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Abstract

We propose a new estimator for the error variance in a nonparametric regression

model. We estimate the error variance as the intercept in a simple linear regression

model with squared differences of paired observations as the dependent variable and

squared distances between the paired covariates as the regressor. Our method can

be applied to nonparametric regression models with multivariate functions defined on

arbitrary subsets of normed spaces, possibly observed on unequally spaced or clustered

designed points. No ordering is required for our method. We develop methods for

selecting the bandwidth. For the special case of one dimensional domain with equally

spaced design points, we show that our method reaches an asymptotic optimal rate

which is not achieved by some existing methods. We conduct extensive simulations to

evaluate finite sample performance of our method and compare it with existing methods.

We illustrate our method using a real data set.

Some key words: Bandwidth; Difference-based estimator; Least square; Nonparametric regres-

sion; Quadratic forms; Residual variance.

1. INTRODUCTION

Consider a nonparametric regression model

yi = g(xi) + εi, 1 ≤ i ≤ n, (1)

where yi’s are observations, g is an unknown mean function, and εi’s are independent and

identically distributed random errors with zero mean and variance σ2.

Usually one fits the mean function g first and then estimates the variance σ2 from

residual sum of squares (Wahba 1990, Müller and Stadtmüller 1987, Hall and Carroll 1989,

Carter and Eagleson 1992, Neumann 1994). However, it is often desirable to have an
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accurate estimate of σ2, independent of that obtained by curve fitting, for the purpose of

testing the goodness of fit or choosing the amount of smoothing (Eubank and Spiegelman

1990, Rice 1984, Gasser, Kneip and Kohler 1991, Kulasekera and Gallagher 2002). An

accurate estimate of σ2 can also be used to estimate the detection limits of immunoassay

(Carroll 1987, Carroll and Ruppert 1988).

Most estimators of σ2 proposed in the literature are quadratic forms of the response

vector y = (y1, · · · , yn)
T ,

σ̂2
D = yTDy/tr(D). (2)

These estimators usually fall into two classes. The first class of estimators are based on the

residual sum of squares from some nonparametric fits to g. Specifically, one first estimates

g by a nonparametric method such as kernel smoothing or spline smoothing (Wahba 1990,

Hastie and Tibshirani 1990). For linear smoothers the fitted values ŷ = Ay, where A

is a smoother matrix. Then an estimator of variance has the form (1.2) with D = (I −

A)T (I−A) (Hastie and Tibshirani 1990). We call estimators in the first class as residual-

based estimators. Residual-based estimators depend critically on the amount of smoothing

(Dette, Munk and Wagner 1998). Some methods require knowledge about some unknown

quantities such as
∫ 1
0 g′(t)2dt (Hall and Marron 1990) or

∫ 1
0 g′′(t)2dt (Buckley, Eagleson and

Silverman 1988).

The second class of estimators use differences to remove trend in the mean function,

an idea originated from time series analysis. This kind of method does not require an

estimate of the mean function and are often called the difference-based estimators. Almost

all difference-based methods in the literature were developed for univariate x only with the

exception of Kulasekera and Gallagher (2002) who extended the differenced-based method to

multivariate x ∈ [0, 1]d. However, Kulasekera and Gallagher’s method requires an artificial

ordering of the design points in x ∈ [0, 1]d. In this paper we will propose a new method

which can be applied to any domain x ∈ T , where T is an arbitrary subset of a normed

space. Interesting examples of T are the Euclidean d-space Rd, unit circle and unit sphere.

Before introducing our new estimator, we review some popular difference-based estima-

tors. Assume that x is univariate and 0 ≤ x1 ≤ · · · ≤ xn ≤ 1. Rice (1984) proposed the

first order difference-based estimator

σ̂2
R =

1

2(n− 1)

n
∑

i=2

(yi − yi−1)
2. (3)

Gasser, Sroka and Jennen-Steinmetz (1986) proposed the following second order difference-

based estimator (referred to as the GSJ estimator in this article)

σ̂2
GSJ =

1

(n− 2)

n−1
∑

i=2

c2
i ε̂

2
i , (4)

where ε̂i is the difference between yi and the value at xi of the line joining (xi−1, yi−1) and

(xi+1, yi+1). The coefficients ci are chosen such that Ec2
i ε̂

2
i = σ2 for all i when g is linear.
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For equidistant design points, σ̂2
GSJ reduces to

σ̂2
GSJ =

2

3(n− 2)

n−1
∑

i=2

(

1

2
yi−1 − yi +

1

2
yi+1

)2

. (5)

Hall, Kay and Titterington (1990) introduced another difference-based estimator (referred

to as the HKT estimator)

σ̂2
HKT (m) =

1

n−m

n−m2
∑

i=m1+1





m2
∑

k=−m1

dkyk+i





2

, (6)

where m1 and m2 are non-negative integers, m = m1+m2 is called the order, and the differ-

ence sequence {di}i=−m1,··· ,m2
satisfies

∑m2

j=−m1
dj = 0,

∑m2

j=−m1
d2
j = 1 and d−m1

dm2
6= 0.

None of the difference-based estimators achieves the asymptotic optimal rate for the

mean squared error (MSE) (Dette et al. 1998)

MSE(σ̂2) , E(σ̂2 − σ2)2 = n−1var(ε2) + o(n−1). (7)

In practice, the choice of the order m and an appropriate difference sequence which mini-

mizes the finite sample MSE is rather complicated. Dette et al. (1998) showed that for a

finite sample size, a proper choice of the order m depends sensitively on the oscillation of

the mean function g and the sample size n. That is, the order m acts as a tuning parameter.

In this paper we propose a new estimator which is the estimated intercept of a linear model.

When design points are equally spaced in [0, 1], using the optimal bandwidth, we can reduce

the asymptotic rate of MSE to

MSE(σ̂2) = n−1var(ε2) +O(n−3/2).

And more importantly, our method extends naturally to functions defined on a general

domain.

In Sections 2 and 3 we consider equally spaced designs in [0, 1]. We present our estima-

tor, asymptotic results and the choice of the optimal bandwidth in Section 2. We compare

the performance of our estimator with several popular difference-based estimators in Sec-

tion 3. We extend the proposed method to general domain T in Section 4. We apply our

method to a real data set in Section 5. We conclude the paper with a brief discussion in

Section 6.

2. MAIN RESULTS

In this and the next sections we assume that xi = i/n for 1 ≤ i ≤ n. In Section 2.1 we

provide the motivation to our method. In Sections 2.2 and 2.3 we present the methodology

and some asymptotic results. Then we discuss how to choose the bandwidth in Section 2.4.
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2·1. Motivation

Taking expectation to the Rice estimator,

E(σ̂2
R) =

1

2(n− 1)

n
∑

i=2

E(yi − yi−1)
2 = σ2 +

1

2(n− 1)

n
∑

i=2

(g(xi)− g(xi−1))
2. (8)

This means that Rice’s estimator is always positively biased. Suppose that g has a bounded

first derivative. Then from (8), we have

E(σ̂2
R) = σ2 +

1

2(n− 1)

n
∑

i=2

(

1

n
g′(xi) + o(

1

n
)

)2

= σ2 +
1

2n2

1

(n− 1)

n
∑

i=2

g′(xi)
2 + o(

1

n2
)

= σ2 +
1

n2
J + o(

1

n2
), (9)

where J = 1
2

∫ 1
0 g′(x)2dx. Rice’s estimator uses differences of all consequent observations.

We define a lag-k Rice estimator σ̂2
R(k) as

σ̂2
R(k) =

1

2(n− k)

n
∑

i=k+1

(yi − yi−k)
2, k = 1, 2, · · · , n− 1.

Similar calculations as in (9) give

E(σ̂2
R(k)) = σ2 +

k2

n2
J +O(

k3

n2(n− k)
) + o(

1

n2
).

When m = o(n), we have

E(σ̂2
R(k)) ≈ σ2 + Jdk, 1 ≤ k ≤ m, (10)

where dk = k2/n2. Treating (10) as a simple linear regression model with dk as the inde-

pendent variable, we can estimate σ2 as the intercept. Throughout this paper, we take the

integer part of m whenever necessary.

2·2. Methodology

Let dk = k2/n2 and sk =
∑n

i=k+1 (yi − yi−k)
2/2(n− k), where 1 ≤ k ≤ m. As discussed

in Section 2.1, we regress sk on dk to estimate σ2 as the intercept. We will discuss the

choice of m in Section 2.4. Since sk is the average of (n − k) lag-k differences, we assign

weight wk = (n−k)/N to the observation sk, where N = (n−1)+(n−2)+ · · ·+(n−m) =

nm−m(m+ 1)/2. Specifically, we fit the following linear model

sk = α+ βdk + ek, k = 1, 2, · · · ,m, (11)
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using the weighted least square
∑m

k=1 wk(sk − α− βdk)
2.

Let s̄w =
∑m

k=1 wksk and d̄w =
∑m

k=1 wkdk. Then

σ̂2 = α̂ = s̄w − β̂d̄w, (12)

where

β̂ =

∑m
k=1 wksk(dk − d̄w)

∑m
k=1 wk(dk − d̄w)2

is the estimate of the intercept β. When necessary, the dependence of σ̂2 on m, σ̂2(m), will

be expressed explicitly.

The following theorem shows that, as the GSJ estimator, σ̂2 is unbiased when g is linear.

Though we derived our estimator by the least squares method, the following theorem also

shows that σ̂2 can be represented as the quadratic form (2).

Theorem 1. For the equally spaced design, we have

(a) σ̂2 is unbiased when g is a linear function regardless of the choice of m.

(b) σ̂2 can be written in a quadratic form σ̂2 = yTDy/tr(D), where

D =





































∑m
k=1 bk −b1 · · · −bm 0

−b1
∑m

k=1 bk + b1 −b1 · · · −bm
...

. . .
. . .

. . .
. . .

−bm · · · −b1 2
∑m

k=1 bk −b1 · · · −bm
. . .

. . .
. . .

. . .
. . .

−bm · · · −b1 2
∑m

k=1 bk −b1 · · · −bm
. . .

. . .
. . .

. . .
...

−bm · · · −b1
∑m

k=1 bk + b1 −b1
0 −bm · · · −b1

∑m
k=1 bk





































and

bk = 1−
d̄w(dk − d̄w)

∑m
k=1 wk(dk − d̄w)2

.

Notice that D is a symmetric matrix with both row and column sums equal to zero. Our

estimator is different from existing residual-based and difference-based estimators. Most

existing difference-based estimators require the design points to be ordered with some con-

ditions such as max|xi − xi−1| = O(n−1+δ), where 0 < δ < 1/2 for the HKT estima-

tor and δ = 0 for other estimators. It is thus difficult to extend these methods to high

dimensional domains or general domains since there is no clear ordering in these situa-

tions. Furthermore, unequally spaced designs may have clusters or even tied design points,

and/or large gaps between some neighboring design points. In other word, the assumption
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max|xi−xi−1| = O(n−1+δ) may not hold. Our method can be extended naturally to general

domains with unequally spaced design points (Section 4).

2·3. Asymptotic results

Using the fact that σ̂2 has a quadratic form, we have the following formula for the MSE

(Dette et al. 1998),

MSE(σ̂2) =
{

(gTDg)2 + 4σ2gTD2g + 4gT (Ddiag(D)1)σ3γ3

+ σ4tr{diag(D)2}(γ4 − 3) + 2σ4tr(D2)
}

/tr(D)2, (13)

where g = (g(x1), · · · , g(xn))
T , diag(D) denotes the diagonal matrix of the diagonal ele-

ments of D, 1 = (1, · · · , 1)T and γi = E[(ε/σ)i], i = 3, 4. The first term in (13) is the

squared bias and the last four terms make up the variance. When the random errors are

normally distributed, the second and the third terms are both equal to zero. In Appendixes

B, we will show

Theorem 2. Assume that g has a bounded second derivative. For the equally spaced

design with m→∞ and m/n→ 0, we have

Bias(σ̂2) , E(σ̂2 − σ2) = O(
m3

n3
), (14)

var(σ̂2) =
1

n
var(ε2) +

9

4nm
σ4 +

9m

112n2
var(ε2) + o(

1

nm
) + o(

m

n2
), (15)

MSE(σ̂2) =
1

n
var(ε2) +

9

4nm
σ4 +

9m

112n2
var(ε2) + o(

1

nm
) + o(

m

n2
) +O(

m6

n6
). (16)

Theorem 2 indicates that σ̂2 is a consistent estimator of σ2. The asymptotical optimal

bandwidth is mopt = (28nσ4/var(ε2))1/2. Substituting this optimal bandwidth into (16)

leads to

MSE(σ̂2(mopt)) =
1

n
var(ε2) +

9

28

(

7σ4var(ε2)
)1/2

n−3/2 + o(n−3/2), (17)

which satisfies (7).

2·4. The choice of the bandwidth in practice

For simplicity of notation, we assume that random errors are normally distributed with

mean zero and variance σ2. Then var(ε2) = 2σ4 and mopt = (14n)1/2. This optimal

bandwidth is obtained under the conditions that g has a bounded second derivative, m→∞

and m/n→ 0. Note that mopt does not depend on g. However, some slightly higher order

terms ignored in the MSE (16) do depend on the smoothness of the function. Therefore,

the asymptotic optimal bandwidth applies for very large n only. For small to median n,

we find that mopt = (14n)1/2 is too large. We now discuss two strategies for selecting m in

these situations.
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Note that the dominant term in (16), var(ε2)/n, cannot be reduced. Let

h(m) =
9

4nm
σ4 +

9m

56n2
σ4

be the two higher order terms. Our first strategy is to select the smallest m = cn1/2

such that h(m)/h(mopt) ≤ 1 + λ, where 100λ% is the percentage of increase in the higher

order terms. It is easy to check that m =
(

1 + λ− (λ2 + 2λ)1/2
)

(14n)1/2. Note that the

convergence rate of MSE remains the same. Our simulations in Section 3 indicate that

m = n1/2 with λ ≈ 1 works very well. Denote ms = n1/2. Note that the increases of MSE

are in the higher order terms. Thus, the increase of the overall MSE is usually not large. For

example, MSE(σ̂2(ms))/MSE(σ̂2(mopt)) equal 1.099, 1.079, 1.057 and 1.026 for n = 30,

n = 50, n = 100 and n = 500 respectively. Therefore, the increases of MSEs are between

10% to 3% for these sample sizes.

Simulations in Section 3 indicate that ms = n1/2 is still too large when n is small and

g is rough. The poor performance in these situations is usually caused by large bias. Our

second strategy for selecting m is to control bias such that Bias(σ̂2) = O(n−2). Consider

the power form m = cnτ . Then from (14), Bias(σ̂2) = O(n−3+3τ ). It is easy to see that

the largest τ to have Bias(σ̂2) = O(n−2) is τ = 1/3. Therefore, another choice of m is

mt = n1/3. Simulations in the next section indicate that mt performs well when n is small

and g is rough. For mt = n1/3,

MSE(σ̂2(mt)) =
2

n
σ4 +

9

4
n−4/3σ4 + o(n−4/3), (18)

which still satisfies (7) and has a better convergence rate than the existing difference-based

estimators.

3. SIMULATIONS AND COMPARISONS WITH OTHER ESTIMATORS

In this section we present some simulation results based on equally spaced designs. We

use the same simulation setting as in Seifert, Gasser and Wolf (1993) and Dette et al.

(1998): g(x) = 5 sin(ωπx), where ω is the frequency of the mean function, xi = i/n and

εi
iid
∼ N(0, σ2). We consider three different frequencies, ω = 1, 2, 4, which corresponds

to low, median and high oscillations respectively. We consider three standard deviations,

σ = 0.5, 1.5, 4, for different signal-to-noise ratios, and three choices of n, n = 50, n = 250

and n = 800, for small, median and large sample sizes. Therefore, we have 27 combinations

of simulation settings.

For each simulation setting, we generate observations and compute the Rice estimator

σ̂2
R, the GJS estimator σ̂2

GSJ , the HKT estimator σ̂2
HKT (m), and our estimator σ̂2(ms).

We repeat this process 20000 times and compute MSEs for each method. The order m in

σ̂2
HKT (m) acts as a tuning parameter which depends on the unknown function g. We set
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m = 2 in our simulations and consequently,

σ̂2
HKT (2) =

1

n− 2

n−2
∑

i=1

(0.8090yi − 0.5yi+1 − 0.3090yi+2)
2.

Table 1: MSEs of various estimators and percentages of reductions.

n ω σ MSEσ̂2

R

MSEσ̂2

GSJ

MSEσ̂2

HKT
(2) MSEσ̂2(ms) R(σ̂2

R) R(σ̂2
GSJ ) R(σ̂2

HKT (2))

0.5 0.0045 0.0051 0.0069 0.0036 20.0% 29.4% 47.8%
1 1.5 0.311 0.405 0.267 0.246 20.9% 39.3% 7.9%

4 15.774 20.745 13.429 12.372 21.6% 40.4% 7.9%
0.5 0.0134 0.0051 0.0593 0.0115 14.2% -125% 80.6%

50 2 1.5 0.319 0.408 0.324 0.254 20.4% 37.7% 21.6%
4 15.42 20.22 13.32 12.26 20.5% 39.4% 8.0%
0.5 0.153 0.0051 0.871 0.337 -120% -6508% 61.3%

4 1.5 0.465 0.411 1.157 0.601 -29.2% -46.2% 48.1%
4 15.65 20.55 14.27 12.70 18.8% 38.2% 11.0%
0.5 0.00076 0.00099 0.00065 0.00054 28.9% 45.5% 16.9%

1 1.5 0.0613 0.0797 0.0517 0.0451 26.4% 43.4% 12.8%
4 3.120 4.001 2.607 2.256 27.7% 43.6% 13.5%
0.5 0.00076 0.00097 0.00072 0.00057 25.0% 41.2% 20.8%

250 2 1.5 0.0610 0.0802 0.0515 0.0453 25.7% 43.5% 12.0%
4 3.114 4.013 2.598 2.291 26.4% 42.9% 11.8%
0.5 0.00101 0.00097 0.00216 0.00118 -16.8% -21.6% 45.4%

4 1.5 0.0610 0.0801 0.0528 0.0462 24.3% 42.3% 12.5%
4 3.092 3.953 2.581 2.270 26.6% 42.6% 12.0%
0.5 0.00023 0.00031 0.00020 0.00017 26.1% 45.2% 15.0%

1 1.5 0.0190 0.0248 0.0157 0.0133 30.0% 46.4% 15.3%
4 0.969 1.267 0.806 0.673 30.5% 46.9% 16.5%
0.5 0.00024 0.00030 0.00020 0.00016 33.3% 46.7% 20.0%

800 2 1.5 0.0189 0.0248 0.0159 0.0134 29.1% 46.0% 15.7%
4 0.967 1.257 0.802 0.675 30.2% 46.3% 15.8%
0.5 0.00024 0.00030 0.00021 0.00018 25.0% 40.0% 14.3%

4 1.5 0.0188 0.0249 0.0158 0.0133 29.3% 46.6% 15.8%
4 0.964 1.255 0.797 0.671 30.4% 46.5% 15.8%

Table 1 lists MSEs for all methods under all simulation settings. We define R(σ̂2
R) =

1 −MSEσ̂2(ms)/MSEσ̂2

R

to measure the reduction in MSE of our estimator over the Rice

estimator. We define R(σ̂2
GSJ) and R(σ̂2

HKT (2)) similarly. A positive R represents a reduc-

tion in MSE while a negative R represents an increase. These reductions in percentages

are also listed in Table 1. In general, MSEσ̂2(ms) < MSEσ̂2

HKT
(2) < MSEσ̂2

R

< MSEσ̂2

GSJ

for most cases, especially when n = 250 or n = 800. To visualize the comparative results,
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we plot MSEs versus sample sizes in Figure 1. We conclude that σ̂2(ms) has smaller MSEs

than σ̂2
HKT (2) in all situations. The comparative performance of σ̂2(ms) depends on the

smoothness of g, the sample size and the signal-to-noise ratio. σ̂2(ms) has smaller MSEs

except for four cases, (n, ω, σ) = (50, 2, 0.5), (50, 4, 0.5), (50, 4, 1.5) or (250, 4, 0.5), where g

is rough, sample size is small and standard deviation is small. Same comparative results on

three existing methods have been reached in Seifert et al. (1993) and Dette et al. (1998): the

HKT estimator performs better when g is flat and/or n is large, while the GSJ estimator

performs better when the opposite is true.

To take a closer look at why σ̂2(ms) fails when g is rough and n is small, we list squared

biases of σ̂2(ms), σ̂2
R, σ̂2

GSJ and σ̂2
HKT (2) in Table 2 with n = 50. It is clear that MSEs

of σ̂2(ms) and σ̂2
HKT (2) are dominated by biases when g is rough and n is small. The

GSJ estimator has much smaller biases, thus much smaller MSEs in these situations. As

discussed in Section 2.4, the approximate optimal rate of m, n1/2, requires a large n or

smooth g. When g is rough and n is small, ms = n1/2 is too large which leads to large

biases. One option is to control bias using mt = n1/3, as discussed in Section 2.4. Table 2

also lists squared biases, variances and MSEs of σ̂2(mt). As expected, σ̂2(mt) reduces the

bias with small increase in the variance. Though the performance of σ̂2(mt) is a little worse

than σ̂2(ms) for other cases, it performs well when σ̂2(ms) fails. σ̂2(mt) has smaller MSEs

than σ̂2
GSJ for all cases except one case when ω = 4 and σ = 0.5. Therefore, we recommend

σ̂2(mt) when sample size is small, and g is rough or little information about g is available.

For the equally spaced design, it is clear that σ̂2(1) = σ̂2
R. That is, the Rice estimator

is a special case of our estimator with m = 1. One interesting observation from simulations

is that σ̂2(2) ≈ σ̂2
GSJ when σ2 is not very small. In theory it is easy to show that the

dominant term of MSE(σ̂2(2)) is 35σ4/9n, which is exactly the same as that of σ̂2
GSJ . The

simulated MSEs of σ̂2(2) are list in the last column of Table 2 which is almost the same as

those of σ̂2
GSJ . We have performed many more simulations with different mean functions,

signal-to-noise ratios and sample sizes. Comparative results remain the same.

4. EXTENSION TO THE GENERAL DOMAIN

In this section we extend our method to a general domain T , where T is an arbitrary

subset of a normed space. Let dij = ‖xi − xj‖
2 and sij = 1

2(yi − yj)
2 for all pairs i and j,

where 1 ≤ i < j ≤ n. We fit the following simple linear model

sij = α+ βdij + eij , dij ≤M, (19)

using the least squares where M > 0 is the bandwidth. The estimate of σ2 is σ̂2 = α̂. For

T = [0, 1], xi = i/n and M = (m/n)2, σ̂2 reduces to the weighted least squares estimate

proposed in Section 2.2.

We now discuss how to choose the bandwidth M . For unequally spaced designs on

T = [0, 1], we may choose M = (m/n)2 as in Section 2.4. This leads to two choices of M :
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Figure 1: Plot of log(MSE) versus log(n). Simulation settings are marked above each plot.
Four lines marked as “1”, “2”, “3” and “4” in each plot correspond to Rice, GSJ, HKT and
our estimators respectively.
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Table 2: MSEs, Squared Biases (BSQ) and Variances (VAR). n = 50.

ω σ σ̂2
R σ̂2

GSJ σ̂2
HKT (2) σ̂2(ms) σ̂2(mt) σ̂2(2)

MSE 0.0045 0.0051 0.0069 0.0036 0.0038 0.0050
0.5 BSQ 0.0006 0.0000 0.0035 0.0004 0.0000 0.0000

VAR 0.0039 0.0051 0.0034 0.0032 0.0038 0.0050
MSE 0.311 0.405 0.267 0.246 0.307 0.402

1 1.5 BSQ 0.001 0.000 0.004 0.000 0.000 0.000
VAR 0.311 0.405 0.264 0.246 0.307 0.402
MSE 15.774 20.745 13.429 12.372 15.42 20.231

4 BSQ 0.001 0.000 0.007 0.000 0.00 0.000
VAR 15.773 20.745 13.422 12.372 15.42 20.231
MSE 0.0134 0.0051 0.0593 0.0115 0.0040 0.0050

0.5 BSQ 0.0095 0.0000 0.0557 0.0078 0.0001 0.0000
VAR 0.0039 0.0051 0.0036 0.0037 0.0039 0.0050
MSE 0.319 0.408 0.324 0.254 0.310 0.401

2 1.5 BSQ 0.010 0.000 0.058 0.008 0.000 0.000
VAR 0.309 0.408 0.266 0.246 0.310 0.401
MSE 15.42 20.22 13.32 12.26 15.72 20.24

4 BSQ 0.01 0.00 0.00 0.01 0.00 0.00
VAR 15.41 20.22 13.26 12.25 15.72 20.24
MSE 0.153 0.0051 0.871 0.337 0.0070 0.0055

0.5 BSQ 0.149 0.0001 0.865 0.331 0.0027 0.0003
VAR 0.004 0.0050 0.006 0.006 0.0043 0.0052
MSE 0.465 0.411 1.157 0.601 0.316 0.405

4 1.5 BSQ 0.150 0.000 0.869 0.332 0.003 0.000
VAR 0.315 0.411 0.288 0.269 0.313 0.405
MSE 15.65 20.55 14.27 12.70 15.62 20.40

4 BSQ 0.15 0.00 0.89 0.34 0.00 0.00
VAR 15.50 20.55 13.38 12.36 15.62 20.40

11



Ms = (ms/n)
2 = n−1 and Mt = (mt/n)

2 = n−4/3. Note that these two choices of M applies

to T = [0, 1] only. For a general domain, similar to the idea of nearest neighbor estimators,

we can select M such that the number of pairs involved in the linear regression (19) equals

to N , where N = nm−m(m+ 1)/2 is the number of pairs involved in the regression (11).

For m = ms and m = mt, we denote the resulting M as MS and MT respectively.

We now conduct a small scale simulation to evaluate performance of our method and

compare it with existing methods. We use the same settings as in Section 3 for the mean

function g and error standard deviation σ. For n = 50, we generate design points from the

density function 0.9f1 + 0.1f2, where f1 and f2 are density functions of uniform random

variables on [0.2, 0.3] and [0, 1] respectively. For each generated design points, we generate

observations and compute σ̂2
R, σ̂

2
GSJ , σ̂

2
HKT (2) and our estimators. We repeat this process

20000 times and compute MSEs for all methods. Table 3 shows that σ̂2(Ms) and σ̂2(MS)

have the similar performance when g is flat. σ̂2(MS) trends to performs better when g

becomes rougher. σ̂2(MT ) and σ̂2(Mt) have similar performance for all cases. σ̂2(MS) and

σ̂2(Mt) always have smaller MSEs than the three existing methods, especially when ω is

large and/or σ is small. One possible explanation is that the design points are clustered.

Our method uses design points which are actually close to each other rather than consecutive

design points.

Table 3: MSEs of various estimators.

ω σ MSEσ̂2

R

MSEσ̂2

GSJ

MSEσ̂2

HKT
(2) MSEσ̂2(MS) MSEσ̂2(Ms) MSEσ̂2(MT ) MSEσ̂2(Mt)

0.5 0.0144 0.0055 0.0147 0.0032 0.0044 0.0036 0.0032
1 1.5 0.329 0.413 0.285 0.254 0.265 0.289 0.253

4 15.64 20.82 13.35 12.89 12.98 14.61 12.74
0.5 0.378 0.0165 0.724 0.0031 0.0082 0.0036 0.0031

2 1.5 0.759 0.434 1.072 0.254 0.270 0.291 0.255
4 16.35 20.57 14.47 12.42 12.48 14.12 12.26
0.5 0.720 0.201 0.737 0.036 0.647 0.0048 0.0056

4 1.5 1.150 0.654 1.102 0.287 1.065 0.282 0.265
4 16.95 21.08 14.53 12.51 14.47 14.13 12.43

5. AN APPLICATION

We now apply our method to the lake acidity data derived by Douglas and Delampady

(1990) from the Eastern Lakes Survey of 1984. It contains measurements of 1789 lakes in

three eastern US regions: northeast, upper Midwest and southeast. As in Gu and Wahba

(1993) and Wang and Ke (2002), we use a subset of 112 lakes in the southern Blue Ridge

mountain areas.

Of interest is the dependence of the water pH level (y) on the calcium concentra-

tion in log10 milligrams per liter (t1) and the geographical location (t2 = (t21, t22) where
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t21=latitude and t22=longitude). For the purpose of illustration, we consider nonparamet-

ric regression model (1) with three different cases of x: x = t1, x = t2 and x = (t1, t2).

These three cases correspond to three different domains of one, two and three dimensions

respectively. For the first two cases, we use simple Euclidean norms. For the third case, we

transform t1 and t2 to the same scale before estimating the variance. Estimates are listed

in Table 4. For comparison, we fit a cubic spline model, a thin-plate spline model and an

smoothing spline ANOVA model for three cases of x respectively using the ssr function in

the ASSIST package (Wang and Ke 2002). We use the generalized cross-validation (GCV)

and generalized maximum likelihood method (GML) to estimate the smoothing parameters

(Wahba 1990, Gu 2002, Wang and Ke 2002). The resulting residual-based estimates of σ2

are also listed in Table 4.

Table 4: Estimated variances.

σ̂2(MS) σ̂2(MT ) σ̂2
GCV σ̂2

GML

t1 0.0821 0.0708 0.0791 0.0848

t2 0.0884 0.0899 0.0912 0.0917

(t1, t2) 0.0544 0.0666 0.0655 0.0656

For the third case, there is no clear definition of the distance. For example, we may

define ‖xi−xj‖
2 = γ(t1i− t1j)

2 +(t21i− t21j)
2 +(t22i− t22j)

2, where γ is a scale parameter.

It is clear that γ also acts as a tuning parameter. Our simulations (not shown here) indicate

that the estimate depends on both the bandwidth M and the scale parameter γ. Future

research is required on the choices of these two parameters.

6. CONCLUSION

In this article we propose a new method for estimating the error variance in nonpara-

metric regression. We show, in both theory and simulations, that our method compares

favorably with some of the existing methods. The biggest advantage of our method is its

generality: it applies to general domains such as Euclidean d-space, circles and spheres,

where no method exists in the literature. Our method does not require dense design points

in the whole domain, thus avoiding the curse of dimensionality problem in high dimensional

space and allow potential gaps between design points.

The theoretical optimal bandwidth is usually too large for finite sample sizes. A good

choice of the bandwidth depends on many factors such as the mean function, signal-to-noise

ratio and the sample size. Our simulations indicate that two simple choices, ms = n1/2 and

mt = n1/3, work well in practice. More research is required on the choice of the bandwidth,

especially for general domains with unequally spaced design points.
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APPENDIX 1

Proof of Theorem 1

(a) Suppose that g(x) = µ+ δx and denote gi = g(xi). Then

Esk = σ2 +
1

2(n− k)

n
∑

i=k+1

(gi − gi−k)
2 = σ2 +

1

2(n− k)

n
∑

i=k+1

δ2(xi − xi−k)
2

= σ2 +
δ2

2(n− k)

n
∑

i=k+1

k2

n2
= σ2 +

k2

2n2
δ2, k = 1, 2, · · · ,m,

and

E(s̄w) =
1

N

m
∑

k=1

(n− k)Esk =
1

N

m
∑

k=1

(n− k)

(

σ2 +
k2

2n2
δ2

)

= σ2 +
δ2

2Nn2

m
∑

k=1

k2(n− k) = σ2 +
1

2
δ2d̄w.

Let

It =
m
∑

k=1

kt, t = 1, 2, · · · . (20)

We have

m
∑

k=1

wk(dk − d̄w)Esk =
m
∑

k=1

wkdkEsk − d̄wE(s̄w)

=
1

Nn2

m
∑

k=1

k2(n− k)

(

σ2 +
k2

2n2
δ2

)

− d̄w

(

σ2 +
1

2
δ2d̄w

)

=
δ2

2Nn4

m
∑

k=1

k4(n− k)−
1

2
δ2d̄2

w

=
1

2
δ2

(

I4

Nn3
−

I5

Nn4
− d̄2

w

)

,

and

m
∑

k=1

wk(dk − d̄w)
2 =

m
∑

k=1

wkd
2
k − d̄2

w =
I4

Nn3
−

I5

Nn4
− d̄2

w.
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Finally,

E(σ̂2) = E(s̄w)− E(β̂d̄w)

= E(s̄w)−
d̄w

∑m
k=1 wk(dk − d̄w)2

m
∑

k=1

wk(dk − d̄w)Esk (21)

= σ2 +
1

2
δ2d̄w −

d̄w
I4

Nn3 −
I5

Nn4 − d̄2
w

1

2
δ2

(

I4

Nn3
−

I5

Nn4
− d̄2

w

)

= σ2.

(b) It is straightforward to check that

σ̂2 =
m
∑

k=1

bkwksk =
1

2N

m
∑

k=1

(

bk

n
∑

i=k+1

(yi − yi−k)
2

)

=
1

2N
yTDy,

where the last equality can be checked directly by expanding both sides and comparing

corresponding terms. Thus to prove that σ̂2 = yTDy/tr(D), we only need to show that

tr(D) = 2N . Note that D does not depend on g. Setting g ≡ 0, we have

E(σ̂2) =
1

2N
E
(

yTDy
)

=
1

2N
E
(

ε
TDε

)

=
σ2

2N
tr(D),

where ε = (ε1, · · · , εn)
T . Now since σ̂2 is unbiased for any linear function g, we have

tr(D) = 2N .

APPENDIX 2

Proof of Theorem 2

1. P roof of (14)

Instead of using the formula Bias(σ̂2) = gTDg/tr(D), we calculate this quantity di-

rectly from (12) which gives a more accurate approximation. Note that N = nm−m(m+

1)/2. Similar to Appendix A, it is easy to check that

d̄w =
I2

Nn
−

I3

Nn2
=

m2

3n2
+ o(

m2

n2
), (22)

m
∑

k=1

wk(dk − d̄w)
2 =

I4

Nn3
−

I5

Nn4
−

(

I2

Nn
−

I3

Nn2

)2

=
4m4

45n4
+ o(

m4

n4
). (23)

Thus

η ,
d̄w

∑m
k=1 wk(dk − d̄w)2

=
m2

3n2 + o(m
2

n2 )
4m4

45n4 + o(m
4

n4 )
=

15n2

4m2
+ o(

n2

m2
). (24)
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Let gi = g(xi), g
′

i = g
′

(xi) and g
′′

i = g
′′

(xi), i = 1, · · · , n. Then

Esk = σ2 +
1

2(n− k)

n
∑

i=k+1

(gi − gi−k)
2

= σ2 +
1

2(n− k)

n
∑

i=k+1

(

k

n
g

′

i +O(
k2

n2
)

)2

= σ2 +
1

2(n− k)

n
∑

i=k+1

(

k2

n2
(g

′

i)
2 +O(

k3

n3
)

)

= σ2 +
k2

2n2

n

n− k

(

1

n

n
∑

i=1

(g
′

i)
2 −

1

n

k
∑

i=1

(g
′

i)
2

)

+O(
k3

n3
)

= σ2 +
k2

2n2

n

n− k

(∫ 1

0
(g

′

(x))2dx+O(
k

n
)

)

+O(
k3

n3
)

= σ2 +
k2

n2
J +O(

k3

n3
),

where J = 1
2

∫ 1
0 (g

′

(x))2dx. Consequently,

E(s̄w) =
1

N

m
∑

k=1

(n− k)(σ2 +
k2

n2
J +O(

k3

n3
))

= σ2 +
J

Nn2

m
∑

k=1

(n− k)k2 +O(
m3

n3
)

= σ2 +
I2

Nn
J −

I3

Nn2
J +O(

m3

n3
), (25)

and

m
∑

k=1

wk(dk − d̄w)Esk =
1

Nn2

m
∑

k=1

k2(n− k)

(

σ2 +
k2

n2
J +O(

k3

n3
)

)

− d̄wE(s̄w)

=

(

I2

Nn
−

I3

Nn2

)

σ2 +
J

Nn4
(nI4 − I5) +O(

m5

n5
)

−

(

I2

Nn
−

I3

Nn2

)(

σ2 +
I2

Nn
J −

I3

Nn2
J +O(

m3

n3
)

)

= J

{

I4

Nn3
−

I5

Nn4
−

(

I2

Nn
−

I3

Nn2

)2
}

+O(
m5

n5
). (26)
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Plugging (22)–(26) into (21) gives

E(σ̂2) = E(s̄w)−
I2
Nn −

I3
Nn2

I4
Nn3 −

I5
Nn4 −

(

I2
Nn −

I3
Nn2

)2

[

J

{

I4

Nn3
−

I5

Nn4
−

(

I2

Nn
−

I3

Nn2

)2
}

+O(
m5

n5
)

]

=

(

σ2 +
I2

Nn
J −

I3

Nn2
J +O(

m3

n3
)

)

−

{

I2

Nn
J −

I3

Nn2
J +

(

15n2

4m2
+ o(

n2

m2
)

)

O(
m5

n5
)

}

= σ2 +O(
m3

n3
).

2. P roof of (15)

We prove the following two lemmas first.
Lemma 1. Assume that m→∞ and m/n→ 0. Then

(a)
∑m

k=1 bk = m− 5m2

16n + o(m
2

n ).

(b)
∑l−1

k=1 bk = 9
4 l −

5l3

4m2 + o(l) +O(1), 1 ≤ l ≤ m.

(c)
∑m

k=1 b
2
k = 9

4m+ o(m).

(d)
∑m

k=l kbk = O(m2), 1 ≤ l ≤ m.

(e)
∑l−1

k=1 k
2bk = O(l3), 1 ≤ l ≤ m.

(f)
∑m

k=1 k
2bk = o(m3).

P roof. (a)

m
∑

k=1

(dk − d̄w) =
1

n2

m
∑

k=1

k2 −
m

Nn2

m
∑

k=1

(nk2 − k3)

=
m

Nn2

m
∑

k=1

k3 +
1

n2

(

1−
mn

N

)

m
∑

k=1

k2

=
m4

4n3
−

m4

6n3
+ o(

m4

n3
) =

m4

12n3
+ o(

m4

n3
).

Thus using (24),

m
∑

k=1

bk =
m
∑

k=1

(

1− η(dk − d̄w)
)

= m− η
m
∑

k=1

(

dk − d̄w
)

= m−

(

15n2

4m2
+ o(

n2

m2
)

)(

m4

12n3
+ o(

m4

n3
)

)

= m−
5m2

16n
+ o(

m2

n
).
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(b) It is easy to check that ηd̄w = 5/4 + o(1). Thus for 1 ≤ l ≤ m,

l−1
∑

k=1

bk =

l−1
∑

k=1

(

1− η(dk − d̄w)
)

= (l − 1)(1 + ηd̄w)− η

l−1
∑

k=1

dk

= (l − 1)

(

1 +
5

4
+ o(1)

)

−

(

15n2

4m2
+ o(

n2

m2
)

)(

l3

3n2
+O(

l2

n2
)

)

=
9

4
l −

5l3

4m2
+ o(l) +O(1).

(c) It is easy to check that
∑m

k=1(dk − d̄w)
2 = 4m5

45n4 + o(m
5

n4 ). Then

m
∑

k=1

b2k =
m
∑

k=1

(

1− η(dk − d̄w)
)2

= m− 2η
m
∑

k=1

(dk − d̄w) + η2
m
∑

k=1

(dk − d̄w)
2

= m−

(

5m2

8n
+ o(

m2

n
)

)

+

(

15n2

4m2
+ o(

n2

m2
)

)2(
4m5

45n4
+ o(

m5

n4
)

)

= m−
5m2

8n
+ o(

m2

n
) +

5

4
m+ o(m) =

9

4
m+ o(m).

(d) For 1 ≤ l ≤ m,

m
∑

k=l

kbk =
m
∑

k=l

k
(

1− η(dk − d̄w)
)

=
(

1 + ηd̄w
)

m
∑

k=l

k − η
m
∑

k=l

kdk

=

(

9

4
+ o(1)

)

O(m2)−

(

15n2

4m2
+ o(

n2

m2
)

)

O(
m4

n2
) = O(m2).

(e) For 1 ≤ l ≤ m,

l−1
∑

k=1

k2bk =
l−1
∑

k=1

k2
(

1− η(dk − d̄w)
)

=
(

1 + ηd̄w
)

l−1
∑

k=1

k2 − η
l−1
∑

k=1

k2dk

=

(

9

4
+ o(1)

)(

1

3
l3 +O(l2)

)

−

(

15n2

4m2
+ o(

n2

m2
)

)(

l5

5n2
+O(

l4

n2
)

)

=
3

4
l3 −

3l5

4m2
+ o(l3) = O(l3).

(f) Similar to part (e), we have

m
∑

k=1

k2bk =
(

1 + ηd̄w
)

m
∑

k=1

k2 − η
m
∑

k=1

k2dk =
3

4
m3 −

3

4
m3 + o(m3) = o(m3).

Lemma 2. Under the same conditions as in Theorem 2, we have

(a) gTD2g = O(m
5

n2 ).

(b) tr(D2) = 4nm2 − 103
28 m3 + 9

2nm+ o(m3) + o(nm).
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(c) gT(Ddiag(D)1) = O(m
4

n ).

(d) tr{diag(D)2} = 4nm2 − 103
28 m3 + o(m3).

P roof. (a) Since D is symmetric,

gTD2g = gTDTDg = (Dg)TDg , pTp, (27)

where p = Dg = (p1, p2, · · · , pn)
T . For i ∈ [m+ 1, n−m], using Lemma 1(f), we have

pi = 2gi

m
∑

k=1

bk −

m
∑

k=1

bkgi−k −

m
∑

k=1

bkgi+k

=
m
∑

k=1

bk(gi − gi−k)−
m
∑

k=1

bk(gi+k − gi)

=
m
∑

k=1

bk

(

k

n
g′

i −
k2

2n2
g

′′

i + o(
k2

n2
)

)

−
m
∑

k=1

bk

(

k

n
g′

i +
k2

2n2
g

′′

i + o(
k2

n2
)

)

= −
1

n2
g

′′

i

m
∑

k=1

k2bk + o(
m3

n2
) = o(

m3

n2
), m+ 1 ≤ i ≤ n−m.

For i ∈ [1,m], using Lemma 1(d), (e) and (f), we have

pi =
i−1
∑

k=1

bk(gi − gi−k)−
m
∑

k=1

bk(gi+k − gi)

=

i−1
∑

k=1

bk

(

k

n
g′

i −
k2

2n2
g

′′

i + o(
k2

n2
)

)

−

m
∑

k=1

bk

(

k

n
g′

i +
k2

2n2
g

′′

i + o(
k2

n2
)

)

= −
g

′

i

n

m
∑

k=i

kbk −

(

m
∑

k=1

bk
k2

2n2
g

′′

i +
i−1
∑

k=1

bk
k2

2n2
g

′′

i

)

+ o(
m3

n2
)

= O(
m2

n
) +O(

i3

n2
) + o(

m3

n2
) = O(

m2

n
), 1 ≤ i ≤ m.

Similar arguments show that pi = O(m
2

n ) for i ∈ [n−m+ 1, n]. Consequently,

gTD2g = pTp =

m
∑

i=1

p2
i +

n−m
∑

i=m+1

p2
i +

n
∑

i=n−m+1

p2
i = O(

m5

n2
).
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(b) Using Lemma 1, we have

tr(D2) = (n− 2m)







(

2
m
∑

k=1

bk

)2

+ 2
m
∑

k=1

b2k







+ 2
m
∑

l=1







(

m
∑

k=1

bk +
l−1
∑

k=1

bk

)2

+
m
∑

k=1

b2k +
l−1
∑

k=1

b2k







= (n− 2m)

{

4

(

m−
5m2

16n
+ o(

m2

n
)

)2

+ 2

(

9

4
m+ o(m)

)

}

+2
m
∑

l=1

(

m−
5m2

16n
+ o(

m2

n
) +

9

4
l −

5l3

4m2
+ o(l) +O(1)

)2

+O(m2)

= 4nm2 −
21

2
m3 +

9

2
nm+ o(m3) + o(nm) +

191

28
m3 + o(m3)

= 4nm2 −
103

28
m3 +

9

2
nm+ o(m3) + o(nm).

(c) Using Lemma 1(a), (b) and Lemma 2(a), we have

gT(Ddiag(D)1) = (Dg)T · diag(D)1 = pT · diag(D)1

=
m
∑

l=1

pl

(

m
∑

k=1

bk +
l−1
∑

k=1

bk

)

+
n−m
∑

l=m+1

pl

(

2
m
∑

k=1

bk

)

+
n
∑

l=n−m+1

pl

(

m
∑

k=1

bk +
n−l
∑

k=1

bk

)

=
m
∑

l=1

pl ·O(m) +
n−m
∑

l=m+1

pl ·O(m) +
n
∑

l=n−m+1

pl ·O(m)

= O(
m4

n
) + o(

m4

n
) +O(

m4

n
) = O(

m4

n
).

(d) Using Lemma 1(a) and (b), we have

tr{diag(D)2} = 2
m
∑

l=1

(

m
∑

k=1

bk +
l−1
∑

k=1

bk

)2

+
n−m
∑

l=m+1

(

2
m
∑

k=1

bk

)2

= 2
m
∑

l=1

(

m+
9

4
l −

5l3

4m2
+ o(m)

)2

+ 4
n−m
∑

l=m+1

(

m−
5m2

16n
+ o(

m2

n
)

)2

= 4nm2 −
103

28
m3 + o(m3).

Now we are ready to prove (15). As mentioned in Section 2.3, the last four terms in (13)

make up the variance. Using Lemma 1, Lemma 2 and the fact that σ4(γ4−3) = var(ε2)−2σ4,
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we have

var(σ̂2) =
{

4σ2gTD2g + 4gT(Ddiag(D)1)σ3γ3 + σ4tr{diag(D)2}(γ4 − 3) + 2σ4tr(D2)
}

/tr(D)2

=
1

4N2

{

O(
m5

n2
) +O(

m4

n
) + (var(ε2)− 2σ4)

(

4nm2 −
103

28
m3 + o(m3)

)

+2σ4

(

4nm2 −
103

28
m3 +

9

2
nm+ o(m3) + o(nm)

)}

=
1

4N2

{

var(ε2)

(

4nm2 −
103

28
m3

)

+ 9nmσ4 + o(m3) + o(nm)

}

=
1

n
var(ε2) +

9

4nm
σ4 +

9m

112n2
var(ε2) + o(

1

nm
) + o(

m

n2
).

3. P roof of (16)

The proof of (16) can be obtained immediately from (14) and (15).
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