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Abstract

We present a new static analysis for reviewing the se-
curity of libraries for systems, such as JVMs or the CLR,
that rely on stack inspection for access control. We describe
its implementation for the CLR. Our tool inputs a set of li-
braries plus a description of the permissions granted to un-
known, potentially hostile code. It constructs a permission-
sensitive call graph, which can be queried to identify poten-
tial security defects. It has been applied to large pre-existing
libraries.

We also develop a new formal model of the essentials of
access control in the CLR (types, classes and inheritance,
access modifiers, permissions, and stack inspection). In this
model, we state and prove the correctness of the analysis.

1. Motivation and Outline

In modern, networked systems, the addition of software
components is frequent and largely automated. These com-
ponents may have diverse origins; they can be applets, plug-
ins, macros in documents, or programs downloaded from
the Web. Their intermingled code ends up sharing the same
local resources (CPU, memory, files), but not necessarily
the same level of trust.

To enforce access control in the presence of poten-
tially hostile code, extensible systems such as the Java Vir-
tual Machine (JVM) and the Common Language Runtime
(CLR) provide fine-grained security mechanisms, including
a stack inspection mechanism that can determine the per-
missions of each running piece of code as a function of the
stack [10, 6, 16]. Permissions are first associated with pieces
of code according to their level of trust, which typically de-
pends on the origin of the code and the local security policy.
Then, before accessing a sensitive resource, the call stack is
inspected to verify that every caller has been granted the re-
quested permissions.

Stack inspection is a flexible preventative measure but is
also a source of complications. For instance, library code

should be able to interact with a variety of programs; how-
ever, the behaviour of the library (and its security) now de-
pends on the local security configuration and the runtime
stack. As may be expected, it becomes quite hard to vali-
date the security of a library by testing and code review. Re-
lated difficulties include optimising performance, and con-
structing and maintaining accurate documentation.

This paper describes the design, formalisation, and im-
plementation of a new static analysis tool that addresses
these difficulties. Our tool analyses the use of runtime per-
missions in the CLR, with its existing mechanisms and li-
braries, but the principles seem applicable in other settings,
such as the JVM.

The tool constructs a call graph from two inputs: (1) a
collection of compiled input libraries, and (2) a description
of the permissions assigned to the as yet unknown code to
be loaded at runtime. We say the known, library code (typ-
ically granted many permissions) istrusted, whereas the
unknown, dynamically-loaded code (typically granted few
permissions) issemi-trusted. Our main purpose is to help
find honest mistakes in trusted code that might be exploited
by maliciously crafted semi-trusted code.

The call graph includes nodes for both known and un-
known code, with multiple nodes for each piece of code
that can be executed with different run-time permissions.
The construction is otherwise simple in principle—if not
in detail, as our implementation handles all CLR instruc-
tions. Significant novelties, compared to previous call graph
constructions, include the sensitivity to permissions when
generating the graph, and the analysis of an open system,
where arbitrary unknown code may call into (or inherit
from) known libraries. Given this permission-sensitive call
graph, we run a variety of queries to detect potential secu-
rity defects, such as the unintended reachability of danger-
ous methods. These queries are inspired by typical defects
in CLR code. Our aim is not to fully verify access control,
but instead to focus human effort during security code re-
views. We summarise experimental results from analysing
substantial existing libraries.

To provide a formal foundation for our call graph con-
struction, we define a new model of stack inspection within
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the CLR. Our model, BIL-SEC, is a variation of Baby
IL [11], a subset of the CLR’s intermediate language (IL)
previously introduced for the study of type safety. BIL-
SEC reflects the essential features as regards access control
(types, classes and inheritance, access modifiers, permis-
sions, and stack inspection). Hence, whilst avoiding many
details of the full CLR, it better captures the specific char-
acteristics of our implementation than previous work on ab-
stract�-calculus models of stack inspection [21, 9].

Suppose we have a call graph for a particular trusted li-
brary, and consider an arbitrary choice of semi-trusted code
to be loaded at runtime. Our main formal result states that, if
there can be a sequence of calls starting from semi-trusted
code and ending with a particular (dangerous) method in
trusted code, then there is a corresponding path in the graph.
Hence, a query showing there is no such path implies no dy-
namically loaded code can reach the method in question.

The paper is organised as follows. Section 2 reviews the
CLR and surveys some of its security mechanisms, includ-
ing run-time permissions. Section 3 introduces the main
ideas of our analysis using a running example in BIL-SEC
with a typical defect, and its call graph. Section 4 defines
BIL-SEC. Section 5 formalises our call graph analysis and
states our correctness result. Section 6 surveys our imple-
mentation for the full CLR. Section 7 describes queries and
experimental results on libraries. Section 9 closes with a
discussion of related works and some conclusions. An ap-
pendix contains auxiliary definitions. An online version has
sample code in C� and detailed proofs [4].

2. Stack-Based Access Control (Review)

The CLR and its Intermediate Language. The CLR is a
memory-managed, typed, object-oriented platform [6]. An
assembly is its unit of code deployment, typically a single
file, containing metadata plus actual implementation code.
Metadata includes details of the class hierarchy, as well as
security-related information such as digital signatures as ev-
idence of origin, and constraints on the security policy for
that assembly. Implementation code is predominantly ex-
pressed in an intermediate language (IL) obtained by com-
piling from a range of programming languages; as usual, an
advantage of targeting a tool at an intermediate language is
that its analysis applies to software written in any one or a
mixture of the source languages. More importantly, we can-
not assume that untrusted assemblies comply with any rule
that is not checked at the IL level: some security concerns
may be invisible in high-level languages, and only appear at
the level of IL.

The CLR allows the controlled interaction of a set of dy-
namically loaded, partially trusted assemblies, that share re-
sources such as the stack and heap, as well as access to fully
trusted system libraries, all running within the same operat-

ing system process. To control access to these resources, the
CLR depends on a range of security mechanisms [16], in-
cluding type safety and access modifiers, as well as stack
inspection. The CLR has a fairly standard class-based type
system, with modifiers (private, protected, etc) controlling
the visibility of fields, methods, and other class members.
An assembly’s metadata and code are checked for type
safety and conformance to access modifiers during loading
and JIT compilation.

Permissions and Stack Inspection. Code access rights are
represented at runtime using objects of particular classes,
namedpermissions. Access to each sensitive resource is
associated with a particular permission. Permissions can
have a complex structure; for instance, an object of class
FileIOPermission describes access to files, using a combi-
nation of flags (read, write,. . . ) and filepath expressions.

When an assembly is loaded into the CLR, its access
rights are determined by its metadata and the current se-
curity policy. The resultingstatic permissions, or�, are as-
sociated with all code from that assembly. These static per-
missions give an upper bound on the permissions that the
code can actually use. Factors affecting the static permis-
sions include the assembly’s apparent origin (such as the
Internet, the intranet, or the local disc), any digital signa-
tures, and metadata requests to be granted or denied par-
ticular permissions. The security policy is configurable for
each CLR installation, the default being to grant most per-
missions to code written by the user, and only very few per-
missions to downloaded code.

During execution, thedynamic permissions, or �, de-
fault to being the least privileges of all callers on the stack,
that is, the intersection of their static permissions. To guard
access to some sensitive resource associated with a particu-
lar permission� , trusted code evaluates������ � , to tell
whether� is present in the dynamic permissions. This suc-
ceeds if the permission is in the static permissions of the
immediate caller and moreover in the static permissions of
each caller on the stack. In some harmless situations, such
as writing a temporary file, this default stack inspection is
too restrictive. To override the default, trusted code evalu-
ates������ � to add� to the dynamic permissions, pro-
vided that� appears in the static permissions for this code.
By asserting� , the trusted code takes responsibility for any
demands for� , until the completion of the current method.
Such privilege elevations are dangerous, and deserve care-
ful review.

This brief tour of stack inspection omits many details,
including declarative security attributes and useful refine-
ments of the security model—such as variants of demands,
known as �	�
������s and 	����	�����������s,
that check for a permission in the static permissions of a
caller or a subclass, respectively, when code is loaded into
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the system, instead of every time it is executed. Still, we
are now in a position to discuss defects that occur in prac-
tice, and our tool for exploring them.

3. Permission-Sensitive Call Graphs,
By Example

Access control in the CLR relies on an implicit, global
safety invariant; its correctness may be compromised by er-
rors scattered through a large body of code. In fact, during
the development of libraries for the CLR, numerous security
defects involve permissions, but these defects often fall into
a few simple patterns. (This may be partly due to program-
mers confronting stack inspection for the first time.) More-
over, permission usage is largely data independent. Typi-
cally, the permission objects are either constructed just be-
fore a demand or assert, or read from a constant static field
for the class.

Altogether, this suggests that a permission-specific,
large-scale analysis of code can be useful in review-
ing and improving the usage of permissions across li-
braries. Our analysis consists of constructing and query-
ing a call graph given trusted library code as input. Original
features of our call graphs include: (1) sensitivity to the dy-
namic permissions available at each call, and (2) nodes cor-
responding to unknown semi-trusted code, as well as
nodes for the known input libraries. Next, we list some li-
brary code that includes a security defect of the sort our
analysis is aimed at, and show the corresponding call graph.

All code listings in this paper are in BIL-SEC, which
we define formally in Section 4. Its syntax is very simi-
lar to the standard IL stack-based assembly language; a mi-
nor difference is that BIL-SEC has primitive instructions for
������ and������ whilst in IL these are method calls.

An Example in BIL-SEC. We have devised some simple
classes to illustrate access control in the CLR and a typ-
ical code defect. The classFile and its subclassCFile
are trusted library code; their static permissions include
FilePermission, which guards the private file-deletion prim-
itive Win32::Delete.

// in a trusted library
������ ����� ���� �

������ �	�
������������ ���

���
 �������	����
�

��	�����������	���
�
��� �
�������� �	�
��������������������

�
������ �	�
������������ ���


���
 �������	����
�

...
�

��	�����
 ����� �������

��	�����
 �	�
 ����������
�
��� �
��
��� �� �
�
 ����� �������������

�������� �	�
 �������������������
�

�

// in another naive, trusted library
������ ����� ����� � ���� �

��	�����
 �	�
 �
		�����
....
������ �������	����
�

�
��� �
�
������ “backupfile”
�������� �	�
 �������������������
...
�
��� �
�������� �	�
 ���������������

�
�

The three methods exposed byFile guard access to the
private Win32::Delete method by demandingFilePermis-
sion—directly in case ofDelete andBackup; indirectly in
case ofCleanup via the call toDelete.

Judging correctly that callingFile::Backup on “backup-
file” is harmless, whatever the calling context, the author
of methodCFile::Commit assertsFilePermission to prevent
any security exception. By mistake, this amplification of the
dynamic permissions carries over to the subsequent call of
File::Cleanup, which is not harmless, since it deletes the
file in the fieldtempfile.

The methodBadFile::DeleteAny of the semi-trusted
class BadFile exploits this defect. Its static permissions
do not includeFilePermission, but nonetheless it can in-
herit from the public classCFile.

// in some hostile, semi-trusted code
������ ��������� ��� � ����� �

������ �	�
��������������� ���
// Assign s to tempfile field
��
��� �� ��
��� �� ���
 ����� �������������

// Delete the file s
��
��� �� �������� �	�
 ��������
		����

�
�

By inheriting from CFile it gains access to the pro-
tected memberstempfile and Cleanup, and by calling
CFile::Commit it gains access toFilePermission and can
delete any file. (Theprotected modifier is the same aspri-
vate except that derived classes still have access.) This
example shows an attack on protected members via inher-
itance, showing that security analyses need to be sensi-
tive to the class hierarchy. The same exploit would work
without inheritance if tempfile and Cleanup were pub-
lic.
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*::-,S
*

File::Delete,S
* File::Backup,S

*
File::Cleanup,S

*

Win32::Delete,D Win32::.ctor,D

File::Delete,D

CFile::Commit,S
*

File::Cleanup,D File::Backup,D

Figure 1: Call graph for example libraries (� � �� � �FilePermission�)

Call Graph for the Example. Our goal is to identify anoma-
lous or defective control flows in libraries, and in particular
to identify potential paths stretching from semi-trusted code
to dangerous operations, such asWin32::Delete in our ex-
ample. Given a collection of trusted library code, and know-
ing the permissions granted to semi-trusted code, our tool
constructs a permission-sensitive call graph, which sum-
marises all control flows from arbitrary semi-trusted code
into the library code.

For instance, Figure 1 shows the call graph correspond-
ing to the two example classesFile andCFile. Let �� be
the set of static permissions granted to semi-trusted code.
We assumeFilePermission �� ��. Each node is a pair
����� where� refers to a method implementation, such
as File::Delete, and� is the set of dynamic permissions
with which � is called. The distinguished method����,
which appears paired with�� as the root node, represents
the unknown semi-trusted code. Each edge represents a pos-
sible call from one method to another.

The first three edges from the root node summarise
calls from semi-trusted code into theFile library. These
calls are with dynamic permissions��. There is no edge
from �File::Delete� ��� to Win32::Delete because the de-
mand forFilePermission always fails with dynamic permis-
sions��. The remaining edge from the root node represents
calls from semi-trusted code to the methodCFile::Commit,
which immediately assertsFilePermission. So all the edges
from this node are to nodes with dynamic permissions� �
�� � �FilePermission�. In particular, there is a path from
�CFile::Commit� ��� to �File::Delete� ��, from which an
edge leads toWin32::Delete, since the demand forFilePer-
mission succeeds against�.

The graph shows semi-trusted code cannot trigger calls
to Win32::Delete when given access only toFile, but can,
if given access also toCFile. Given the graph, we can
easily write queries to detect such suspicious paths from
semi-trusted code to critical methods. These paths may
or may not be harmful, but since the graph is an over-

approximation, we can safely limit code review to the meth-
ods on these paths.

Outline of the Analysis. Our analysis is sensitive to dy-
namic permissions and many details of the security model,
but is otherwise quite coarse. In the terminology of control
flow analyses, this amounts to a particular choice of context-
sensitivity. Whereas, for instance, a standard�-CFA [12]
would keep track of� frames on the stack, we effectively
keep track of a summary of the whole stack that suffices
to evaluate demands. (Of course, we would benefit from
any additional context-sensitivity in the call graph, as long
as the analysis terminates.) Alternatively, our analysis can
be seen as abstracting a security-passing style implementa-
tion of stack inspection [24], where dynamic permissions
are systematically computed and passed as an extra param-
eter to every method, instead of being extracted lazily from
the stack.

For the purpose of our analysis, theabstract value of a
runtime variable is a set of types, an upper bound on the
types of all runtime values that may flow to that variable. It
is insufficient simply to track the static types of variables,
since there is a profound dependency of control-flow on
data-flow induced by virtual and interface calls. We use ab-
stract values to track which types may flow to each call site.
Still, our analysis is a refinement of the type system for the
CLR, and sometimes falls back on type safety, for instance
when loading from an array of boxed values.

We include the special symbolic class,�, in the domain
of abstract values, to stand for all classes that may be de-
fined in unknown semi-trusted code. We add edges to the
class hierarchy so that� is a subtype of known trusted
classes, according to the rules of inheritance. In our exam-
ple,� is a subtype of both the (unsealed) public classesFile
andCFile, and hence represents an unknown class such as
BadFile.

To construct the call graph, for every method reachable
from semi-trusted code with some dynamic permissions, we
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construct a distinct node. To each formal argument, method
result, local variable, static variable, field, and entry on the
stack that has a boxed type, we associate a variable whose
abstract value collects the dynamic types that may flow to it.
From the code of the program, we obtain constraints (for in-
stance inclusions) between these variables, which we solve
by an iterative method. During this iteration, the abstract
values of variables may increase, triggering generation of
further nodes with different dynamic permissions. Since the
abstract domains are finite, the iteration always terminates.

The remainder of the paper divides into formal and infor-
mal parts. Sections 4 and 5 formalise the ideas of this sec-
tion in terms of BIL-SEC. Sections 6 and 7 describe our im-
plementation for the CLR.

4. Modelling Stack-Based Access Control

Our formal model, BIL-SEC, derives from BIL [11], a
fragment of IL focusing on its main object-oriented fea-
tures. To obtain BIL-SEC, we add static and dynamic per-
missions, plus������ and������ instructions, and omit
features—such as structures and pointers into the stack—
unrelated to stack inspection. BIL and BIL-SEC are still
Turing complete.

All code runs in the context of an execution environment
that defines the available classes and methods, their imple-
mentations, and additional data such as types and permis-
sions. We begin our formal model with finite sets of all de-
fined class, field, method and permission names. In BIL-
SEC, unlike IL, permissions are atomic constants.

Classes, Fields, Methods, Permissions:

	� 
 � ����� class name
������������ � ����� root of hierarchy
� � ����� field name
 � ��	
 method name
� � ��������� permission name
������������ � �����������	 permission set
��� � �����������	

There are three kinds of data type: void, integer, and ref-
erence (for pointers to heap-allocated objects). Types are
the basis for the syntax of method and constructor signa-
tures, and references. For simplicity, each class has exactly
one constructor, whose parameters are simply the initial val-
ues of all of the fields of the class.

Types, Signatures and References:

��� � ���� ��� type: void, integer,
��	� � 	���� � ����� 	 or reference

��� � ��� ��� � ���� � � � � ��� method signature
���� � ���� ��� ��	� ��������� � � � � ���

constructor signature

� ��� 	����� method reference
� ��� 	������ constructor reference
	�����

�

� � 	������ � � � � ���
where��� � � ���� � � � � ���

	������
�

� ��	� 	����������� � � � � ���
where���� � ��	� ��������� � � � � ���

We can now specify anexecution environment as given
by an inheritance relation��
���	� , plus three total func-
tions specifying the fields, methods, and static permissions
of each class. We assume all method bodies are well-typed.
Appendix A details the evaluation rules of BIL-SEC and
our (standard) assumptions on��
���	� . The extended ver-
sion of this paper also contains the typing rules.

Execution Environment:
���
���	� ������ ��	
��� � �	�	����

��
���	� � ����� 	 ����� class hierarchy

����� � ����� 
 ������
��

 ����� fields of a class

�	
��� � ����� 
 ����
��

 ����� 	 �����

methods of a class
�	�	��� � ����� 
 �����������	 static permissions

The function������	� returns a partial map from field
names to their types. The domain of the map consists of
the fields actually defined for the class	. The function
�	
����	� returns a partial map from signatures��� to
method implementations. The domain of the map consists
of the signatures actually defined for the class	. Its range
provides, for each defined method	����� , the superclass

that implements the method and the method body�. We
make the implementation class explicit because it deter-
mines the static permissions attached to the method body�.
The function�	�	����	� gives the static permissions associ-
ated with class	.

In BIL-SEC, like BIL, we specify method bodies using
a postfix applicative syntax, that closely corresponds to the
syntax of IL assembler. The following syntax is a subset of
BIL, apart from the new instructions������ and������.
These operations are not present in IL as instructions, but
exist in system libraries as native methods that access in-
ternal runtime data structures. Our������ instruction is
a conditional with two branches, but in IL is a method call
whose failure triggers a security exception. An omitted����

branch, as in the example in Section 3, simply returns��	�.

Applicative Expressions for Method Bodies:

�� 32 bit signed integer
�� � � ���� ��� method body

����	� �� load integer
� � run� then run�
������ � � assert� then run�
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������ � � ���� � demand� then run�,
else run�

����� � load method argument�
if � � � or self if � � �

� ����� � store result of� into
argument� � �

�� � � � �� ������ � create new object with
fields��, . . . ,��

�� �� � � � �� �����	�� � call � on object�� with
arguments��, . . . ,��

� ���� � 	��� load field� of type�
from � of class	

� � ���� � 	��� store� of type� into
field � of � in class	

The typing rules and big-step imperative operational se-
mantics for BIL are easily adapted to accommodate stack
inspection. Appendix A gives the detailed definitions. The
new operational semantics takes parameters� and � to
track the static and dynamic permissions of the code be-
ing evaluated. The new rules for������ and������ cor-
respond closely to the informal semantics in Section 2.

Suppose� is a method reference and� is a set of
classes. Let “� is reachable from�” mean intuitively that
by creating a new object of class	 � � in an empty store,
and calling its method, there is an evaluation during which
a virtual call resolves to the particular method implementa-
tion � . Method reachability is formalised in Appendix A,
and is the subject of a theorem concerning the flow analy-
sis for BIL-SEC, presented next.

5. Modelling a Permission-Sensitive Analysis

This section describes a permission-sensitive analysis in
the formal setting of BIL-SEC; this formal analysis is con-
siderably simpler than the one described in Section 6 for
the full IL, yet captures many of the main ideas. We state a
soundness result (Theorem 1): if a trusted node is unreach-
able from any untrusted node in the flow graph, then in fact
the corresponding trusted method is unreachable from any
untrusted code.

Environments with Two Levels of Trust. To represent code
with different levels of trust, we partition����� in the exe-
cution environment into trusted classes (libraries, local code
that are available at analysis time) and untrusted classes (ap-
plets, plug-ins that are unknown at analysis time). Given this
partition, we refine our definition of environments to sepa-
rate trusted code and untrusted code. Our analysis will de-
pend only on the trusted code.

We model the outcome of evaluating the static secu-
rity policy and access modifiers (such as����	�, ��	����,
�	�����, etc) on trusted libraries by three sets:������

(methods callable from untrusted classes),���	��� (meth-
ods overridable in untrusted classes), and��, the static per-
missions assigned to untrusted classes.

Partially-Trusted Environments:
� � �������	�� � �������������	����

����	�� � ����� trusted classes
��	���	��

�

� �����  ����	��
untrusted classes

�� � �����������	 permissions for untrusted code
��	
���

�

� �	����� � �	
����	������ � 
� ��
all defined method references

������ � ��	
��� callable by untrusted code
���	��� � ��	
��� overridable by untrusted code

For each	� 
 � ����� such that
 ��
���	� 	 and
	����� � ��	
��� , we have:
(1) Trust decreases with inheritance:


 � ����	�� � 	 � ����	��
(2)������ is invariant by inheritance:


����� � ������ � 	����� � ������
(3)���	��� decreases with inheritance:


����� � ���	��� � 	����� � ���	���

For each	 � ����� and
 � ��	���	��
such that�	
����	������ � �
� ��, we have:
(4) �����	��
� � ��

(5)� � ������ for every�����	�� � occurring in�
(6) 
����� � ���	���

Let��������� and��������� be obtained from� and� by re-
stricting the domains of������, ���	��� , ��
���	� , ����� ,
�	
��� , �	�	��� from����� to����	�� :
���������

�

� ���������� �����	�� � ���
������ �������� ����	��� ���������

���������
�

� ���
���	� �������� ������ �������� �

�	
��� �������� � �	�	��� ���������
We require that both� and��������� are valid execution
environments.

Abstraction of Types. Our analysis associates each body
with an abstract value, the set of possible dynamic types
of its result. The analysis depends only on� �������� , and
is independent of the untrusted classes in� , understood to
be known only after the analysis. To track unknown, un-
trusted classes during the analysis, we introduce a new ref-
erence type����� �, and include it in the set of abstract
types. In some circumstances, for instance when consider-
ing arguments of a������ method, the only safe assumption
to be made about a symbolic value is that it is well-typed.
Hence, we introduce a type-safe abstraction��� ����� to de-
fine all the potential abstract types of a result, according to
its type. As every class is inheritable in BIL-SEC,����� �
is present in���������� 	� for any trusted	.
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Abstract Types �����:

��� �� � ����� ���
��	� � 	���� � ����� � � ����� 	 �	 � ����	���

Type-Safe Abstraction ������� � �����:

�������	�� � ���	��
�����	����� � �	�����

���������� 	� �
������ 
 � 
 � ����	�� � 
 ��
���	� 	� � ������ ��

Constraints and their Generation. Next, we define the syn-
tax of nodes, symbolic values, and constraints used in our
analysis. A trusted node� of the graph is a pair�����
where� is a method implementation and� is a set of dy-
namic permissions with which it is reachable. There may be
multiple nodes for the same method but with different dy-
namic permissions. A symbolic value� represents the values
that flow as arguments and results to and from nodes. The
syntax includes symbolic variables�, references to an argu-
ment��� (��� corresponds to the caller-object) or the result
�������	 of a node, and sets of abstract types���

�� � � � � �
�
��.

A constraint� on the graph is a conjunction built from a set
constraint primitive� � �� and a special primitive���  
to represent virtual call resolution. We define the semantics
of constraints later in this section.

Trusted Nodes, Symbolic Values, Constraints:

�� � ��� ����� trusted node
� ��� � � �������	 � ��� � ���

�� � � � � �
�
�� symbolic value

� ��� constraint
� true
� � � � conjunction
� � �� inclusion
���  ��� ��� ��� � � � � ��� �� virtual call

We generate constraints in an operational style: a deriva-
tion � ��

�� � � � means that the expression� at node�,
with current dynamic permissions� � returns a symbolic
value� subject to the constraints�. Informally,� represents
the set of types of all possible values returned by� when it
is executed in� with dynamic permissions� �. The analysis
of ������ instructions is sensitive to the current dynamic
permissions��, which because of prior������s may not
equal the dynamic permissions� associated with the cur-
rent node�.

The constraints generated by the following rules are
predicates on the abstract values that may flow as method
arguments and results, and on which nodes are reachable.
We have stipulated when defining a well-formed execution
environment that all method bodies are well-typed. Hence,
the rules below assume—and do not attempt to enforce—
that bodies are well-typed.

Constraint Generation for Method Bodies: ���
� � � �:

(Gen���)

����	� �� ��
� �	����� � �

(Gen�����)

����� � ��
� ��� � �

(Gen�����)

���
� �� � ��

� ����� � ��
� ���	�� � �� � �� � ���

(Gen Seq)

���
� �� � �� ���

� �� � ��

�� ����
� �� � �� � ��

(Gen������)

���
����������	����� � � � � � �	����� � ���

������ � ���
� � � �

(Gen��	�
�)

���� ��
� � � �

������ � �	
�� ���� ����� ��
� � � �

(Gen����)

���
� �� � ��

� ����� 	��� ��
� ������� � ��

(Gen����)

���
� �� � �� ���

� �� � ��

� � ����� 	��� ��
� ���	�� � �� � ��

(Gen
����)

��� ��
� �� � ���

������

�� � � � �� ������ 	������ ��
� ������ 	� � �� � � � � � ��

(Gen��������)

��� ��
� �� � ���

������
� fresh � � �����

�� �� � � � �� �����	��� ��
�

� � �� � � � � � �� � ���  ��� ��� � � � � ��� ��

The rule (Gen�����	��) introduces a fresh variable,�,
to represent the result of each virtual call in a method
body. Consider a method body� implemented in	, that is,
�	
����	������ � �	� �� for some implementation node
� � �	����� � ��. We assume that the identity of the fresh
variable introduced in the derivation� ��

� � � � for a
particular�����	�� instruction is a function of the node�
and the position of the�����	�� within the method body.
Hence, if there are two derivations� �������
���

� � � � and

� �
������
����
�� �� � � �, the two variables for a particular

�����	�� are equal just if� � ��.

Constraint Satisfaction and Flows. The table below rep-
resents the outcome of our analysis by aflow, a structure
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�� �� ��). The finite sets� and� represent all reachable
nodes. The valuation function� fixes an abstract value
���� � ����� for each symbolic value�. The predicate
�� �� ��� �� � means that the structure�� �� ��� satis-
fies the constraint�.

Control Flow Associated with ���������: �� �� ���

A control flow is a triple�� �� ��� where

� � � ���� � � � � ��� is a set of trusted nodes.

� � � ������� ���� � � � � ������ ���� is a set of un-
trusted nodes, with�� � �� for � � ����.

� � maps values� to sets of abstract types���� �

�����, with�����
�� � � � � �

�
���

�

� ���
�� � � � � �

�
��.

We let �������	����� � ��
�

� �
����� � �	�	����
� � �� where
�
� �� � �	
����	������.

We define a predicate�� �� ��� �� � by induction on�:

� �� �� ��� �� T.

� �� �� ��� �� � � �� when���� ������.

� �� �� ��� �� � � � � when �� �� ��� �� � and
�� �� ��� �� � �.

� �� �� ��� �� ���  ��	����� � ��� ��� � � � � ��� ��
with ��� � � ���� � � � � ��� when, for all 
 �
� !��"
, we have:

1. If ����� 
 � ����� with � � �������
����� � ��,
then� � � and �� �� ��� ��

�
������ �� �

��� � �������	 � �.

2. If ����� � ������, then

(a) if 
 ��
���	� 	 with � � �������
����� � ��,
then� � � and�� �� ��� ��

�
������ �� �

��� � �������	 � �.

(b) if 	����� � ���	��� , then������ ����� � �
and�� �� ��� �� ������� � �.

A correct flow is a flow�� �� ��� such that:

1. ������ ��� � � .

2. If ������ �� � � and � � �� � ��, then
������ ��� � � .

3. For all ������ �� � � and 	����� � ������ with
��� � � ���� � � � � ���), let � � �������	����� � ��
and�� � ����� 	. We have� � � and, for� � ����,
�� �� ��� �� �������� � ���

4. For all� � �	����� � �� � � with �	
����	������ �
�	� �� and � ��

� � � �, we have�� �� ��� ��
� � �������	 � �.

In the satisfaction rule for���  , the set����� ranges
over the (abstract) dynamic types for the target object. Con-
dition 1 deals with trusted types:
 ranges over trusted

classes and������ yields the nodes� corresponding to their
implementation of the method. These nodes must be anal-
ysed and meet constraints generated for the arguments and
results of the call. Condition 2 deals with untrusted types,
if any. Untrusted classes can inherit implementations from
trusted classes
, and the corresponding nodes� must be
analysed, with the same constraints as above (Condition 2a).
Besides, if the method is virtual, untrusted classes can also
provide their own implementations; the node������ �����
must be analysed, and a constraint reflects that these imple-
mentations can return any type-safe value (Condition 2b).

Finally, we define a flow to becorrect to mean that all ab-
stract untrusted code (Points 1 and 2) and all public meth-
ods which may be called with any type-safe value (Point 3)
are part of the analysis, and that all constraints generated for
the code of each node in� are satisfied (Point 4).

Intuitively, a correct flow provides an upper bound on all
possible control paths through a trusted library composed
with any untrusted code. The following theorem formalises
this intuition. An extended version of the paper contains the
proof [4].

Theorem 1 (Runtime Reachability) Let � be a partially-
trusted environment. Let �� �� ��� be a correct flow
for ��������� . If � � ��	
��� �������� is reachable from
��	���	�� , then ����� � � for some �.

In order to benefit from the theorem, we can effectively
compute the least correct control flow by fixpoint iteration.
The existence and computability of a fixpoint follows from
standard results of constraint solving stating that a (finite)
set of monotonic constraints defined over a finite lattice ad-
mits a least solution which can be computed by fixpoint it-
eration (see for instance [18]). For a given� �������� , we use
a lattice of control flows obtained as the product of the lat-
tice of sets of trusted nodes, the lattice of sets of untrusted
nodes and the lattice of valuation functions ordered point-
wise.

Example Flows. To illustrate our definitions and the theo-
rem, we provide correct flows for the example librariesFile
and CFile given in Section 3. We assume the following:
�	�	����File� � �	�	����CFile� � �	�	����Win32� � �	;
Win32::Delete, Win32::.ctor �� ������; �FilePermission��
�� � �; and that no method of#��", �#��", $���� is in
���	��� . We let� � �� � ��FilePermission� � �	�.

Analysis for ����	�� � �#��"�

The minimal correct flow���������� has four nodes

�� �

�
�#��"���"�"�"� ���� �#��"����	%!&� ����
�#��"����"��!&� ���

�

�� � ������� ����
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Taking for instance� � �#��"���"�"�"� ���, we have:

������� � �#��"� ����� ��
������� � ����	���

����������	� � ���	��

Analysis for ����	�� � �#��"� �# ��"�

The minimal correct flow���������� has ten nodes

�� � ���

��
�

��#��"���'����� ���� �#��"���"�"�"����
�#��"����	%!&���� �#��"����"��!&����
�$�������	�' ���� �$�������"�"�"���

��
�

�� � �� � ������� ����

This flow corresponds to Figure 1. As a corollary of The-
orem 1, we obtain that there is no path from untrusted code
to Win32::Delete using onlyFile, but that there is poten-
tially such a path if additionallyCFile is present.

6. Implementation

We survey the design and implementation of our tool.
This section describes the refinement of the analysis from
BIL-SEC to the CLR. Section 7 shows how to apply the
analysis to identify typical security defects and discusses
experimental results.

Our implementation is written in Objective Caml. It re-
lies on the AbstractIL toolkit to read and manipulate typed
IL assemblies [23]. It has a simple command-line interface
for interactive queries, which can be evaluated against pre-
computed call graphs for large libraries. Including various
parsers for configuration files and permissions, the source
code has 16Klocs. To the best of our knowledge, this is the
first global control flow analysis for the CLR that deals with
virtual calls and inheritance.

The CLR is considerably more complex than BIL-SEC.
The main practical difficulties for generating the graph stem
from the size of the standard libraries (providing thousands
of classes to unknown code) and the need to give a precise
account of the numerous features of the CLR related to se-
curity. As a side benefit, we found several ambiguities and
defects in the process of reflecting the semantics of these
features.

Known and Unknown Code. Starting from the target input
libraries, we recursively load any assembly mentioned in a
type reference. Hence, as in BIL-SEC, the known classes
and interfaces do not statically depend on unknown code.

For each known class, we then simulate the rules of in-
heritance to complete the class hierarchy. This completion
is necessary to accurately simulate the resolution of virtual
calls whenever dynamic types declared in unknown code
may flow to call sites in known code. In BIL-SEC, we use

a single symbolic class,�, to simulate all untrusted sub-
classes. In the implementation, we consider access modi-
fiers and	����	�����������s, and use a distinct sym-
bolic class to simulate the subclasses of every trusted class.
We do not further instantiate these unknown classes; since
unknown implementations may either inherit or override a
given method, we consider both cases during method reso-
lution as we propagate virtual calls.

To begin with, we create an initial node,������ ��� in
BIL-SEC, and we simulate all the possible calls to meth-
ods directly callable by unknown code. We take into ac-
count the semantics of the CLR, including scoping rules,
access modifiers, inheritance rules, and declarative security
actions such as�	�
������ and	����	�����������.
Unknown code may only operate on objects accessible at
runtime, for instance using a public constructor, obtained as
a parameter in a callback, or reading a protected field in a
superclass. Accordingly, a variable represents all values cur-
rently available to unknown code, and is used to simulate its
operations (including its virtual calls).

Representing Permissions and their Operations. Runtime
permissions have a complex structure, so we rely on two
different approximations, with different trade-offs between
precision and complexity:

� A fine-grain representation reflects most of the details
available in security metadata, including constant pa-
rameters, and is also locally inferred in code using an
auxiliary dataflow analysis. (This dataflow is simple
in practice: permission values used in asserts and de-
mands are typically newly-constructed objects or ob-
jects read from constant fields; the remaining cases are
handled in an ad hoc manner.)

The domain for these permissions is a nested prod-
uct of lattices for independent boolean flags, for multi-
level permissions, and for permissions with string pa-
rameters. This domain is built from a structural de-
scription of the twenty or so permission classes appear-
ing in standard libraries. We lose precision for string
parameters, using for instance a single abstract value
for representing “read access for some specific (un-
known) file”.

� A potentially coarser representation is used for the per-
mission contexts� in the global analysis. To obtain
maximal precision, the analysis can be carried out us-
ing the fine-grained representation. However, to trade
precision for efficiency, we have devised flexible ab-
stractions. The coarsest one computes over a domain
of two valuesUntrustedCodePermissions andAllPer-
missions. Since most security queries involve one or
two permission classes, we can also adapt this repre-
sentation to precisely keep track of these target per-
missions, and abstract away all other permissions.
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Even the computation of static permissions requires
some care to reflect the semantics of the CLR; it in-
volves several parsers to extract the security policy
from metadata and configuration files. During the anal-
ysis, we intercept calls to permission libraries, such as
System.Security.CodeAccessPermission::Demand, detect
declarative security attributes, and transform them into ab-
stract security actions. (In BIL-SEC, these correspond to
the synthetic instructions������ and������.) In addi-
tion, we support additional security actions such asRevert-
Assert, RevertAll, Deny, andPermitOnly.

Constraint Generation and Resolution. Our analysis inter-
leaves the generation and resolution of constraints, until a
fixpoint is reached.

Intra-method IL constraint generation is essentially a re-
finement of the type checking algorithm, with type infer-
ence for the (symbolic) stack. Each block of code is exe-
cuted at most once for each reachable value of�, its ef-
fective dynamic permissions, and yields a set of constraints.
The analysis also builds the local control flow between these
blocks, and connects them using additional constraints on
their entry- and exit-stacks. The effect of security actions is
immediately simulated during code analysis: the outcome
of a demand is determined by comparing the demanded per-
missions to the dynamic permissions� of the method; the
rest of the block is analysed only if this comparison poten-
tially succeeds. In contrast with BIL-SEC, however, an as-
sert does not immediately affect�—the asserted permis-
sion is taken into account to compute� for any call within
the scope of the assert.

Our constraints consist of inclusions, equalities, prim-
itive operations such as boxing and run-time type checks,
and dynamic constraints for virtual calls. Constraint res-
olution may update (or merge) variables. In addition,
dynamic constraints may trigger the analysis of addi-
tional blocks of code, leading to the generation of addi-
tional constraints. Our constraint solver is rather simple,
and keeps selecting and propagating unsatisfied con-
straints, until a fixpoint is reached. The runtime and
memory requirements for analysing standard libraries re-
quired careful performance optimisations on internal data
structures. The resulting graph provides a sound approxi-
mation of reachability and dynamic permissions for known
code—since nodes are created on demand, only method im-
plementations that may be reachable from unknown code
are represented, at their dynamic permission contexts.

Limitations. Pragmatically, to scale up to large libraries, we
make coarse approximations for features that seldom oc-
cur. Although we cover all instructions, we do not deal with
certain primitive features, such as reflection and some op-
erations on delegates. We assume that calls to native code
and unverifiable IL code preserve runtime type-safety. Fi-

nally, the analysis is useful for security only when unknown
code has few permissions, so we assume that unknown code
never gains privileges to emit new IL code or bypass type
checking.

7. From the Call Graph to Security Defects

Permission-sensitive call graphs provide non-trivial, use-
ful information to aid review of the security of libraries: for
each potential call stack, we have a corresponding path in
the graph. Still, interpreting the raw results of the analysis is
delicate, and often requires human judgement. (Indeed, per-
mission classes define a data structure, rather than a high-
level access control policy, which is usually implicit [9, 1].)

We run queries on the call graph to extract a global view
of the usage of permissions for access control. The queries
are motivated by typical error patterns observed in the de-
velopment of libraries for the CLR. (See also [4] for a col-
lection of small, synthetic examples in C� that illustrate
these patterns.) In contrast with other works [14], we do
not rely on a formal logic for expressing classes of queries.

Reachability Queries. The call graph relates all method im-
plementations that may be called at runtime. In particular,
for each path in the graph, we can collect the sequence of se-
curity actions (������, ������, �	�
������,. . . ) per-
formed along this path. For any identified, privileged oper-
ation located in the code (such as a native call to a system
library) that is reachable in the graph, the tool reports a col-
lection of short, “exemplary” paths from unknown code to
the privileged operation. Each such path represents a (pos-
sibly infinite) equivalence class of code paths at runtime,
for a notion of equivalence that initially relates paths with
the same interleaving of security actions, and that can be re-
fined to investigate unexpected cases.

For example, we may report minimal paths with no se-
curity actions from unknown code to system calls analo-
gous toWin32::Delete in the example of Section 3. More
broadly, we may report a minimal path for each potential se-
quence of security actions leading to this system call. For in-
stance, for file deletion, we have paths with a single demand
on someFileIOPermission, with a single demand onIsolat-
edStoragePermission followed by an assert onFileIOPer-
mission, and so on. In practice, even for large libraries, we
observe a small number of different cases, due to the rela-
tively small number of dynamic security actions, so in many
cases all identified classes can be reviewed by hand.

This information is useful when adding new trusted
code. By comparing the old graph with the new one,
we can observe methods that have become reachable.
In our example, the addition of the naive, trusted li-
brary causes the appearance of native methodsWin32::.ctor
and Win32::Delete. It indicates that a security invari-
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ant may have been broken. Indeed, these two methods are
reachable because of the������ in CFile::Commit.

Finding a Purpose to Security Actions. Since they affect
functionality and performance, as well as security, each dy-
namic action on permissions should have a clear goal, which
we attempt to infer from the call graph. For every reachable
������ � , we check that there is a node where the������

affects the dynamic permissions (that is, with dynamic per-
missions� and possibly� �� �), and explore paths start-
ing from the ������ with � � � to identify at least
one sensitive operation protected by the assert, and other-
wise flag the������ for review. (In our example, we check
that the������ in CFile::Commit enables the������ in
File::Delete.) We also check that every������ is falli-
ble, and try to find at least one protected operation.

Link-demands, and Other Optimisations. A common per-
formance optimisation is to substitute�	�
������s for
������s, in order to avoid the run-time cost of stack
inspection. Since only the immediate caller’s permissions
are now checked, this transformation is potentially unsafe.
Accordingly, for each�	�
������ in the code, our tool
verifies whether the corresponding dynamic permissions
would suffice to pass a������ for the same permis-
sion, and otherwise reports additional paths from unknown
code to the protected method. (In our running example,
one may substitute a�	�
������ for the ������ in
File::Delete. This creates a dangerous path from unknown
code toWin32::Delete via File::Cleanup, which is reported
by this query.)

Similarly, we can use the call graph to determine whether
ordinary, interprocedural code transformations such as code
inlining or tail-call eliminations are correct.

Additional Flows. Stack inspection automatically keeps
track of nested calls, but ignores more complex con-
trol flows (callbacks, exceptions), and any data flows.
(See [1] for a discussion of this issue, including problem-
atic programming examples in C�.) Once we have identi-
fied parts of the graph protected by permissions, we can
use queries that check for local, common risks with these
flows, such as the escape of private mutable data.

As an example, we implemented a query that reports (po-
tential) callbacks from libraries to unknown code. Although
we observe a large proportion of virtual calls in libraries that
might call back to unknown code (from 5% to 10%), only
a few of them occur in code that executes with elevated dy-
namic permission, and most of those call the same method
references, so their manual review turns out to be feasible
and interesting. These callbacks may still be safe, since dy-
namic permissions are lowered during the call, but there is a
risk if the caller neglects to validate the result, or any shared
mutable data. See [1] for examples and discussion of this er-
ror pattern.

Checking Uniformity: Towards Policy Extraction. For a
given protected operation, security checks present on con-
trol paths should implement the same (implicit) access con-
trol discipline. Conversely, if all paths except those through
a new library demand a particular permission, this one path
should be flagged as a risk. We implemented a simple model
extraction and refinement tool, which enables us to detect
sensitive operations, and to systematically assess every se-
curity action. Although our current model is not expressive
enough to capture the usage of all permissions, it suffices
to restrict the scope of reviews to complex or unusual pat-
terns.

Experimental Results for the CLR libraries. We tried our
tool against the standard libraries of the CLR. As an ex-
ample in the .NET Framework v1.1, the construction of
the call graph forSystem.Windows.Forms.dll involves seven
additional assemblies, including the core librariesmscor-
lib.dll andSystem.dll, for a total of 4,283 trusted types (in-
cluding interfaces) and 10,080 methods directly callable
from unknown code loaded with theInternet set of per-
missions. (This set contains the few permissions assigned
by default to downloaded applets.) The completion gener-
ates 987 additional types for unknown code. On a machine
with a Pentium M 1.6 GHz processor, the construction takes
40 minutes and 850MB, and involves 2,161,660 constraints
between 338,341 variables. The code uses 25 permission
classes. It reaches 742 demands and 403 asserts. The result-
ing graph has 43,817 trusted nodes and 410,759 edges.

We list a few kinds of defects encountered as we
tested our tool on libraries: Two calls to the same sensi-
tive method in different libraries are guarded by demands
with different permission parameters. The scope of an as-
sert or a demand is too large; for example, we found
conditionals interleaved between a Demand and its sen-
sitive operation, leading to unnecessary (and undocu-
mented) security exceptions. In a few cases, such as
System.IO.Directory::GetCurrentDirectory, the demanded
permission depends on the result of a sensitive call;
these cases need some careful review, to check (for in-
stance) that all control flows that leak the result of the call
are effectively guarded. More commonly, we found dis-
crepancies between the documentation and the potential de-
mands in nested calls. Operations on permissions in these
libraries have been carefully reviewed by hand, at a consid-
erable cost, so we expect to find more defects as we apply
our tool to new libraries.

8. Related Work

There is by now a large literature on stack inspection,
so for the sake of brevity this section only discusses re-
lated work on static analyses of stack inspection, rather than
research primarily focused on its design and implementa-
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tion [24], its limitations and formal semantics [9, 7], or on
alternative mechanisms [17, 8, 1].

Pottier, Skalka, and Smith [21] develop a type system
for a�-calculus with stack inspection that statically ensures
that, in any well-typed term, no demand fails.

Banerjee and Naumann [2] give an analysis for a Java-
like language equipped with stack inspection to determine
whether two classes with the same interface are represen-
tation independent, that is, if a difference in their private
data representations is detectable by any other component.
Nitta, Takata, and Seki [20] analyse the complexity of de-
ciding whether a whole program satisfies a security prop-
erty.

Jensen, Le M´etayer, and Thorn [14] introduce a graph
model for programs with stack inspection. They can ver-
ify whether all reachable stacks satisfy a formula expressed
in linear temporal logic. Based on the same model, Besson
et al. [5] infer a weakest precondition that ensures that a se-
curity violation cannot occur in a library abstracted by its
call graph. However, they do not explain how to obtain a
graph that safely approximates unknown code.

Koved, Pistoia, and Kershenbaum [15] provide an al-
gorithm and an implementation to analyse permissions for
Java. Their analysis is context-sensitive, flow-sensitive and
they also use data-flow on permission objects to improve
precision. In contrast with the present work, it aims at deter-
mining a set of permissions that are required to run a given
program.

Bartoletti, Degano, and Ferrari [3] provide an analysis
that inputs a control flow graph for a program and calcu-
lates a safe approximation of dynamic permissions at each
program point. In contrast with the present work, their anal-
ysis is only partly open, and does not account for virtual
calls towards unknown code.

In general, control-flow analyses have been thoroughly
studied, and provide a useful framework for developing
more specific static analyses such as ours. For instance,
Grove and Chambers detail general algorithms and data-
structures to build a context-sensitive call graph [12]. In
their analysis to assess test coverage for libraries, Roun-
tev et al. [22] model the set of unknown environments by
generating a single, most-general program. Their represen-
tation of unknown code accounts for unknown callers, but
not for unknown subclasses, which is important in our set-
ting to detect potential callbacks.

9. Conclusions and Future Work

We implemented a control-flow-based analysis for re-
viewing the security of libraries for the CLR. We also es-
tablished a correctness result for BIL-SEC, a small but sig-
nificant subset of IL. To the best of our knowledge, the idea
of a permission-sensitive analysis of stack inspection with

static representations of unknown, potentially hostile code
is new, as is the catalogue of queries in Section 7 to help
code reviews for security. Our main theoretical result, Theo-
rem 1, shows our flow analysis can prove the unreachability
of a particular sensitive method in the presence of any arbi-
trary hostile code; we are aware of no such prior results for
formal models of stack inspection, although there are some
analogous results for unrelated formalisms such as the am-
bient calculus [19] and, more recently, a model of firewalls
for Javacard applets [13].

We are working to improve the performance of our tool,
as well as to develop our catalogue of queries. It would be
interesting (and hard) to develop an analysis that is more
sensitive to other parts of the context, such as allocation
points for objects, or that is more precise for some aspects
of IL, such as exception handling and concurrency. In any
case, we believe our tool can be very helpful for program-
mers, and especially library writers concerned with the se-
curity implications of their code.
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A. BIL-SEC: Additional Definitions

Subtype Relation: � (� �

(Sub Refl)

� (� �

(Sub Class)

	 ��
���	� 	�

����� 	 (� ����� 	�

Axioms for ��
���	�

	 ��
���	� 	 (Hi Refl)
	 ��
���	� 	� �

	� ��
���	� 	�� � 	 ��
���	� 	��
(Hi Trans)

	 ��
���	� 	� � 	� ��
���	� 	� 	 � 	� (Hi Antisymm)
	 ��
���	� ������������ (Hi Root)
	 ��
���	� 
 � � � ���������
�� �

� � ���������	�� �
������	���� � ������
����

(Hi �����)

	 ��
���	� 
 �
����	
����
�� � ����	
����	��

(Hi �	
���)

�	
����	������ � �
� ���

 ��
���	� 	 ��	
����
������ � �
� ��

(Hi Meth Impl)

Evaluating Method Bodies. A result is an outcome of eval-
uating an expression. A result can be void, an integer, or an
object reference, a pointer into the heap.

References, Results:

&� ) heap reference
!� * � !����	 ��� result

� void
�� integer
& object reference

A store consists of a stack� plus a heap+. A heap is
a finite map from references to boxed objects, which takes
the form	��� �
 !�

������	, where	 is the class of the ob-
ject, ��, . . . , �� are its field names, and!�, . . . ,!� are the
contents of the fields. Astack consists of a sequence of
frames, each of which represents a method invocation. A
frame ������!�� � � � � !�� consists of!�, a reference to self,
plus the arguments!�, . . . , !�. (There are no local vari-
ables, but note that arguments are mutable.)

Memory Model:

' ��� 	��� �
 !�
������	 boxed object

+ ��� &� �
 '�
������ heap

"� ��� ������!�� � � � � !�� frame: vector of arguments
� ��� "� � � � � "�� stack (grows left to right)
, ��� �+� �� store

Our operational semantics appeals to the following func-
tions for accessing and mutating the store, in particular, the
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heap component. (In future work, we intend to include in
BIL-SEC the stack pointers of BIL, in which case these
functions would need to access and mutate the stack as well
as the heap.)

Auxiliary Partial Functions for Accessing the Heap:

���������,� &� lookup dynamic class of& in store,
�������,� &��� lookup field&�� in store,
����	��,� &��� *�� update store field, at&�� with result* �

if + � & �
 	��� �
 !�
������	� +� and� � ����

����������+� ��� &� � 	
��������+� ��� &���� � !�
����	���+� ��� &��� � *

�� �

��& �
 	��� �
 *�� �� �
 !�
������������	� +��� ��

As in Fournet and Gordon’s formulation of stack inspec-
tion [9], evaluation of an expression depends on two per-
mission sets, the static permissions�, and the dynamic per-
missions�, with � � �. The static permissions are those
associated with the current method, and the dynamic per-
missions are those effectively available. We formalise eval-
uation by a judgement of the following form:1

Evaluation Judgement:

, � ���
� * � ,� given, and dynamic permissions�,

body� with static permissions�
returns*, leaving, �

Evaluation Rules for Control Flow:

(Eval ���)

, � ����	� �� ��
� �� � ,

(Eval Seq)

, � ���
� ! � ,�

,� � ���
� * � ,��

, � � ���
� * � ,��

(Eval��	�
�)

, � ���� �
�
� * � ,�

, � ������ � �	
�� ���� ����� �
�
� * � ,�

(Eval������)

, � ���
��������� * � ,

�

, � ������ � ���
� * � ,�

The expression����	� �� evaluates to the integer�� . The
expression� � evaluates� to a result, expected to be void.
The result of the whole expression is then the result of eval-
uating �. The expression������ � �	
�� ���� �����

1 In contrast with BIL and our implementation, our model BIL-SEC cur-
rently does not contain operations for parameters passed by reference
to an entry on the stack (parameter keywordsout andref in C�), so we
don’t need to mutate the stack� in depth during evaluation. Hence, we
could simplify the evaluation judgement by passing only the heap and
the top frame��� ��� instead of the heap plus the stack� � ��� ��.

evaluates either�	
�� or �����, depending on whether� is
one of the dynamic permissions. The expression������� �
intersects��� with the static permissions, adds the out-
come to the dynamic permissions, and evaluates�.

Evaluation Rules for Arguments:

(Eval �����)

, � �+� �������!�� � � � � !��� � � ����

, � ����� � ��
� !� � ,

(Eval �����)

, � ���
� !�� � �+� �������!�� � � � � !� � � � � � !��� � � ����

, � � ����� � ��
� � � �+� �������!�� � � � � !�� � � � � � !���

The expression������ returns argument� of the current
stack frame. The expression������� evaluates�, stores the
result in argument� in the current stack frame, then returns
void.

Evaluation Rules for Objects:

(Eval
����)	
,� � �� �

�
� *� � ,���


������
,��� � �+� �� ������	� � �� �
 ��

������

& �� ���+� +� � +� & �
 	��� �
 *�
������	

,� � �� � � � �� ������ 	������ ��
� & � �+�� ��

(Eval��������)	
,� � �� �

�
� *� � ,���


������
,��� � �+� �� 	� � ���������,���� *��
�	
����	������� � 
� � �� � �	�	����
�

�+� �������*�� *�� � � � � *��� � ����
����

*� � �+�� �� "� ��

,� � �� �� � � � �� �����	�� 	����� ��
� *� � �+�� ���

(Eval ����)

, � ���
� & � ,�

, � � ����� 	��� ��
� �������,�� &��� � ,�

(Eval ����)

, � ���
� & � ,� ,� � ���

� * � ,��

, � � � ���� � 	��� ��
� � � ����	��,��� &��� *�

The expression�� � � � �� ������ �, where� is the
constructor for a class	, heap allocates an object whose
fields contain the results of evaluating��, . . . , ��, and re-
turns the new reference.

The expression���� � � � �������	��� , where� refers
to� ���� � � � � ��� in class	, evaluates�� to a reference to
a boxed object of class	� (expected to inherit from	), re-
trieves the implementation superclass
 and method body
for signature� ���� � � � � ��� in dynamic class	�, and re-
turns the result of evaluating this method body in a new

14



stack frame whose argument vector consists of the refer-
ence to the boxed object (the self pointer) together with the
results of��, . . . , ��. The new invocation runs with static
permissions equal to�	�	����
� where
 is the implementa-
tion superclass, and with the current dynamic permissions
adjusted by intersecting with�	�	����
�. The result of this
evaluation is the store�+�� �� "� ��, where"� � is the final state
of the new stack frame. Once evaluation of the method is
complete, the stack is popped, to leave�+ �� ��� as the final
store. The expression� ���� � 	��� evaluates� to an ob-
ject reference, then returns field� of this object. The ex-
pression� � �����	��� evaluates� to a reference to an ob-
ject, updates its field� with the result of evaluating�, and
returns void.

Reachability. For a given execution environment, we define
a notion of dynamic method reachability. Our main result
concerns unreachability of sensitive methods.

Reachability

To every evaluation, � � ��
� * � ,�, we associate the

(unique) derivation tree obtained from the evaluation rules.
To each instance in the tree of the rule:

(Eval��������)	
,� � �� �

�
� *� � ,���


������
,��� � �+� �� 	� � ���������,���� *��
�	
����	������� � 
� � �� � �	�	����
�

�+� �������*�� *�� � � � � *��� � ����
����

*� � �+�� �� "� ��

,� � �� �� � � � �� �����	�� 	����� ��
� *� � �+�� ���

we associate the label�
�

� 
�����. The evaluation, �
� ��

� * � ,� reaches� when� is a label in its deriva-
tion tree.

� is reachable from � � ����� when an evaluation

�-� -� �
������ ��	� 	���������
�����	�� ��	� 	�����

�
�
� * � ,�

reaches � for some *, , �, and 	 � � with
�	
����	����	� ���� � 	� � and�	�	����	� � �.

By labelling with
����� , we mark the method implemen-
tations whose bodies are actually evaluated. A method im-
plementation is reachable from� if there exists a body
in � that directly or indirectly evaluates this implementa-
tion. The intent is to characterise the code that an attacker
could trigger.

We refer to the long version of this paper for the adapta-
tion of the typing rules and type-safety theorem of [11].
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