution

of the dual problem (13) isλo = 0, and the corresponding transmit power vector isx̄1. It can be verified

that (0, x̄1) satisfies the above optimality condition. In this case, the PU outage probability constraint

is always loose. On the other hand, when
∑M

i=1 log(1 + bie
x̄) ≥ log µ, we have by (12) that the outage

probability constraint is tight. In other words, when
∑M

i=1 log(1 + bie
x̄) ≥ log µ, we have the optimal pair

of dual-primal variables(λo,xo) satisfying the following relationship:

M
∑

i=1

log(1 + bie
xo

i ) = log µ

xo
i =















min{− log((λo − 1)bi), x̄}, if λo > 1,

x̄, if λo = 0.

(18)

Note that at least one SU transmits with power equals to− log((λo−1)bi), and thusλo /∈ (0, 1]. Therefore,

any method that finds the solution to the above equation set will give us the optimal power control for

the SUs. As a special case, when the maximum power constraintat each SU is loose (i.e.,̄x = ∞), we

can obtain a closed-form expression for the optimal dual andprimal variable(λo,xo) as follows (see also

[25]):

λo = (µ1/M − 1)−1 + 1,

xo
i = log[

µ1/M − 1

bi
], i = 1, · · · , M.

(19)

This solution implies that the contributing interference from each SU to the PU-Rx, expressed asbiP
o
i =

bie
xo

i , should be normalized. However, the solution expressed in (19) requires that each SU know the

total number of SUs sharing the spectrum opportunities as well as the value ofη0 and thus requires a

centralized controller.

To facilitate the distributed implementation of power control, we resort to iterative approaches to find

the optimal solution. Recall that the PU-Rx transmits a 1-bit indicator to the PU-Tx to signify whether the

SINR at the PU-Rx falls below the required SINR threshold in each time slot. Such information reflects

the reception quality at the PU-Rx, and can be used to infer the aggregated interference from all SUs to

the PU-Rx on the forward link. The key idea is for the SUs to update the dual variableλ iteratively based

on the PU outage probability resulting from the SUs and adjust their transmit powers according to (12).

There are many ways to control the update procedure for the dual variableλ while taking into account

the noise in the observation of PU outage probability, such as stochastic subgradient method [32] and

stochastic approximation method [33], [34]. Here we elect to use the stochastic approximation method for
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its flexibility and better convergence speed. We develop a distributed power control algorithm for multiple

SUs next (also in [25]).

C. Distributed SU Access Control

Define g̃(λ) as the excess of the PU outage probability constraint in log-scale when the transmit power

of the SUs is given byx∗
i (λ) as in (12). Specifically, let

g̃(λ) = log f(x∗(λ)) − log(η), (20)

where without causing confusion, we slightly abuse the notation of f(x) by using it to representf(P).

Suppose that
∑M

i=1 log(1 + bie
x̄) > log µ. In other words, if all SUs transmit with the maximum power,

the outage probability constraint will then be violated. Under this assumption, it is easy to prove that, if

η0 ≤ η < 1, g̃(λ) = 0 is a necessary and sufficient condition for
∑M

i=1 log(1 + bie
xi(λ)) = log µ to hold 3,

and the optimality conditions are satisfied.

Ideally, if each SU is aware of the value ofλ in each iteration and has the perfect knowledge off(x),

thenλ can be updated iteratively via

λ(k + 1) = λ(k) + a(k)g̃(λ(k)), (21)

wherek is the iteration number, anda(k) is the step-size for each iteration. The update will converge to

the optimal solution given appropriate regulation on the step-size (by contraction mapping). However, such

an ideal update is difficult to implement in a totally distributed way without information exchange among

SUs. Letλi denote the local version of the dual variableλ at the i-th SU, and letΛ = [λ1, · · · , λM ].

Suppose that each SU adjusts its transmit power by substituting λ of (12) by the local version of the

Lagrangian multiplierλi. The PU outage probability now depends on the value ofΛ since each SU adapts

its transmit power based onλi according to:

xi(Λ) = x∗
i (λi) =















min{− log((λi − 1)bi), x̄}, if λi > 1,

x̄, 0 ≤ λi ≤ 1,

for i = 1, · · · , M. (22)

The same applies to the log-scale residual excess of the PU outage probability constraint. Denote such

dependence asf(Λ) and g̃(Λ), respectively. We then have

f(Λ) = 1 − (1 − η0)
M
∏

i=1

(1 + bie
xi(Λ))−1, (23)

wherexi(Λ) is given in (22); also

g̃(Λ) = log(f(Λ)) − log η. (24)

3Here the proof is omitted for brevity.
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Obviously Λ = λo
1 is a feasible solution to equatioñg(Λ) = 0; but there exist other values ofΛ

such thatg̃(Λ) = 0 and λi may get trapped on the boundary of the feasible set, leading to suboptimal

transmit powers. In particular, when{λi} differ from user to user,{xi} (and thus transmit powers of the

SU’s) determined by (24) would no longer minimize the Lagrangian function of the primal optimization

problem in (9). Indeed, we do not even have an appropriate definition of the Lagrangian function. Due

to the possible discrepancy among{λi}, the conventional dual decomposition approach does not apply.

In order to mitigate this problem and achieve consistency among SUs, we resort to a discounted

distributed power control (DDPC) algorithm as shown in Algorithm 1 in which we apply a discount

factor βi on the update ofλi for each SU as in (27).The key idea is to gradually diminish the impact of

asynchronousness on the discrepancy among the local copies{λi}, and rely on the common observation

(i.e., the outage event reported by the PU-Rx on the feedbackchannel) to determine the update in the

correct direction.Consequently, we introduce bias in the update direction andthe convergent point (if

exists) may not satisfỹg(Λ) = 0 anymore. The resulting SU transmit power may not satisfy theoutage

probability constraint. However, the SUs can manage to satisfy the required outage probability constraint

by using a suitably chosen and tighter constraintηu (instead ofη) in the DDPC algorithm, by applying the

adaptive control scheme shown in Figure 2. Additionally, wecannot observe the PU outage probability

directly from the 1-bit information on the PU feedback channel. Therefore we define an observation

window with duration ofT slots and count the outage events during such an observationwindow. For

simplicity, we denote the PU outage probability during thek-th observation windows asf(k) = f(xk). An

unbiased estimate off(k) will be Nk/T , whereNk is the number of outage events within thek-th window.

Here, to avoid pathological value in the estimate of the PU outage probability, we use a slightly biased

estimatorf̂(xk), also denoted aŝf(k) in (26). We also usêf(Λ) to represent the implicit dependence of

the estimate onΛ. Since the estimate is noisy, the direction and amount of update based on the estimate

is random and is denoted byg(Λ). Specifically,g(Λ) is given by:

g(Λ) = log f̂(x(Λ)) − log η, (25)

wherexi(Λ) is given in (22). The key challenges are to understand the impact of the discount factorβi

and biased estimation as well as whether the algorithm converges, especially when different users have

different values ofλi(k). In next section, we present the convergence result of this algorithm and study

the design trade-off in face of observation errors.
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Algorithm 1 Discounted Distributed Power Control (DDPC)
1: Initialize: k = 0, λi(0) > 1, Pi(0) = 1

(λi(0)−1)bi

2: Observe: for thek-th updating period withT time slots, recordNk, the number of outage events during time slot[(k −

1)T + 1, kT ].

3: Estimate:

f̂(k) =











1/T, if Nk = 0,

Nk/T, otherwise.
(26)

4: Update the local copies of the Lagrangian multiplier:

λi(k + 1) = max{βi(k)λi(k) + ai(k)g(λ1(k), · · · , λM (k)), 0}, (27)

whereβi(k), 0 < βi(k) < 1, is a forgetting factor within(0, 1), ai(k) > 0 is the step-size of the updating procedure, and

g(λ1(k), · · · , λM (k)) is the commonly observed violation of the PU outage probability constraint in the last slot (in the

log-scale) when thei-th SU-Tx power is determined byλi(k) as:

g(λ1(k), · · · , λM (k)) = log (f̂(k)) − log (η). (28)

5: Update the transmit power:

Pi(k + 1) =











min{ 1
(λi(k+1)−1)bi

, Pmax}, if λi(k + 1) > 1;

Pmax, if 0 ≤ λi(k + 1) ≤ 1.

(29)

6: Return to Step 2.

V. DDPC CONVERGENCEANALYSIS

Having presented the DDPC algorithm for SU power control based on common PU-Rx feedback, we

now consider several special operating environments and the corresponding variants of the Lagrangian

update algorithm (27). We consider two cases. In the first case, we assume that SUs are time-synchronized

and have the same global information on time index and/or theλ value. The goal is to understand the

impact of the discount factor. In the second case, we do not assume synchronization among users and

do not assume any communications among SUs. The goal is to understand the impact from the lack of

synchronization. All proofs are relegated to the Appendix.

We introduce a new design parameterc > 0. A critical step in proving the convergence of DDPC is to

have

βi(k) = 1 − cai(k). (30)

We assume the relationship of (30) holds throughout the paper. Then the update ofΛ in (27) can be

rewritten as:

λi(k + 1) = max{λi(k) + ai(k)[g(Λ(k)) − cλi(k)], 0}, i = 1, · · · , M. (31)
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Define ḡ(Λ) = E{g(Λ)}, where the expectation is over the random value of the estimated PU outage

probability f̂(Λ). We first have the continuity of the function̄g(Λ) as follows.

Lemma 1: ḡ(Λ) is continuous onΛ ∈ [0,∞)M .

From the truncation operation on the estimation of the PU outage in (26), we havêf(Λ) ∈ [1/T, 1],

and thus we can construct bounds forg(Λ) as:

log(
1

η
) − log(T ) ≤ g(Λ(k)) ≤ log(

1

η
). (32)

Consequently, we have the following bounds on the sequence of λi(k) for each SU generated by the

update in (31).

Lemma 2:For i = 1, · · · , M , if the initial values are chosen such thatλi(0) < λ̄, whereλ̄ = 1
c
log( 1

η
),

then the sequence ofλi(k) generated by the update expressed in (31) is upper bounded byλmax =

(1/c + ā) log( 1
η
), whereā = maxi,k ai(k).

Denote the update direction function that involves the forgetting factor for thei-th SU asyi(·), i.e.,

yi(Λ) = g(Λ) − cλi, (33)

which is random due to the uncertaing(Λ). With the bounds ong(Λ) expressed in (32) and Lemma 2,

we can bound the update direction function for each SU as follows.

Lemma 3:For i = 1, · · · , M , if the initial values are chosen such thatλi(0) < λ̄, whereλ̄ = 1
c
log( 1

η
),

then the sequence of update directionyi(Λ) is bounded as:|yi(Λ)| < b, whereb = log( 1
η
)+log(T )+cλmax.

In the rest of the paper, whenλ1 = · · · = λM = λ, we use notationsg(λ) and ḡ(λ) to replaceg(λ1)

and ḡ(λ1), respectively. We also remove the subscript ofλi(k) to write λ(k). Similar shorthands apply

to ai(k), βi(k), andyi(k). We have:

Lemma 4: ḡ(λ) is a decreasing function ofλ.

A. Synchronized SU Power Control

In this scenario, we assume that a network clock, i.e., the value of k, is broadcast to the SUs. Each

SU applies the same updating algorithm and has the same valueof λ(k) for time slotk. When a new SU

joins the network, it will acquire the network clock and the current value ofλ. When an SU leaves the

network, no action needs to be taken. We further assume a sufficient condition:

E{log f̂(x̄)} > log η, (34)

which can be obtained by setting the SU’s maximum transmit power large enough.

In practical systems, there inevitably will be errors when the SUs estimate the outage probability

perceived by the PU-Rx. In [25], we studied the relationshipbetween such observation errors and the
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length of observationT . Here, we focus on the asymptotic behavior of the noisy update algorithm. To this

end, we consider the following updating modification with time-varying forgetting factor and step-size.

Starting fromk = 0, all SUs update the Lagrange multiplier via

λ(k + 1) = β(k)λ(k) + a(k)g(λ(k))

= λ(k) + a(k)y(λ(k)).
(35)

Because the SU observation of the PU outage probability (f̂(k)) is noisy, the update in (35) is random.

It turns out that this update algorithm is akin to the classicstochastic approximation method [34]. Define

λ∗ is such that

ḡ(λ∗1) = cλ∗, (36)

we arrive at the following convergence result:

Proposition 1: For the adaptive synchronized update algorithm of (35), the Lagrangian multiplier

converges toλ∗ with probability 1 when the condition (34) holds and when thenon-negative step-size

a(k) is chosen such that

lim
n→∞

n
∑

k=0

a(k) = ∞ and lim
n→∞

n
∑

k=0

a2(k) < ∞.

Actually, even if different SUs update theirλis with different initial values, from the continuity property

of ḡ(Λ) and the conditions stated in Proposition 1, we can show that with synchronized step-sizea(k)

among all SUs, the update will converge toλ∗ with probability 1 by Theorem 2.3.1 in [33] (page 39).

In addition, due to the independence of the estimate errorξ(k) = y(Λ(k)) − ȳ(Λ(k)) (by independent

channel fading assumption) and the uniform boundedness ofE{|ξ(Λ)|2m} (by the boundedness ofy(Λ(k))

in Lemma 3), the step-size selection can be loosen to
∑∞

j=0 am+1(k) < ∞, wherem is some integer (see

example 6 in Chapter 2 of [33], page 37).

A few remarks are in order. Note that for the optimization problem (9), the optimal Lagrangian

multiplier, denoted byλo, satisfies the conditioñg(λo) = 0. However, the convergent point of the DDPC

with synchronized update,λ∗, may not satisfy this condition. Due to the concavity oflog(·), we have

E{log(f̂(x))} ≤ log(E{f̂(x)}). (37)

Together with the truncation operation of estimating the outage probability, even ifE{log(f̂(x)) ≤ log(η)},

we cannot guarantee thatf(x) ≤ η after convergence. In other words, the outage probability perceived

by the PU-Rx may be greater or smaller than the requiredη after convergence. To mitigate this problem,

we can introduce an adjustable parameter,ηu to be used as the PU outage probability constraint for our

DDPC algorithm. The value ofηu can be estimated from numerical simulations with regard to all possible
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values ofM . An alternative is to update the value ofηu online based on the observed outage probability

after the algorithm converges, as depicted in Figure 2, where ∆u is the update step-size.

We also observe the trade-off when choosing parameterc. From the monotonicity of̄g(λ), f(λ), and

ḡ(λ∗) = cλ∗, the smaller the value ofc, the smaller the amount of excess outage perceived by the PU-Rx.

On the other hand, for a givena(k), a smallerc indicates a largerβ(k) (closer to 1), which leads to

slower convergence.

We can also use other forms of update direction function and obtain variances of the proposed DDPC

algorithm. For instance, we can use a convex function off̂ such aslog(1 − η) − log(1 − f̂(x)); thus,

we can potentially obtain transmit power that is more conservative in terms of protecting PU when the

convergent point satisfies:

E{log(1 − f̂(x))} = log(1 − η)

by Jensen’s inequality. Another option is to useNk/T − η, which is unbiased in terms of achieving the

desired outage probability constraint. For this update direction, we can setT = 1 and reduce the time

required to obtain the estimate of PU outage probability. However, the number of iterates required is large.

In this paper, we elect to use update direction aslog(f̂(x))− log(η) so as to achieve faster convergence.

Intuitively, since0 < η ≪ 1, the adopted update direction is able to drag a small PU outage probability

f(Λ) within the neighborhood ofη quickly.

B. Unsynchronized Secondary User Access

Now we study the more general case in which no information exchange among SUs is required. As

described in Algorithm 1, each SU maintains its own transmitpower control without knowledge on the

existence of other SUs. The only connection among SUs is through the common observation on the outage

event reported by the PU-Rx on its feedback control channel.Specifically, they have the same information

on how much aggregated interruption caused to the PU-Rx at time k.

Our results are built around the simpler scenario with two SUpairs in the system. The two SU trans-

mitters activate their transmission at different time instants (slots). Denote this activation time difference

as integerkd > 0. Without loss of generality, we assume thatk1 = 0, k2 = kd, i.e., the second user starts

kd slots later. We assume that each SU uses the same step-size generation rule of the following type

ai(k) = a0(k + ki)
−υ, i = 1, 2, (38)

where botha0 and υ are predefined positive constants, andki is the time instant that thei-th SU-Tx

activates its algorithm. Botha1(k) anda2(k) are positive and decreasing functions ofk. Since we require
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no information exchange among SUs, the second SU does not know the current value of the first SU’s

step-sizea1(k) or its Lagrangianλ1(k). In fact, the second SU updates its local version of the “Lagrangian

multiplier” 4, λ2, using its own step-sizea2(k) and initial pointλ2(0) asynchronously fromλ1(k).

We now investigate the convergence property of the updatingalgorithm for the Lagrangian multiplier

in (27). We first look at the asymptotic property of the discrepancy betweenλ1(k) and λ2(k) to derive

sufficient conditions for its convergence to zero. For simplicity, we also writeg(λ1(k), λ2(k)) asg(k) so

long as there is no confusion. When the observations on the PUfeedback channel are error-free, the two

SUs use the same update direction and amount, and thus we have

λ1(k + 1) − λ2(k + 1) = (1 − ca2(k))(λ1(k) − λ2(k)) + (a1(k) − a2(k))(g(k) − cλ1(k)), (39)

Defineδ(k) = λ1(k) − λ2(k), andu(k) = a2(k) − a1(k). Recall from (30) thatβi(k) = 1 − c · ai(k).

Lemma 5: If the step-size sequencesa1(k) and a2(k) are chosen such that

lim
n→∞

n
∏

j=1

β(j) = 0, 0 < β(j) < 1, i = 1, 2,

lim
n→∞

n
∑

j=1

|u(j)| < ∞.

(40)

then

lim
k→∞

δ(k) = 0.

This result establishes the diminishing discrepancy between the Lagrange multipliers for the proposed

DDPC algorithm with consideration of biased and noisy estimate on the update algorithm. Forυ ∈ (0.5, 1],

ai(k) defined in Eq. (38) satisfies these two sufficient conditions.Since we assume all SUs adopt the same

step-size generation scheme of (38) we can guarantee the conditions in Lemma 5 without information

exchange among them. But different SUs may have a different local index ofk + ki and thus actually

use different step-size at any particular time instance. This is different from the distributed utility-optimal

CSMA schemes for random access stations in [27], where the step-size at different users must be the

same at every instancek.

Next we present the convergence result ofλi(k) for the two SU case. Since we focus here on the

convergence property of the Lagrangian multiplierλ1 andλ2, we make further assumptions as follows:

I. The maximum transmit power constraint is always loose. This leads to a closed-form expression of

g̃(λ1, λ2) and the establishment of its differentiability.

4Since the two SU-Tx’s have different views on the dual problem, λi, i = 1, 2 are not the true Lagrangian in the rigorous sense. The use

of “Lagrangian multiplier” is a minor abuse of the term.
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II. The noisy estimate of̃g(λ1, λ2) is unbiased. Specifically, we assume that

gs(λ1(k), λ2(k)) = g̃(λ1(k), λ2(k)) + w(k), (41)

wherew(k) is a bounded zero mean noise. Here for distinction, we usegs(·) instead ofg(·).

III. For i = 1, 2, ai(k) is a diminishing sequence with
∑∞

k=1 a2
i (k) < ∞, and

∑∞
k=1 ai(k) = ∞.

IV. 0 < c < log( 1
η
).

Following the result of Lemma 5, we then have the uniform convergence result ofλi(k) given below.

Proposition 2: If Assumptions I-IV hold, and the step-size sequencea(k) satisfies the conditions spec-

ified in Lemma 5, then, with probability 1,

lim
k→∞

λi(k) = λs,

whereλs is such that̃g(λs) = cλs.

The convergent point satisfies̃g(λs) = cλs > 0. By the monotone decreasing property ofg̃(·),

the resulting outage probability will exceed the constraint η. In order to satisfy the outage probability

constraint, the SUs should use a tighter outage probabilityconstraintηu < η in the update. We can derive

an upper bound on the distance between the PU outage probability achieved by usingλs and that by using

λo. Denoteηs as the PU outage probability when Lagrangian multiplierλs is used by the SUs. An upper

bound on the discrepancy is as follow:

ηs

η
< exp

(

cM [(µ − 1) +
1

2
(

1

M
− 1)(µ − 1)2]−1

)

. (42)

This upper bound can be proved via Taylor expansion and the detail is omitted due to length constraint.

Remarks:

• As discussed earlier, we can achieve different trade-offs between convergence speed and the gap from

λo by choosing different values ofc. The larger the value ofc, the smaller the value ofβ [Eq. (30)],

the faster the proposed DDPC algorithm “forgets” its asynchronous discrepancy, and consequently

the better the capability to accommodate dynamic SU system changes. The price to pay is the larger

difference between the convergent pointλs and the optimumλo.

• Another trade-off lies in the choice ofυ. For a faster convergence, a smallerυ is preferred. However,

with noise in the estimation, a smallerυ will introduce a larger fluctuation in the updating iterations.

Also related to this issue is the choice of observation period, T , as mentioned in [25]. In particular,

a longer observation window provides more accurate estimate on the PU outage probability and thus

less fluctuation in the update iterations at the expense of larger convergence time.
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• The amount of time to reach convergence depends on both the initial discrepancy among{λi}’s and

the convergence speed of the stochastic approximation method. For a givenc, a large difference among

{λi}’s (e.g., when a new SU joins the network) may lead to slow convergence since it takes long

time for the DDPC algorithm to diminish such a difference. When difference SUs reach consistency

on their updates, the update direction functionlog(f̂(k)) − log(η) provides good convergence speed

as mentioned in Section V-A and results in short response time to the PU dynamics as shown in

Section VI.

Although our convergence proof has not been generalized to an arbitrary number of SU, we expect that

the convergence of DDPC for multiple asynchronous SU’s can be established. Similar methodology as

the two-SU case may be adopted, i.e., by first showing the maximum discrepancy amongλi, diminishes,

and then studying the distance of theseλi components from the desired convergence point. Thus far, our

numerical results (given in the next section) have been positive.

VI. SIMULATIONS

In this section, we present simulation studies on the performance of the proposed DDPC algorithm in

the case of multiple asynchronous SU’s. First, we provide the convergence result for the special case in

which the observation noise additive tog̃(Λ) is a zero-mean uniformly distributed random variable within

[-0.5, 0.5]. In the simulation, we setM = 3, η = 0.1, η0 = 0.01, c = 0.0001, υ = 0.4, a0 = 50, and

Pmax = 30dBm (1000mW) (the correspondinḡx = log(1000) = 6.9078). The activation instants of the

three SUs are 1, 100, and 200, respectively. The initial value of λi(0) is set to 100 for each SU. The

effective interference channel gain from each SU to the PU-Rx bis are set to[0.3568, 0.0197, 0.4432]×10−3.

In other words, SU-2 has the best channel opportunity. We display the updates ofλi and xi over time,

and the convergent pointλs in Figure 4, from which we can confirm the convergence of more than

two SUs without synchronization. After convergence, the transmit power of SUs is[112, 1000, 90] mW.

Specially, SU-2 transmits with the maximum power most of thetime. We can observe that SUs with

larger average interference channel gains transmit with smaller power. We also test the algorithm using 5

different random seeds, and the resulting average PU outageprobabilities along each convergence process

are smaller than 0.1004, i.e., only slightly larger thanη.

We also show the difference between the convergent pointλs andλo as the value ofc varies in Figure 5

for cases whenM = 2, 4, 6, η = 0.1, andη0 = 0.01. We can observe that, asc increases, the difference

increases. In addition, more SUs in the system lead to largerdifference. The PU outage probability

normalized byη after convergence and its upper bound derived in (42) are also shown for comparison in
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Figure 6. We can see that by settingc small enough, the resulting PU outage probability is very close to

its requirement. The result also indicates that, for a larger value ofc, it may be helpful to have an outer

loop to adjust the value ofηu as in Figure 2 to satisfy the original target protection constraint defined by

η. Another way to guarantee that the PU outage probability is below the predefined thresholdη along the

convergence process is to use large enough initial pointsλi(0) (but smaller than̄λ = 1
c
log( 1

η
) such that

the update ofλi(k) is bounded).

Next, we evaluate the performance of our proposed DDPC in a more practical setting. We set up a

system with multiple SU pairs and one PU pair with their locations shown in Figure 3. For SUs, only the

transmitters are shown. The simulation parameters are set as: η = 10%, N0 = −100dBm,P0 = 33dBm,

Pmax = 33dBm, M = 3, γth = 6, andGi = d−4
i , i = 0, 1, · · · , 3, wheredi denotes the distance from the

i-th SU-Tx to the PU-Rx. The 3 SUs are activated atk1 = 0, k2 = 100, andk3 = 200. The duration for

one outage probability update is set toT = 200. Note here that the noise caused by the estimation of (26)

is biased. To test the proposed algorithm under a more dynamic system, we also allow the distance of

the PU-Rx from the PU-Tx (d0) to jump from500 meters to600 meters at the middle of the simulation

outage. As a result, the outage probability perceived by thePU-Rx without SU transmission changes from

η0 = 0.0186 to 0.0381 and the margin for SU transmission is reduced.

In Figure 7, we plot the the update process of the “Lagrangianmultiplier” λi for ηu = 0.10. We

can observe the convergence behavior of the proposed algorithm. Although we encounter noisy observa-

tions/estimations during outage sensing, the algorithm converges smoothly and fairly as each SU eventually

acquires similar value ofλi. Also note that there exists a small gap between the convergent point andλ∗.

This difference is caused by the bias in the estimation of theoutage probability (in log-scale). This gap

can be reduced by adopting a longer observation period, i.e., a greaterT . However, this may render the

update less agile and less sensitive to the system dynamics.

In Figure 8 , we plot the outage probability perceived by the PU as a function of time by setting

ηu = 0.10 and ηu = 0.09 for our DDPC algorithm. Note that the time index in Figure 8 aligns with

that in Figure 7. In other words, the outage probability shown is along the convergence process. We can

observe that withηu = 0.10, the outage probability perceived by the PU over the whole simulation time

is only slightly higher than required. As discussed earlier, this offset can be overcome by applying an

outer-loop control mechanism to adjust the target outage probability requirementηu in place ofη used

in our algorithm. This is confirmed by observing that the PU outage probability is under the constraint

almost all the time withηu = 0.09, .

In Figure 9, we show the total SU utility
∑

i log(1+hiPi) achieved by the DDPC algorithm as a function
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of time. For comparison, we plot the maximum SU utility of thetransformed convex optimization problem

(9) obtained by utility function approximation. We also plot the lower and upper bounds on the true optimal

total SU utility of the original optimization problem (5) achieved by transforming the outage probability

constraint using the certainty-equivalent margin (CEM) model as in ( [11], [25]). The idea is to retain

the log(1 + hiPi) utility function for each SU but use a lower/upper bound on the outage probability

expression. The solutions to all the transformed convex optimization problems are obtained using the

Matlab-based convex optimization modeling system CVX [35]. We can see that the gap in the total utility

achieved by the three approximation methods (utility approximation, lower bound and upper bound with

CEM model) are negligible. We can also observe that the totalutility achieved by the SUs withηu = 0.10

(ηu = 0.09) may be slightly above (or below) the optimal utility for theoriginal problem in (5). This

is caused by the slightly higher (or lower) outage probability produced by the DDPC algorithm. The

advantage of the DDPC lies in its distributed implementation.

Note that when the PU’s interference-free outage probability changes suddenly, the relative interference

margin left for SUs to exploit is reduced at time instant50000, when we observe a spike on the outage

probability perceived by the PU. Nevertheless, our algorithm can quickly infer this change and adjust

the SUs’ transmit power promptly to reduce the deteriorate interruption to the PU-Rx’s reception quality.

This is due to the advantage of the chosen update direction function given that the discrepancy among

the updates at different SUs is small as discussed in SectionV-A. We also tested the convergence of the

proposed DDPC with a smaller value ofT , for which we observed a more bursty convergence procedure

due to more noise in the estimate of PU outage probability butwe can achieve convergence in a shorter

time. The simulation results are omitted due to space limits.

VII. CONCLUSIONS

In this work, we proposed a discounted distributed power control (DDPC) algorithm for multiple SUs in

a cognitive radio network. The proposed algorithm exploitsthe outage information from the PU-Rx on the

PU feedback channel as an external inference signal for coordination among distributed SU transmitters.

We proved the convergence property of the proposed DDPC algorithm for two secondary user case, and

provided the promising convergence results for scenarios with more than two SUs. This distributed SU

power control can tackle asynchronousness issue in a typical cognitive radio network and approximate

the optimal solution without PU cooperation, central controller/monitor, or inter-SU message passing.

In future works, we plan to generalize our framework to include the more dynamic scenarios involving

adaptive PUs and SUs. We are also keen to assess the tradeoff between the security concerns and the

revenue from cognitive users by allowing some unencrypted link control feedback among the PU pairs.
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APPENDIX

A. Proof of Lemma 1

Proof: Given0 � Λ, we expand the expectation operation ong(Λ) which is given by (25) and obtain

ḡ(Λ) = log(
1

T
) Pr[Nk = 0|λ] +

T
∑

i=1

log(
i

T
) Pr[Nk = i|λ]

= log(
1

T
)(1 − f(x(Λ)))T +

T
∑

i=1

log(
i

T
)

(

T

i

)

(1 − f(x(Λ)))if(x(Λ))T−i,

(43)

whereNk is a Binomial distributed random variable with successful trial probability f(x(Λ)), which is

determined by the transmit power vectorx, which is subsequently determined byΛ as in (22). Since

− log((λi − 1)bi) is a decreasing and continuous function forλi > 1, and it intersects̄x when λi =
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1+ 1
bi

e−x̄ > 1, we have thatxi(·) is a continuous mapping ofΛ over [0,∞)M ⊂ RM to (−∞, x̄]M ⊂ RM .

For Rayleigh channel model used in the paper,

f(x) = 1 − (1 − η0)
M
∏

i=1

(1 + bie
xi)−1, (44)

which is a continuous function ofx ∈ (−∞, x̄]M . Observe that̄g(·) is a polynomial function off , we

haveḡ(·) is continuous onf ∈ [η0, 1]. By the composition rule of continuous functions (Theorem 4.7 in

[36], we haveḡ(Λ) a continuous function ofΛ.

B. Proof of Lemma 2

Proof: Let λ̄ = − log η/c, and ā = maxi,k{ai(k)}. Both λ̄ and ā are positive. Supposeλi(k) ≤ λ̄.

Sinceg(Λ(k)) ≤ log ( 1
η
) (32) andλi(k) ≥ 0, we have

λi(k + 1) = λi(k) + ai(k)[g(Λ(k)) − cλi(k)]

≤ λi(k) + ai(k)[log (
1

η
) − cλi(k)]

≤ λi(k) + ai(k) log (
1

η
)

≤ λ̄ + ā log (
1

η
).

(45)

On the other hand, whenλi(k) > λ̄, we have

λi(k + 1) ≤ λi(k) + ai(k)[log (
1

η
) − cλ̄] = λi(k). (46)

In other words, wheneverλi(k) becomes larger than̄λ, the negative update direction will result in a

smaller number ofλi(k) next.

Let λmax = λ̄ + ā log ( 1
η
). It then follows by induction from the two preceding equations that, if we

chooseλi(0) < λ̄, then we haveλi(k) ≤ λmax. The above argument holds for alli = 1, · · · , M and the

proof completes.

C. Proof of Lemma 3

Proof: Sinceyi(Λ(k)) = g(Λ(k)) − cλi, we have

|yi(Λ(k)| ≤ |g(Λ(k))| + c|λi(k)|. (47)

By the bounds ong(Λ(k)) as in (32) andλi(k) as in Lemma 2, the proof is complete.
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D. Proof of Lemma 4

Proof: Due to the independence assumption on channel fading, the number of outage event within an

observation window follows Bernoulli distribution with the PU outage probability determined by the SU

transmit power vectorx(λ1) for givenλ. Observe that the transmit power of each SU,xi(λ1) = x∗
i (λ) as

in (22) is a decreasing (or non-increasing) function ofλ and also note that here each SU uses the sameλ

to obtain its transmit power. Therefore, for any two values of λ with 0 ≤ z1 ≤ z2, we havex(z2) � x
(z1).

Then we have the PU outage probabilities associated withz1 andz2 satisfyingf(x(z1)) ≥ f(x(z2)). Let

random variablesX1 andX2 denote the number of successful trials amongT independent Bernoulli trials

with successful probability asf(x(z1)) andf(x(z2)), respectively. Then we have thatX1 is stochastically

larger thanX2 [37]. By the property of the stochastic ordering (Proposition 1.2 in Appendix of [37]),

sincelog f̂(zi) = log{max{Xi/T, 1/T}) is an increasing function ofXi for i = 1, 2, we have:

E{log f̂(x(z1))} ≥ E{log f̂(x(z2))}, (48)

where the expectation operation is with regard to the distributions ofX1 andX2, respectively. Therefore,

we haveḡ(z1) ≥ ḡ(z2) and complete the proof.

E. Proof of Proposition 1

Proof: As a special case of Lemma 1, we know thatḡ(λ) is a continuous function ofλ ∈ [0,∞). By

Lemma 4, we havēg(λ) is a decreasing function ofλ, and thusȳ(λ) = ḡ(λ) − cλ is strictly decreasing

for c > 0. Whenλ = 0, x
∗(0) = x̄1, by invoking condition (34), we havēg(0) > 0. On the other hand,

we have by (32),

log(
1

η
) − log(T ) ≤ ḡ(λ) ≤ log(

1

η
), (49)

and thus whenλ > log( 1
η
)/c, ḡ(λ)−cλ < 0. Therefore, by the Intermediate Value Theorem for continuous

function, we know there exists a number in[0, log( 1
η
)/c] such that

ȳ(λ) = 0. (50)

Denote this number asλ∗. By the monotonic decreasing property ofȳ(λ), we also have the uniqueness

of λ∗, andλ∗ > 0. Then the condition A.2.3.1 in [33] holds since for eachǫ > 0, there is aδ > 0 such

that

ȳ(λ) ≤ −ǫ for λ ∈ [λ∗ + δ,∞) (51)

and

ȳ(λ) ≥ ǫ for λ ∈ (0, λ∗ − δ]. (52)
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Define ξ(k) = y(λ(k)) − ȳ(λ(k)). Obviously, we haveE{ξ(k)|λ(k)} = 0 and ξ(k) is bounded since

y(λ(k)) is bounded by Lemma 3. Then we haveE{|ξ(k)|2} < ∞. We can write the update ofλ as

follows:

λ(k + 1) = λ(k) + a(k)y(λ(k))

= λ(k) + a(k)[ȳ(λ(k)) + ξ(k)].
(53)

In addition, sinceξ(k) is independent due to the independent fading assumption,{
∑n

k=0 a(k)ξ(k)} is a

Martingale sequence. Therefore, by Martingale bound, fora(k) such that
∑∞

k=1 a(k) < ∞, we have for

eachǫ > 0,

lim
n→∞

Pr[sup
m>n

|
m
∑

i=n

a(i)ξ(i)| ≥ ǫ] ≤ lim
n→∞

E{|ξ(k)|2}
∞
∑

i=n

a2(i)/ǫ2 = 0, (54)

and thus the condition A.2.2.4’ in [33] holds.

By the Theorem 2.3.2 in [33], we have fora(k) such thata(k) → 0, and
∑

k a(k) = ∞, the update in

(53) converges toλ∗ with probability 1 (Note that the actual update algorithm has a projection operation

overλ(k) into [0,∞) with which the convergence result carries sinceλ∗ > 0 according to the remarks in

Chapter 2 of [33]).

F. Proof of Lemma 5

Proof: By Lemma 3, we havey1(k) and y2(k) are both bounded by a constantb, i.e., |yi(k)| < b.

For anyε > 0, let ε1 = ε/2λmax, ε2 = ε/2b. If a1(k) anda2(k) satisfy the conditions specified in Lemma

5, there exists an integerK such that
∞
∑

j=K

|u(j)| < ε2. (55)

In addition, we can also find a large enoughN ≥ K such that,∀k > N , we have

k
∏

j=K

β2(j) < ε1. (56)

Since|u(j)| > 0, from (55) we can see that, fork > N ≥ K,

k
∑

j=K

|u(j)| < ε2. (57)
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Taking advantage of (39), we have, fork > K,

|δ(k + 1)| ≤ β2(k)|δ(k)| + |u(k)|b

≤ α(k) [β2(k − 1)|δ(k − 1)| + |u(k − 1)|b] + |u(k)|b

≤ α(k)α(k − 1)|δ(k − 1)| + (|u(k − 1)| + |u(k)|)b

...

≤ [
k
∏

j=K

α(j)]|δ(K)| +
k
∑

j=K

|u(j)|b

(58)

Note that|δ(K)| ≤ λmax. Relying on (55) and (56), fork > N , |δ(k + 1)| < ε for any positiveǫ. Hence,

limk→∞ |δ(k)| = 0.

G. Proof of Proposition 2

Proof: Since the maximum power constraint is always loose, the outage probability constraint is tight

by the optimality conditions specified in Section IV-B. By using the expression ofx∗
i (λi) as in (12), we

haveλi > 1. Furthermore, we can writẽg(λ1, λ2) as:

g̃(λ1, λ2) = log (f(k)) − log η = log(1 − (1 − η0)
λ1 − 1

λ1

λ2 − 1

λ2
) − log η, (59)

with its first-order partial derivative with respect toλ1 as

∂g̃(λ1, λ2)

∂λ1
=

−(1 − η0)

1 − (1 − η0)
λ1−1

λ1

λ2−1
λ2

·
λ2 − 1

λ2

1

λ2
1

≤ 0. (60)

From the symmetry of̃g(λ1, λ2), we can obtain similar expression for∂g̃(λ1,λ2)
∂λ2

, and we have for any given

x > 1 andy > 1,
∂g̃(x, y)

∂x
=

∂g̃(y, x)

∂x
. (61)

Note that all poles of the partial derivative falls outside(1,∞). In addition, if there exists a solution to

the following equation systems

g̃(λ1, λ2) − cλi = 0, i = 1, 2

for a given positive numberc, the solution should satisfy

λ1 = λ2 = λs,

whereλs is such that̃g(λs) = cλs. Note thatg̃(λ) − cλ is continuous and strictly decreasing inλ. When

0 < c < log( 1
η
), the existence of such a solution is guaranteed by the Intermediate Value Theorem since

limλ→1 g̃(λ) = log( 1
η
).
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By Lemma 5, we can find a large enoughK < ∞ such that, forε > 0, ∀k > K, we have

|δ(k)| = |λ1(k) − λ2(k)| ≤ ε. (62)

Define ǫi(k) = λi(k) − λs, anddi(k) = E{ǫ2(k)}. Next we show that

lim
k→∞

di(k) = 0, i = 1, 2, (63)

which implies the convergence in probability ofλi(k) to λs.

From (41) we have the update as

λi(k + 1) − λi(k) = ai(k)yi(k) = ai(k)[g̃(λ1(k), λ2(k)) + w(k)], (64)

wherew(k) is a zero-mean and bounded random variable. Becauselog(η0

η
) ≤ g̃ ≤ log( 1

η
), we haveyi(k)

is bounded and thus there exists a positive constantC̄ such that for all(λ1(k), λ2(k)),

Pr[|yi(k)| ≤ C̄] = E{
∫ C̄

−C̄
dHi(y|λ1(k), λ2(k))} = 1,

whereHi(y|λ1(k), λ2(k)) denotes the distribution function inyi(k) given (λ1(k), λ2(k)).

From (64), we have

di(k + 1) = E{(λi(k + 1) − λs)
2} = E{E{(λi(k + 1) − λs)

2|λ1(k), λ2(k)}}

= E{
∫

[(λi(k) − λs) + ai(k)y]2dHi(y|λ1(k), λ2(k))}

= di(k) + a2
i (k)E{

∫

y2dHi(y|λ1(k), λ2(k))} + 2ai(k)E{(λi(k) − λs)ȳi(k)}.

(65)

Setting

vi(k) = E{(λi(k) − λs)ȳi(k)}, (66)

ei(k) = E{
∫

y2dHi(y|λ1(k), λ2(k))}, (67)

we can write

di(k + 1) − di(k) = a2
i (k)ei(k) + 2ai(k)vi(k). (68)

By the bound onyi(k) and convergent property of
∑n

k=1 a2
i (k), we have the positive-term series

∑n
k=1 a2

i (k)ei(k)

converges.

Next we prove that fork > K, we havea1(k)v1(k) + a2(k)v2(k) ≤ 0. Since|λ1(k) − λ2(k)| ≤ ε for

k > K, we have the domain of the expectation operation forvi(k) as a stripe with widthε. We further

partition this stripe into four regions:

S1 = {(λ1, λ2)|λ1 ≤ λs, λ2 ≤ λs, |λ1(k) − λ2(k)| ≤ ε};

S2 = {(λ1, λ2)|λ1 < λs < λ2, |λ1(k) − λ2(k)| ≤ ε};

S3 = {(λ1, λ2)|λ2 < λs < λ1, |λ1(k) − λ2(k)| ≤ ε};

S4 = {(λ1, λ2)|λ1 > λs, λ2 > λs, |λ1(k) − λ2(k)| ≤ ε}.

(69)
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For regionsS1 andS4, relying on the decreasing property ofg̃(λ1, λ2) in both variables, we have:

(λi − λs)ȳi(k) ≤ 0, (70)

and thus
2
∑

i=1

ai(k)(λi − λs)ȳi(k) ≤ 0. (71)

Note that both regionsS2 and S3 falls into the vicinity of (λs, λs). We apply Taylor expansion on

function g̃(λ1, λ2) in the vicinity of (λs, λs):

g̃(λ1, λ2) = g̃(λs, λ2) +
∂g̃(λs, λ2)

∂λ1

(λ1 − λs) + O1(ε
2)

= g̃(λs, λs) +
∂g̃(λs, λs)

∂λ2

(λ2 − λs) + O1(ε
2)

+ (
∂g̃(λs, λs)

∂λ1
+

∂2g̃(λs, λs)

∂λ1∂λ2
(λ2 − λs) + O2(ε

2))(λ1 − λs)

= g̃(λs, λs) +
∂g̃(λ1 = λs, λs)

∂λ1

(λ1 − λs) +
∂g̃(λs, λ2 = λs)

∂λ2

(λ2 − λs) + O(ε2),

(72)

whereO(ε2) denotes all the terms with order ofε higher than 1. This result requires̃g(λ1, λ2) to have a

bounded second-order derivative within the neighborhood of (λs, λs), which can be verified by investigating

the poles of the second-order derivative. By the symmetry ofg̃(λ1, λ2), we have

∂g̃(λ1 = λs, λs)

∂λ1

=
∂g̃(λs, λ2 = λs)

∂λ2

.
= c′. (73)

Clearly, c′ ≤ 0. As a result, we have within the neighborhood of(λs, λs),

g̃(λ1, λ2) = g̃(λs) + c′(λ1 + λ2 − 2λs) + O(ε2). (74)

For regionS3, we can expressǫ1(k) and ǫ2(k) for k > K as:

ǫ1(k) =
ε′

2
+ δ′, ǫ2(k) = −

ε′

2
+ δ′ (75)

for some0 ≤ ε′ ≤ ε and −ε′/2 ≤ δ′ ≤ ε′/2. Recall thatu(k) = a2(k) − a1(k). Together withg̃(Λ)

expressed in (74), we have

2
∑

i=1

ai(k)(λi − λs)ȳi(k) =
2
∑

i=1

ai(k)(λi − λs)(g̃(Λ(k)) − cλi(k))

=a1(k)(
ε′

2
+ δ′)[c(−

ε′

2
− δ′) + 2c′δ′] + [a1(k) + u(k)](−

ε′

2
+ δ′)[c(

ε′

2
− δ′) + 2c′δ′]

=2[2a1(k) + u(k)]c′δ′2

−
a1(k)

2
c[(

ε′

2
+ δ′)2 + (

ε′

2
− δ′)2] − u(k)c(

ε′

2
− δ′)2

−
a1(k)

2
c[(

ε′

2
+ δ′)2 + (

ε′

2
− δ′)2] − u(k)ε′c′δ′.

(76)
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When |u(k)| < 2a1(k), sincec′ < 0, the first line of the last equality is negative. The second line of the

last equality is also negative when|u(k)| < 2a1(k). When |u(k)| ≤ a1(k)
2

c
|c′|

, the last line of the above

equation is negative. For1/k-like sequences, these conditions on|u(k)| hold for k > N1, whereN1 > K

is a large enough constant. Consequently,(λi − λs)ȳi(k) ≤ 0 is satisfied in regionS3. Similar arguments

apply to regionS2. Therefore, we obtaina1(k)v1(k) + a2(k)v2(k) ≤ 0.

The rest of the proof follows similar arguments as in [34]. Summing over (68), we obtain

2
∑

i=1

di(k + 1) =
2
∑

i=1

di(N1) +
2
∑

i=1

k
∑

j=N1

a2
i (j)ei(j) +

2
∑

i=1

k
∑

j=N1

ai(k)vi(k) (77)

Sincedi(k + 1) ≥ 0, it follows that the positive-term series−
∑2

i=1

∑k
j=N1

ai(k)vi(k) converges. It then

follows limk→∞
∑2

i=1 di(k + 1) exists, which is denoted byd.

Next we show that there exists two sequences{ki(k)} of non-negative constants such that fork > N1,

−
2
∑

i=1

ai(k)vi(k) ≥
2
∑

i=1

ai(k)ki(k)di(k),
∞
∑

k=1

ai(k)ki(k) = ∞, i = 1, 2. (78)

Following the same arguments of Lemma 1 in [34], this impliesthat d = 0. For regionS1 andS4, it is

easy to see that

−
2
∑

i=1

ai(k)(λ1(k) − λs)[g̃(λ1(k), λ2(k)) − cλi(k)]

= −
2
∑

i=1

ai(k)(λ1(k) − λs)
2 g̃(λ1(k), λ2(k)) − cλi(k)

λi(k) − λs

≥ c
2
∑

i=1

ai(k)(λ1(k) − λs)
2

(79)

For regionS3, using the Taylor expansion in (74) and (75), we have:

−
2
∑

i=1

ai(k)(λ1(k) − λs)[g̃(λ1(k), λ2(k)) − cλi(k)] −
2
∑

i=1

ai(k)ki(k)(λ1(k) − λs)
2

=[−a1(k)k1(k) − a2(k)k2(k)]δ′2

+[a1(k)(−2c′ − k1(k)) + a2(k)(−2c′ − k2(k))](
ε′

2
)2

+[a1(k)(−c′ − k1(k)) − a2(k)(−c′ − k2(k))]ε′δ′

(80)

The minimum value of (80) as a function ofδ′ is obtained whenδ′ = ±ε′

2
, and it is easy to verify that

for ki(k) < −c′, the minimum value is larger than 0. Similar arguments applyto regionS2. Therefore,

if we setki(k) as a constant sequence such thatki(k) < min{c,−c′} and take expectation over regions

S1-S4, we have:

−
2
∑

i=1

ai(k)vi(k) ≥
2
∑

i=1

ai(k)ki(k)di(k), (81)

and thus both conditions in (78) hold. Therefore,d = 0. This completes the proof.
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