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Abstract

This work on cognitive radio access ventures beyond the riraditional “listen-before-talk” paradigm that
underlies many cognitive radio access proposals. We exgbleibi-directional interaction of most primary com-
munication links. By intelligently controlling their acse parameters based on the inference from observed link
control signals of primary user (PU) communications, ctigaisecondary users (SUs) can achieve higher spectrum
efficiency while limiting their interference to the PU nefkoln one specific implementation, we let the SUs listen
to the PU’s feedback channel to assess their own interferencthe primary receiver, and adjust radio power
accordingly to satisfy the PU’s interference constraing. pkbpose a discounted distributed power control algorithm
to achieve non-intrusive secondary spectrum access withther a centralized controller or active PU cooperation.
We present an analytical study of its convergence prop&éy.show that the link control feedback information
inherent in many two-way primary systems can be used as iaporeference signal among multiple SU pairs to

distributively achieve a joint performance assurance famary receiver’s quality of service.

Index Terms

Wireless communications, inference for opportunisticcipen access, dynamic spectrum access control,

distributed algorithm, cognitive radio networks.

. INTRODUCTION

Because of its potential to alleviate spectrum scarcity,dberlay of cognitive radio networks over the
spectrum of high priority primary user (PU) networks hasrgly attracted a high level of research interest.
Most existing works on cognitive overlay centers on theehisbefore-talk (LBT) concept which relies on
(cooperative) spectrum sensing of primary user activ{ges., [1], [2], [3]). LBT requires secondary users
(SUs) to detect the absence of primary user signals befaeneh access. The finding by the FCC that

most LBT-based devices do not degrade TV reception quaitpiovided a major boost to the cognitive



radio concept. Though conceptually simple, LBT focuseshengensing of primary transmission signals
instead of on determining the potential effect of secondesgr access on primary receiver’s performance.

Because of the focus on primary transmitters rather than itheeivers, LBT-based cognitive protocols
need to be more conservative in limiting SU transmissiortlier protection of primary users (PUs) from
SU interference. First, it needs to assume the least falfalling environment (i.e., strong interference
channel against weak primary channel). For instance, tleshiold for the LBT devices was set at 30dB
below the DTV reception threshold in the FCC TV white spacsting [4]. Second, it has to anticipate
the worst sum interference at the primary receiver (PU-Rognfmultiple potential SU devices. Third, it
does not allow SU systems to exploit any extra capacity whek aystem, not fully loaded, can tolerate
substantial interference (e.g., through forward errorexiron, beamforming, or spectrum spreading). On
the other hand, LBT may also be too aggressive within the Wwedhwn hidden node environment.

To overcome the shortcomings of LBT, we propose and advacatdferent framework that incorpo-
rates the inherent feedback information in typitab-way PU communication links. Such link control
information is available in many practical systems in therfef, e.g., power control feedback in CDMA
cellular [5], channel quality indicator feedback in HSDP3|,[ACK/NAK feedback in cellular or WiFi
networks [5], [6]. Such feedback information from the PU-&an provide a good indicator of the actual
(often aggregated) impact of the SU interferences on theptean quality of the PU communication link.

Figure 1 provides a simple illustration of SUs being able verbear the feedback from the PU-Rx to
the PU transmitter (PU-Tx). This feedback information daealan SU to monitor the performance of PU-
Rx (affected by one or more SUs), and adjust accordingly\its access parameters based on inference.
The benefits of inference based on such link level feedbaftknration are multi-folds: (i) It enables
explicit protection of the PU-Rx through feedback monitgyi especially in the presence of multiple SU
pairs; (ii) It facilitatesdistributed access contraf multiple SUs based on the PU-Rx response to the
sum SU interference; (iii) It permits different levels otenaction between PUs and SUs; (iv) It leads to
more efficient spectrum usage through learning; (v) It isusbkand adaptive to changes due to network
load fluctuation and radio environment dynamics.

The proposed new framework requires that secondary raddo&dignitive” enough to receive and
decode link control information from primary networks r@ing strict interference constraint. This new
framework is particularly suitable for cases where botimainy and secondary networks belong to the same
operator or interest group. In particular, given the aptiit decode PU-Rx feedback information, secondary
networks of lower priority opportunistically access speot nominally but not fully occupied by (legacy)

PUs of higher QoS/access priorities. The DARPA XG projecblie such example where secondary



cognitive radios access underutilized spectrum of legaeysu Another example involves cognitive femto
cells to improve indoor cellular coverage. Such applicatioffer clear incentives for PUs to conditionally
allow cognitive SU access and to permit more flexible andcéffe spectrum sharing, often without
fundamental regulatory changes.

We focus on decentralized control of SUs in order to acconatedroader applications for which
centralized control may be costly or infeasible. In othesesa the cost to retrofit existing infrastructure
may be expensive, time consuming, or disruptive. Thesesceak for distributed intelligent SU access
protocols. As a concrete step toward this goal, we study g system with an outage probability
QoS requirement. The PU pairs exchange 1-bit outage fekdh&mrmation that can be overheard and
exploited by (multiple) SUs. The objective of the SUs is taxinaze its utility while satisfying the outage
probability constraint set by the PU operator. The key e@mgé is to achieve this goal in a distributed
manner at the multiple SUs without PU cooperation and withimum SU coordination.

Our contributions are as follows: 1) we present a novel fraork for cognitive spectrum access
under PU link quality constraint based on PU-Rx feedbacksyw@ formulate the cognitive spectrum
utilization problem as a convex optimization problem thgbupractical approximation; 3) we propose a
discounted distributed power control (DDPC) algorithm amélyze its performance for individual SUs
without explicit central control; 4) we show the convergemproperty of the proposed DDPC algorithm

for networks of synchronous and asynchronous SUs.

Il. RELATED WORK

Distributed power control for cellular systems has beemlistliin the literature. In [7], the authors
studied the convergence of a simple distributed power obralgorithm to a feasible solution that
satisfies the target signal-to-interference ratio (SIRunement for each user. The authors of [8] proposed
a framework for the joint optimization on cell selection apdwer control of cellular uplinks. For
wireless multihop networks, the authors of [9] proposetirsgboth power price and external interference
price/compensation to adjust transmit power in a distabduivay. The work of [10] involves a joint
optimization problem of adjusting the flow rate and the tralnpower. In these works, either the Lagrange
multiplier on the resource constraints or the externakfatence price must be exchanged among different
participating nodes [9], [10]. While the aforementionedrkgassume static wireless channels, power
control with outage probability requirement has been atereid for Rayleigh fading channels in [11].

There are also power control algorithms for cognitive radim achieve efficient and fair usage on the
shared spectrum resources without explicit protectiorsttamt on the PU QoS (e.g., [12]). In our problem

setting, the PUs have strict QoS requirement and do notcjzate in the power control algorithm.



There are also studies on overlaying cognitive radio neksvdhat propose the SUs participate the
transmission of the PU traffic in forms of dirty paper codiegy(, [13], [14], [15]), distributed space-time
coding (e.g, [16]), cognitive relay (e.g., [17]) among otheSuch schemes require that the SU decode
the signal transmitted from the PU-Tx and perform precodmguarantee the transmission rate of the
PU in the exchange of spectrum opportunities. They alsoiregbhe awareness of the PU-Rx on the
existence of SU transmission. Here, we assume that the 8blsntit simultaneously with the PU and do
not help PU transmission. The PU treats the received sigoal &ll SUs as interference. This simplifies
the transceiver design at the SU-Tx since it does not reqoé@d&nowledge on the codebook used by the
PU as well as complicated precoder implementation. Hereomsasf on the design of distributed power
control algorithm for multiple SUs under the protection uggment from the PU.

Closely related to the framework in this manuscript is the o power control for mitigating the
interference on PUs while maximizing the spectrum usage Wd. $-or example, the authors of [18]
guantified the relationship between SU transmit power aedtiobability of spectrum opportunity based
on a Poisson model of the primary network traffic. They alaalisid the subtle interaction between
detecting the PU transmit signal and locating the spectrppodunity. In [19], the authors proposed
adjusting SU transmit power based on the spectrum senssgtseIn essence, these works belong
to the LBT category. In [20], the authors proposed an audbiased power allocation framework for
spread spectrum users to share spectrum with an intereetentgperature sensed at a measurement point,
whereas a central manager needs to collect bids from digtdbusers. The authors of [21], formulated a
power allocation game considering both the interferenogerature constraint at the PUs and the QoS
requirement at the SUs. Monitor stations are required tortefhe value of the dual variable at every
iteration for the proposed algorithms.

The idea of applying PU feedback channel information has &een previously considered. For
example, in our preliminary work [22], we presented resaltsutilizing the PU ACK/NAK information
to maximize the utility of a single SU without consideringetimteraction of multiple SUs. In [23], power
control message of the primary systems is used to improv&ithe spectrum sensing accuracy. The idea
is to pro-actively send sounding signals and adjust its mari transmit power based on the reaction
from the PU-RXx. In [24], the authors proposed the use of th&/AN2K information on the PU feedback
channel by the SU to adjust its input rate in order to imprdwe gpectrum efficiency while meeting the
PU’s target rate. However, both [23] and [24] consider onkjiragle SU.

Our work differs from previous works on cognitive radio peveentrol in at least one of the following

aspects: 1) our system does not require a centralized dientoy an interference monitor; instead, it



depends explicitly on the inherent PU link feedback; 2) ous &re not required to exchange coordination
information among themselves, thereby significantly lomgethe overhead cost and protocol complexity;
3) our access objective is to maximize the total SU spectrtilityunstead of individual SU utility while
jointly but distributively satisfying the outage requirent of the PU.

In our earlier work [25], we presented a framework for muéisUs to perform distributed power
control based on observation from PU feedbacks. In this pape expand the framework and provide
convergence analysis on the discounted distributed poaetral (DDPC) algorithm to tackle the lack
of parameter update synchronization typically among usegnitive radio networks. Other related
works on utility optimization without message passing aganultiple participating nodes can be found
in [26], [27].

IIl. SYSTEM MODEL AND BASIC ASSUMPTIONS
A. Notations

We use bold fonts to denote vectors, the curly inequality lsyinx to denote the component-wise
inequality, andl to represent a vector with all of its elements 1 with appmteriength. SymboFE{-}
denotes expectation operation, dnd-| represents the probability of a random event. In this pdpet;)

is a natural logarithm function.

B. Power Control of Cognitive Overlay

We consider the scenario of a cognitive radio network oyertaon top of a legacy PU network in
which multiple SUs are allowed to share the spectrum detegnfr the high priority PU network in a
non-intrusive manner. The non-intrusiveness requireroétite cognitive users has dual meanings. First,
PU, given a higher spectrum access priority, is able to sep#nimissible level of interference or disruption
from SU transmissions. This level of tolerance is contlméaand can be used by the PU networks to set
a price for SU access. Second, the legacy PUs do not actieelgecate with or help the SUs. In other
word, such a cognitive network overlay requires no modificato PU’s normal operation. Deployment
of such SU networks is easier for legacy networks to acconateods they are usually easier to set up,
less disruptive, and less costly.

Let us consider a PU link comprising two network nodes thahmmnicate via a forward link and
a reverse link. The forward link carries primary traffic datam the PU-Tx to the PU-Rx, whereas the
reverse link returns feedback control information from #&-Rx to the PU-Tx. Denote the forward

IAll results in Section V are new.



transmission power of the PU-Tx &35. For the cognitive network, we considé&f secondary transmitters
(SU-Tx’s) geographically distributed around the PU nodédss cognitive network overlays on the primary
forward link spectrum and desires to access the forward dimknnel with minimum disruption to the
primary forward link. LetP = [P, -- -, Py;] denote the transmit powers of tiié SUs, respectively. The
SUs control their own access of the shared spectral bandeofottvard link through power control. For
convenience here, we further assume that the primary chanitization is time-slotted. The cognitive
SUs have synchronized their spectrum access to the timelslkk by, e.g., listening to the timing pilot

on a broadcast control channel of the PU network (see, 8)). [

C. Primary Outage Constraint

To determine the interference level at the PU-Rx due to Sbstrassions, let7; be the transceiver
processing gain between the SU-Tand the PU-Rx. Lef; further denote its corresponding small-scale
fading channel gain due to multipath and mobility. Note twatreserved the special indéx= 0 for the
PU. We consider cases in whigh; remains almost unchanged wherdgsmay vary from slot to slot.
We assume a non-line-of-sight (NLOS) radio transmissiovirenment among all transmitters and the
PU-Rx. For example, the PU-Rx may be a mobile device coveyeal wireless hotspot in urban areas. In
this case, we can adopt a Rayleigh fading channel model, inha# follows independent exponential
distribution with unit mean. In other words, the average @ogains of the fading channels all equal to

1. Thus, the received power at the PU-Rx from Saind its average are, respectively,
P,G;F;, and E[P,G,F] = PG;. (1)

Let IV, denote the white Gaussian noise power at the PU-Rx. Thednandignal-to-interference-noise-
ratio (SINR) at the PU-Rx as a result of the fading channelrenment is:
POGOFO
= M : (2)
NO + 22‘21 PszFz
Even without the SUs, random channel fading renders zerageuimpossible, in which case the expo-

Y

nential distribution ofF|, leads to the baseline PU-Rx outage probability of

Novin
=1—exp(— . 3
Mo p( PoGo) (3)

where~,, is the desired SINR value. Obviously, SUs’ transmissionmwtiee PU is busy will result in
an increase on the outage probability perceived by the PUTBxmaintain its quality of service (Qo0S),
the PU would require its outage probability in the presenic8Ws to stay below a certain threshajd

(n > no) to control secondary access. This constraint can be esguiess:

Prly <] <. (4)



We assume that the PU protection requiremenivas announcec priori to the SUs. However, our

proposed DDPC algorithm does not need the SUs to knpgvand it is able to adapt the changerin

D. Tradeoff between Primary QoS and Secondary Utility

There clearly exists a trade-off between the signal quaitghe PU-Rx characterized by its outage
probability and the spectrum utilization of the SUs. A deditrade-off can be achieved by choosing an
appropriate value for) to allow satisfactory QoS at the PU-Rx while still receivingaximum possible
compensation from SUs that may be permitted to opportaaibfi access the shared bandwidth for
communications.

For the SUs to protect PU QoS, we exploit the feedback infatondrom the PU-Rx to the PU-Tx for
its link quality control. Often, the PU-Rx sends 1-bit feadk to the PU-Tx, indicating whether or not an
outage (i.e.;y < y4,) has occurred during the last packet transmission. We assliat this information is
strong enough to be overheard (with potential error) byralparticipating SUs. Based on inference from
such feedback information, SUs can then make learned dasisin their transmit powers in a distributed
manner to satisfy the PU outage probability.

We assume that SUs are deployed without coordination. They mot be aware of one another and
may have limited information on the overall overlay netwofkere is no central controller that has all
the channel information to perform joint power control fddss Each SU only knows its own channel
statistics. Nevertheless, interferences from multiple™$ to the PU-Rx would accumulate. This imposes
a great challenge to the design of cognitive spectrum aciasse the joint PU protection guarantee has
to be achieved without all the interference channel gaiarmfation. The challenge is more severe when
both the number of SUs and the PU channel statistics arewangng.

Note that for SUs that are within the interference range aheather, the optimal design of the
multiple access scheme under the PU protection constsaart bpen question. Indeed, even for Gaussian
interference channels, the exact capacity region remaikaawn [29]. It would be interesting to study
the impact of contentions and/or cooperation among SUs erptimary system and vice versa in our
future work. On the other hand, existing schemes such as TDGBMA/CA or distributed power control
with message passing among SUs (e.g., [10]) proposed natlite can be used in combination of our
proposed DDPC algorithm (though suboptimal) to control shedium access among these interfering
SUs. Auction based approaches (e.g., [20]) can also be used.

In the rest of the paper, we focus on tackling the challengaafimizing the total SU utility subject to

the constraint on the accumulated interruption to the PUAxdistributed power control. For simplicity,



we ignore the mutual interference among SUs. The resultgirdd can be directly used in judicious
deployments of SU networks in which the SUs sharing the sgreetsim opportunities are located far
away from each other. To quantify the spectral utility of SWe assume that the satisfaction of thih
SU user pair can be characterizedlby(1 + h; P;), whereh; is the effective channel gain reflecting the
impacts such as modulation, interference level, and tresssom distance of the SU transceiver pair. It is
clear that this utility definition is related to the inforrmt rate that can be reliably conveyed on thig

SU link. We also impose a physical limit to the transmissiower, P; < P, =1,---, M.

IV. DISTRIBUTED POWER CONTROL ALGORITHMS

The challenges to implementing distributed power contigbdthm for cognitive radio networks are
multi-folds: 1) PU is oblivious to SU activities and only w@ps its own outage; 2) SUs do not exchange
channel information among themselves; 3) Dynamic PU/Slidractivities require SUs to adapt their

access algorithms.

A. Constrained Optimization Framework

For the SUs, the objective of performing power control is taximize the total utility of all SU pairs
while satisfying the PU outage requirement. Defif(@) = Pr[y < 7], the formal description of the
optimization problem is

M
maximize ; log(1 + h;P;)

subjectto  f(P) <7, (5)
P < P,..1.
Defined; as the unit interference effect from SU-Txo the PU-RX, i.e.,
Given
b; = . 6
PoCho (6)

For Rayleigh fading channel, the outage probability at thkeRX for a given SU transmit power vector
P is [11]:

M
fP)=1- exp(—];;)gtg) I1(+bP) W

To simplify notations, we definez = (1 — n9)/(1 — 1), which can be interpreted as the relative outage
margin to accommodate SU transmissions. Clearly, we expeetl. Thus, we can modify the outage

constraint onP = [Py, - -+, Py] into
M

=1
which is an upper bound on a posynomial functionfof



B. Algorithm Development

Note that the feasible set defined by (8) is non-convex. Assaltiethe optimization problem in (5)
remains nonlinear and non-convex. Adopting an approachiasirto [10], we approximate the utility
function of thei-th SU by log(h;P;). The approximation on the utility function is justifiable erhn
the processing gain (e.g., using spreading spectrum, usaltidetection, or beamforming techniques)
at each secondary transceiver pair is large and when thenechitoo many nearby secondary stations. In
addition, such an approximation enables us to transfornotiggnal problem into a convex optimization
problem (via variable transformation) for which we can efifeely find the global optimum and derive
corresponding distributed algorithms. Another way to $farm problem (5) into a convex optimization
problem is to keep the objective function a(1 + h;P;), by modifying the PU outage probability
constraint and imposing a constraint on the average imarée power perceived at the PU-Rx using
the so-called certainty-equivalent margin (CEM) relaxatj11]. A lower bound and upper bound on the
average interference powgr" P,G; is obtained in [25]. As a result, an upper bound and a lowentou
on the optimal total SU utility function can be obtained aisédias comparison in Section VI to show the
effectiveness of the adopted approximation. The disadgenbf using CEM relaxation is that it requires
the PU-Rx to feedback the measured interference power onaihiieol channel. In comparison, we only
need a 1-bit outage event feedback. We also note that suclpmoxamation has several limitations
sinceh; P; > 1 may not always hold, especially when there are many SUs iméighborhood. In this
case, the solution obtained with the approximation canesasvan initial searching point for the original
non-convex utility maximization problem (5).

With the approximation, the objective function reducesyiplog(h;) + log(P;). Henceforth, without
loss of optimality, we can ignore the constafts}. Adopting the technique of geometric programming

[30], we can perform the following variable transformation
€Ty = log(PZ>7Z = 17 U 7M7

and transform the constraint (8) intog-scalé. Denotingx = |21, -+, 2|7, andZ = log Py, the

resulting optimization becomes

M
minimize -
=1
subjectto > log (1 + be™) < log s, 9)
x < 7z1.

2Such a transformation leads to an equivalent solution duBetanonotonic increasing property hfg(-) function.
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The objective function in (9) is affine ir, and the constraint is convex # (the Hessian matrix of the
first constraint is a diagonal matrix of positive elementsd #ime second constraint is affine %). As a
result, we now have (9) as a convex optimization problem ¢hatbe solved numerically with efficiency
in a centralized manner and may be amenable to a distribaotptementation.

We define the Lagrange function associated with the probBnag

M

M%X%=—§ﬁ%+MZW%O+@ﬁﬁ—bym (10)

i=1 i=1
wherex < z1. The dual function can be obtained as

qg(A) = inf L(\ x)

x=zl
M

M
- —)\logu%—xi%lffl{;)\log(l + be™) — ;xz} (11)
M

= —Alog uu + ; xlngff{)\ log (1 + be™) — x;}.
Note that here we exploit the advantageous structure ofgparable problems: the minimization involved
in the calculation of the dual function is decomposed iffosimpler minimizations. Each minimization
requires only local channel information, i.é;, We can then solve the minimization problem in (11) with
regard to any giverh > 0 as:

in{—log((A — 1)b;), 7}, if A > 1,
210 — argmin, -, (Mog (14 ber) — oy} — ot 0BT D)2 (12)

z, if0<A<1
With x7()), we can solve the dual optimization problem which is expdsas:

maximize  g(\)
(13)
subjectto A > 0.

Note that we can set the transmit power of each SU to (or closeero such that the constraints in the
approximated optimization problem (9) can be satisfiedtyyr(assuming: > 1). By the Slater constraint
qualification, the optimal duality gap is zero and there tsxét least one (see Proposition 5.3.1 in [31])
geometrical multiplier\°. According to Proposition 5.1.5 in [31], the dual-primalmp@\°, x°) is optimal

if the following conditions are satisfied.

M
x° < 71, > log(1 + be™) —log pn < 0, (Primal feasibility), (14)

i=1

A? > 0, (Dual feasibility), (15)

x° € arg mi% L(x, \°), (Lagrangian optimality, (16)

X<
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M
A “log(1 + be™) — log pu] = 0, (Complementary slackness (17)

=1
On one hand, if the effective channel gaips are such thaE X, log(1 + b;e”) < log i1, the solution
of the dual problem (13) i3° = 0, and the corresponding transmit power vectof1s It can be verified
that (0, z1) satisfies the above optimality condition. In this case, thkedltage probability constraint
is always loose. On the other hand, whet’, log(1 + b;e”) > log i, we have by (12) that the outage
probability constraint is tight. In other words, wh&f | log(1 + b;e”) > log 1, we have the optimal pair

of dual-primal variableg\°, x°) satisfying the following relationship:

M .
> log(1+ be™!) = log

i=1

min{— log((A° — 1)b:), Z}, it A° > 1, (18)

T, if A2 =0.
Note that at least one SU transmits with power equals teg((A\°—1)b;), and thus\® ¢ (0, 1]. Therefore,
any method that finds the solution to the above equation degive us the optimal power control for
the SUs. As a special case, when the maximum power constiagdch SU is loose (i.er, = o0), we
can obtain a closed-form expression for the optimal dual@irdal variable(\°, x°) as follows (see also
[25]):

2\° = (NI/M _ 1)—1 +1,

M _q (19)
K - ]71’:17‘..7]\4.

This solution implies that the contributing interferenceni each SU to the PU-Rx, expressedd®’ =

x? = log|

b;e”, should be normalized. However, the solution expressedl®) (equires that each SU know the
total number of SUs sharing the spectrum opportunities dk agethe value of), and thus requires a
centralized controller.

To facilitate the distributed implementation of power cohtwe resort to iterative approaches to find
the optimal solution. Recall that the PU-Rx transmits atlifdicator to the PU-Tx to signify whether the
SINR at the PU-Rx falls below the required SINR threshold ashetime slot. Such information reflects
the reception quality at the PU-Rx, and can be used to infeatigregated interference from all SUs to
the PU-Rx on the forward link. The key idea is for the SUs toatpdhe dual variabla iteratively based
on the PU outage probability resulting from the SUs and adhesr transmit powers according to (12).
There are many ways to control the update procedure for thaé\duiable A\ while taking into account
the noise in the observation of PU outage probability, suglstachastic subgradient method [32] and

stochastic approximation method [33], [34]. Here we eleaige the stochastic approximation method for
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its flexibility and better convergence speed. We developstiduted power control algorithm for multiple
SUs next (also in [25]).

C. Distributed SU Access Control

Defineg(\) as the excess of the PU outage probability constraint irstde when the transmit power

of the SUs is given by ()\) as in (12). Specifically, let

g(A) = log f(x*(A)) — log(n), (20)

where without causing confusion, we slightly abuse the tiateof f(x) by using it to represenf(P).
Suppose thaF M, log(1 + b;e”) > log uu. In other words, if all SUs transmit with the maximum power,
the outage probability constraint will then be violated.ddn this assumption, it is easy to prove that, if
no <n <1, §(\) =0 is a necessary and sufficient condition §0f”, log(1 + b;e*™) = log iz to hold 3,
and the optimality conditions are satisfied.

Ideally, if each SU is aware of the value &fin each iteration and has the perfect knowledgg ©f),

then A can be updated iteratively via
Ak +1) = A(k) + a(k)g(A(k)), (21)

wherek is the iteration number, and k) is the step-size for each iteration. The update will corsem
the optimal solution given appropriate regulation on tlepstize (by contraction mapping). However, such
an ideal update is difficult to implement in a totally distried way without information exchange among
SUs. Let)\; denote the local version of the dual variableat thei-th SU, and letA = [\, -, Ay].
Suppose that each SU adjusts its transmit power by sulisgitiit of (12) by the local version of the
Lagrangian multiplier\;. The PU outage probability now depends on the valug since each SU adapts

its transmit power based ok according to:
mln{— log(()\l — 1)60,.@}, if )\i > 1,

z, 0<A <1,

The same applies to the log-scale residual excess of the RAg@yprobability constraint. Denote such

dependence ag(A) and g(A), respectively. We then have
M

FA)=1-Q—n) ]+ be®i M)~ (23)

i=1
wherez;(A) is given in (22); also

g(A) = log(f(A)) — logn. (24)

3Here the proof is omitted for brevity.
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Obviously A = A°1 is a feasible solution to equatioffA) = 0; but there exist other values of
such thatg(A) = 0 and A\; may get trapped on the boundary of the feasible set, leadireuboptimal
transmit powers. In particular, whep\;} differ from user to user{z;} (and thus transmit powers of the
SU’s) determined by (24) would no longer minimize the Lagpian function of the primal optimization
problem in (9). Indeed, we do not even have an appropriataitiefi of the Lagrangian function. Due
to the possible discrepancy amofy; }, the conventional dual decomposition approach does ndy.app

In order to mitigate this problem and achieve consistencyragnSUs, we resort to a discounted
distributed power control (DDPC) algorithm as shown in Algan 1 in which we apply a discount
factor 5; on the update of; for each SU as in (27)The key idea is to gradually diminish the impact of
asynchronousness on the discrepancy among the local cépjésand rely on the common observation
(i.e., the outage event reported by the PU-Rx on the feedblagknel) to determine the update in the
correct direction.Consequently, we introduce bias in the update directiontaedconvergent point (if
exists) may not satisfy(A) = 0 anymore. The resulting SU transmit power may not satisfyahiage
probability constraint. However, the SUs can manage tafyatine required outage probability constraint
by using a suitably chosen and tighter constrain(instead ofy) in the DDPC algorithm, by applying the
adaptive control scheme shown in Figure 2. Additionally, za&not observe the PU outage probability
directly from the 1-bit information on the PU feedback chalnnrherefore we define an observation
window with duration ofT" slots and count the outage events during such an observatratow. For
simplicity, we denote the PU outage probability during thth observation windows ag(k) = f(xx). An
unbiased estimate gf(k) will be N, /T, whereN, is the number of outage events within th¢h window.
Here, to avoid pathological value in the estimate of the Ptagel probability, we use a slightly biased
estimatorf(xk), also denoted aff(k) in (26). We also ung(A) to represent the implicit dependence of
the estimate on\. Since the estimate is noisy, the direction and amount ohtgptased on the estimate
is random and is denoted hyA). Specifically,g(A) is given by:

~

g(A) = log f(x(A)) — logmn, (25)

wherez;(A) is given in (22). The key challenges are to understand theadmpf the discount factos;
and biased estimation as well as whether the algorithm cgasg especially when different users have
different values of\;(k). In next section, we present the convergence result of thrithm and study

the design trade-off in face of observation errors.
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Algorithm 1 Discounted Distributed Power Control (DDPC)
1: Initialize: k = 0, X;(0) > 1, P;(0) = o =135

2: Observe: for thek-th updating period withl" time slots, recordVy, the number of outage events during time glét—
DT + 1,kT).

3: Estimate:

1/T, if N =0,
f(k) = (26)
Ny /T, otherwise

4: Update the local copies of the Lagrangian multiplier:
Ai(k + 1) = max{B;(k)\i (k) + ai(k)g(A1(k), - -, A (K)), 0}, (27)

whereg;(k), 0 < (k) < 1, is a forgetting factor withir(0, 1), a;(k) > 0 is the step-size of the updating procedure, and
g(A(k), -, Am(k)) is the commonly observed violation of the PU outage proligltbnstraint in the last slot (in the

log-scale) when theé-th SU-Tx power is determined by; (k) as:
g (k) A (k) = log (f(k)) —log (). (28)
5: Update the transmit power:

mln{m,ﬂn(m}, |f )\z(k + 1) > 17

Pi(k+1) = (29)

Pax if 0<X\(k+1)<1.

6: Return to Step 2.

V. DDPC CONVERGENCEANALYSIS

Having presented the DDPC algorithm for SU power controkebdasn common PU-Rx feedback, we
now consider several special operating environments aacttiresponding variants of the Lagrangian
update algorithm (27). We consider two cases. In the first,ome assume that SUs are time-synchronized
and have the same global information on time index and/orAtvalue. The goal is to understand the
impact of the discount factor. In the second case, we do renas synchronization among users and
do not assume any communications among SUs. The goal is ®rstadd the impact from the lack of
synchronization. All proofs are relegated to the Appendix.

We introduce a new design parameter 0. A critical step in proving the convergence of DDPC is to

have

We assume the relationship of (30) holds throughout the rpapeen the update of in (27) can be

rewritten as:

A(k + 1) = max{ (k) + a; (k) [g(A(K)) — ehi(k)], 0}, i=1,--- M. (31)
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Define g(A) = E{g(A)}, where the expectation is over the random value of the esttmBU outage
probability f(A). We first have the continuity of the functigf{A) as follows.

Lemma 1:g(A) is continuous om € [0, co)™.

From the truncation operation on the estimation of the Plageitin (26), we have (A) € [1/7,1],

and thus we can construct bounds §dA\) as:

log<%> ~log(T) < g(A(k)) < 1og<%>. (32)

Consequently, we have the following bounds on the sequehce(b) for each SU generated by the
update in (31).

Lemma 2:Fori = 1,---, M, if the initial values are chosen such that0) < A, where\ = { log(;),
then the sequence of;(k) generated by the update expressed in (31) is upper bounded,hy=
(1/c+a) log(%), wherea = max; j a;(k).

Denote the update direction function that involves the dttigg factor for thei-th SU asy;(-), i.e.,

yi(A) = g(A) — e, (33)

which is random due to the uncertagiiA). With the bounds ory(A) expressed in (32) and Lemma 2,
we can bound the update direction function for each SU asvisll

Lemma 3:Fori = 1,---, M, if the initial values are chosen such that0) < A, where\ = { log(;),
then the sequence of update directipf\) is bounded ady;(A)| < b, whereb = 10g(%)+10g(T)+C)\max.

In the rest of the paper, whexy = --- = A\, = A, we use notationg()\) and g(\) to replaceg(A1)
and g(A1), respectively. We also remove the subscript\gfk) to write \(k). Similar shorthands apply
to a;(k), 5;(k), andy; (k). We have:

Lemma 4:g()\) is a decreasing function of.

A. Synchronized SU Power Control

In this scenario, we assume that a network clock, i.e., thaevaf k, is broadcast to the SUs. Each
SU applies the same updating algorithm and has the same ebl\&) for time slotk. When a new SU
joins the network, it will acquire the network clock and therrent value ofA. When an SU leaves the

network, no action needs to be taken. We further assume aisaofficondition:

E{log f(z)} > log, (34)

which can be obtained by setting the SU’s maximum transmitgpdarge enough.
In practical systems, there inevitably will be errors whée ISUs estimate the outage probability

perceived by the PU-Rx. In [25], we studied the relationdgiween such observation errors and the
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length of observatioff’. Here, we focus on the asymptotic behavior of the noisy wgdkgorithm. To this
end, we consider the following updating modification wittné-varying forgetting factor and step-size.

Starting fromk = 0, all SUs update the Lagrange multiplier via
Ak +1) = B(k)A(K) + a(k)g(A(k))
= A(k) 4 a(k)y(A(K)).

(35)

Because the SU observation of the PU outage probabiﬁ([y)q is noisy, the update in (35) is random.
It turns out that this update algorithm is akin to the classachastic approximation method [34]. Define

A, IS such that
g(\1) = e, (36)

we arrive at the following convergence result:
Proposition 1: For the adaptive synchronized update altjon of (35), the Lagrangian multiplier
converges ta\, with probability 1 when the condition (34) holds and when ttwn-negative step-size

a(k) is chosen such that

lim > a(k) =00 and nll_{goz a*(k) < oo.
k=0 k=0
Actually, even if different SUs update theifs with different initial values, from the continuity proper

of g(A) and the conditions stated in Proposition 1, we can show tlitht synchronized step-size(k)
among all SUs, the update will converge Xo with probability 1 by Theorem 2.3.1 in [33] (page 39).
In addition, due to the independence of the estimate ety = y(A(k)) — y(A(k)) (by independent
channel fading assumption) and the uniform boundednesg¥ gf(A)|?>™} (by the boundedness gfA(k))
in Lemma 3), the step-size selection can be loosen g, a™ (k) < oo, wherem is some integer (see
example 6 in Chapter 2 of [33], page 37).

A few remarks are in order. Note that for the optimization lppeon (9), the optimal Lagrangian
multiplier, denoted by\°, satisfies the conditiop(\°) = 0. However, the convergent point of the DDPC

with synchronized update\., may not satisfy this condition. Due to the concavityl@f(-), we have

E{log(f(x))} < log(E{f(x)}). (37)

Together with the truncation operation of estimating theaga probability, even ifZ {log(f(x)) < log(n)},

we cannot guarantee th@tx) < n after convergence. In other words, the outage probabikcgived

by the PU-Rx may be greater or smaller than the requirefter convergence. To mitigate this problem,
we can introduce an adjustable paramefgrio be used as the PU outage probability constraint for our

DDPC algorithm. The value of, can be estimated from numerical simulations with regardltpassible
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values of M. An alternative is to update the value @f online based on the observed outage probability
after the algorithm converges, as depicted in Figure 2, evleris the update step-size.

We also observe the trade-off when choosing parametBrom the monotonicity ofj(\), f()), and
g(\.) = ¢\, the smaller the value af, the smaller the amount of excess outage perceived by thRx>PU-
On the other hand, for a givem(k), a smallerc indicates a largeri(k) (closer to 1), which leads to
slower convergence.

We can also use other forms of update direction function dtdio variances of the proposed DDPC
algorithm. For instance, we can use a convex functiorf ;luch aslog(1 — 1) — log(1 — f(x)); thus,
we can potentially obtain transmit power that is more coregere in terms of protecting PU when the

convergent point satisfies:

~

E{log(1 — f(x))} = log(1 —n)

by Jensen’s inequality. Another option is to uSg/7" — n, which is unbiased in terms of achieving the
desired outage probability constraint. For this updatedtion, we can sef’ = 1 and reduce the time
required to obtain the estimate of PU outage probabilityveleer, the number of iterates required is large.
In this paper, we elect to use update directioriagf(x)) — log(n) so as to achieve faster convergence.
Intuitively, since0 < n < 1, the adopted update direction is able to drag a small PU eutagbability
f(A) within the neighborhood ofy quickly.

B. Unsynchronized Secondary User Access

Now we study the more general case in which no informatiorharge among SUs is required. As
described in Algorithm 1, each SU maintains its own trangpoitver control without knowledge on the
existence of other SUs. The only connection among SUs isigiiréthe common observation on the outage
event reported by the PU-Rx on its feedback control char8gcifically, they have the same information
on how much aggregated interruption caused to the PU-Rxet Ai

Our results are built around the simpler scenario with twolits in the system. The two SU trans-
mitters activate their transmission at different time amg$ (slots). Denote this activation time difference
as integerk,; > 0. Without loss of generality, we assume that= 0, &k, = kg, i.€., the second user starts

kq slots later. We assume that each SU uses the same step-seratgm rule of the following type
a;(k) =ag(k+ k)", i=1,2, (38)

where bothay, and v are predefined positive constants, andis the time instant that théth SU-Tx

activates its algorithm. Both, (k) andas(k) are positive and decreasing functionsiofSince we require
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no information exchange among SUs, the second SU does not #recurrent value of the first SU’s
step-sizeu; (k) or its Lagrangiam; (k). In fact, the second SU updates its local version of the “aagian
multiplier” 4, \,, using its own step-size,(k) and initial pointA,(0) asynchronously from\, (k).

We now investigate the convergence property of the updatiggrithm for the Lagrangian multiplier
in (27). We first look at the asymptotic property of the digpenecy between\; (k) and \,(k) to derive
sufficient conditions for its convergence to zero. For sigipl we also writeg(A;(k), A2(k)) asg(k) so
long as there is no confusion. When the observations on thé&PBtlback channel are error-free, the two

SUs use the same update direction and amount, and thus we have
A(k+1) = Aa(k 4 1) = (1 = caz (k) (A(k) — A2(k)) + (a1 (k) — az(k))(g(k) — cAi(k)), (39)

Defined(k) = A (k) — \a(k), andu(k) = as(k) — a1(k). Recall from (30) that; (k) =1 — ¢ - a;(k).

Lemma 5: If the step-size sequeneg§:) and ay(k) are chosen such that

n

lm [[6G)=0. 0<pBG) <1, i=12
j=1

n (40)
Jim 37 u(j)] < ce.
j=1
then
lim 0(k) = 0.

k—o0

This result establishes the diminishing discrepancy betwbe Lagrange multipliers for the proposed
DDPC algorithm with consideration of biased and noisy eatemon the update algorithm. Fore (0.5, 1],
a;(k) defined in Eq. (38) satisfies these two sufficient conditi®usce we assume all SUs adopt the same
step-size generation scheme of (38) we can guarantee thktioos in Lemma 5 without information
exchange among them. But different SUs may have a diffeoal lindex ofk + &; and thus actually
use different step-size at any particular time instancés iEhdifferent from the distributed utility-optimal
CSMA schemes for random access stations in [27], where #yesste at different users must be the
same at every instande

Next we present the convergence result\gfk) for the two SU case. Since we focus here on the

convergence property of the Lagrangian multiplierand \,, we make further assumptions as follows:

I. The maximum transmit power constraint is always loosas Téads to a closed-form expression of

g(A1, \2) and the establishment of its differentiability.

4Since the two SU-Tx’s have different views on the dual prohlg;,i = 1,2 are not the true Lagrangian in the rigorous sense. The use

of “Lagrangian multiplier” is a minor abuse of the term.
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Il. The noisy estimate ofi(\;, \2) is unbiased. Specifically, we assume that

9s(A1(k), Aa(k)) = g(Aa(k), Ao (k) + w(k), (41)

wherew(k) is a bounded zero mean noise. Here for distinction, wegy&é instead ofg(-).
. For i = 1,2, a;(k) is a diminishing sequence witfty>, a?(k) < oo, and 332, a;(k) = cc.
V. 0<e< log(%).
Following the result of Lemma 5, we then have the uniform evgence result ok;(k) given below.
Proposition 2: If Assumptions I-IV hold, and the step-siequence:(k) satisfies the conditions spec-

ified in Lemma 5, then, with probability 1,
lim )\Z(k) = )\sa

where )\ is such thatg(\;) = c\,.

The convergent point satisfieg \s) = cA; > 0. By the monotone decreasing property @),
the resulting outage probability will exceed the constrainin order to satisfy the outage probability
constraint, the SUs should use a tighter outage probalsiifstraint;, < n in the update. We can derive
an upper bound on the distance between the PU outage pribpabhieved by using\, and that by using
.. Denoter), as the PU outage probability when Lagrangian multipNgis used by the SUs. An upper

bound on the discrepancy is as follow:

%< exp (oMl = 1)+ (57 — D= 177, (42)

This upper bound can be proved via Taylor expansion and ttesl @& omitted due to length constraint.

Remarks:

« As discussed earlier, we can achieve different trade-@fte/den convergence speed and the gap from
A° by choosing different values ef The larger the value af, the smaller the value ¢f [Eq. (30)],
the faster the proposed DDPC algorithm “forgets” its asyoohus discrepancy, and consequently
the better the capability to accommodate dynamic SU systeanges. The price to pay is the larger
difference between the convergent poltand the optimunne.

« Another trade-off lies in the choice of For a faster convergence, a smalleis preferred. However,
with noise in the estimation, a smallerwill introduce a larger fluctuation in the updating iteraiso
Also related to this issue is the choice of observation pkfig as mentioned in [25]. In particular,

a longer observation window provides more accurate estimatthe PU outage probability and thus

less fluctuation in the update iterations at the expensergéilaconvergence time.
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. The amount of time to reach convergence depends on bothitfed discrepancy among\;}'s and
the convergence speed of the stochastic approximatioroahefor a givern, a large difference among
{\:}'’s (e.g., when a new SU joins the network) may lead to slow eayence since it takes long
time for the DDPC algorithm to diminish such a difference. &iltdifference SUs reach consistency
on their updates, the update direction functiog(f(k)) — log(n) provides good convergence speed
as mentioned in Section V-A and results in short response tonthe PU dynamics as shown in

Section VI.

Although our convergence proof has not been generalized &l@itrary number of SU, we expect that
the convergence of DDPC for multiple asynchronous SU’s caredtablished. Similar methodology as
the two-SU case may be adopted, i.e., by first showing the rmami discrepancy amony;, diminishes,
and then studying the distance of thesecomponents from the desired convergence point. Thus far, ou

numerical results (given in the next section) have beentigesi

VI. SIMULATIONS

In this section, we present simulation studies on the perdoice of the proposed DDPC algorithm in
the case of multiple asynchronous SU’s. First, we provigedbnvergence result for the special case in
which the observation noise additive §o\) is a zero-mean uniformly distributed random variable wnithi
[-0.5, 0.5]. In the simulation, we se¥/ = 3, n = 0.1, o = 0.01, ¢ = 0.0001, v = 0.4, ay = 50, and
Phax = 30dBm (1000mW) (the corresponding = log(1000) = 6.9078). The activation instants of the
three SUs are 1, 100, and 200, respectively. The initialevaii);(0) is set to 100 for each SU. The
effective interference channel gain from each SU to the RW;Rare set t#0.3568, 0.0197, 0.4432] x 1073,

In other words, SU-2 has the best channel opportunity. Welaljsthe updates ok; and x; over time,
and the convergent point, in Figure 4, from which we can confirm the convergence of mdwnt
two SUs without synchronization. After convergence, tlas$mit power of SUs i$l12, 1000, 90] mW.
Specially, SU-2 transmits with the maximum power most of tinee. We can observe that SUs with
larger average interference channel gains transmit witillempower. We also test the algorithm using 5
different random seeds, and the resulting average PU optafpabilities along each convergence process
are smaller than 0.1004, i.e., only slightly larger than

We also show the difference between the convergent poiahd \° as the value of varies in Figure 5
for cases when\/ =2, 4, 6, n = 0.1, andn, = 0.01. We can observe that, asincreases, the difference
increases. In addition, more SUs in the system lead to ladg&rence. The PU outage probability

normalized byn after convergence and its upper bound derived in (42) aesilswn for comparison in
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Figure 6. We can see that by settingmall enough, the resulting PU outage probability is vepselto
its requirement. The result also indicates that, for a lavgdue ofc, it may be helpful to have an outer
loop to adjust the value af, as in Figure 2 to satisfy the original target protection ¢amst defined by
1. Another way to guarantee that the PU outage probabilityelevio the predefined threshoidalong the
convergence process is to use large enough initial poirits (but smaller tham = %log(%) such that
the update of\;(k) is bounded).

Next, we evaluate the performance of our proposed DDPC in e rpmctical setting. We set up a
system with multiple SU pairs and one PU pair with their loama$ shown in Figure 3. For SUs, only the
transmitters are shown. The simulation parameters aresset-a 10%, N, = —100dBm, P, = 33dBm,
Prax = 33dBm, M =3, v, = 6, andG,; = d;*,i = 0,1, ---, 3, whered,; denotes the distance from the
i-th SU-Tx to the PU-Rx. The 3 SUs are activatedkat= 0, ky, = 100, and k3 = 200. The duration for
one outage probability update is setffo= 200. Note here that the noise caused by the estimation of (26)
is biased. To test the proposed algorithm under a more dynaystem, we also allow the distance of
the PU-Rx from the PU-Txd) to jump from 500 meters to600 meters at the middle of the simulation
outage. As a result, the outage probability perceived byPldeRx without SU transmission changes from
1o = 0.0186 to 0.0381 and the margin for SU transmission is reduced.

In Figure 7, we plot the the update process of the “Lagrangmdtiplier” \; for n, = 0.10. We
can observe the convergence behavior of the proposed thlgorAlthough we encounter noisy observa-
tions/estimations during outage sensing, the algorithnvemes smoothly and fairly as each SU eventually
acquires similar value of;. Also note that there exists a small gap between the cornepgent and)..
This difference is caused by the bias in the estimation ofailtage probability (in log-scale). This gap
can be reduced by adopting a longer observation period ai.greaterl’. However, this may render the
update less agile and less sensitive to the system dynamics.

In Figure 8 , we plot the outage probability perceived by thé & a function of time by setting
n, = 0.10 andn, = 0.09 for our DDPC algorithm. Note that the time index in Figure &ma$ with
that in Figure 7. In other words, the outage probability shasvalong the convergence process. We can
observe that withy, = 0.10, the outage probability perceived by the PU over the whateuktion time
is only slightly higher than required. As discussed earlikis offset can be overcome by applying an
outer-loop control mechanism to adjust the target outagbalility requirement), in place ofn used
in our algorithm. This is confirmed by observing that the PUWage probability is under the constraint
almost all the time withy, = 0.09, .

In Figure 9, we show the total SU utilify’, log(1+ h; P;) achieved by the DDPC algorithm as a function
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of time. For comparison, we plot the maximum SU utility of th@nsformed convex optimization problem
(9) obtained by utility function approximation. We also pllbe lower and upper bounds on the true optimal
total SU utility of the original optimization problem (5) laieved by transforming the outage probability
constraint using the certainty-equivalent margin (CEM)deloas in ( [11], [25]). The idea is to retain
the log(1 + h;P;) utility function for each SU but use a lower/upper bound oe thutage probability
expression. The solutions to all the transformed convexropation problems are obtained using the
Matlab-based convex optimization modeling system CVX [38¢ can see that the gap in the total utility
achieved by the three approximation methods (utility appnation, lower bound and upper bound with
CEM model) are negligible. We can also observe that the tdiily achieved by the SUs with, = 0.10
(n. = 0.09) may be slightly above (or below) the optimal utility for tleeiginal problem in (5). This
is caused by the slightly higher (or lower) outage probgbitiroduced by the DDPC algorithm. The
advantage of the DDPC lies in its distributed implementatio

Note that when the PU’s interference-free outage proliglmhianges suddenly, the relative interference
margin left for SUs to exploit is reduced at time instano00, when we observe a spike on the outage
probability perceived by the PU. Nevertheless, our algaritcan quickly infer this change and adjust
the SUs’ transmit power promptly to reduce the deterioraterfuption to the PU-Rx’s reception quality.
This is due to the advantage of the chosen update directioctifun given that the discrepancy among
the updates at different SUs is small as discussed in SedtdnWe also tested the convergence of the
proposed DDPC with a smaller value 6f for which we observed a more bursty convergence procedure
due to more noise in the estimate of PU outage probabilitywaitan achieve convergence in a shorter

time. The simulation results are omitted due to space limits

VIlI. CONCLUSIONS

In this work, we proposed a discounted distributed powetrobfDDPC) algorithm for multiple SUs in
a cognitive radio network. The proposed algorithm expltiitsoutage information from the PU-Rx on the
PU feedback channel as an external inference signal fordowaiion among distributed SU transmitters.
We proved the convergence property of the proposed DDPQitdgofor two secondary user case, and
provided the promising convergence results for scenaritis more than two SUs. This distributed SU
power control can tackle asynchronousness issue in a typicmitive radio network and approximate
the optimal solution without PU cooperation, central colir/monitor, or inter-SU message passing.
In future works, we plan to generalize our framework to inelithe more dynamic scenarios involving
adaptive PUs and SUs. We are also keen to assess the tragéséieln the security concerns and the

revenue from cognitive users by allowing some unencryptaddontrol feedback among the PU pairs.
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APPENDIX
A. Proof of Lemma 1

Proof: Given0 < A, we expand the expectation operationgn) which is given by (25) and obtain

g(A) = log(%) Pr{N; = 0]\] + Zlog(%) Pr[N, = i[A]
= (43)

~toa()(1 = FANY + Y toa() | )1~ £ (1)

7
where N, is a Binomial distributed random variable with successfial tprobability f(x(A)), which is
determined by the transmit power vectoy which is subsequently determined Byas in (22). Since

—log((A\; — 1)b;) is a decreasing and continuous function for> 1, and it intersectsc when \; =
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1++e™® > 1, we have that;(-) is a continuous mapping of over [0, 00)" c R to (—oo,z]” C RM.

For Rayleigh channel model used in the paper,

f(x)=1—(1—=mn) [](1+ bie*)™, (44)

—=

(2

Il
—

which is a continuous function at € (—co, z]*. Observe thag(-) is a polynomial function off, we
haveg(-) is continuous onf € [n, 1]. By the composition rule of continuous functions (Theorem i

[36], we haveg(A) a continuous function of. O

B. Proof of Lemma 2

Proof: Let A = —logn/c, anda = max;{a;(k)}. Both A\ anda are positive. Supposg;(k) < \.
Sinceg(A(k)) < log (%) (32) and);(k) > 0, we have

7

Ailk +1) = Xi(k) + ai(R)[g(A(F)) — cAi(k)]

< Ni(k) + ai (k) log (%) — (k)]
| (45)
< Ni(k) + ai(k) log (5)
- 1
< A +alog (;)
On the other hand, whek;(k) > \, we have
Nk + 1) < Ai(k) + a; () [log (%) 3] = M), (46)

In other words, whenevek;(k) becomes larger than, the negative update direction will result in a
smaller number of\;(k) next.

Let Amax = A + dlog(%). It then follows by induction from the two preceding equasdhat, if we
choose);(0) < A, then we have\;(k) < A\nax. The above argument holds for al=1,--- ., M and the

proof completes.

C. Proof of Lemma 3

Proof: Sincey;(A(k)) = g(A(k)) — cA;, we have
(AR < [g(A(R))] + c[Ai(R)] (47)

By the bounds ory(A(k)) as in (32) and\;(k) as in Lemma 2, the proof is complete. O



26

D. Proof of Lemma 4

Proof: Due to the independence assumption on channel fading, théerof outage event within an
observation window follows Bernoulli distribution withéhPU outage probability determined by the SU
transmit power vectog (A1) for given A. Observe that the transmit power of each SUA1) = 27 (\) as
in (22) is a decreasing (or non-increasing) functioland also note that here each SU uses the same
to obtain its transmit power. Therefore, for any two valués avith 0 < z; < 2, we havex(z,) < x(z).
Then we have the PU outage probabilities associated wyitmd z, satisfying f(x(z1)) > f(x(z2)). Let
random variablesy(; and X, denote the number of successful trials am@hopdependent Bernoulli trials
with successful probability ag(x(z;)) and f(x(z2)), respectively. Then we have that is stochastically
larger thanX, [37]. By the property of the stochastic ordering (Propositil.2 in Appendix of [37]),

sincelog f(z) = log{max{X;/T,1/T}) is an increasing function ok; for i = 1,2, we have:

E{log f(x(21))} > E{log f(x(2))}, (48)

where the expectation operation is with regard to the thstions of X; and X5, respectively. Therefore,

we haveg(z;) > g(z2) and complete the proof. O

E. Proof of Proposition 1

Proof: As a special case of Lemma 1, we know thék) is a continuous function of € [0, c0). By
Lemma 4, we havg(\) is a decreasing function of, and thusy(\) = g(\) — ¢ is strictly decreasing
for ¢ > 0. When\ = 0, x*(0) = z1, by invoking condition (34), we have(0) > 0. On the other hand,
we have by (32),

log(+) ~1oB(T) < g(A) < log(. ), (49)

and thus when\ > log(%)/c, g(A)—cX < 0. Therefore, by the Intermediate Value Theorem for contirsuo

function, we know there exists a number|in log(%)/c] such that
y(A) =0. (50)

Denote this number as,.. By the monotonic decreasing property @f\), we also have the uniqueness
of A\, and A\, > 0. Then the condition A.2.3.1 in [33] holds since for eack 0, there is aj > 0 such
that

g(\) < —e for Xe [\ +0,00) (51)

and
y(A) >e for Xe (0,\ —0]. (52)
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Define {(k) = y(A(k)) — y(A(k)). Obviously, we havel{{(k)|A(k)} = 0 and &(k) is bounded since
y(A(k)) is bounded by Lemma 3. Then we ha¥&|¢(k)|*} < oo. We can write the update of as

follows:
Ak 4+ 1) = XE) + a(k)y(A(k))
= A(k) + a(k)[g(A(k)) + £(K)]-

In addition, sincef(k) is independent due to the independent fading assumptiofi, , a(k)é(k)} is a

(53)

Martingale sequence. Therefore, by Martingale boundafén such thaty "7, a(k) < oo, we have for

eache > 0,
lim Pr sup|z (1)] > ¢ < lim E{|¢(k)| }Za (54)

n—oo
m>n .
> =n

and thus the condition A.2.2.4’ in [33] holds.

By the Theorem 2.3.2 in [33], we have fafk) such thata(k) — 0, and}_, a(k) = oo, the update in
(53) converges to\, with probability 1 (Note that the actual update algorithns laaprojection operation
over A(k) into [0, c0) with which the convergence result carries singe> 0 according to the remarks in
Chapter 2 of [33]).

F. Proof of Lemma 5

Proof: By Lemma 3, we havey, (k) andy.(k) are both bounded by a constanti.e., |y;(k)| < b.
For anye > 0, lete; = /2 Amax €2 = €/20. If ay(k) andas(k) satisfy the conditions specified in Lemma

5, there exists an integédt such that

Z u(j)| < e (55)
In addition, we can also find a large enou@’h> K such thatvk > N, we have
H B2(j) < 1. (56)

Since|u(j)| > 0, from (55) we can see that, far> N > K,

J

k
u(5)] < 2. (57)
—K
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Taking advantage of (39), we have, for> K,
0(k + )| < Ba(K)|0(K)[ + [u(k)|b
< a(k) [B2(k = D[6(k = D] + |u(k — 1)[B] + [u(k)|b
< a(k)a(k = D0k = D] + (Ju(k = 1] + [u(k)[)b (58)

k k
< [T eMoE)[+ > u(j)b
j=K j=K
Note that|d(K)| < Amax- Relying on (55) and (56), fok > N,
limy . [0(k)| = 0. O

d(k+ 1)|] < e for any positivee. Hence,

G. Proof of Proposition 2

Proof: Since the maximum power constraint is always loose, thegeupaobability constraint is tight
by the optimality conditions specified in Section IV-B. Bying the expression aof();) as in (12), we
have\; > 1. Furthermore, we can writg(\;, \2) as:

A —1A—1

g(A1, Az) = log (f(k)) — logn =log(1 — (1 — o) NN ) —logn, (59)
with its first-order partial derivative with respect ¥ as
0@()\1, )\2) —(1 — 770) )\2 —11
= . — <0. 60
o\ 1—(1—770)/\3—:“3—;1 Ao AT T (60)

From the symmetry ofi(\;, \,), we can obtain similar expression f@?%, and we have for any given

x>1andy > 1,
9g(z,y) _ 9g(y,z)
or Oz (61)

Note that all poles of the partial derivative falls outsidecc). In addition, if there exists a solution to

the following equation systems
f]()\l,)\g)—c)\i:(), 7 = 1,2

for a given positive numbet, the solution should satisfy
A=A = A,

where ), is such thatj()\s) = cA,. Note thatg(\) — ¢\ is continuous and strictly decreasing in When

0<c< log(%), the existence of such a solution is guaranteed by the leidiate Value Theorem since

limy_; g(\) = log(%).
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By Lemma 5, we can find a large enough< oo such that, for= > 0, Vk > K, we have
0(k)| = A (k) = Ao (k)| < e. (62)
Definee;(k) = N\i(k) — A5, andd;(k) = E{e*(k)}. Next we show that
lim di(k) =0,i=1,2, (63)
which implies the convergence in probability 8f(k) to A,.

From (41) we have the update as
Ai(k +1) = Ai(k) = ai(k)yi(k) = ai(k)[g(A(F), A2 (k) + w(k)], (64)

wherew(k) is a zero-mean and bounded random variable. Beclags€) < g < log(%), we havey; (k)
is bounded and thus there exists a positive constastich that for all(\; (k), \a(k)),

Prly (k)| < €1 = B([_dB(uM () (k) =1,
where H;(y|\1(k), A2(k)) denotes the distribution function (%) given (A, (k), A2(k)).
From (64), we have
di(k +1) = B{(\i(k + 1) = A)"} = E{E{(Ni(k + 1) — A\)*[Aa(k), Ao(k) }}
= E{/ [(Na(k) = As) + ai(k)y)*dHi(y M (k), A2 (k) } (65)

= di(k) + a?(’f)E{/ yPdH;(y| M (k) Ao (k)Y + 2ai (k) E{(\i(k) — Ao)wi(k)}-

Setting
(k) = E{N(k) = A)5(k)}, (66)
(k) = B [ g2yl (k). Aa(h))), (67)
we can write
di(k + 1) — dy(k) = a2(k)e; (k) + 2ai(k)vi(k). (68)

By the bound ony;(k) and convergent property 8f7_, a?(k), we have the positive-term serigg'_, a?(k)e;(k)
converges.

Next we prove that foc > K, we havea,(k)vi(k) + az(k)ve(k) < 0. Since|A (k) — \a(k)| < e for
k > K, we have the domain of the expectation operation#f0k) as a stripe with widtre. We further

partition this stripe into four regions:

St ={(A1; M)A < Ag, A < A [Ai(k) — Ao(R)] < e}

Sy = {(An M)A < As < Ao [Aa (k) — Aa(B)| < e} )
Sy = {00, M) Ae < As < An [As(k) — Ao(k)] < )

Si= {00 ) A > A de > A, (A (k) — Ao(R)] < €)1
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For regionsS; and Sy, relying on the decreasing property @f\;, A2) in both variables, we have:
(A = A9)gi(k) <0, (70)

and thus
2

S ai(k) (s — A)zi(k) < 0. (71)

=1
Note that both region$, and S; falls into the vicinity of (A, \;). We apply Taylor expansion on
function g(Ay, A2) in the vicinity of (A, A):

ag()‘sv )‘2)

. 2
S =)+ 0u()

G(A1, A2) = g(As, A2) +

0G(As, As
— G0N + M(@ — M) +01(£?)
BOu A B0 (72)
Sy 7\s Sy 7\s o 2 o
(Lot + I 00 = A + 0o = A
0G(A1 = Ag, Ag 0G(Ag, Ao = A
— G, ) + 9(M )(Al—As)+ G(As, 2o )()\2—)\8)+O(52),
8)\1 a)\2

whereO(g?) denotes all the terms with order efhigher than 1. This result requirgg, \;) to have a
bounded second-order derivative within the neighborhddd g ), which can be verified by investigating
the poles of the second-order derivative. By the symmetr§(af, \,), we have

ag()\l = )‘87 )‘S) 8§<)‘87 )‘2 = )\S) -
N O\ ‘ (73)

Clearly, ¢ < 0. As a result, we have within the neighborhood(af, \,),

G, A2) = G(N) + (A 4+ Ay — 2),) + O(e?). (74)

For regionsSs, we can express; (k) andey(k) for k > K as:
/ /

e (k) = % L, ek) = —% Iy (75)

for some0 < ¢’ < e and —¢'/2 < § < £'/2. Recall thatu(k) = ay(k) — a1(k). Together withg(A)
expressed in (74), we have

2

> ai(k)(Ai = A)gi(k) = D ai(k) (A — As)(G(A () — eXi(k))

i=1

1=1
/ / / /

=i (k)5 +)le(=5 = ) + 28] + ar (k) + u(k)](=5 + el — &) + 209
=2[2a, (k) + u(k)]'6"” (76)
SO 4 (G - ) - kS — 8

aj (k) & g

9 C[(g + 5/)2 + (5 - 5/)2] - u(/{;)é"clél.
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When |u(k)| < 2a,(k), sincec < 0, the first line of the last equality is negative. The seconé bf the

last equality is also negative when(k)| < 2a;(k). When|u(k)| < ‘“2(’“)@, the last line of the above
equation is negative. Fdr/k-like sequences, these conditions|afk)| hold for £ > Ny, whereN; > K
is a large enough constant. Consequeritly,— \;)y;(k) < 0 is satisfied in regiorbs. Similar arguments
apply to regionS,. Therefore, we obtain, (k)v, (k) + az(k)ve(k) < 0.
The rest of the proof follows similar arguments as in [34]nfBuing over (68), we obtain
Zd (k+1) = idz Ni) + Z Z Jei(d) + 22: Xk: a;(k)vi(k) (77)
i=1 i=1 i=1j=N, i=1j=N
Sinced;(k + 1) > 0, it follows that the positive-term series 37, Z?le a;(k)v;(k) converges. It then
follows limy,_.. 3%, d;(k + 1) exists, which is denoted by.

Next we show that there exists two sequenflesk)} of non-negative constants such that for Ny,

o0

—iai(/@)w(/{;) > Y aRk(R)dk), Y ailk)ki(k) = co,i=1,2. (78)

k=1
Following the same arguments of Lemma 1 in [34], this imptiest ¢ = 0. For regionS; and Sy, it is

easy to see that

= 2 ai(k) (M (k) = A)[G(M (), Aa(k)) — eXi(k)]

= L edlk), (k) — eXi(k)
i=1 Ai(k) — A

(79)

=[—a1(k)k1 (k) — az(k)ko(K)]6"™ (80)
+ar (k) (=2¢" — k1(k)) + ag(k)(—2c" - k2(/’f))](%)2

+lar (k) (= = k1(k)) — az(k)(=c — ka (k)"0
The minimum value of (80) as a function 6f is obtained when)’ = % and it is easy to verify that
for k;(k) < —¢, the minimum value is larger than 0. Similar arguments applyegion S,. Therefore,

if we setk;(k) as a constant sequence such thét) < min{c, —c'} and take expectation over regions

S1-S4, we have:
2
- Z az 'Uz Z Z k), (81)
=1

and thus both conditions in (78) hold. Therefode= 0. This completes the proof. O
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