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Abstract— In this paper we present a novel method for the
efficient segmentation of 3D laser range data. The proposed
algorithm is based on a radially bounded nearest neighbor
strategy and requires only two parameters. It yields de-
terministic, repeatable results and does not depend on any
initialization procedure. The efficiency of the method is verified
with synthetic and real 3D data.

I. I NTRODUCTION

Over the last decade the advent of affordable laser range
finders has enabled mobile robotics to shift towards a new
level of environment perception. Localization, map building
and obstacle avoidance are nowadays almost exclusively
performed based on 2D range data. While there exists an
overwhelming body of work on building meaningful 2D
representations (occupancy grids, line-based maps) and 2.5D
representations (traversability maps) for navigation, com-
paratively few researchers have addressed the problem of
dealing with 3D laser data. There are several reasons for
this. First of all, acquiring meaningful 3D range data is a
problem of its own. The number, position and actuatability of
laser scanners mounted on a mobile robot greatly influences
the quality of the acquired data. Secondly, the amount of
data obtained from a 3D sweep is generally several orders
of magnitude larger than that of a simple 2D scan. This
requires efficient algorithms and data structures for process-
ing. Finally, the segmentation, extraction and interpretation
of geometry of 3D laser data is not as straight-forward as
e.g. in a 2D occupancy grid.

In this paper a method for the efficient segmentation of
3D laser range data is proposed. We use an agglomerative
nearest neighbor clustering algorithm to segment the raw
data into meaningful portions and filter noise. The obtained
clusters may then be processed by further supervised or
unsupervised classification algorithms or be augmented with
information obtained from other sensors, e.g. cameras or
other laser scanners. The main advantage of our method
lies in its speed and simplicity. In this context it can be
seen as a preprocessing step to more sophisticated clustering
algorithms. The remainder of this paper is structured as
follows: In Section II the motivation for this work within
the Autonomous City ExplorerProject is briefly explained.
Section III briefly touches on 3D laser scanning setups and
data structures and then provides an overview of clustering
algorithms. Section IV explains the proposed framework
in detail. In Section V the performance of the method is

evaluated with synthetic and real data. Section VI concludes
the paper and gives an outlook on future work.

II. M OTIVATION

The goal of theACE Project [1] is to create a mobile
robotic platform that autonomously finds its way to a desig-
nated goal location in a crowded urban setting without the
use of GPS or map information.ACE is required to only rely
on directions obtained through interaction with pedestrians.
Ideally, a semantic understanding of the environment would
allow for interpreting these directions in the correct context
and derive low-level navigation actions. However, apart from
the obvious challenges of outdoor localization and map-
building, one of the crucial prerequisites for reaching a
semantic level is the robust recognition of objects1 in the
vicinity of the robot. ACE is equipped with several laser
scanners and a powerful vision system, see Figure 1 and
[1] for details. Even before the challenge of classifying
the information from the laser scanners, we are faced with
the more fundamental problem of segmenting meaningful
portions from a set of 3D points. Thus, in this paper the
focus lies on the issue of robustly segmenting a 3D laser
point cloud acquired by a single laser scanner.

III. STATE OF THE ART

This section gives some brief remarks on 3D laser range
scanning hardware setups and suitable data structures as well
as a non-exhaustive overview of clustering methods.

A. 3D Laser Range Data Acquisition

The acquisition of 3D range data is common practice in
the field of civil engineering, where powerful LIDAR devices
are employed to capture high-resolution data of buildings and
structures. While delivering the highest accuracy available,
these devices are not well suited for mobile robotics because
they have to be in a fixed position and are not designed
for time critical applications. IHigh-definition LIDARs for
autonomous vehicles, e.g. the Velodyne HDL-64E2, are gen-
erally not affordable for the average roboticist. The most
popular solution to the problem of acquiring 3D laser data
is to mount a 2D laser scanner, e.g. a SICK LMS, in some
vertical orientation at a fixed position on the robot [1], [2].
Actuated setups with pan, tilt or pan/tilt platforms allow for

1humans being a specific kind of object
2www.velodyne.com/lidar/whatis.html
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Fig. 1. (a) Schematic configuration of two SICK LMS400 for object detection in the vicinity ofACE (b) TheACE robot (c) A close-up of the actual
sensors mounted onACE

more refined scanning, see e.g. Kurt3D3 or the Stanford
SegBot4. An interesting approach is presented in [3], where
a SICK LMS200 laser scanner has been modified so as to
perform a continuous rolling scan without cable wind-up.

B. Suitable 3D Data Structures

Existing data structures for processing 3D range data can
be divided into two types: those that incorporate beam infor-
mation and those that do not. Occupancy grids as an example
of a beam-based method are by far the most prominent data
structure for 2D navigation because they can among other
things robustly deal with occlusions. Unfortunately, the use
of 3D occupancy grids is computationally prohibitive due
to the drastic increase in the number of cells that need to
be updated. An efficient beam-based method using triangle
meshes is desribed in [4]. Neglecting beam information,
point clouds merely store the actual spatial coordinates of
each measurement, while mesh-based methods try to retain
some amount of surface information.

C. 3D Clustering

Data clustering is a vast research discipline that spans
– among others – the areas of data mining, image seg-
mentation, object recognition and information retrieval.A
comprehensive overview of existing techniques can be found
in [5] and an even more exhaustive one in [6]. On a top
level, clustering methods can be divided intohierarchical
and partitional techniques. As the name suggests, the for-
mer try to capture a hierarchy of levels of similarity in
the form of nested groupings represented bydendrograms.
For the segmentation of laser data into discrete groups of
3D points such a hierarchy is largely irrelevant, which is
why hierarchical methods are not considered in this paper5.
Partitional techniques yield a single partition of the data
set and encompasssquare error algorithms (e.g.k-means,

3www.ais.fraunhofer.de/ARC/kurt3D/
4robots.stanford.edu/segbot/
5This is with the exception of graph-theoretic algorithms that operate

hierarchically but are intended to yield partitions.

ISODATA), mixture resolvingalgorithms (e.g.expectation
maximization), mode seekingalgorithms as well asgraph
theoretic algorithms. Square error algorithms such as k-
means and ISODATA are highly popular in the image
segmentation community, e.g. for LANDSAT satellite image
segmentation [7] These algorithms are unsuitable because
they are restricted to finding hyperellipsoidal clusters inthe
feature space; the laser data may, however, be arbitrarily
shaped. Mixture resolving approaches such asexpectation
maximizationare deemed similarly inapplicable to the seg-
mentation because they require a model of the underlying
distributions and an initial guess of the number of clusters.
Iterating over different initial guesses is computationally
costly (see [8]) and renders the method unsuitable for online
processing. Mode seeking algorithms such as MeanShift [9]
and the recently developed MedoidShift [10] are powerful
nonparametric methods for robust feature space analysis
of (multispectral) images. However, here segmentation is
performed on a 2D lattice with different thresholds in the
spatial and the range domain. The application of mode
seeking algorithms to a 2D depth map projection of the 3D
laser data is not investigated in this paper. Graph-theoretic
approaches are the most promising class of algorithms for
robust segmentation of 3D laser data. This is because they
can capture arbitrarliy shaped clusters using only the concept
of local neighborhood. In this paper the focus is on k-
nearest neighbor graphs and more refined clustering methods
based on these (DBScan [11],Chameleon[12]). Section IV
explains our proposed method which is based on a simple
nearest neighbor strategy. At this point, the application of
algorithms such asChameleonhas not been investigated.
The reader is referred to the discussion in Section VI for
an outlook on future work.

In spite of the richness of clustering literature, we are
unaware of significant applications in the field of 3D laser
data segmentation. Many approaches try to segment points
by matching them to geometrical templates such as planes,
cylinders, tori etc. [13], [14]. However, such model-based



matching algorithms can only succeed if the data is already
reasonably segmented. For large 3D point clouds obtained
from complicated geometry, template matching is compa-
rable to searching a needle in a haystack. In [15] object
detection in 3D data is performed by generating depth and
reflectance maps of the 3D data through off-screen rendering
methods and then running a cascade of (supervised) feature
classification algorithms on the 2D representation. While this
seems to yield satisfactory classification results it bypasses
the problem of segmenting the 3D representation.

IV. CLUSTERING METHOD

In this section the proposed clustering framework is ex-
plained in detail. A description of the segmentation algorithm
is given along with remarks on complexity and applicability
of the method.

A. Definitions and Notation

Before we start describing the clustering process, it
is useful to formalize the problem description. Givenn
points or patterns ind-dimensional feature space,xi =
[xi1 , . . . , xid

]
T

, i = 1, . . . , n, we seek to findm clusters
Cj , j = 1, . . . ,m such that every cluster contains at least
one point, that isCj = {xj1 , . . . , xjk

} , ∀j : k > 0, and such
that all clusters are disjoint, that isCi ∩ Cj = ∅, ∀i 6= j.
Furthermore, we assume that some distance metricρ(xa, xb)
exists that accurately reflects the simliarity between any two
pointsxa andxb.

For the scope of this paper, we are concerned with a3-
dimensional space in which the distinguishing features of
points are their spatial locations along the three cartesian
axes. We use a Euclidean distance metricρ(xa, xb) =
‖xa − xb‖2

.
In graph notation every pointxi is mapped to a cor-

responding nodeui in a directed graphG(U,E), where
U = {u1, . . . , un} represents the set of nodes andE =
{e1, . . . , em} the set of edges. An edge is defined as a triplet
e = {u1, u2, d(u1, u2)} containing the two connected nodes
and their distanced(u1, u2) = ρ(x

1
, x

2
). We will abbreviate

d(u1, u2) asd1,2 in the following.

B. Clustering Procedure

The clustering method that we employ to segment the
laser data can best be described as aradially bounded
nearest neighborgraph (RBNN). In this graph every node is
connected to all neighbors that lie within a predefined radius
r. Formally, the set of edges in the RBNN graph is:

ERBNN = {{ui, uj , di,j} | di,j ≤ r} , ∀ui, uj ,∈ U, i 6= j

(1)

This is in contrast to the well-knownk-nearest neighbor
graph (kNN) [16], which connects every node to itsk nearest
neighbors, regardless of distance:

EkNN = {{ui, uj , di,j} |uj ∈ NNk(ui)} ,∀ui ∈ U , (2)

where NNk(ui) represents the outcome of a k-nearest neigh-
bor query forui. To clarify how the two methods differ in

terms of segmentation performance, consider Figure 2 which
shows a basic 2D data set with two clusters and a noisy
outlier. Given the correctr as a parameter the RBNN method
nicely separates the two clusters and the outlier from each
other6. While the 1-NN graph produces too many distinct
clusters, the 2-NN and 3-NN graphs (and in fact allk-
NN graphs withk > 3) produce one continuous cluster.
The reader may rightly argue that the k-nearest neighbor
graph must not be used naı̈vely but instead be constructed
and then cut at a certain distance threshold to yield a
proper partitioning. This, however, is the main point of our
method: the construction of a suitablek-NN graph causes
considerable computational overhead. The main advantage
of using the RBNN method is that we do not actually have
to perform a nearest neighbor query for every node and
there is no graph cutting and rearranging of graph structures
involved. In fact it is not even necessary to build a graph
structure. The algorithm can briefly be described by the
following steps:

1) Step through the list of all points.
2) If the current point has been assigned to a cluster go

to the next point.
3) For the current point

• Find all neighbors within distancer.
• If any of these neighbors is in a cluster, assign the

current point to the same cluster, then assign all
neighbors without a cluster to the same cluster.

• If the current point has been assigned to a cluster
and there exist neighbors assigned to different
clusters, merge all these clusters.

Algorithm 1 shows a detailed pseudo-code description of
the RBNN method.

C. Complexity

The algorithm proposed in the previous subsection is
efficient because it avoids maintaining and updating a graph
structure and because it does not actually need to perform
a nearest neighbor query for every point in the set. As a
spatial data structure we have chosenkd-trees because they
offer very competitive look-up times for radially bounded
queries. An alternative that has not been investigated would
be the use of a Delaunay tesselation graph. The construction
time of a kd-tree isO(n log(n)), the expected complexity
of a nearest neighbor lookup isO(log(n)). While this is
close to optimal, nearest neighbor queries still account for
the bulk of the running time of NN algorithms. The objective
is therefore to reduce the number of needed queries as much
as possible. Our algorithm achieves this speedup by skipping
all points that have been assigned to a cluster already (Line
4 in Algorithm 1). This means that the more points can be
assigned to a cluster in a single nearest-neighbor lookup, the
more subsequent lookups can be avoided. Expected computa-
tional complexity can be approximated byO( n

kaverage
log(n)),

where kaverage represents the average number of neighbors

6We will consider clusters with less thannmin points as noise. In this
examplenmin = 1.
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Fig. 2. (a) The data set with 2 clusters and 1 outlier (b) 1-NN graph yielding 6 clusters (c) 2-NN graph yielding 1 cluster (d) 3-NN graph yielding
1 cluster (e) RBNN graph yielding 2 clusters and 1 outlier

Algorithm 1 The RBNN Algorithm
1: RBNN(r, nMin)
2: for i← 1, . . . , n do
3: if (hasCluster(ui)) then
4: continue;
5: end if
6: NN← findNeighborsInRadius(xi, r)
7: for all (uj ∈ NN) do
8: if (hasCluster(ui) ∧ hasCluster(uj ) then
9: if (clusterOf(ui) 6= clusterOf(uj )) then

10: mergeClusters(clusterOf(ui),clusterOf(uj ));
11: end if
12: else
13: if (hasCluster(uj )) then
14: clusterOf(ui) ← clusterOf(uj ));
15: else
16: if (hasCluster(ui)) then
17: clusterOf(uj ) ← clusterOf(ui));
18: end if
19: end if
20: end if
21: end for
22: if (¬hasCluster(ui)) then
23: clusterOf(ui) ← createNewCluster();
24: for all (uj ∈ NN) do
25: clusterOf(uj ) ← clusterOf(ui);
26: end for
27: end if
28: end for
29: for all (Ci ∈ Clusters)do
30: if (‖Ci‖ < nMin) then
31: delete(Ci);
32: end if
33: end for
34: return Clusters;

over all queries found withinr. It is obvious thatr should
be chosen as large as possible such that it still yields the same
segmentation but maximizes the number of visited neighbors
per query.

D. Applicability

A remark must be made concerning the applicability of
the method to arbitrary data. For robust segmenation results,
the algorithm hinges on the important requirement that the
data to be segmented is dense. This means that noisy outliers
must be sufficiently spaced in comparison with points that
belong to actual objects so that there exists a value forr that
separates the two. Fortunately, for 3D data acquired by range
finders this is the case. In fact the minimum spacing between
scanned points depends only on the angular resolution and
the sweeping frequency of the scanner.

V. RESULTS

To verify our analysis and the efficiency of the proposed
method the algorithm was benchmarked on synthetic as well
as real data from 3D laser scans. This section presents the
simulation and experimental scenarios and results.

A. Implementation Details

The RBNN clustering algorithm was implemented in C++,
using kd-trees from the ANN library7 and Coin3D8 for
visualization. All simulation and experiments were run on
a 1.8 GHz Intel Pentium with 2GB of RAM.

B. Synthetic Data

As a synthetic benchmark scenario we generated point
clouds with up to100, 000 points in a 3D environment of size
8x8x3m. The points were randomly uniformly distributed
within flat boxes (similar to object surfaces scanned by
a laser) whose number, size, position and orientation was
also randomly varied. Figure 3 shows such a data set.
For some clustering algorithms, e.g. k-means, retrieving the
correct partition in this scenario is a hard problem, because
the clusters cannot be captured by ellispoids. Graph-related
methods, such as the proposed RBNN approach, however,
handle this setup with ease. RBNN correctly identified all
clusters in all generated scenarios. To verify our complexity
analysis from Section IV-C, we compared a naı̈ve variant of
RBNN that performs nearest neighbor queries for every point
with the optimized version from Algorithm 1. The number
of boxes was fixed at 10, while the total number of points
was increased from 10,000 to 50,000 in steps of 10,0000.
Figure 4 shows the runtime of both algorithms averaged over
20 runs. Clearly, there is a drastic difference between the
exponential complexity of the naı̈ve version and the far better
sub-exponential performance of the optimized version. In a
second round of simulations we ran the optimized version
with different values for the radiusr, this time going up to
100, 000 points. Figure 5 confirms our assertion that a larger
distance measure yields better performance.

C. Real Data

A real 3D laser data set acquired with theACE robot was
used to further test the performance of the algorithm. Figure
6 shows the scenario from the view of both the camera and

7www.cs.umd.edu/˜mount/ANN/
8www.coin3d.org
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Fig. 6. (a) The scene as seen by the left robot camera (b) The scene as captured by the left laser in a rotating sweep

(a) (b) (c)

Fig. 7. (a) Front view of the segmented scene (b) Top view before removing noise (c) Top view after removing noise

the left laser scanner. The point cloud of the overall scene
contains approximately 150,000 points and was acquired by a
5s̃econd150◦ rotating sweep of theACErobot. With a setting
of r = 1cm and nMin= 1000 the RBNN algorithm yielded
the 4 clusters depicted in Figure 7(a) after468milliseconds.
Since the algorithm is deterministic, there is no need to
average this result over several runs. The running time of the
algorithm on this scenario suggests that it is very well suited
for online segmentation of 3D laser data. The segmented
portions may then be further processed by more refined
algorithms operating at a lower frequency. Notice how a lot
of noisy measurements occur around the silhouette of the
scanned person. Figures 7 (a) and (b) illustrate nicely how
these noisy outliers result in clusters with very few points
and can thus easily be filterd.

VI. D ISCUSSION

In this paper we have presented a method for online
segmentation of 3D laser data. The proposed algorithm is
nonparametric in that the only two parameters,r and nMin,
depend on the laser scanner and not on the specific data set.
Furthermore, the algorithm is deterministic which means that
running times and segmentation results are repeatable and
do not require initialization. We have analyzed the factors
influencing the runtime complexity of the RBNN method and
have verified the analysis by a series of benchmark evalu-
taions with synthetic data. Finally, the efficient performance
of the algorithm on a real 3D laser point cloud acquired by
a mobile robot has been demonstrated.

There are still several open questions concerning the
robustness of the method for sparse laser data. It is expected
that the application of more sophisticated graph-theoretic al-



Fig. 3. A synthetic dat set consisting of100, 000 points distributed over
15 flat boxes.
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Fig. 4. A runtime comparison of naı̈ve and optimized RBNN segmentation.
Clearly, optimized RBNN is a drastic improvement in terms of average
runtime and standard deviation.

0

500

1000

1500

2000

2500

3000

3500

4000

10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

Number of Points

A
v

e
ra

g
e

 R
u

n
ti

m
e

 (
m

s
e

c
s

)

Optimized RBNN, r=10 cm

Optimized RBNN, r=5 cm

Optimized RBNN, r=1 cm
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gorithms such asChameleonmay increase the segmentation
quality in the presence of chains of outliers connecting two
distinct clusters. Augmenting the feature space by estimated
surface normals will also increase segmentation quality. Both
these extensions incur a significant computational overhead,
however, since they require the construction and processing
of a complete neighborhood graph. Future research will aim
to achieve a balancing between more powerful algorithms
and realtime capability. Furthermore, the extraction of ge-
ometry will be addressed.
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