
High-Performance IP Routing Table Lookup Using CPU CachingTzi-cker Chiueh Prashant PradhanComputer Science DepartmentState University of New York at Stony BrookStony Brook, NY 11794-4400chiueh, prashant @cs.sunysb.eduAbstractWire-speed IP (Internet Protocol) routers require very fast routing table lookup for in-coming IP packets. The routing table lookup operation is time consuming because thepart of an IP address used in the lookup, i.e., the network address portion, is variablein length. This paper describes the routing table lookup algorithm used in a cluster-based parallel IP router project called Suez. The innovative aspect of this algorithm isits ability to use CPU caching hardware to perform routing table caching and lookupdirectly by carefully mapping IP addresses to virtual addresses. By running a detailedsimulation model that incorporates the performance e�ects of the CPU memory hier-archy against a packet trace collected from a major network router, we show that theoverall performance of the proposed algorithm can reach 87.87 million lookups per sec-ond for a 500-MHz Alpha processor with a 16-KByte L1 cache and a 1-MByte L2 cache.This result is one to two orders of magnitude faster than previously reported resultson software-based routing table lookup implementations. This paper also reports theperformance impacts of various architectural parameters in the proposed scheme andits storage costs, together with the measurements of an implementation of the proposedscheme on a Pentium-II machine running Linux.



1 IntroductionEach IP1 routing table entry 2 logically includes the following �elds: a network mask, a destinationnetwork address and an output port identi�er. Given an IP packet's destination host address, thenetwork mask �eld of an IP routing table entry is used to extract the destination network address,which is then compared to the entry's destination network address �eld. If they match, this routingtable entry is considered a potential candidate. Logically the destination host address is comparedagainst each and every routing table entry this way. Finally, the routing table entry candidatewith the longest network address �eld wins, and the packet is routed via the output port speci�edin this entry to the corresponding next-hop router. If none of the routing table entries match theincoming IP packet's destination host address, the packet is forwarded to a default router.The network mask �eld in each routing table entry potentially extracts a di�erent number of themost signi�cant bits from an IP address as the network address. Therefore, IP routing table lookupis essentially searching for the longest pre�x match for a given destination IP address in the routingtable. Instead of sequential scanning, existing IP routing software such as that in BSD Unix, buildsan index tree to speed up the lookup process by avoiding visiting unrelated routing table entries.However, even with indices, software-based routing table lookup operation still can not run at wirespeed. For example, assume each packet is 1000 bits and the link speed is 1 Gbit/sec, wire-speedrouting table lookup means 1 million lookups per second per input port. Only until recently cancustom silicon-based routers achieve such performance, let alone pure software solutions.This paper describes the IP routing table lookup algorithm used in a high-performance software-based IP router project called Suez. Because the target hardware platform is a general-purposeCPU, the algorithm is designed speci�cally for e�cient software-only implementation. The keyobservation of this algorithm is that routing table lookup is a search of the mapping from destinationIP addresses to output ports, and the CPU cache on modern microprocessors is designed to facilitatea similar process. Therefore, by treating IP addresses as virtual memory addresses, one can exploitCPU caching as a hardware assist to speed up routing table lookup signi�cantly. In the idealcase, if each routing table lookup corresponds to one virtual address lookup, it takes only one L1cache access, and hence only one cycle, to do a routing table lookup. However, in practice, morecomplex machinery is required to twist the CPU cache as a routing table lookup cache, because the"tags" of IP addresses are of variable length, whereas existing CPU cache hardware only supports�xed-length tags. The routing lookup algorithm in Suez carefully maps between IP addresses andvirtual addresses to ensure that routing lookups are performed at a rate close to what is dictatedby the processor speed.Section 2 reviews previous work on IP routing table lookup and caching to contrast Suez'sapproach with theirs. Section 3 presents in detail how Suez's routing table caching and lookupalgorithm is architected to exploit CPU caching. Section 4 describes the methodology used toevaluate the performance of the proposed routing table lookup algorithm. Section 5 presents1Unless explicitly indicated otherwise, the term \IP" refers to Internet Protocol Version 4.2Each entry also includes a next-hop router's address and an expiration timer, but they are ignored in this paper.1



the measured and simulated performance results and their detailed analysis. Section 6 describesour implementation of the algorithm on a sample architecture and operating system. Section 7concludes this paper with a summary of the main results of this work, and a brief outline ofon-going work.2 Related WorkThe most popular search data structure for the longest pre�x string match problem is the bit-by-bit Patricia trie [1]. A similar technique called reduced radix tree [11], has been implementedin the 4.3 version of Berkeley Unix [2]. Pei et al. [3] compared the VLSI implementation costand the performance of content-addressable memory (CAM)-based and trie-based solutions to therouting table lookup problem. McAuley and Francis [4] proposed several fast routing table lookupsolutions for variable-length hierarchical network address based on binary and ternary CAMs. Knoxand Panchanathan [5] described a multiprocessor-based routing table lookup solution based onlinear pipelined array implementation of the radix searching algorithm. More recently, Waldvogelet al. [9] developed a lookup scheme using multiple hash tables, each based on a distinct pre�xlength. The worst-case lookup time is shown to be log2(No: of address bits). This work alsointroduced a Mutating Binary Search technique to further reduce the required number of hash tablelookups. Degermark et al. [10] developed a compact routing table representation to ensure theentire representation be �t within typical L2 caches. They estimated each lookup can be completedwithin 100 instructions using 8 memory references. Compared to previous schemes, Suez's routingtable organization is much simpler and the lookup operation is thus more e�cient. Unlike tree-based search algorithms, Suez's routing table lookup algorithm does not require backtracking tosupport longest pre�x match.Another work in [13] addresses routing table lookup in hardware by using a large amount ofinexpensive DRAM to implement a two-level 
at lookup table and pipelining the accesses. Incontrast, the routing lookup algorithm in Suez relies solely on standard processor memory andcaching hardware and is a software implementation based on exploiting the address and pagemanagement hardware /software in commodity PCs.None of previous works have reported detailed delay measurements that included CPU cachinge�ects. Another way to speed up routing table lookup is to cache the lookup results. Feldmeier[6] studied the management policy for the routing-table cache, and showed that the routing-tablelookup time can be reduced by up to 65%. Chen [7] investigated the validity and e�ectiveness ofcaching for routing-table lookup in multimedia environments. Estrin and Mitzel [8] derived thestorage requirements for maintaining state and lookup information on the routers, and showed thatlocality exists by performing trace-driven simulations of an LRU routing table lookup cache, fordi�erent conversation granularities. None of the previous works exploited the CPU cache availablein modern processors, as in Suez. In addition, we believe Suez's routing table lookup scheme isthe �rst that integrates routing table caching and searching in a single algorithm. Also, our workincludes detailed simulation and implementation measurements of the algorithm against the routing2



table and real tra�c traces collected from a major network router.3 Routing-Table Lookup AlgorithmA major design goal of the Suez project is to demonstrate that general-purpose CPU can serveas a powerful platform for high-performance IP routing. Therefore, Suez's routing table lookupalgorithm heavily leverages o� the cache memory hierarchy. The algorithm is based on two datastructures, a destination host address cache (HAC), and a destination network address routingtable (NART). Both are designed to use CPU cache e�ciently. The algorithm �rst looks up theHAC to check whether the given IP address is cached in the HAC because it has been seen recently.If so, the lookup succeeds and the corresponding output port is used to route the associated packet.If not, the algorithm further consults the NART to complete the lookup.3.1 Host Address CachingTypically multiple packets are transferred during a network connection's lifetime, and the networkroute a connection takes is relatively stable. Therefore the destination IP address stream seen bya router exhibits temporal locality. That is, the majority of the routing table lookups are serviceddirectly from the HAC. Therefore, minimizing the HAC hit access time is crucial to the overallrouting table lookup performance.Rather than using a software data structure such as a hash table, Suez's HAC is architected tobe resident in the Level-1 (L1) cache at all time, and to be able to exploit the cache hardware'slookup capability directly. As a �rst cut, the 32-bit IP addresses can be considered as 32-bit virtualmemory addresses and simply looked up in the L1 cache. If they hit in the L1 cache, the lookupis completed in one CPU cycle; otherwise an NART lookup is required. However, this approachexhibits several disadvantages. First, there is much less spatial locality in the destination hostaddress stream compared to the memory reference stream in typical program execution. As aresult, the address space consumption/access pattern is going to be sparse, which may lead to avery large page table size and excessive TLB miss rate and/or page fault rate. Second, unlessspecial measures are in place, there is no guarantee that HAC is L1 cache-resident all the time. Inparticular, uncoordinated virtual-to-physical address mapping may result in unnecessary con
ictcache misses, because of interference between HAC and other data structures used in the lookupalgorithm. Third, the cache block size of modern L1 cache is too large for the HAC. That is,due to the lack of spatial locality in the network packet reference stream, individual cache blockstend to be under-utilized, leading to zero or one HAC entry in the cache block most of the time.Consequently, the overall caching e�ciency is less than what it should be for a �xed cache size.To address these problems, Suez's HAC lookup algorithm takes a combined software/hardwareapproach. To reduce virtual address space consumption, Suez only uses certain portion of eachIP address to form a virtual address, and leaves the remaining bits of the IP address as tags tobe compared by software. This approach makes it possible to restrict the number of virtual pages3



reserved for the HAC to a small number.To ensure that the HAC is always L1 cache-resident, a portion of L1 cache is reserved. For thepurpose of exposition, let's assume that the page size is 4KBytes, the L1 cache is 16KBytes directmapped with a block size of 32 bytes and the �rst 4KBytes of the cache are reserved for the HAC.This means that given a physical address, the 9 bits from bit 5 to bit 13 of the physical addresswill be used to identify a cache block. Since the page size is 4KBytes, the physical page numberfor this address overlaps with these 9 bits in its last two bits. Thus, the physical addresses that getmapped to the �rst 4KBytes of the cache would be the ones that lie in physical pages whose pagenumbers are a multiple of 4.Now, to prevent other data structures from polluting the portion of L1 cache reserved for HAC,all of the other physical pages whose physical page number is an integral multiple of 4 should bemarked as uncacheable at system startup, so that they would never be brought into L1/L2 cacheat run time. This would ensure that each HAC access is always a cache hit and hence completes inone cycle. Thus by reserving one virtual page for the HAC and mapping it to a 4-KByte physicalpage whose physical page number is an integral multiple of 4, if we remap IP addresses to virtualaddresses lying within the HAC, we can ensure that all IP addresses be checked against the HAC,and these checks are guaranteed to involve only L1 cache accesses. There is thus a performancetradeo� between HAC hit ratio and the utilization e�ciency of the L2 cache. Larger the percentageof L1 cache reserved for HAC, the lesser is the percentage of L2 cache usable for other purposes,for example, NART search. However, for a given HAC size, say one page, the utilization e�ciencyincreases as the L1 cache size increases.Finally, to improve the cache utilization e�ciency, a software-driven set-associative cachingmechanism is adopted. The fact that the HAC address space is mapped to a single physical pagemeans IP addresses with di�erent \virtual page numbers" can now co-reside in the cache block.Therefore, each cache block may contain multiple HAC entries. The cache hardware �rst identi�esthe block of interest, and the software examines each HAC entry of that block in turn until a hit orexhaustion. To exploit temporal locality, the software starts the examination of each cache blockfrom the last HAC entry it accesses in the previous visit. Because associativity is implemented insoftware, HAC hit time is variable, and HAC miss time increases with the degree of associativity.The performance tradeo� in choosing the degree of associativity then lies in the gain in higher HAChit ratios versus the loss in longer miss handling time.Assume the L1 data cache is 16KBytes direct-mapped and physically addressed, with 32-byteblocks. Also assume that the virtual memory page size is 4 KBytes, and each HAC entry is 4 byteswide, containing a 23-bit tag, one unused bit, and an 8-bit output port identi�er. Therefore eachcache block can contain at most 8 HAC entries. Finally, assume one quarter of the L1 cache, i.e.,128 out of 512 cache sets, is reserved for HAC.Assume that the HAC page is allocated virtual page number VHAC . Given a destination IPaddress, DA, the DA5;11 3 portion is extracted and used as an o�set into the HAC page to form3We will use the notationXn;m to represent a bit subsequence of X ranging from the n-th bit to the m-th bit.4



0 0

�
�
�

�
�
������������������������� ���

���
���
���

�
�
�
�

������������
������������
������������
������������ 0 0

bits  [11,  5]

bits  [31,  12]

OutPortTag

32  bytes

384  sets
512  sets

32  bits

L1   Cache

Translation
Address

Cache

Lookup

bits  [4, 2]

Address

Address
Physical

ignored
bits  [1, 0]

Software  Compare

Destination
IP  Address  (DA)

Virtual

HACFigure 1: The data 
ow of HAC lookup. Here we assume that L1 cache is direct mapped with 51232-byte cache sets, among which 128 cache sets are reserved for HAC. Each HAC entry is 4 byteswide. The search through the HAC entries within a cache set is performed by software.a 32-bit virtual address V A = VHAC + DA5;11. The virtual address thus formed fetches the �rstword, CW , of the cache set speci�ed by DA5;11. Meanwhile, a 23-bit tag, DAT , is constructedfrom a concatenation of DA12;31 and DA2;4. Since realistically none of the routing tables containnetwork addresses with pre�x lengths longer than 30, the last two bits of the destination hostaddress are ignored while forming the tag.The �rst word of each HAC cache set is a duplicated HAC entry that corresponds to the HACentry last accessed in the previous visit to the cache set. If DAT matches CW9;31, the lookup iscompleted and CW0;7 is the output port identi�er. Otherwise, the software search continues withthe second word of the cache set and so on, until a hit or the end of the set.The way V A is formed fromDA means that only one virtual page is allocated to hold the entireHAC. As a result, only one page table entry and thus one TLB entry is required. Such a setupguarantees that the performance overhead in HAC lookup due to TLB misses is negligible.After the lookup is completed, a new HAC entry for the destination IP address is constructedand a word from the corresponding cache set is allocated for it, if such an HAC entry does not exityet. Finally, this HAC entry is copied to the �rst word of the cache set if necessary. When a cacheword is chosen for replacement, the associated HAC entry is gone. Because the HAC contents aregenerated dynamically from looking up the NART, it is safe to over-write HAC entries withoutkeeping a copy of them. Figure 1 illustrates the 
ow of the HAC lookup process.The following code segment shows the exact instruction sequence that implements the HAC5



lookup algorithm. The input is DA, a 32-bit destination IP address, and the output is the corre-sponding 8-bit output port identi�er, OutPort. We assume that the CPU is three-way superscalar,and the load delay stall is one cycle.Initialization:Mask1 00000000000000000000111111100000; Mask2 11111111111111111111000000000000;Mask3 00000000000000000000000000011000; Mask4 00000000000000000000000011111111;Mask5 11111111111111111111110000000000; Count 0;1: MAR DA && Mask1; TR1 DA && Mask2; TR2 DA && Mask3;2: CW  Mem[MAR]; TR2 TR2 << 7;3: DAT  TR1 jj TR2; MAR0 MAR;4: Match DAT nxor CW ; Mem[MAR0] CW ; MAR MAR+ 4;5: If(Match �Mask5) goto DONE; CW  Mem[MAR]; OutPort CW && Mask4;6: If(Count < 7) goto 4; Count Count + 1;7: Perform NART lookup; Count 0;8: DONE;When the program control jumps to DONE, OutPort contains the output port identi�er to routethe IP packet in question. While searching through the HAC entries in the cache set, the �rstword of the cache set is speculatively loaded with the current HAC entry that is being examined(the second instruction at the 4-th cycle). The above algorithm gives a 5-cycle best-case latencyfor an IP address lookup, and takes 3 cycles for each additional HAC entry access in the cacheset. So it takes 5 + 3 � 7 + 1 = 27 cycles to detect a HAC miss. By pipelining the lookups ofconsecutive IP packets, i.e., overlapping the 5-cycle work of each lookup, the best-case throughputcan be improved to 3 cycles per lookup. Because HAC is guaranteed to be in the L1 cache, the3-cycle per lookup estimate is exact, because the HAC lookup itself is a hit.3.2 Network Address Routing TableIf the HAC access results in a miss, a full-scale network address routing table lookup is required. Theguiding principle of Suez's NART design is to trade table size for lookup performance. This principleis rooted in the observation that the L2 cache size of modern microprocessors is comparativelylarge for storing routing tables and is expected to continue increasing over time. For example, oneMByte of L2 cache is a norm in mid-range PCs today. On the other hand, the routing table of anInternet backbone router has about 100,000 entries. Assume that each entry takes 8 bytes, then theentire routing table takes only 800 KBytes, i.e., comfortably �ts into a PC's L2 cache. Of course,such a comparison is over-simpli�ed because the 800 KBytes estimate assumes a sequential searchprocedure, and thus does not include any search data structure to speed up the lookup process.As mentioned in the Introduction section, NART lookup is di�cult to speed up because given6



an IP address, it is not possible to determine a priori its corresponding network address, which isthe most signi�cant N bits of the IP address, where N is unknown beforehand. With the increasingthreat of the IP address depletion, a technique called Classless InterDomain Routing (CIDR) iscurrently in use that allows more e�cient allocation of contiguous address chunks in the IP addressspace. In contrast to the original Class A/B/C scheme, in which N can take only one of threepossible values: 8, 16, and 24, CIDR allows N to take any value (realistically, from 1 to 30). Thisgenerality complicates routing table lookup because it signi�cantly increases the number of possiblenetwork addresses.NART ConstructionLet us classify the network addresses in an IP routing table into three types according to theirlength: smaller than or equal to 16 bits (called Class AB), between 17 and 24 bits (called ClassBC), and between 25 and 30 bits (called Class CD). To represent a given routing table, Suez's NARTincludes three levels of tables: one Level-1 table and one Level-3 table, but a variable number ofLevel-2 tables. Entries in these tables are denoted as Level1-Table[.], Level2-Table[.], and Level3-Table[.], respectively. The Level-1 table has 64K entries, each of which is 2 bytes wide, and containseither an 8-bit output port identi�er or an o�set pointer to a Level-2 table. These two cases aredistinguished by the entry's most signi�cant bit. Each Level-2 table has 256 entries, each of whichis 1 byte wide, and contains either a special indicator (11111111) or an 8-bit output port identi�er.The Level-3 table has a variable number of entries, each of which contains a 4-byte network mask�eld, a 4-byte network address, and an 8-bit output port identi�er. The number depends on thegiven IP routing table and is typically small.To convert an IP routing table to the NART representation, Class AB addresses are processed�rst, then Class BC addresses, followed by Class CD addresses. Each Class AB network address,NA, of length L in the routing table takes 216�L entries of the Level-1 table starting from Level1-Table[NA0;L�1�216�L], with each of these entries �lled withNA's output port identi�er, as speci�edin the IP routing table. After all Class AB addresses are processed, the un�lled Level-1 table entriesare �lled with the default output port identi�er.For each Class BC address, NA, of length L in the IP routing table, if Level1-Table[NAL�16;L�1]contains an 8-bit output port identi�er, a Level-2 table is created; Level1-Table[NAL�16;L�1] is putaside as OPI and changed to be an o�set that can be used to compute the base of the newly createdLevel-2 table; every entry in the Level-2 table is initialized to OPI . If Level1-Table[NAL�16;L�1]already contains an o�set to a Level-2 table, no table is created. In both cases, 224�L entries ofthe Level-2 table, starting from Level2-Table[NA0;L�17 � 224�L], are �lled with NA's output portidenti�er as speci�ed in the IP routing table.For each Class CD address,NA, of length L in the IP routing table, if Level1-Table[NAL�16;L�1]contains an 8-bit output port identi�er, a Level-2 table is created; Level1-Table[NAL�16;L�1] is putaside as OPI1 and changed to be an o�set that can be used to compute the base of the newlycreated Level-2 table; and every entry in the Level-2 table is initialized to OPI1. If Level1-7



Table[NAL�16;L�1] already contains an o�set to a Level-2 table, this Level-2 table is used in thenext step. If Level2-Table[NAL�24;L�17] is not 11111111, Level2-Table[NAL�24;L�17] is put asideas OPI2 and is changed to 11111111; and a new Level-3 table entry with a network mask of11111111111111111111111100000000, a network address of NAL�24;L�1, and an output port iden-ti�er of OPI2 is created. Regardless of the content of Level2-Table[NAL�24;L�17], a Level-3 tableentry with a network mask same as NA's network mask, a network address of NA and an outputport identi�er the same as NA's output port identi�er, is added to the global Level-3 table.NART LookupGiven a destination IP address, DA, the most signi�cant 16 bits, DA16;31, are used to index intothe Level-1 table. The exact address used to index the Level-1 table is Base1 + 2 �DA16;31, whereBase1 is the base address of the Level-1 table. If DA has a Class AB network address, one lookupinto the Level-1 table is su�cient to complete the routing table search.If DA has a Class BC address, Level1-Table[DA16;31] contains an o�set from which the base ofthe Level-2 table is computed. The corresponding Level-2 table's base is Base2 + 256 � Level1�Table[DA16;31], where Base2 is the base for an address region speci�cally reserved for all Level-2tables. If Level2-Table[DA8;15] is not 11111111, the lookup is completed. Otherwise the networkaddress of DA is a Class CD address, and a search through the Level-3 table is required.We chose to use a single global Level-3 table, rather than multiple Level-3 tables like Level-2tables, because it reduces the storage space requirement and because it allows Level-2 table entriesto specify up to 255 output port identi�ers by not requiring them to have o�sets to Level-3 tables.The search through the Level-3 table is based on DA0;31, one after another. Because the Level-3table entries are sorted according to the length of their network addresses, the linear search canstop at the �rst match. As will be shown in the Section 5, the performance overhead of this linearsearch is insigni�cant. Figure 2 illustrates the data 
ow of the NART lookup process.The following code segment shows the exact instruction sequence that implements the NARTlookup. Again the input is DA, a 32-bit destination IP address, and the output is the corresponding8-bit output port identi�er, OutPort. We assume that the CPU can issue three instructions at atime, and the load delay stall is one cycle.Initialization:Mask1 11111111111111110000000000000000; Mask2 00000000000000001111111100000000;Mask3 00000000000000000000000011111111; Mask4 00000000000000001000000000000000;Mask5 00000000000000001111111111111111;1: Index1 DA && Mask1; Index2 DA && Mask2;2: Index1 Index1 >> 14; Index2 Index2 >> 7;3: MAR Base1 + Index1;4: MDR Mem[MAR]; /* MDR is the indexed Level-1 Table entry */8



Level-3   Table

9  bytes

2

Base1

64K  entries

256  entries

256

bits  [15, 8]
2  bytes

1  byte

1

0 Level-2   Pointer

OutPort

OutPort

Compare

Level-2
Table

Level-1

Table

bits  [31, 0]

32 bits

32  bits
Base3

*

+

&

+

+

*

Base2

bits  [31, 16]

11111111

Destination  IP  Address  (DA)

OutPort Network   Mask Network   AddressFigure 2: The data 
ow of the NART lookup. It starts with the Level-1 table, and if necessarylooks up a Level-2 table pointed by the Level1-Table[DA16;31]. If the chosen Level-2 table entrystill can not resolve DA, then a sequential search through the Level-3 table is needed. Note thatNART has only one Level-1 table and one Level-3 table, and many Level-2 tables.
9



5: /* load delay slot */6: F lag  MDR && Mask4; OutPort  MDR && Mask3; Offset MDR && Mask5;7: If(Flag) goto DONE; Offset  Offset << 8; TBase  Base2 + Index2;8: MAR TBase +Offset;9: MDR Mem[MAR]; /* MDR is the indexed Level-2 Table entry */10: MAR Base3;11: OutPort MDR && Mask3;12: If(OutPort ! = Mask3) goto DONE;13: NMask Mem[MAR];/* NMask is the indexed Level-3 Table entry's network mask �eld */14: MAR MAR+ 4;15: Tag NMask && DA; NA Mem[MAR];/* NA is the indexed Level-3 Table entry's network address �eld */16: MAR MAR+ 5; MAR1 MAR + 4;17: If(Tag == NA) goto 14; NMask Mem[MAR];18: MDR Mem[MAR1];19: /* load delay slot */20: OutPort MDR && Mask3;21: DONE;If DA's network address is a Class AB address, the lookup takes 7 cycles to complete. If DA'snetwork address is a Class BC address, the lookup takes 12 cycles to complete. If DA's networkaddress is a Class CD address, the lookup takes 20 + 4 � K cycles to complete, where K is thenumber of Level-3 table entries the algorithm has to examine before the �rst match. Unlike HAClookup, these cycle estimates may not be precise because there is no guarantee that the memoryaccesses in NART lookup always result in cache hits.4 Evaluation Methodology4.1 Trace CollectionWe chose to use a trace-driven simulation methodology to evaluate the performance of Suez's routingtable lookup algorithm. Although there are several IP packets traces available in the public domain,none of them are suitable for our purposes for two reasons. First, they were mostly captured before1993, when WWW started to take o�, and thus may not be representative of today's network tra�c.Second, all of these traces have been \sanitized", i.e., IP addresses replaced with unique integers.While this is �ne for fully associative cache simulation, it is completely unusable for set-associativecache simulation and NART lookup simulation.As a result, we decided to collect a packet trace from the periphery link that connects theBrookhaven National Laboratory (BNL) to the Internet via ESnet at T3 rate, i.e., 45 Mbits/sec.10



This link is the only link that connects the entire BNL community to the outside world. Theinternal backbone network of BNL is a multi-ring FDDI network, while the periphery router is aCisco 7500 router. The trace was collected by a TCPdump program running on a Pentium-II/233MHz machine, which snoops on a mirror port of a Fast Ethernet switch that links BNL's peripheryrouter with ESnet's router. Therefore the packet collection is completely un-intrusive. The �rst 80bytes of each Ethernet packet are captured, compressed, and stored to the disks in real time. Thepacket trace is collected from 9AM on 3/3/98 to 5PM on 3/6/98. The total number of packets inthe trace is 184,400,259, with no packet loss reported by TCPdump.4.2 Architectural AssumptionsThe performance metric of interest is million lookups per second (MLPS). We have built a detailedsimulator that incorporates the HAC and NART lookup algorithms, as well as the e�ects of L1cache, L2 cache and main memory. However, the e�ect of the TLB is not modeled. This shouldnot a�ect HAC lookup performance because the HAC costs only one TLB entry and thus shouldbe TLB-resident all the time. Unless speci�ed otherwise, the L1 cache is direct mapped, its size is16 KBytes and its cache block size is 32 bytes; the L2 cache is direct mapped, its size is 1 MBytesand its cache block size is 32 bytes. The �rst 4 KBytes of the L1 cache are reserved for HAC. TheCPU memory hierarchy also impacts the performance of the NART lookup delays, because theLevel-1, Level-2, and Level-3 tables may be spread across L1 cache, L2 cache and main memory.Depending on which level of the memory hierarchy satis�es the memory accesses during the NARTsearch process, the total lookup delay varies accordingly. In this study, we assume that the accesstime for L1 cache hit is 1 CPU cycle, the total access time for L1 cache miss and L2 cache hit is 6CPU cycles, and the total access time for L1 cache miss, L2 cache miss and main memory hit is 30CPU cycles.Source No. of Entries AB BC CD NART Size (Bytes) E�ciencyMerit 39,680 14.2% 85.8% 0.03% 843,444 42.3%IANA/ISI 171,938 5.9% 79.1% 15.0% 886,023 174.6%BNL 50,523 12.7% 87.2% 0.1% 905,195 50.2%Trace X 78.7% 21.29% 0.01% X XTable 1: The distribution of Class AB, BC, and CD network addresses in static routing tables andthe collected dynamic packet trace. X means not applicable.
11



5 Performance Evaluation5.1 Network Address DistributionTo determine the storage cost of NART tables, we converted the routing tables of twomajor routers,one from BNL and one from Merit [12], into the NART representation. We also did the conversionfor the entire IP network address space as reported by IANA/ISI up until 11/1997. The results areshown in Table 1. Each row shows the total number of entries in each routing table, the NARTrepresentation size, and the storage e�ciency, which is the ratio of the given 
at IP routing tablesize and the NART table size. Here we assume each routing table entry costs 9 bytes : 4 byteseach for network address and network mask, and 1 bytes for thge output port. For Merit andBNL, the storage e�ciency is around 50%, which means that NART costs twice as much as the
at IP routing table representation to speed up the lookup process. However, NART is actuallymore e�cient than the 
at IP routing table representation in the case of IANA. This is so becausefewer entries in the NART tables are wasted as more routing table entries are to be representedand because 
at routing table entries are 9 bytes whereas level one and level two entries are 2 and1 byte respectively.Table 1 also shows the distribution of Class AB, BC, and CD addresses. Class BC addressesseem to be dominant in all routing tables. Although there is a signi�cant percentage of ClassCD addresses in the IP network address space (IANA), the percentage of Class CD addresses isinsigni�cant in operational routers' routing tables, because Internet routing tends to be performedin a hierarchical fashion. Note that there is an anomaly in that the NART size for IANA is actuallysmaller than that for BNL. The reason is that the IANA address allocation sample that we could�nd contained only addresses allocated within the US. Allocation data in other regions was notaccessible at that time.5.2 Results and AnalysisTable 2 shows the overall performance of Suez's routing table lookup algorithm for a 500-MHz Alphaprocessor with a 16-KByte L1 cache and 1-MByte L2 cache, as the HAC's degree of associativityvaries. The HAC size is �xed at 4 KBytes. Because the �rst HAC entry in each cache set is replicatedfor performance optimization, 7-way and 3-way logical set associativities actually correspond to 8-way and 4-way physical set associativities. For 1-way and 2-way set associativities, however, thisoptimization is not applied. The cache set size is the degree of physical associativity multiplied by4 bytes. In the best case, the proposed scheme can perform one lookup every 5.69 CPU cycles, or87.87 million lookups per second. This performance level is one to two orders of magnitude betterthan previous reported results on software-based IP routing table lookup implementations!Although larger degrees of associativity increase the HAC hit ratio, the best performance occurswhen the degree of associativity is 1. The main reason is that set associativity is implementedin software in this algorithm, which entails two performance overheads. First, with a large set-associative cache, the access time for HAC hits at the end of the cache sets is not necessarily12



shorter than NART lookup time. That is, the time to match an IP address at the 8-th HAC entryof a 8-way HAC's cache set may be longer than looking it up in the NART directly. Second, largeset associativities increase the HAC miss detection time, thus adding a higher �xed overhead forevery NART lookup. In the BNL trace, because the HAC hit ratio is already high (95.22%) whenit is direct mapped, the additional gain in HAC hit ratio is not su�cient to o�set the additionaloverhead due to software-implemented set associativity. The reason that the overall performanceof the 3-way case is slightly better than that of the 2-way case, despite lower HAC hit ratio andhigher HAC miss detection time, is because the average hit access time for the 3-way case is shorter,owing to the duplication optimization.Degree of Logical Associativity MLPS HAC Hit Ratio7 (8) 60.49 97.87%3 (4) 77.09 96.95%2 (2) 71.92 97.21%1 (1) 87.87 95.22%Table 2: The performance comparison in MLPS (Million Lookups Per Second) among HACs withthe same total size (4 KBytes) but varying degrees of logical set associativity, ranging from 7, 3,2 to 1. The parenthesized numbers are physical set associativities. The hit ratio for the 2-waycase is higher than the 3-way case because the former does not waste HAC entries in duplicationoptimization.Duplication 1 2 3 4 5 6 7 8 Hit TimeYes 78.73% 3.02% 3.04% 3.06% 3.04% 3.04% 3.01% 3.03% 7.55no 14.09% 14.62% 14.04% 14.15% 14.45% 14.84% 13.79% X 13.99Table 3: The comparison of the distributions of HAC hits among the blocks within a cache setbetween the cases with and without duplication optimization. The degree of associativity is 7. Xmeans not applicable. The average hit access time is measured in numbers of CPU cycles.We conjecture that it is worthwhile to put in the �rst HAC entry in each cache set the matchedHAC entry when the cache set was last accessed. That is, the �rst HAC entry is a duplication ofsome other HAC entry in the set. Table 3 demonstrates that this is indeed the case, by showingthe distributions of HAC entry hits within a cache set for a logically 7-way cache with and withoutduplication optimization. With duplication optimization, most HAC hits go to the �rst entryin the cache sets, thus signi�cantly reducing the average hit access time. Without duplicationoptimization, HAC hits are evenly spread among the blocks in the cache sets, and thus lead tolonger average hit access time. The overall lookup performances are 60.69 MLPS and 34.29 MLPSfor these two cases. 13



Increasing the reserved HAC size in L1 cache improves the HAC hit ratio, but potentially canhurt the NART lookup performance because it reduces the e�ective L2 cache size available toNART. Table 4 shows the overall lookup performance when a di�erent portion of a 16-KByte L1cache is reserved for the HAC. Surprisingly, the gain in HAC hit ratio due to larger HAC sizeoutweighs the NART performance loss due to lower L2 cache utilization. The explanation for thisbehavior is that the working set in the NART lookup is fully captured even when only half of the L2cache, 500 KBytes, is available, which corresponds to the case in which the HAC size is 8 KBytes.When the reservation for HAC is zero, it means that all lookup requests go to NART directly. Theperformance for this case, 30.2 MLPS, is still respectable, and re
ects the intrinsic performance ofthe NART itself. HAC Size MLPS HAC Hit Ratio8 KBytes 68.86 98.78%4 KBytes 60.49 97.89%0 KBytes 30.2 0%Table 4: The performance comparison among HACs with the same degree of set associativity (7)but di�erent sizes, 8 KBytes vs. 4 KBytes.We also hypothesize that unlike instruction/memory reference traces during program execution,the packet trace exhibits much less spatial locality. We ran the packet trace against a direct-mapped4-KByte cache using di�erent cache block sizes, from 1 byte to 32 bytes. Table 5 shows that asthe cache block size decreases, the hit ratio indeed increases. This result veri�es the lack of spatiallocality in the packet trace. By comparing the hit ratios of the case in Table 2 when the cache setsize is 32 bytes and the case in Table 5 when the block size is 32 bytes, it is clear that software setassociativity improves the cache hit ratio signi�cantly, yet another evidence of the lack of spatiallocality in the packet trace.1 Byte 4 Bytes 16 Bytes 32 Bytes97.41% 94.02% 86.40% 80.64%Table 5: The hit ratios for a direct-mapped 4-KByte cache using di�erent cache block sizes. Asthe cache block size decreases, the hit ratio increases. This veri�es the conjecture that the packettrace lacks spatial locality.6 ImplementationThe simulation results reported in the previous section assume a RISC architecture, which typi-cally provides a large number of general purpose registers, and a direct-mapped L1 cache. The14



pseudo-code sequence presented earlier makes the best use of RISC processors' superscalarity withtechniques such as software pipelining, i.e., overlapping the execution of consecutive iterations ina loop. In addition, it is critical to apply the performance optimization that ensures that HACis always L1-cache resident. However, we chose to prototype the proposed routing-table lookupalgorithm on a Pentium-II machine running Linux 2.0.30 operating system, because we did nothave access to a RISC machine with OS source code at the time of writing. The current implemen-tation was not hand-coded to minimize the instruction cycle count. We just relied on the compiler'soptimization capabilities. Due to the small number of registers (7) provided by Pentium-II, thegenerated instructions were not parallelizable since adjacent instructions tend to have data de-pendencies. Moreover, the L1 and L2 caches in Pentium-II are set associative rather than directmapped. This means that the idea of reserving a portion of the L1-cache speci�cally for HACby manipulating cacheability bits in the page table entries is not completely e�ective. The �naldi�erence between Pentium-II and RISC processors is that the branch misprediction penalty seemsto be fairly high. As a result, the best-case scenario, where the HAC hit occurs at the very �rstentry, takes 23 cycles rather than 5 cycles. We plan to hand-code the entire HAC and NART codein the future work.Almost all modern processor architectures support a page cache disable 
ag in the page tableentry which when set, disables caching for pages corresponding to the given page table entry.Assume the HAC is allocated a physical page whose page number is a multiple of 4. Any othervirtual page that is mapped to a physical page whose page number is a multiple of 4 is made non-cacheable by turning the page cache disable bit on in its page table entry. Note that typically theinstruction cache and data cache are separate, so there is no contention between data and instructionreferences. Hence, we do not have to make any of the code pages in the kernel non-cacheable.However, since Pentium-II uses a set-associative L1 cache, the set of pages that contend withHAC are no longer just those pages whose page number is a multiple of 4. In fact, if the L1 cacheis 4-way set associative and has 16 KBytes, the 4-KByte HAC would be spread across the entireL1 cache and would face contention from all the pages in the address space. Therefore the onlybene�t of disabling the caching for pages whose page number is a multiple of 4 is to reduce but noteliminate the cache contention.The results of running the trace through the prototype implementation on a Pentium-II 233MHz machine with a 16-KByte 2-way set associative L1 cache, and 512-KByte 4-way set associativeL2 cache for various HAC con�gurations are shown in Table 6. The timing measurements weremade using the cycle counter provided by the Pentium architecture. The best-case performance,8.04 MLPS, is about an order of magnitude slower than the simulation result, because of the highcycle count for the HAC hit case and the slower clock rate (233 MHz) compared to the assumedone (500 MHz).The importance of the duplication optimization is again demonstrated by comparing the MLPSnumbers for the 7-way case and for the case where the tags for all 8 blocks are di�erent. Theformer case gives 4.95 MLPS (as in the table) whereas the latter case gives 3.14 MLPS, due to the15



Degree of Logical Associativity MLPS7 (8) 4.953 (4) 6.052 (2) 5.511 (1) 8.04Table 6: The performance comparison in MLPS (Million Lookups Per Second) for the implementa-tion on Pentium-II. As in the simulation, the 2-way case loses to the 3-way case because of higherhit time, since the duplication optimization is not applicable in the 2-way case.higher hit time. Finally, we measured the no-HAC case. In this case, the HAC is turned o� andall pages are cacheable. Every lookup goes through the NART search only. This gives an MLPS of5.2, which is actually better than some of the con�gurations with the HAC in place. The reasonfor this behavior is that the HAC hit cycle count in those cases is actually higher than the cyclecount required for NART lookup itself.7 ConclusionThis paper describes the design and detailed simulation results of a high-performance software-basedIP routing table lookup algorithm that exploits CPU caching aggressively. The algorithm uses aportion of the CPU cache to support destination host address caching, and resorts to a table-drivenlookup procedure to resolve the routing decisions. This table-driven lookup procedure is simple andfast, and does not require backtracking to support longest pre�x match. Our empirical data showsthat although the associated storage cost is higher than other schemes, it is still within the typicalL2 cache size on current-generation PCs and workstations. Through a detailed performance modelthat includes the e�ects of the CPU memory hierarchy, this work demonstrates that the proposedrouting table lookup algorithm can achieve up to 87.87 and 30.2 million lookups per second withand without host address caching, respectively, on a 500-MHz DEC Alpha system with 1 MByteof L2 cache. This is at least an order of magnitude faster than any empirical performance resultson software-based routing table lookup implementations reported in the literature.Currently we are implementing the proposed algorithm on the Suez prototype, which is based on233-MHz Pentium-II processors interconnected by Myrinet networks. An important issue that thecurrent implementation is addressing is the routing table update cost, which is not discussed in thispaper. We intend to collect route change statistics to evaluate the performance cost associated withrun-time NART reorganization. Finally, with the advent of IPv6, CIDR may not be as importantany more. However, the basic idea of HAC and NART is equally applicable to IPv6. The onlydi�erence is that for HAC, more number of comparisons need to be done for tag matching and thenumber of levels, as well as the level boundaries, in the NART may need to be adjusted, dependingon the density distribution in the IPv6 address space.16



AcknowledgementThis research is supported by an NSF Career Award MIP-9502067, NSF MIP-9710622, NSF IRI-9711635, a contract 95F138600000 from Community Management Sta�'s Massive Digital DataSystem Program, as well as fundings from Sandia National Laboratory, Reuters Information Tech-nology Inc., and Computer Associates/Cheyenne Inc. The authors would also like to thank MikeO'Connor and Frank Lepera in Brookhaven National Lab in helping us collecting the packet traceused in this research, and Je� Mogul in providing help to run our simulator against un-sanitizedDEC traces in the early stage of this research. Prashant Pradhan is partially supported by a SymbolFellowship.References[1] Szpankowski, W., "Patricia tries again revisited," Journal of the Association for ComputingMachinery, vol.37, no.4, p. 691-711.[2] Sklower, K., "A tree-based packet routing table for Berkeley UNIX," Proceedings of the Winter1991 USENIX Conference, p. 93-103, Dallas, TX, USA 21-25 Jan. 1991.[3] Pei, T.-B.; Zukowski, C., "Putting routing tables in silicon," IEEE Network, vol.6, no.1, p.42-50, Jan. 1992.[4] McAuley, A.J.; Francis, P., "Fast routing table lookup using CAMs," IEEE INFOCOMM '93,p. 1382-91 vol.3, San Francisco, CA, USA 28 March-1 April 1993.[5] Knox, D.; Panchanathan, S., "Parallel searching techniques for routing table lookup," IEEEINFOCOMM '93, p. 1400-5 vol.3, San Francisco, CA, USA 28 March-1 April 1993.[6] Feldmeier, D.C., "Improving gateway performance with a routing-table cache," IEEE INFO-COMM '88, p. 298-307, New Orleans, LA, USA 27-31 March 1988.[7] Chen, X., "E�ect of caching on routing-table lookup in multimedia environments," IEEEINFOCOMM '91, p. 1228-36 vol.3, Bal Harbour, FL, USA 7-11 April 1991.[8] Estrin, D.; Mitzel, D.J., "An assessment of state and lookup overhead in routers," IEEEINFOCOMM '92, p. 2332-42 vol.3, Florence, Italy 4-8 May 1992.[9] Waldvogel, M.; Varghese, G.; Turner, J.; Plattner, B., "Scalable High Speed IP RoutingLookups," ACM SIGCOMM Computer Communication Review, Vol. 27, No. 4, p. 29-36,October 1997.[10] Degermark, M.; Brodnik, A.; Carlsson, S.; Pink, S., "Small Forwarding tables for Fast Rout-ing Lookups," ACM SIGCOMM Computer Communication Review, Vol. 27, No. 4, p. 3-14,October 1997. 17



[11] Doeringer, W.; Karjoth, G.; Nassehi, M., "Routing on Longest Matching Pre�xes," IEEETransactions on Networking, Vol.4, No.1, Feb.96.[12] Michigan University and Merit Network. Internet Performance Management and Analysis(IPMA) Project. http://nic.merit.edu/ ipma.[13] Gupta, P.; McKeown, N.; Lin, S., "Routing Lookups in Hardware at Memory Access Speeds,"IEEE INFOCOMM, April 1998, San Francisco.

18


