High-Performance IP Routing Table Lookup Using CPU Caching

Tzi-cker Chiueh Prashant Pradhan

Computer Science Department
State University of New York at Stony Brook
Stony Brook, NY 11794-4400

chiueh, prashant @cs.sunysb.edu

Abstract

Wire-speed IP (Internet Protocol) routers require very fast routing table lookup for in-
coming IP packets. The routing table lookup operation is time consuming because the
part of an IP address used in the lookup, i.e., the network address portion, is variable
in length. This paper describes the routing table lookup algorithm used in a cluster-
based parallel IP router project called Suez. The innovative aspect of this algorithm is
its ability to use CPU caching hardware to perform routing table caching and lookup
directly by carefully mapping IP addresses to virtual addresses. By running a detailed
simulation model that incorporates the performance effects of the CPU memory hier-
archy against a packet trace collected from a major network router, we show that the
overall performance of the proposed algorithm can reach 87.87 million lookups per sec-
ond for a 500-MHz Alpha processor with a 16-KByte L1 cache and a 1-MByte L2 cache.
This result is one to two orders of magnitude faster than previously reported results
on software-based routing table lookup implementations. This paper also reports the
performance impacts of various architectural parameters in the proposed scheme and
its storage costs, together with the measurements of an implementation of the proposed

scheme on a Pentium-II machine running Linux.

1 Introduction

Each IP! routing table entry ? logically includes the following fields: a network mask, a destination
network address and an output port identifier. Given an IP packet’s destination host address, the
network mask field of an IP routing table entry is used to extract the destination network address,
which is then compared to the entry’s destination network address field. If they match, this routing
table entry is considered a potential candidate. Logically the destination host address is compared
against each and every routing table entry this way. Finally, the routing table entry candidate
with the longest network address field wins, and the packet is routed via the output port specified
in this entry to the corresponding next-hop router. If none of the routing table entries match the
incoming IP packet’s destination host address, the packet is forwarded to a default router.

The network mask field in each routing table entry potentially extracts a different number of the
most significant bits from an IP address as the network address. Therefore, IP routing table lookup
is essentially searching for the longest prefix match for a given destination IP address in the routing
table. Instead of sequential scanning, existing IP routing software such as that in BSD Unix, builds
an index tree to speed up the lookup process by avoiding visiting unrelated routing table entries.
However, even with indices, software-based routing table lookup operation still can not run at wire
speed. For example, assume each packet is 1000 bits and the link speed is 1 Gbit/sec, wire-speed
routing table lookup means 1 million lookups per second per input port. Only until recently can
custom silicon-based routers achieve such performance, let alone pure software solutions.

This paper describes the IP routing table lookup algorithm used in a high-performance software-
based IP router project called Swez. Because the target hardware platform is a general-purpose
CPU, the algorithm is designed specifically for efficient software-only implementation. The key
observation of this algorithm is that routing table lookup is a search of the mapping from destination
IP addresses to output ports, and the CPU cache on modern microprocessors is designed to facilitate
a similar process. Therefore, by treating IP addresses as virtual memory addresses, one can exploit
CPU caching as a hardware assist to speed up routing table lookup significantly. In the ideal
case, if each routing table lookup corresponds to one virtual address lookup, it takes only one L1
cache access, and hence only one cycle, to do a routing table lookup. However, in practice, more
complex machinery is required to twist the CPU cache as a routing table lookup cache, because the
”tags” of IP addresses are of variable length, whereas existing CPU cache hardware only supports
fixed-length tags. The routing lookup algorithm in Suez carefully maps between IP addresses and
virtual addresses to ensure that routing lookups are performed at a rate close to what is dictated
by the processor speed.

Section 2 reviews previous work on IP routing table lookup and caching to contrast Suez’s
approach with theirs. Section 3 presents in detail how Suez’s routing table caching and lookup
algorithm is architected to exploit CPU caching. Section 4 describes the methodology used to

evaluate the performance of the proposed routing table lookup algorithm. Section 5 presents

!Unless explicitly indicated otherwise, the term “IP” refers to Internet Protocol Version 4.

?Fach entry also includes a next-hop router’s address and an expiration timer, but they are ignored in this paper.

the measured and simulated performance results and their detailed analysis. Section 6 describes
our implementation of the algorithm on a sample architecture and operating system. Section 7
concludes this paper with a summary of the main results of this work, and a brief outline of

on-going work.

2 Related Work

The most popular search data structure for the longest prefix string match problem is the bit-
by-bit Patricia trie [1]. A similar technique called reduced radix tree [11], has been implemented
in the 4.3 version of Berkeley Unix [2]. Pei et al. [3] compared the VLSI implementation cost
and the performance of content-addressable memory (CAM)-based and trie-based solutions to the
routing table lookup problem. McAuley and Francis [4] proposed several fast routing table lookup
solutions for variable-length hierarchical network address based on binary and ternary CAMs. Knox
and Panchanathan [5] described a multiprocessor-based routing table lookup solution based on
linear pipelined array implementation of the radix searching algorithm. More recently, Waldvogel
et al. [9] developed a lookup scheme using multiple hash tables, each based on a distinct prefix
length. The worst-case lookup time is shown to be logy(No. of address bits). This work also
introduced a Mutating Binary Search technique to further reduce the required number of hash table
lookups. Degermark et al. [10] developed a compact routing table representation to ensure the
entire representation be fit within typical L2 caches. They estimated each lookup can be completed
within 100 instructions using 8 memory references. Compared to previous schemes, Suez’s routing
table organization is much simpler and the lookup operation is thus more efficient. Unlike tree-
based search algorithms, Suez’s routing table lookup algorithm does not require backtracking to
support longest prefix match.

Another work in [13] addresses routing table lookup in hardware by using a large amount of
inexpensive DRAM to implement a two-level flat lookup table and pipelining the accesses. In
contrast, the routing lookup algorithm in Suez relies solely on standard processor memory and
caching hardware and is a software implementation based on exploiting the address and page
management hardware /software in commodity PCs.

None of previous works have reported detailed delay measurements that included CPU caching
effects. Another way to speed up routing table lookup is to cache the lookup results. Feldmeier
[6] studied the management policy for the routing-table cache, and showed that the routing-table
lookup time can be reduced by up to 65%. Chen [7] investigated the validity and effectiveness of
caching for routing-table lookup in multimedia environments. Estrin and Mitzel [8] derived the
storage requirements for maintaining state and lookup information on the routers, and showed that
locality exists by performing trace-driven simulations of an LRU routing table lookup cache, for
different conversation granularities. None of the previous works exploited the CPU cache available
in modern processors, as in Swuez. In addition, we believe Suez’s routing table lookup scheme is
the first that integrates routing table caching and searching in a single algorithm. Also, our work

includes detailed simulation and implementation measurements of the algorithm against the routing

table and real traffic traces collected from a major network router.

3 Routing-Table Lookup Algorithm

A major design goal of the Suez project is to demonstrate that general-purpose CPU can serve
as a powerful platform for high-performance IP routing. Therefore, Suez’s routing table lookup
algorithm heavily leverages off the cache memory hierarchy. The algorithm is based on two data
structures, a destination host address cache (HAC), and a destination network address routing
table (NART). Both are designed to use CPU cache efficiently. The algorithm first looks up the
HAC to check whether the given IP address is cached in the HAC because it has been seen recently.
If so, the lookup succeeds and the corresponding output port is used to route the associated packet.
If not, the algorithm further consults the NART to complete the lookup.

3.1 Host Address Caching

Typically multiple packets are transferred during a network connection’s lifetime, and the network
route a connection takes is relatively stable. Therefore the destination IP address stream seen by
a router exhibits temporal locality. That is, the majority of the routing table lookups are serviced
directly from the HAC. Therefore, minimizing the HAC hit access time is crucial to the overall
routing table lookup performance.

Rather than using a software data structure such as a hash table, Suez’s HAC is architected to
be resident in the Level-1 (L1) cache at all time, and to be able to exploit the cache hardware’s
lookup capability directly. As a first cut, the 32-bit IP addresses can be considered as 32-bit virtual
memory addresses and simply looked up in the L1 cache. If they hit in the L1 cache, the lookup
is completed in one CPU cycle; otherwise an NART lookup is required. However, this approach
exhibits several disadvantages. First, there is much less spatial locality in the destination host
address stream compared to the memory reference stream in typical program execution. As a
result, the address space consumption/access pattern is going to be sparse, which may lead to a
very large page table size and excessive TLB miss rate and/or page fault rate. Second, unless
special measures are in place, there is no guarantee that HAC is L1 cache-resident all the time. In
particular, uncoordinated virtual-to-physical address mapping may result in unnecessary conflict
cache misses, because of interference between HAC and other data structures used in the lookup
algorithm. Third, the cache block size of modern L1 cache is too large for the HAC. That is,
due to the lack of spatial locality in the network packet reference stream, individual cache blocks
tend to be under-utilized, leading to zero or one HAC entry in the cache block most of the time.
Consequently, the overall caching efficiency is less than what it should be for a fixed cache size.

To address these problems, Suez’s HAC lookup algorithm takes a combined software/hardware
approach. To reduce virtual address space consumption, Suez only uses certain portion of each
IP address to form a virtual address, and leaves the remaining bits of the IP address as tags to

be compared by software. This approach makes it possible to restrict the number of virtual pages

reserved for the HAC to a small number.

To ensure that the HAC is always L1 cache-resident, a portion of L1 cache is reserved. For the
purpose of exposition, let’s assume that the page size is 4KBytes, the L1 cache is 16KBytes direct
mapped with a block size of 32 bytes and the first 4KKBytes of the cache are reserved for the HAC.
This means that given a physical address, the 9 bits from bit 5 to bit 13 of the physical address
will be used to identify a cache block. Since the page size is 4KBytes, the physical page number
for this address overlaps with these 9 bits in its last two bits. Thus, the physical addresses that get
mapped to the first 4KBytes of the cache would be the ones that lie in physical pages whose page
numbers are a multiple of 4.

Now, to prevent other data structures from polluting the portion of L1 cache reserved for HAC,
all of the other physical pages whose physical page number is an integral multiple of 4 should be
marked as uncacheable at system startup, so that they would never be brought into L1/L2 cache
at run time. This would ensure that each HAC access is always a cache hit and hence completes in
one cycle. Thus by reserving one virtual page for the HAC and mapping it to a 4-KByte physical
page whose physical page number is an integral multiple of 4, if we remap IP addresses to virtual
addresses lying within the HAC, we can ensure that all IP addresses be checked against the HAC,
and these checks are guaranteed to involve only L1 cache accesses. There is thus a performance
tradeoff between HAC hit ratio and the utilization efficiency of the L2 cache. Larger the percentage
of L1 cache reserved for HAC, the lesser is the percentage of L2 cache usable for other purposes,
for example, NART search. However, for a given HAC size, say one page, the utilization efficiency
increases as the L1 cache size increases.

Finally, to improve the cache utilization efliciency, a software-driven set-associative caching
mechanism is adopted. The fact that the HAC address space is mapped to a single physical page
means [P addresses with different “virtual page numbers” can now co-reside in the cache block.
Therefore, each cache block may contain multiple HAC entries. The cache hardware first identifies
the block of interest, and the software examines each HAC entry of that block in turn until a hit or
exhaustion. To exploit temporal locality, the software starts the examination of each cache block
from the last HAC entry it accesses in the previous visit. Because associativity is implemented in
software, HAC hit time is variable, and HAC miss time increases with the degree of associativity.
The performance tradeoff in choosing the degree of associativity then lies in the gain in higher HAC
hit ratios versus the loss in longer miss handling time.

Assume the L1 data cache is 16KBytes direct-mapped and physically addressed, with 32-byte
blocks. Also assume that the virtual memory page size is 4 KBytes, and each HAC entry is 4 bytes
wide, containing a 23-bit tag, one unused bit, and an 8-bit output port identifier. Therefore each
cache block can contain at most 8 HAC entries. Finally, assume one quarter of the L1 cache, i.e.,
128 out of 512 cache sets, is reserved for HAC.

Assume that the HAC page is allocated virtual page number Vi 4c. Given a destination IP
address, DA, the DAs 11 2 portion is extracted and used as an offset into the HAC page to form

3We will use the notation X, ,, to represent a bit subsequence of X ranging from the n-th bit to the m-th bit.

Destination bits [11, 5]

IP Address (DA) \
N
A —.. % bits [1,0] .
bits [31, 12]l bits [4, 2] . ignore
IOty Aniual 0 0
Address
Translation
Physical
Address 0 \ [0]
32 bytes

1

Software Compare
| 4 P L1 Cache [384 sets Cache

512 setd Lookup

\ Tag [OutPort |
32 hits

Figure 1: The data flow of HAC lookup. Here we assume that L1 cache is direct mapped with 512
32-byte cache sets, among which 128 cache sets are reserved for HAC. Fach HAC entry is 4 bytes
wide. The search through the HAC entries within a cache set is performed by software.

a 32-bit virtual address VA = Vyac + DAs 11. The virtual address thus formed fetches the first
word, C'W, of the cache set specified by DAs 1. Meanwhile, a 23-bit tag, DAT, is constructed
from a concatenation of DAjs 31 and DAj 4. Since realistically none of the routing tables contain
network addresses with prefix lengths longer than 30, the last two bits of the destination host
address are ignored while forming the tag.

The first word of each HAC cache set is a duplicated HAC entry that corresponds to the HAC
entry last accessed in the previous visit to the cache set. If DAT matches C'Wy 31, the lookup is
completed and C'Wp 7 is the output port identifier. Otherwise, the software search continues with
the second word of the cache set and so on, until a hit or the end of the set.

The way V A is formed from DA means that only one virtual page is allocated to hold the entire
HAC. As a result, only one page table entry and thus one TLB entry is required. Such a setup
guarantees that the performance overhead in HAC lookup due to TLB misses is negligible.

After the lookup is completed, a new HAC entry for the destination IP address is constructed
and a word from the corresponding cache set is allocated for it, if such an HAC entry does not exit
vet. Finally, this HAC entry is copied to the first word of the cache set if necessary. When a cache
word is chosen for replacement, the associated HAC entry is gone. Because the HAC contents are
generated dynamically from looking up the NART, it is safe to over-write HAC entries without
keeping a copy of them. Figure 1 illustrates the flow of the HAC lookup process.

The following code segment shows the exact instruction sequence that implements the HAC

lookup algorithm. The input is DA, a 32-bit destination IP address, and the output is the corre-
sponding 8-bit output port identifier, Qut Port. We assume that the CPU is three-way superscalar,
and the load delay stall is one cycle.

Initialization:

Mask1 < 00000000000000000000111111100000; Mask2 + 11111111111111111111000000000000;
Mask3 + 00000000000000000000000000011000; M ask4 < 00000000000000000000000011111111;
Maskd + 11111111111111111111110000000000; C'ount + 0;

MAR + DA && Maskl; TR1+ DA && Mask2; TR2 + DA && Mask3;

CW «— Mem[MAR]; TR2+ TR2<<T;

DAT « TR1 || TR2; MARO « MAR;

Match <+ DAT nzor CW; Mem[MARQ] < CW; MAR + MAR + 4;

I f(Match > Mask5) goto DONE; CW « Mem[MAR)]; OutPort «— CW && Mask4;
If(Count < 7) goto 4; Count < Count + 1;

Per form NART lookup; Count + 0;

DONE:

0 ~ O Ot B~ W N =

When the program control jumps to DONE, Out Port contains the output port identifier to route
the IP packet in question. While searching through the HAC entries in the cache set, the first
word of the cache set is speculatively loaded with the current HAC entry that is being examined
(the second instruction at the 4-th cycle). The above algorithm gives a 5-cycle best-case latency
for an IP address lookup, and takes 3 cycles for each additional HAC entry access in the cache
set. So it takes 54+ 3 x 7+ 1 = 27 cycles to detect a HAC miss. By pipelining the lookups of
consecutive IP packets, i.e., overlapping the 5-cycle work of each lookup, the best-case throughput
can be improved to 3 cycles per lookup. Because HAC is guaranteed to be in the L1 cache, the
3-cycle per lookup estimate is exact, because the HAC lookup itself is a hit.

3.2 Network Address Routing Table

If the HAC access results in a miss, a full-scale network address routing table lookup is required. The
guiding principle of Suez’s NART design is to trade table size for lookup performance. This principle
is rooted in the observation that the L2 cache size of modern microprocessors is comparatively
large for storing routing tables and is expected to continue increasing over time. For example, one
MByte of L2 cache is a norm in mid-range PCs today. On the other hand, the routing table of an
Internet backbone router has about 100,000 entries. Assume that each entry takes 8 bytes, then the
entire routing table takes only 800 KBytes, i.e., comfortably fits into a PC’s L2 cache. Of course,
such a comparison is over-simplified because the 800 KBytes estimate assumes a sequential search
procedure, and thus does not include any search data structure to speed up the lookup process.

As mentioned in the Introduction section, NART lookup is difficult to speed up because given

an IP address, it is not possible to determine a priori its corresponding network address, which is
the most significant N bits of the IP address, where N is unknown beforehand. With the increasing
threat of the IP address depletion, a technique called Classless InterDomain Routing (CIDR) is
currently in use that allows more efficient allocation of contiguous address chunks in the IP address
space. In contrast to the original Class A/B/C scheme, in which N can take only one of three
possible values: 8, 16, and 24, CIDR allows N to take any value (realistically, from 1 to 30). This
generality complicates routing table lookup because it significantly increases the number of possible

network addresses.

NART Construction

Let us classify the network addresses in an IP routing table into three types according to their
length: smaller than or equal to 16 bits (called Class AB), between 17 and 24 bits (called Class
BC), and between 25 and 30 bits (called Class CD). To represent a given routing table, Suez’s NART
includes three levels of tables: one Level-1 table and one Level-3 table, but a variable number of
Level-2 tables. Entries in these tables are denoted as Levell-Table[.], Level2-Table[.], and Level3-
Table[.], respectively. The Level-1 table has 64K entries, each of which is 2 bytes wide, and contains
either an 8-bit output port identifier or an offset pointer to a Level-2 table. These two cases are
distinguished by the entry’s most significant bit. Each Level-2 table has 256 entries, each of which
is 1 byte wide, and contains either a special indicator (11111111) or an 8-bit output port identifier.
The Level-3 table has a variable number of entries, each of which contains a 4-byte network mask
field, a 4-byte network address, and an 8-bit output port identifier. The number depends on the
given IP routing table and is typically small.

To convert an IP routing table to the NART representation, Class AB addresses are processed
first, then Class BC addresses, followed by Class CD addresses. Each Class AB network address,
N A, of length L in the routing table takes 26~ entries of the Level-1 table starting from Levell-
Table[N Ag 1,1 ¥216=1] with each of these entries filled with NV A’s output port identifier, as specified
in the IP routing table. After all Class AB addresses are processed, the unfilled Level-1 table entries
are filled with the default output port identifier.

For each Class BC address, N A, of length L in the IP routing table, if Levell-Table[N Ar,_16,1,—1]
contains an 8-bit output port identifier, a Level-2 table is created; Levell-Table[N Ar,_161,—1] is put
aside as O P and changed to be an offset that can be used to compute the base of the newly created
Level-2 table; every entry in the Level-2 table is initialized to OPI. If Levell-Table[N Ar,_167,—1]
already contains an offset to a Level-2 table, no table is created. In both cases, 2?4~ entries of
the Level-2 table, starting from Level2-Table[N Aq 1,17 * 224=1] " are filled with N A’s output port
identifier as specified in the IP routing table.

For each Class CD address, N A, of length L in the IP routing table, if Levell-Table[N Ar,_16,1,—1]
contains an 8-bit output port identifier, a Level-2 table is created; Levell-Table[N Ar,_161,—1] is put
aside as OPI1 and changed to be an offset that can be used to compute the base of the newly
created Level-2 table; and every entry in the Level-2 table is initialized to OPI1. If Levell-

Table[N Ar_16 1] already contains an offset to a Level-2 table, this Level-2 table is used in the
next step. If Level2-Table[N Ar_q41,—17] is not 11111111, Level2-Table[N Ar,_94 1,—17] is put aside
as OPI2 and is changed to 11111111; and a new Level-3 table entry with a network mask of
11111111111111111111111100000000, a network address of N Aj_24 1,1, and an output port iden-
tifier of OPI2 is created. Regardless of the content of Level2-Table[N Aj,_24 1—17], a Level-3 table
entry with a network mask same as N A’s network mask, a network address of VA and an output

port identifier the same as N A’s output port identifier, is added to the global Level-3 table.

NART Lookup

Given a destination IP address, DA, the most significant 16 bits, D A6 31, are used to index into
the Level-1 table. The exact address used to index the Level-1 table is Basel +2 x D Ayg31, where
Basel is the base address of the Level-1 table. If DA has a Class AB network address, one lookup
into the Level-1 table is sufficient to complete the routing table search.

If DA has a Class BC address, Levell-Table[DA;¢ 31] contains an offset from which the base of
the Level-2 table is computed. The corresponding Level-2 table’s base is Base2 + 256 x Levell —
Table[DAqg31], where Base2 is the base for an address region specifically reserved for all Level-2
tables. If Level2-Table[DAg 15] is not 11111111, the lookup is completed. Otherwise the network
address of DA is a Class CD address, and a search through the Level-3 table is required.

We chose to use a single global Level-3 table, rather than multiple Level-3 tables like Level-2
tables, because it reduces the storage space requirement and because it allows Level-2 table entries
to specify up to 255 output port identifiers by not requiring them to have offsets to Level-3 tables.
The search through the Level-3 table is based on DAg 31, one after another. Because the Level-3
table entries are sorted according to the length of their network addresses, the linear search can
stop at the first match. As will be shown in the Section 5, the performance overhead of this linear
search is insignificant. Figure 2 illustrates the data flow of the NART lookup process.

The following code segment shows the exact instruction sequence that implements the NART
lookup. Again the input is DA, a 32-bit destination IP address, and the output is the corresponding
8-bit output port identifier, OutPort. We assume that the CPU can issue three instructions at a

time, and the load delay stall is one cycle.

Initialization:

Maskl + 11111111111111110000000000000000; M ask2 < 00000000000000001111111100000000;
Mask3 + 00000000000000000000000011111111; Mask4 < 00000000000000001000000000000000;
Mask5 + 00000000000000001111111111111111;

Indexl + DA && Maskl; Index2 + DA && Mask?2;

Indexl « Indexl >> 14; Index2 + Index2 >> T;

MAR < Basel + Index]1;

MDR +— Mem[MAR]; /* MDR is the indexed Level-1 Table entry */

=W N

| Destination |P Address (DA)

bits [31, 16] l bits [15, 8]
@ —2 bytes
2 -
I e I -1 | OutPort |
l Level.l 164K entrie;‘d Level-2 Pointer |
evel-
Basel — (+)—— Table L
(%)= 256
@ - Base?
1 byte l
[OutPort |~ _
Level-2 256 entries
Table
NI bits [31, 0]
Level-3 Table | 32bits | Compare |
32 bit
Ba%s —&

Figure 2: The data flow of the NART lookup. It starts with the Level-1 table, and if necessary
looks up a Level-2 table pointed by the Levell-Table[DAg31]. If the chosen Level-2 table entry
still can not resolve DA, then a sequential search through the Level-3 table is needed. Note that

"“[OutPort | Network Address| Network Mask |

NART has only one Level-1 table and one Level-3 table, and many Level-2 tables.

5. /* load delay slot */
6. Flag+— MDR && Mask4; OutPort <+ MDR && Mask3; Offset «+— MDR && Maskb;
7. If(Flag) goto DONFE; Offset « Of fset << 8; T Base < Base2 + Index2;
8. MAR + TBase+ O f fset;
9. MDR <+ Mem[MAR]; /* MDR is the indexed Level-2 Table entry */
10. MAR + Base3;
11. OutPort +— MDR && Mask3;
12. If(OutPort!= Mask3) goto DON FE;
13. NMask < Mem[MAR];
/* NMask is the indexed Level-3 Table entry’s network mask field */
14. MAR — MAR + 4
15. Tag+ NMask && DA; NA + Mem[MAR];
/* NA is the indexed Level-3 Table entry’s network address field */
16. MAR — MAR+5 MAR] « MAR + 4:
17. If(Tag == NA) goto 14; NMask < Mem[MAR];
18. MDR + Mem[MARI1];
19. /* load delay slot */
20. QutPort +— MDR && Mask3;
21. DONE:

If DA’s network address is a Class AB address, the lookup takes 7 cycles to complete. If DA’s
network address is a Class BC address, the lookup takes 12 cycles to complete. If DA’s network
address is a Class CD address, the lookup takes 20 4+ 4 x K cycles to complete, where K is the
number of Level-3 table entries the algorithm has to examine before the first match. Unlike HAC
lookup, these cycle estimates may not be precise because there is no guarantee that the memory

accesses in NART lookup always result in cache hits.

4 Evaluation Methodology

4.1 Trace Collection

We chose to use a trace-driven simulation methodology to evaluate the performance of Suez’s routing
table lookup algorithm. Although there are several IP packets traces available in the public domain,
none of them are suitable for our purposes for two reasons. First, they were mostly captured before
1993, when WWW started to take off, and thus may not be representative of today’s network traffic.
Second, all of these traces have been “sanitized”, i.e., IP addresses replaced with unique integers.
While this is fine for fully associative cache simulation, it is completely unusable for set-associative
cache simulation and NART lookup simulation.

As a result, we decided to collect a packet trace from the periphery link that connects the
Brookhaven National Laboratory (BNL) to the Internet via ESnet at T3 rate, i.e., 45 Mbits/sec.

10

This link is the only link that connects the entire BNL community to the outside world. The
internal backbone network of BNL is a multi-ring FDDI network, while the periphery router is a
Cisco 7500 router. The trace was collected by a TCPdump program running on a Pentium-11/233
MHz machine, which snoops on a mirror port of a Fast Ethernet switch that links BNL’s periphery
router with ESnet’s router. Therefore the packet collection is completely un-intrusive. The first 80
bytes of each Ethernet packet are captured, compressed, and stored to the disks in real time. The
packet trace is collected from 9AM on 3/3/98 to 5PM on 3/6/98. The total number of packets in
the trace is 184,400,259, with no packet loss reported by TCPdump.

4.2 Architectural Assumptions

The performance metric of interest is million lookups per second (MLPS). We have built a detailed
simulator that incorporates the HAC and NART lookup algorithms, as well as the effects of L1
cache, L2 cache and main memory. However, the effect of the TLB is not modeled. This should
not affect HAC lookup performance because the HAC costs only one TLB entry and thus should
be TLB-resident all the time. Unless specified otherwise, the L1 cache is direct mapped, its size is
16 KBytes and its cache block size is 32 bytes; the L2 cache is direct mapped, its size is 1 MBytes
and its cache block size is 32 bytes. The first 4 KBytes of the L1 cache are reserved for HAC. The
CPU memory hierarchy also impacts the performance of the NART lookup delays, because the
Level-1, Level-2, and Level-3 tables may be spread across L1 cache, L2 cache and main memory.
Depending on which level of the memory hierarchy satisfies the memory accesses during the NART
search process, the total lookup delay varies accordingly. In this study, we assume that the access
time for L1 cache hit is 1 CPU cycle, the total access time for L1 cache miss and L2 cache hit is 6
CPU cycles, and the total access time for .1 cache miss, L2 cache miss and main memory hit is 30

CPU cycles.

Source No. of Entries | AB BC CD | NART Size (Bytes) | Efficiency
Merit 39,680 14.2% | 85.8% | 0.03% 843,444 42.3%
TANA/ISI 171,938 59% | 79.1% | 15.0% 886,023 174.6%
BNL 50,523 12.7% | 87.2% | 0.1% 905,195 50.2%
Trace X 78.7% | 21.29% | 0.01% X X

Table 1: The distribution of Class AB, BC, and CD network addresses in static routing tables and

the collected dynamic packet trace. X means not applicable.

11

5 Performance Evaluation

5.1 Network Address Distribution

To determine the storage cost of NART tables, we converted the routing tables of two major routers,
one from BNL and one from Merit [12], into the NART representation. We also did the conversion
for the entire IP network address space as reported by IANA/ISI up until 11/1997. The results are
shown in Table 1. Each row shows the total number of entries in each routing table, the NART
representation size, and the storage efliciency, which is the ratio of the given flat IP routing table
size and the NART table size. Here we assume each routing table entry costs 9 bytes : 4 bytes
each for network address and network mask, and 1 bytes for thge output port. For Merit and
BNL, the storage efficiency is around 50%, which means that NART costs twice as much as the
flat IP routing table representation to speed up the lookup process. However, NART is actually
more efficient than the flat IP routing table representation in the case of IANA. This is so because
fewer entries in the NART tables are wasted as more routing table entries are to be represented
and because flat routing table entries are 9 bytes whereas level one and level two entries are 2 and
1 byte respectively.

Table 1 also shows the distribution of Class AB, BC, and CD addresses. Class BC addresses
seem to be dominant in all routing tables. Although there is a significant percentage of Class
CD addresses in the IP network address space (IANA), the percentage of Class CD addresses is
insignificant in operational routers’ routing tables, because Internet routing tends to be performed
in a hierarchical fashion. Note that there is an anomaly in that the NART size for IANA is actually
smaller than that for BNL. The reason is that the IANA address allocation sample that we could
find contained only addresses allocated within the US. Allocation data in other regions was not

accessible at that time.

5.2 Results and Analysis

Table 2 shows the overall performance of Suez’s routing table lookup algorithm for a 500-MHz Alpha
processor with a 16-KByte L1 cache and 1-MByte L2 cache, as the HAC’s degree of associativity
varies. The HAC size is fixed at 4 KBytes. Because the first HAC entry in each cache set is replicated
for performance optimization, 7-way and 3-way logical set associativities actually correspond to 8-
way and 4-way physical set associativities. For 1-way and 2-way set associativities, however, this
optimization is not applied. The cache set size is the degree of physical associativity multiplied by
4 bytes. In the best case, the proposed scheme can perform one lookup every 5.69 CPU cycles, or
87.87 million lookups per second. This performance level is one to two orders of magnitude better
than previous reported results on software-based IP routing table lookup implementations!
Although larger degrees of associativity increase the HAC hit ratio, the best performance occurs
when the degree of associativity is 1. The main reason is that set associativity is implemented
in software in this algorithm, which entails two performance overheads. First, with a large set-

associative cache, the access time for HAC hits at the end of the cache sets is not necessarily

12

shorter than NART lookup time. That is, the time to match an IP address at the 8-th HAC entry
of a 8-way HAC’s cache set may be longer than looking it up in the NART directly. Second, large
set associativities increase the HAC miss detection time, thus adding a higher fixed overhead for
every NART lookup. In the BNL trace, because the HAC hit ratio is already high (95.22%) when
it is direct mapped, the additional gain in HAC hit ratio is not sufficient to offset the additional
overhead due to software-implemented set associativity. The reason that the overall performance
of the 3-way case is slightly better than that of the 2-way case, despite lower HAC hit ratio and
higher HAC miss detection time, is because the average hit access time for the 3-way case is shorter,

owing to the duplication optimization.

Degree of Logical Associativity | MLPS | HAC Hit Ratio
7 (8) 60.49 97.87%
3 (4) 77.09 96.95%
2 (2) 71.92 97.21%
1 (1) 87.87 95.22%

Table 2: The performance comparison in MLPS (Million Lookups Per Second) among HACs with
the same total size (4 KBytes) but varying degrees of logical set associativity, ranging from 7, 3,
2 to 1. The parenthesized numbers are physical set associativities. The hit ratio for the 2-way

case is higher than the 3-way case because the former does not waste HAC entries in duplication

optimization.
Duplication 1 2 3 4 5 6 7 8 Hit Time
Yes 78.73% | 3.02% | 3.04% | 3.06% | 3.04% | 3.04% | 3.01% | 3.03% 7.55
no 14.09% | 14.62% | 14.04% | 14.15% | 14.45% | 14.84% | 13.79% X 13.99

Table 3: The comparison of the distributions of HAC hits among the blocks within a cache set
between the cases with and without duplication optimization. The degree of associativity is 7. X

means not applicable. The average hit access time is measured in numbers of CPU cycles.

We conjecture that it is worthwhile to put in the first HAC entry in each cache set the matched
HAC entry when the cache set was last accessed. That is, the first HAC entry is a duplication of
some other HAC entry in the set. Table 3 demonstrates that this is indeed the case, by showing
the distributions of HAC entry hits within a cache set for a logically 7-way cache with and without
duplication optimization. With duplication optimization, most HAC hits go to the first entry
in the cache sets, thus significantly reducing the average hit access time. Without duplication
optimization, HAC hits are evenly spread among the blocks in the cache sets, and thus lead to
longer average hit access time. The overall lookup performances are 60.69 MLPS and 34.29 MLPS

for these two cases.

13

Increasing the reserved HAC size in L1 cache improves the HAC hit ratio, but potentially can
hurt the NART lookup performance because it reduces the effective L2 cache size available to
NART. Table 4 shows the overall lookup performance when a different portion of a 16-KByte L1
cache is reserved for the HAC. Surprisingly, the gain in HAC hit ratio due to larger HAC size
outweighs the NART performance loss due to lower 1.2 cache utilization. The explanation for this
behavior is that the working set in the NART lookup is fully captured even when only half of the 1.2
cache, 500 KBytes, is available, which corresponds to the case in which the HAC size is 8 KBytes.
When the reservation for HAC is zero, it means that all lookup requests go to NART directly. The
performance for this case, 30.2 MLPS, is still respectable, and reflects the intrinsic performance of

the NART itself.

HAC Size | MLPS | HAC Hit Ratio
8 KBytes 68.86 98.78%

4 KBytes 60.49 97.89%

0 KBytes 30.2 0%

Table 4: The performance comparison among HACs with the same degree of set associativity (7)
but different sizes, 8 KBytes vs. 4 KBytes.

We also hypothesize that unlike instruction/memory reference traces during program execution,
the packet trace exhibits much less spatial locality. We ran the packet trace against a direct-mapped
4-KByte cache using different cache block sizes, from 1 byte to 32 bytes. Table 5 shows that as
the cache block size decreases, the hit ratio indeed increases. This result verifies the lack of spatial
locality in the packet trace. By comparing the hit ratios of the case in Table 2 when the cache set
size is 32 bytes and the case in Table 5 when the block size is 32 bytes, it is clear that software set
associativity improves the cache hit ratio significantly, yet another evidence of the lack of spatial

locality in the packet trace.

1 Byte | 4 Bytes | 16 Bytes | 32 Bytes
97.41% | 94.02% 86.40% 80.64%

Table 5: The hit ratios for a direct-mapped 4-KByte cache using different cache block sizes. As
the cache block size decreases, the hit ratio increases. This verifies the conjecture that the packet

trace lacks spatial locality.

6 Implementation

The simulation results reported in the previous section assume a RISC architecture, which typi-

cally provides a large number of general purpose registers, and a direct-mapped L1 cache. The

14

pseudo-code sequence presented earlier makes the best use of RISC processors’ superscalarity with
techniques such as software pipelining, i.e., overlapping the execution of consecutive iterations in
a loop. In addition, it is critical to apply the performance optimization that ensures that HAC
is always Ll-cache resident. However, we chose to prototype the proposed routing-table lookup
algorithm on a Pentium-II machine running Linux 2.0.30 operating system, because we did not
have access to a RISC machine with OS source code at the time of writing. The current implemen-
tation was not hand-coded to minimize the instruction cycle count. We just relied on the compiler’s
optimization capabilities. Due to the small number of registers (7) provided by Pentium-II, the
generated instructions were not parallelizable since adjacent instructions tend to have data de-
pendencies. Moreover, the L1 and L2 caches in Pentium-II are set associative rather than direct
mapped. This means that the idea of reserving a portion of the Ll-cache specifically for HAC
by manipulating cacheability bits in the page table entries is not completely effective. The final
difference between Pentium-II and RISC processors is that the branch misprediction penalty seems
to be fairly high. As a result, the best-case scenario, where the HAC hit occurs at the very first
entry, takes 23 cycles rather than 5 cycles. We plan to hand-code the entire HAC and NART code
in the future work.

Almost all modern processor architectures support a page cache disable flag in the page table
entry which when set, disables caching for pages corresponding to the given page table entry.
Assume the HAC is allocated a physical page whose page number is a multiple of 4. Any other
virtual page that is mapped to a physical page whose page number is a multiple of 4 is made non-
cacheable by turning the page cache disable bit on in its page table entry. Note that typically the
instruction cache and data cache are separate, so there is no contention between data and instruction
references. Hence, we do not have to make any of the code pages in the kernel non-cacheable.

However, since Pentium-II uses a set-associative L1 cache, the set of pages that contend with
HAC are no longer just those pages whose page number is a multiple of 4. In fact, if the L1 cache
is 4-way set associative and has 16 KBytes, the 4-KByte HAC would be spread across the entire
L1 cache and would face contention from all the pages in the address space. Therefore the only
benefit of disabling the caching for pages whose page number is a multiple of 4 is to reduce but not
eliminate the cache contention.

The results of running the trace through the prototype implementation on a Pentium-II 233
MHz machine with a 16-KByte 2-way set associative L1 cache, and 512-KByte 4-way set associative
L2 cache for various HAC configurations are shown in Table 6. The timing measurements were
made using the cycle counter provided by the Pentium architecture. The best-case performance,
8.04 MLPS, is about an order of magnitude slower than the simulation result, because of the high
cycle count for the HAC hit case and the slower clock rate (233 MHz) compared to the assumed
one (500 MHz).

The importance of the duplication optimization is again demonstrated by comparing the MLPS
numbers for the 7-way case and for the case where the tags for all 8 blocks are different. The
former case gives 4.95 MLPS (as in the table) whereas the latter case gives 3.14 MLPS, due to the

15

Degree of Logical Associativity | MLPS
7 (8) 4.95
3 (4) 6.05
2 (2) 5.51
1 (1) 8.04

Table 6: The performance comparison in MLPS (Million Lookups Per Second) for the implementa-
tion on Pentium-II. As in the simulation, the 2-way case loses to the 3-way case because of higher

hit time, since the duplication optimization is not applicable in the 2-way case.

higher hit time. Finally, we measured the no-HAC case. In this case, the HAC is turned off and
all pages are cacheable. Every lookup goes through the NART search only. This gives an MLPS of
5.2, which is actually better than some of the configurations with the HAC in place. The reason
for this behavior is that the HAC hit cycle count in those cases is actually higher than the cycle
count required for NART lookup itself.

7 Conclusion

This paper describes the design and detailed simulation results of a high-performance software-based
IP routing table lookup algorithm that exploits CPU caching aggressively. The algorithm uses a
portion of the CPU cache to support destination host address caching, and resorts to a table-driven
lookup procedure to resolve the routing decisions. This table-driven lookup procedure is simple and
fast, and does not require backtracking to support longest prefix match. Qur empirical data shows
that although the associated storage cost is higher than other schemes, it is still within the typical
L2 cache size on current-generation PCs and workstations. Through a detailed performance model
that includes the effects of the CPU memory hierarchy, this work demonstrates that the proposed
routing table lookup algorithm can achieve up to 87.87 and 30.2 million lookups per second with
and without host address caching, respectively, on a 500-MHz DEC Alpha system with 1 MByte
of L2 cache. This is at least an order of magnitude faster than any empirical performance results
on software-based routing table lookup implementations reported in the literature.

Currently we are implementing the proposed algorithm on the Suez prototype, which is based on
233-MHz Pentium-II processors interconnected by Myrinet networks. An important issue that the
current implementation is addressing is the routing table update cost, which is not discussed in this
paper. We intend to collect route change statistics to evaluate the performance cost associated with
run-time NART reorganization. Finally, with the advent of IPv6, CIDR may not be as important
any more. However, the basic idea of HAC and NART is equally applicable to IPv6. The only
difference is that for HAC, more number of comparisons need to be done for tag matching and the
number of levels, as well as the level boundaries, in the NART may need to be adjusted, depending

on the density distribution in the IPv6 address space.

16

Acknowledgement

This research is supported by an NSF Career Award MIP-9502067, NSF MIP-9710622, NSF IRI-
9711635, a contract 95F138600000 from Community Management Staff’s Massive Digital Data

System Program, as well as fundings from Sandia National Laboratory, Reuters Information Tech-

nology Inc., and Computer Associates/Cheyenne Inc. The authors would also like to thank Mike

O’Connor and Frank Lepera in Brookhaven National Lab in helping us collecting the packet trace

used in this research, and Jeff Mogul in providing help to run our simulator against un-sanitized

DEC tracesin the early stage of this research. Prashant Pradhan is partially supported by a Symbol

Fellowship.

References

[1]

[10]

Szpankowski, W., 7Patricia tries again revisited,” Journal of the Association for Computing
Machinery, vol.37, no.4, p. 691-711.

Sklower, K., 7 A tree-based packet routing table for Berkeley UNIX,” Proceedings of the Winter
1991 USENIX Conference, p. 93-103, Dallas, TX, USA 21-25 Jan. 1991.

Pei, T.-B.; Zukowski, C., ”Putting routing tables in silicon,” IEEE Network, vol.6, no.1, p.
42-50, Jan. 1992.

McAuley, A.J.; Francis, P., ”Fast routing table lookup using CAMs,” IEEE INFOCOMM ’93,
p. 1382-91 vol.3, San Francisco, CA, USA 28 March-1 April 1993.

Knox, D.; Panchanathan, S., ”Parallel searching techniques for routing table lookup,” IEEE
INFOCOMM 93, p. 1400-5 vol.3, San Francisco, CA, USA 28 March-1 April 1993.

Feldmeier, D.C., "Improving gateway performance with a routing-table cache,” IEEE INFO-
COMM ’88, p. 298-307, New Orleans, LA, USA 27-31 March 1988.

Chen, X., "Effect of caching on routing-table lookup in multimedia environments,” IEEE
INFOCOMM 91, p. 1228-36 vol.3, Bal Harbour, FL, USA 7-11 April 1991.

Estrin, D.; Mitzel, D.J., 7An assessment of state and lookup overhead in routers,” IEEE
INFOCOMM 92, p. 2332-42 vol.3, Florence, Italy 4-8 May 1992.

Waldvogel, M.; Varghese, G.; Turner, J.; Plattner, B., ”Scalable High Speed IP Routing
Lookups,” ACM SIGCOMM Computer Communication Review, Vol. 27, No. 4, p. 29-36,
October 1997.

Degermark, M.; Brodnik, A.; Carlsson, S.; Pink, S., ”Small Forwarding tables for Fast Rout-
ing Lookups,” ACM SIGCOMM Computer Communication Review, Vol. 27, No. 4, p. 3-14,
October 1997.

17

[11] Doeringer, W.; Karjoth, G.; Nassehi, M., "Routing on Longest Matching Prefixes,” IEEE
Transactions on Networking, Vol.4, No.1, Feb.96.

12] Michigan University and Merit Network. Internet Performance Management and Analysis
g g
(IPMA) Project. http://nic.merit.edu/ ipma.

[13] Gupta, P.; McKeown, N.; Lin, S., ”Routing Lookups in Hardware at Memory Access Speeds,”
IEEE INFOCOMM, April 1998, San Francisco.

18

