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Thesis Abstract

Multi-Input Ground Vehicle Control Using Quadratic Programming

Based Control Allocation Techniques

John Harris Plumlee

Master of Science, August, 5 2004
(B.S.M.E., Auburn University, 2002)

79 Typed Pages

Directed by David M. Bevly and A. Scottedward Hodel

A quadratic programming based control allocation technique is proposed for the con-

trol of multiple inputs to a ground vehicle to track a desired yaw rate trajectory while

minimizing vehicle sideslip. Detailed models are derived for three vehicles, each possess-

ing different input capabilities: 1) front steering and front and rear differential braking.

2) front and rear steering and front and rear differential braking. 3) front and rear steer-

ing and individual torque control of each wheel. A method for the application of control

allocation techniques to a ground vehicle with coupled dynamics is presented. The pro-

posed control strategy uses quadratic programming accompanied by linear quadratic

regulator gains to provide intelligent combinations of input commands to a ground ve-

hicle in order to accomplish multiple objectives. Both nominal and failure scenarios

are examined and the results are presented along with a discussion of the effects of the

proposed controller’s design parameters. The control strategy successfully minimizes

opposing commands in the presence of conflicting objectives as well as maintains good

tracking in the event of a steering failure.
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Chapter 1

Introduction

Ground vehicles have become an almost essential part of modern life where they

are depended upon daily to provide services such as transportation for people and/or

cargo. For this reason, much research has been devoted to the overall advancement of

ground vehicle technology. Modern science has allowed for the production of ground

vehicles that can operate autonomously or semi-autonomously saving both time and

money. Even the military has come to rely on intelligent unmanned vehicles for per-

fomming routine and/or potentially dangerous tasks. Saftey is undoubtedly a major

source of motivation behind the increacing performance demands of manned ground ve-

hicles. Steer/brake/throttle-by-wire technology has allowed for passenger vehicle safety

systems such as driver assisted automated lane keeping [30] and stability control systems

[36] to become realizable. Performance requirements must be satisfied with complex ve-

hicle designs that incorporate by-wire technology and additional control inputs such as

differential braking and rear steering. The addition of differential braking as a control

parameter has proven to be successful in maintaining vehicle stability during drastic

maneuvers [34] and in rollover prevention [12], [13]. Much research has been conducted

on the control of multi-input ground vehicles and many methods have been developed

based on linear quadratic regulator/state feedback design [32, 35]. However, in order to

fully exploit the performance potential of a multi-input vehicle, a well designed control

allocation law may be required.

1
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The term control allocation in the general sense, refers to the distribution of a control

effort among the available effectors of a physical system in order to achieve a desired

objective. Any input parameter that can be used in a controlled manner, e.g., the steering

angle on a car, to manipulate system behavior may be thought of as an effector. The need

for control allocation arises in many different physical systems such as vehicle control,

chemical process control, and even production planning of manufacturing facilities.

In vehicle control system design, the problem of command generation is made even

more difficult by the fact that the input effectors have physical limitations that must

be considered. Traditionally, control allocation (CA) techniques have been used for

aerospace and underwater vehicle applications due to their ability to satisfy multiple

control objectives (e.g. torques in all three axes). However, CA techniques may also be

applied to a multi-input ground vehicle in order to accomplish more than one goal (e.g.

yaw rate tracking and sideslip minimization).

In the past, solutions to the CA problem of generating input commands that accom-

plish multiple objectives have been found with simple methods such as generalized inverse

or least squares approaches. These methods can provide fast online solutions but fail to

consider effector limitations. By posing the CA problem as a quadratic programming

(QP) problem however, the physical constraints of the effectors may be incorporated into

the solution. Although QP has been disregarded as a CA technique in the past due to

the computational time required to solve such a problem, increased processor speed and

the development of faster QP algorithms have allowed for QP to become a feasible CA

solution method.
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Another advantage of CA is its ability to account for failed or damaged effectors

and maintain the best possible desired performance with the remaining effectors. If the

dynamics of the vehicle model are coupled then a CA problem could result in which

conflicting objectives must be satisfied. Opposing effector commands will be produced

and poor tracking of the desired responses will result. This problem can be avoided by

setting up the QP problem in such a way that the dynamic coupling is effectively reduced

so that the most important objective is made a priority.

In this thesis, a method for the application of CA techniques to a ground vehicle

with coupled dynamics is presented. The proposed control strategy provides intelligent

combinations of input commands to a ground vehicle in order to accomplish multiple ob-

jectives. The control strategy successfully minimizes opposing commands in the presence

of conflicting objectives as well as maintains good tracking in the event of an effector

failure.

The remainder of this thesis is organized as follows. An introduction to the control

allocation problem and a review of control allocation techniques are presented in Chapter

2. A derivation of the vehicle models used for this research is presented in Chapter 3.

The design of the vehicle controller is discussed in Chapter 4. Simulation tests and

results are presented in Chapter 5. And finally, conclusions are drawn in Chapter 6.



Chapter 2

Control Allocation

2.1 Introduction

In this chapter, existing methods and approaches for control allocation are discussed.

Control allocation (CA) refers to the calculation of multiple input commands that will

cause a desired dynamic response in a physical system. Control allocation is of particular

interest to the vehicle control community where it plays a necessary role in the control

system design of overactuated vehicles. An overactuated vehicle is one in which different

combinations of effector commands can produce the same result. In many cases the

number of effectors available exceeds the number of states being controlled. For exam-

ple, a car with steering and differential braking capabilities can turn a corner either by

steering in the desired direction, by braking the wheels on the side of the vehicle cor-

responding to the desired direction, or by using some combination of these two inputs.

The control allocation problem is defined as the selection of which set of inputs to use

and the corresponding input command values.

A key feature of control allocation is that of reconfiguration. In the event an effector

failure occurs and is detected, the control effort is redistributed among the remaining

active effectors to minimize the tracking error. Therefore, the advantages of such multiply

redundant control systems can be realized not only through increased maneuverability

but also through the additional safety aspects they can provide. It is not surprising that

much research has been devoted to this subject and many different methods for finding

a solution to CA have been developed. Different methods of control allocation have been

4
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developed for aerospace vehicles [20], [17], marine vessels [24], and other areas where this

type of problem arises.

2.2 The Control Allocation Problem

Recent advances in technology have enabled the design of overactuated vehicles that

in turn lead to increasingly complex CA design requirements. Consider, in this chapter,

a vehicle with n actuators with respective command values u1,...,un. These commands

shall be assumed to be physically limited in the range u−i ≤ ui ≤ u+
i , or, in vector form

u− ≤ u ≤ u+, where u
∆
=
[

u1 · · · un

]T

. The general control allocation problem

is stated as the generation of a set of effector commands u that will match the actual

effect to some desired effect ū as closely as possible while minimizing the control effort

and obeying the position and rate constraints of the effectors. In other words, given a

desired response ū, solve

Bu = ū (2.1a)

u− ≤ u ≤ u+ (2.1b)

for the unknown command vector u where B is a m× n matrix of rank m defining the

effectiveness of the actuators. If multiple solutions exist, then choose the solution that

will minimize a predetermined cost function J(x). If there are no solutions u satisfying

the constraint set (2.1b), then the problem (2.1) is infeasible, and we instead compute a

command vector u such that Bu provides the best possible approximation of ū.
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2.3 Direct Control Allocation and Generalized Inverse Solutions

Direct control allocation is based on the concept of the attainable moment set (AMS)

of a vehicle as proposed by Duram in [15], [16]. The AMS is defined as the set of all

moment vectors (control effects ū) that can be achieved within the available control space

Ω = {u ∈ IRm : u− ≤ u ≤ u+}. The solution to the direct control allocation problem is

then to calculate a matrix G that maps the set of commands u to the resulting control

effect ū. If the desired control effect vector ū lies outside the AMS, it is clipped at the

boundary and the command vector which produces the maximum effect in the direction

of the original vector is used. The generalized inverse solution is described in [8] as any

matrix G : IRm → IRn which satisfies BG = Im. The most widely used generalized

inverse solution is the pseudo-inverse G = BT [BBT ]
−1

due to the fact that it will yield

the minimum 2-norm solution (or minimum control energy) [15]. The generalized inverse

solution is then found through multiplication of the pseudo-inverse B† of the effectiveness

matrix B by the desired control effect.

u = BT [BBT ]
−1
ū (2.2)

An alternative to the generalized inverse method is the weighted pseudo-inverse which

uses a weighting matrixQ in the pseudo-inverse calculation. The weighted pseudo-inverse

solution is calculated as

u = Q−1BT [BQ−1BT ]
−1
ū (2.3)

where the matrix Q may be selected to emphasize or de-emphasize the use of certain

effectors [8], [26].
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The cascaded generalized inverse (CGI) method has an advantage over the previous

methods in that it addresses actuator saturation. The CGI method solves the weighted

pseudo-inverse problem repeatedly. The effects of any saturated effectors are subtracted

from the desired effect and removed from the problem and the weighted pseudo-inverse

is solved again. This procedure is repeated until either the desired effect is achieved, all

effectors saturate, or fewer effectors remain than desired effects [26].

2.4 Daisy Chaining

The method of daisy chaining to solve the CA problem involves dividing the control

vector u and effectiveness matrix B into two or more groups. These groups are then used

successively to produce the desired effect ū. In mathematical notation, for k groups of

effectors

Bu =

[

B1 · · · Bk

]















u1

...

uk















= B1u1 + · · · +Bkuk (2.4)

where Bi, i = 1, . . . , k are considered full rank and invertible. The idea is then to use

a generalized inverse method to try and satisfy the control effect with the first group

of actuators while the other groups are held constant. If one or more effectors saturate

then the second group is employed to make up for the saturation while all other groups

are held constant. This process is repeated until either the desired effect is met or all

groups are saturated [15]. The disadvantage of daisy chaining lies in the fact that the

effectiveness of a group of effectors is limited by the most constrained effector in that
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group. Therefore, control authority is lost when effectors with similar physical limitations

are not grouped together (not all attainable moments are accessible) [8].

2.5 Optimization Based Control Allocation Methods

As stated in Section 2.2, the control allocation problem involves the selection of a

control vector u for a vehicle that 1) obeys the vehicle’s physical limits (2.1b) and 2)

provides the best possible approximation of the desired effect ū. Difficulty arises when an

approximate solution must be found because an exact solution is not possible, or when a

unique solution must be found and there are an infinite number of equally valid solutions.

Therefore, the CA problem (2.1) may be presented as the optimization problem

min
u

‖W1(Bu− ū)‖ + γ ‖W2(u− up)‖ (2.5)

subject to u− ≤ u ≤ u+

where up is a vector of preferred commands, and ‖·‖ represents the chosen norm by

which the accuracy of the solution u is measured (by which the distance between the

computed and desired solution is minimized). The ‖Bu− ū‖ term serves to minimize

the allocation error, the ‖u− up‖ term serves to minimize the total control effort based

on the selection of up, and γ is a weighting factor used to dictate which term is more

important. These concepts are appropriately referred to by Bodson [7] as the Error

Minimization and Control Minimization Problems, respectively.
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2.5.1 Least Squares

Traditional CA approaches are centered around a simple least squares approach. The

least squares method

min
u

1

2
uTQu (2.6)

subject to Bu = ū

is a minimization based on a weighted 2-norm (sum of the squared error) cost criteria

subject to linear equality constraints. For control allocation purposes, u is the set of

effector commands and Q is a weighting matrix chosen to prioritize effector usage. The

input effectiveness matrix B from the linear model (3.15) of a vehicle is incorporated

into the equality constraint to ensure that the solution vector u matches the desired

control effect vector ū. A computationally simple solution u to (2.6) may be found

using Lagrange multiplier techniques and is equivalent to the computation of a weighted

pseudo-inverse of a reference model. Although this method is easily implemented and

computationally efficient, it does not consider effector command limitations u− ≤ u ≤ u+

[7]. The constraints u− ≤ u ≤ u+ exist in practically all vehicle environments and can

drastically limit the control authority of a vehicle. Because the simplest of the control

allocation techniques do not take into account these important restrictions, more complex

mathematical optimization methods similar to LS (i.e. Quadratic Programming, Linear

Programming, Model Predictive Control, etc.) have been the most obvious solutions.



10

2.5.2 Linear Programming

Linear programming (LP) is an optimization technique involving the minimization

of a linear cost function subject to linear equality and inequality constraints. By using

a 1-norm cost criteria (sum of the absolute values of error), the CA problem (2.1) can

be written in standard LP form as demonstrated by Enns [18]. The standard form of a

linear program is

min
u

cTu (2.7)

subject to Bu = ū

u− ≤ u ≤ u+

The most popular methods for solving an LP problem are simplex methods [25] and

interior point methods [4]. The LP problem is based on the assumption that the solution

lies within the space U defined by the inequality constraints. The idea behind the simplex

method is to move along the boundary of the constraint set U from one extreme point

to another until a minimum cost is found where as interior point methods approach a

minimum from the interior of U rather than along the edges. The fact that LP solution

methods such as the simplex algorithm are easy to code and implement make LP an

attractive optimization technique. Hodel and Shtessel [22], and Callahan [11] proposed

the use of multiple LPs to provide a fast online estimate of the AMS of an aerospace

vehicle. Descriptions and evaluations of LP methods for control allocation are presented

in [7], [18], [23], [26]. It is shown in [18] and [23] that the LP solution uses as few effectors

as possible to match the desired effect ū. The drawback however, is that the use of exact
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inequality constraints requires more unknowns to be introduced into the problem making

the iterative solution methods required to solve a LP computationally expensive.

2.5.3 Quadratic Programming

Quadratic Programming (QP), like LS, is based on a weighted 2-norm optimization.

The general form of the QP problem is the same as that of the LP with the addition of

a quadratic term in the objective function.

min
u

1
2u

TQu+ cTu (2.8)

subject to Bu = ū

u− ≤ u ≤ u+

The Q and c terms are weights placed respectively on the quadratic and linear parts

of the cost function. These weights can be chosen to favor certain effectors and/or

weight the frequency content of the effector commands over time. The incorporation

of inequality constraints ensures that the set of commands u will always be inside the

attainable operating ranges of the effectors whether they be position limits, rate limits, or

any other limiting factor associated with the effectors. The 2-norm cost criteria causes

the feasible region U defined by the inequality constraints to be approximated by an

ellipsoid. This approximation prevents the solution from being exact but provides the

advantage of numerical simplicity. Unlike the LP solution, the QP solution will distribute

the control effort among all available effectors. The disadvantage is that a QP problem is

generally harder to solve than a LP problem. Many different methods have been devised

for a fast online solution to a QP problem for CA purposes [7], [10], [20], [18].
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2.5.4 Model Predictive Control

Model predictive control (MPC) has recently gained popularity in the vehicle con-

trol community due to advancements that significantly reduce the computational time

required to solve this type of optimization. MPC uses a parameterized linear vehicle

model to solve a finite horizon trajectory planning optimization. This problem can be

converted to QP notation and solved using multi-parametric quadratic programming

techniques similar to those described in [27]. The disadvantage of this technique is that

it requires a much larger QP problem than the one described in Section 2.5.3 to be

solved. MPC has been developed significantly in the chemical industry where plant dy-

namics allow for sufficient computational time. Recent advancements in MPC, however,

allow for a faster online solution by shifting some of the computational burden off-line

[5]. This has been proven to be an effective CA technique for rollover prevention of

ground vehicles [12] but still possesses significant computational complexity along with

a trade off between simplicity of online solution and memory to store off-line computed

solutions.



Chapter 3

Vehicle Model

3.1 Nonlinear Vehicle Model

In this chapter, the dynamic equations of motion for a ground vehicle model are

derived for a vehicle that possesses both front and rear steering capabilities as well as

individual torque control of each wheel. This general model is easily adapted to simpler

vehicles, e.g., vehicles with only front wheel steering, by the assignment of a constant

control input of zero to the appropriate (unavailable) control effectors. The free body

diagram (FBD) for the vehicle under consideration is shown in Figure 3.1. A right

y

tf

FyfL

tr

αfL

V

αrL

b a

r

FxrR

FxrL

δf

FxfL

FxfR

FyrL

FyrR FyfR

δr

β

x

Figure 3.1: Free body diagram of vehicle model

handed coordinate system is used for the derivation of the equations of motion. The

body fixed reference frame is labeled on the FBD in Figure 3.1 with its origin at the

vehicle’s center of gravity. The z axis is pointing down toward the ground, the x axis is

13
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pointing toward the front of the vehicle, and the y axis is pointing out to the vehicle’s

right side. In the figure, r is the yaw rate, V =
[

ẋ ẏ

]T

is the velocity vector acting

at the vehicle’s center of gravity, β represents sideslip angle, δ is the steering angle, t

is the track width, and a and b are distances from the vehicle center of gravity to the

front and rear axles, respectively. Subscripts f , r, R, L denote front, rear, right, and left

sides of the vehicle, respectively. For clarity, only the left slip angles (αfL and αrL) and

the right steer angles (δfR and δrR) are shown on the FBD. This model assumes that

left and right steer angles are the same for front and rear axles. Note that all forces F

and slip angles α are drawn in the positive direction such that lateral force Fy = −Cαα

where Cα represents tire cornering stiffness.

Newton’s laws of motion are applied to the FBD (Fig. 3.1). The sum of the moments

about the vehicle’s center of gravity is written as

∑

Mcg = Izψ̈ = a(FyfL cos δf + FyfR cos δf − FxfL sin δf − FxfR sin δf )

−
tf
2 (FyfL sin δf − FyfR sin δf − FxfL cos δf + FxfR cos δf )

−b(FyrL cos δr + FyrR cos δr + FxrL sin δr + FxrR sin δr)

− tr
2 (FyrL sin δr − FyrR sin δr − FxrL cos δr + FxrR cos δr)

(3.1)

where Iz is the moment of inertia about the yaw axis. The solution of (3.1) for ψ̈ yields

ψ̈ = ṙ = [a((FyfL + FyfR) cos δf − (FxfL + FxfR) sin δf )

−
tf
2 ((FyfL − FyfR) sin δf − (FxfL − FxfR) cos δf )

−b((FyrL + FyrR) cos δr + (FxrL + FxrR) sin δr)

− tr
2 ((FyrL − FyrR) sin δr − (FxrL − FxrR) cos δr)]/Iz

(3.2)
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which describes the nonlinear yaw dynamics of the vehicle.

The sideslip angle β is the angle between the vehicle’s actual velocity vector V and

its longitudinal velocity component Vx. Therefore, the vehicle fixed velocities and corre-

sponding accelerations due to sideslip are

Vx = V cosβ V̇x = V̇ cos β − V β̇ sin β

Vy = V sin β V̇y = V̇ sin β + V β̇ cos β

(3.3)

The effects of yaw rate are then included to give the complete expressions for acceleration

in the vehicle fixed reference frame

ẍ = V̇ cos β − V β̇ sinβ − rV sinβ (3.4)

ÿ = V̇ sin β + V β̇ cos β + rV cosβ (3.5)

The summation of the forces in the y axis yields

∑

Fy = mÿ = (FyfL + FyfR) cos δf + (FxfL + FxfR) sin δf

+(FyrL + FyrR) cos δr + (FxrL + FxrR) sin δr

(3.6)

Equation (3.5) is substituted into (3.6) and solved for β̇ to obtain the equation of motion

for sideslip

β̇ = [(FyfL + FyfR) cos δf + (FxfL + FxfR) sin δf + (FyrL + FyrR) cos δr

+(FxrL + FxrR) sin δr]/mV cos β − V̇ tan β/V − r

(3.7)
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The roll angle φ is the amount of rotation of the vehicle’s unsprung mass about its

roll axis x. In reality, the roll center of a vehicle with independent suspension is not

stationary during transient maneuvers, but since the work done in this thesis does not

rely heavily on extremely accurate roll dynamics a stationary roll center assumption is

made to simplify modeling. The FBD of the front view of the vehicle is split into sprung

and unsprung mass at the roll center as shown in Figure 3.2. A positive roll angle φ

z

h1

FsR

FsLmg

mÿ

φ

Rz

Ryy

(a) sprung mass

y

FzR

t
FzL

h2

FyR

FsR FsL

Ry

FyL

Rz

z

(b) unsprung mass

Figure 3.2: Free body diagram of vehicle’s front view

is shown, Ry and Rz are the reaction forces acting at the roll center, Fs represents the

combined force of the suspension coils and shock absorbers acting on the vehicle body

due to roll, h1 is the distance between the center of mass of the sprung mass and the

roll axis, and h2 is the distance between the roll axis and the ground. Summation of the

moments about the roll center of the sprung mass (Fig. 3.2(a)) yields

∑

Mrc = Ixφ̈ = −Bφφ̇−Kφφ−mÿh1 cosφ+mgh1 sinφ (3.8)
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where Ix is the moment of inertia about the roll axis, and Bφ and Kφ represent the total

roll damping and roll stiffness constants, respectively, due to the suspension forces Fs.

The solution of Equation (3.5) for φ̈ yields the equation for the nonlinear roll dynamics

of the vehicle.

φ̈ = [−Bφφ̇−Kφφ−m(V̇ sin β + V β̇ cos β + rV cos β)h1 cosφ

+mgh1 sinφ]/Ix

(3.9)

Expressions for the vertical forces at the tires are found by summing the moments

about the roll center of the unsprung mass (Fig. 3.2(b))

∑

Mrc = 0 =
t

2
(FzL − FzR) + h2(FyL + FyR) +Bφφ̇+Kφφ (3.10)

The summation of the forces in the y direction for both sprung and unsprung mass

FBDs and equating the reaction forces at the roll center gives the following relation

−mÿ = −(FyL + FyR) which is substituted into (3.10) to obtain

t∆Fz =
t

2
(FzR − FzL) = h2mÿ +Bφφ̇+Kφφ (3.11)

Through the substitution of the expression for ÿ (3.5) into the above equation (3.11),

equations for the vertical load difference at each axle can now be written:

∆Fzf = [Bφf φ̇+Kφfφ+ hfm(V̇ sin β + V β̇ cos β + rV cos β)]/tf

∆Fzr = [Bφrφ̇+Kφrφ+ hrm(V̇ sin β + V β̇ cos β + rV cos β)]/tr (3.12)
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Finally, the work in this thesis assumes the vehicle travels at a constant velocity. There-

fore, longitudinal weight transfer is not included in the expressions for the vertical load

at each tire.

FzrL = Fzr − ∆Fzr FzfL = Fzf − ∆Fzf

FzrR = Fzr + ∆Fzr FzfR = Fzf + ∆Fzf

(3.13)

3.2 Nonlinear Tire Model

A Pacejka tire model [3] is used to model the behavior of the tires. This nonlinear

tire model uses tire slip angle and vertical force to approximate the lateral force acting

on the tire. Figure 3.3 below shows lateral force plotted against tire slip angle for several

different vertical loads. The slip angle of the tire is calculated as α = tan−1(
Vy′

Vx′
). From
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Figure 3.3: Pacejka tire model lateral force curves
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Figure 3.4: Free body diagram of tire.

Figures 3.1 and 3.2 the velocity components for each tire is deduced and the equations

for tire slip angle are written as follows

αrL = tan−1

[

V sinβ−rb

V cos β+r tr
2

]

− δr αfL = tan−1

[

V sin β+ra

V cos β+r
tf
2

]

− δf

αrR = tan−1

[

V sinβ−rb

V cos β−r tr
2

]

− δr αfR = tan−1

[

V sinβ+ra

V cos β−r
tf

2

]

− δf

(3.14)

The maximum traction limit of each tire is assumed to be the product of the vertical

load Fz and the coefficient of friction µ between the tire and the road, i.e., Ft = Fzµ.

The friction circle (or friction ellipse) concept [19] requires the vector total of the lateral

and longitudinal tire forces to lie within this maximum friction limit of the tire Ft >
√

F 2
y + F 2

x . A plot of the friction circle is shown in Figure 3.5, from which one may

observe how the acceleration and braking force limits depend upon the amount of lateral

acceleration being experienced by the tire. Assumptions about the friction coefficient

and the role the friction circle plays in the CA problem are discussed in Section 5.1.
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3.3 Linear Vehicle Model

The proposed control law relies on a linear approximation of the vehicle model to pro-

duce meaningful commands. The two states being controlled are yaw rate and sideslip.

Therefore, Equations (3.2) and (3.7) are linearized around a constant velocity. Through

the use of small angle approximations, the linear vehicle model takes the state space

form







β̇

ṙ






=







− C0

mV
− C1

mV 2 − 1

−C1

Iz
− C2

V Iz













β

r






+Bu (3.15)

C0 = Cαf + Cαr

C1 = aCαf − bCαr

C2 = a2Cαf + b2Cαr

where Cαf and Cαr are constants representing the front and rear linearized tire cornering

stiffness values (per axle), B represents the input effectiveness matrix, and u is the vector

of corresponding effector commands. Equation (3.15) is also known as the linearized

“bicycle model” [14] because the effects of lateral and longitudinal weight transfer are

neglected. This model also assumes that steering and tire slip angles are the same for

right and left sides.

The control law proposed in this work is tested for several different vehicle effector

suites that require different input effectiveness matrices. The vehicle configurations and

their corresponding linear input effectiveness matrices are as follows:
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1) effector suite: front steer, front differential braking, and rear differential braking.

Bu =







Cαf

mV
0 0

a
Cαf

Iz

tf
2Iz

tr
2Iz


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

(3.16)

2) effector suite: front steer, rear steer, front differential braking, and rear differential

braking.

Bu =







Cαf

mV
Cαr

mV
0 0

a
Cαf

Iz
−bCαr

Iz

tf
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(3.17)

3) effector suite: front steer, rear steer, and individual torque control of each wheel.

The individual torque (at the wheel) is represented by a road/tire interface force.

Bu =


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

Cαf

mV
Cαr

mV
0 0 0 0

a
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Iz
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
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(3.18)
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3.4 Model Verification

The accuracy of the linear vehicle model is confirmed by comparing the step responses

to those of the nonlinear model derived in Sections 3.1 and 3.2. The eigenvalues of the

linear vehicle model (3.15) at 55mph are λβ = −5.8218 + 3.7249i and λr = −5.8218 −

3.7249i. For the maneuvers considered in this research, the steering inputs δ are never

required to exceed an angle of 1.5 degrees, therefore a step input of 1 degree is used to

validate the front and rear steering responses. The state outputs for inputs of δf = 1◦

and δr = 1◦ are shown in Figures 3.6 and 3.7 respectively.
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Figure 3.6: Step Response at 55mph for Front Steering input of δf = 1◦

Observe, from the linear vehicle models (3.16)-(3.18), that the differential braking

inputs for models (3.16) and (3.17) have the same effect as the individual wheel torque

inputs for model (3.18). Therefore, an accurate differential braking step response is

sufficient for verification of the individual wheel torque inputs. Unlike the steering inputs

δ, the differential braking/wheel torque inputs ∆Fx are expected to perform at their

limits, therefore a step input of 2000N is appropriate for model verification. The state

outputs for an input of ∆Fxf = 2000N is shown in Figure 3.8.
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Figure 3.7: Step Response at 55mph for Rear Steering input of δr = 1◦
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Figure 3.8: Step Response at 55mph for Front Differential Braking input of ∆Fxf =
2000N

The yaw rate and sideslip responses for the linear and nonlinear vehicle models follow

each other closely for the step inputs examined. Therefore, the linear model can be

confirmed to be an accurate representation of the nonlinear model for these conditions.



Chapter 4

Controller Design

In this chapter the design procedure for a quadratic programming (QP) based control

allocation (CA) law for a ground vehicle is presented. Recall from Chapter 3 that the

linearized model of the vehicle takes the form







β̇

ṙ






=







− C0

mV
− C1

mV 2 − 1

−C1

Iz
− C2

V Iz













β

r






+Bu (4.1)

where the input effectiveness matrix B has 3, 4, or 6 columns depending on the available

effector suite. The details of the 3, 4, and 6 input vehicle models will be presented

in Chapter 5. Observe that, for a given desired derivative vector ẋdes =
[

β̇ ṙ

]T

,

there is more than one possible corresponding input vector u. Therefore, the control law

design is reduced to the selection of a virtual input ū that is chosen to achieve a desired

derivative vector ẋdes =
[

β̇ ṙ

]T

. Then a QP-based CA algorithm is used to compute

corresponding input commands that, when possible, match the desired derivative vector

while obeying effector constraints. The design of the proposed QP-based CA algorithm is

predicated on the assumption that measurements or estimates of the vehicle’s yaw rate r

and sideslip angle β are available. These values may be estimated by traditional Kalman

filtering [34] or by fusion of information from Global Positioning Systems (GPS) and

inertial sensors [6, 31]. If available estimates are not sufficiently accurate, the QP law may

require the use of a robust nominal CA law such as that presented in [21]. Performance
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of the proposed controller in the presence of noisy state estimates is discussed further in

Chapter 5.

4.1 Control Law

Linear quadratic regulator (LQR) gains designed for a modified linear vehicle model

are used to produce the desired control effect, ū. The modified system assumes a perfect

input matrix B = I2x2 so that two ideal control effects are produced which represent the

yaw rate and sideslip objectives. The model is augmented with a yaw rate integrator

in order to improve asymptotic tracking of the desired yaw angle and to de-emphasize

sideslip angle β behavior in the control law optimization. The resulting state space model

used for the LQR control design is
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(4.2)

Since any practical vehicle control law will be implemented in discrete time, a linear

quadratic regulator (LQR) design is performed based on a discretized model of (4.2)

with a sampling time of T = 0.01s. The desired tracking control effect ū is found using

state error feedback
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ūr






= −K















β

ėr
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(4.3)
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where ėr = r − rdes and er is simply
∫

ėr. The controller gains K serve to drive the

vector of signals
[

β ėr er

]T

to zero, and
[

ūβ ūr

]T

are the resulting sideslip and

yaw rate control effects the control allocator must try to match.

4.2 Command Generation

The task of a control allocation law is to map the ideal command ū described above

to a set of physical vehicle actuator commands, taking into account actuator failures

and physical limitations such as position and/or rate limits. This task is addressed

through the use of a quadratic programming problem. Recall that the general form of

the quadratic programming problem is

min
u

1
2u

TQu+ cTu (4.4)

subject to Bu = ū

u− ≤ u ≤ u+

where the input effectiveness matrix B from the linear model (4.1) of the vehicle is

incorporated into the equality constraint to ensure that the solution vector u matches

the desired control effect vector ū.

The nature of the input matrix B in model (4.1) implies that the steering inputs

have the most control authority over both states while the differential braking and wheel

torque inputs can only affect vehicle sideslip indirectly through the coupling between the

two states. Due to this coupling, the QP optimization may produce effector commands

that work against each other in an effort to satisfy both objectives. An effector failure
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would result in an even greater compromise between objectives yielding larger tracking

errors. Therefore, a virtual input ν was added to the original linear vehicle model (4.1)

to address this problem. The new state space model is
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(4.5)

The effectiveness of ν through the variables κβ and κr is selected such that the DC gain

from r to ν is zero. This relaxes the equality constraint on the sideslip and removes some

of the control responsibility from the steering angle without affecting the yaw rate. In

other words, the QP algorithm will be allowed to use the virtual effector ν to match the

infeasible portion of the sideslip objective ūβ while the main goal of tracking the yaw

rate is left to the real effectors.

The first step in the selection of κβ and κr is to find the transfer function from r to

ν. The virtual input ν affects the states by the following relations

β̇ = −
C0

mV
β −

(

C1

mV 2
+ 1

)

r + κβν (4.6)

ṙ = −
C1

Iz
β −

C2

V Iz
r + κrν (4.7)

The frequency domain representations of these equations are obtained from the Laplace

transform

B(s)s = −
C0

mV
B(s) −

(

C1

mV 2
+ 1

)

R(s) + κβN(s) (4.8)
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R(s)s = −
C1

Iz
B(s) −
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V Iz
R(s) + κrN(s) (4.9)

In order to account for the coupling effect of ν on r, Equation (4.8) is solved for B(s)

B(s) =
κβN(s) −

(

C1

mV 2 + 1
)

R(s)

s+ C0

mV

(4.10)

Equation (4.10) is then substituted into (4.9) to yield an expression solely in terms of

R(s) and N(s)
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The transfer function representing the complete relationship between ν and r can now

be calculated from (4.11).

R(s)

N(s)
=
κrmIzV

2s+ κrIzV C0 − κβC1mV
2

mIzV 2s2 + IzV C0s− C1mV 2 − C2
1

(4.12)

Now, the appropriate values for κβ and κr may be selected. The transfer function (4.12)

will have zero DC gain under the following condition

κrIzV C0 − κβC1mV
2 = 0 (4.13)

For simplicity, a value of 1 is assigned to κβ . The corresponding value of κr that satisfies

(4.13) is then

κr =
C1mV

IzC0
(4.14)
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The resulting modified constraints on the QP problem (4.4) are
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(4.15)

In order to prevent an infeasible QP problem caused by tight inequality constraints

on ν, sufficiently large inequality constraints were chosen so that they never become

active. However, since the virtual effector ν has no physical meaning, it should generally

be assigned a large quadratic penalty to reduce its use and leave most of the control

responsibility up to the real effectors. The magnitude of the quadratic penalty Qν

on virtual effector ν does have a significant affect on the control action making it an

important design parameter. The selection of an appropriate value for Qν is discussed

further in Chapter 5.



Chapter 5

Simulation and Results

Results of the control and control allocation laws tested in simulation on several

vehicles are presented in this chapter. The simulation uses the full nonlinear vehicle

model (3.1)-(3.13) developed in Chapter 3 with the nonlinear tire model (3.14). The CA

laws were tested on vehicles with 3, 4, and 6 input capabilities under nominal operation

as well as a failure scenario. Recall from Chapter 4 that the control action is significantly

affected by the choice of the quadratic penalty Qν placed on the virtual effector ν. To

offer insight as to how the over all performance is affected, each case was tested for

two different weights; Qν = 1e3 and Qν = 1e7. Simulations were performed in the

Matlab/Simulink simulation environment. A single sine wave oscillation corresponding

to a double lane change maneuver was computed off-line and used as the desired yaw

rate trajectory. For each scenario the vehicle was simulated at constant velocities of

45, 55, and 65mph. This assumes a separate controller regulates fuel flow to the engine

during differential braking commands to maintain a constant speed.

5.1 Effector Limitations

A constant position limit of ±0.5rad(≈ 30◦) was placed on the steering angle of

the front and rear tires. The limits placed on the differential braking commands were

calculated online in accordance to the friction circle concept discussed in Section 3.2. In

reality, the peak friction coefficient µ between the tire and road is a function of the veritcal

load Fz. However this work assumes a constant value of µ = 0.8 for simplicity. The
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maximum tractional force for each tire is calculated as Ft = µFz. Then the maximum

braking/acceleration force that can be applied without producing slippage is F±
x =

±
√

F 2
t − F 2

y . Researchers have shown that online estimates of vertical force and road

friction coefficient are possible through the use of extended Kalman-Bucy filtering and

Bayesian hypothesis selection [29]. Alternatively, the underestimation of road friction

coefficient has been shown to provide conservative approximations of maximum braking

force available to the vehicle [1].

5.2 Effector Failures

Any reduction in the effectiveness of an effector is considered a failure. Failures may

be caused by hardware malfunction or by damage inflicted upon the vehicle. Regardless

of the cause, an effector failure always results in decreased maneuverability jeopardizing

the safety of the vehicle and its passengers. During a detected failure situation, control

allocation has the ability to reconfigure the vehicle’s remaining effectors in an effort to

maintain the least amount of tracking error possible.

In order to demonstrate the reconfigurable abilities of the controller, a steering failure

is examined in which the steering angle of the front tires is stuck at its current position.

For example, this could represent the failure of the drive motor on a steer-by-wire vehicle.

The front steering input is available to all of the vehicle models and provides more

control authority over yaw rate and sideslip than any of the other effectors. Therefore, a

comparison of effector suites can be made in addition to an evaluation of the controller’s

performance during a steering failure.



33

Failures were implemented by scaling the columns of the input effectiveness matrix

B from Equation (3.15) corresponding to the failed effector. Then the corresponding

inequality constraints were set equal to the previous command. Actual implementation

would require the controller to be alerted of a failure through an on-board vehicle di-

agnostic system such as the one demonstrated in [28]. Also, online calculation of input

effectiveness matrix B would be necessary due to its dependence on both failure mode

and velocity.

5.3 The Effects of Noise

The job of the QP based CA routine is to match the virtual command ū obtained

from the LQR control law, therefore any noise in the virtual command will be tracked by

the resulting effector commands. Perfect state measurements or estimates are desirable

in nearly all cases of closed loop control. In reality however, sensor noise, process noise,

or other disturbances sometimes prevent sufficiently clean signals from being available.

Fortunately, much research is devoted to this subject and new techniques are constantly

being developed which allow for cleaner and more accurate estimates. In [2], the authors

propose the use of GPS measurements and a model based Kalman filter to estimate

vehicle yaw rate and sideslip angle. Provided with a perfect vehicle model and known

process noise covariance, the state estimation error for this method at a 50Hz update

rate is predicted to be 0.2012 deg/s for yaw rate and 0.1101 deg for sideslip. These values

were used as guidelines for implementing appropriate amounts of noise in the simulation.

This was done for the sole purpose of demonstrating the proposed controller’s perfor-

mance under realistic operating conditions. Figure 5.1 shows the resulting commands
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and corresponding tracking performance for the 3-input vehicle model in the presence

of noisy state estimates. The vehicle dynamics filter out most of the noisy inputs and
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Figure 5.1: Controller performance in the presence of noise. 3-input vehicle model at
55mph, Qν = 1e7.

the yaw rate is still tracked with very little error. The noisy input commands are still

unfavorable due to wear and tear on the hardware and/or ride discomfort. A QP based

CA routine has the ability to address this issue by weighting the frequency content of the
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output commands. The frequency weighted sign preserving formulation of the QP prob-

lem proposed in [33] has been shown to successfully cut out some of the high frequency

content of the effector commands.

5.4 Results

The main focus of this research is the development and evaluation of a control al-

location scheme for ground vehicle applications and therefore neither disturbances nor

sensor noise were simulated in the following experiments. The results presented here are

for relative comparison only and are not a measure of true performance (qualitative not

quantitative). The root mean squared (RMS) errors of yaw rate and sideslip tracking are

used to compare algorithms and assess the effectiveness of the controller in each scenario.

Vehicle Model - 3 Inputs

The 3-input vehicle model has front steering and differential braking capabilities for

the front and rear axles.

Bu =







Cαf

mV
0 0

a
Cαf

Iz

tf
2Iz

tr
2Iz





















δf

∆Fxf

∆Fxr















(5.1)
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Vehicle Model - 4 Inputs

The 4-input vehicle model possesses the same effector suite as the 3-input model with

the addition of rear steering δr.

Bu =


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mV
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mV
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(5.2)

The addition of rear steering changes the control problem such that the yaw rate no longer

dictates the trajectory. A vehicle with four wheel steering can change lanes without

inducing any yaw by steering all four tires in the same direction. For this reason, rear

steering has made its way into production automobiles under claims of increased high

speed stability [9].
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Vehicle Model - 6 Inputs

The 6-input vehicle model has front and rear steering capabilities along with individual

torque control of each wheel.

Bu =






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(5.3)

This model resembles a vehicle with separate electric motors at each wheel that can

provide independent braking or acceleration forces generated by torques at each wheel.

Differential braking can only provide a yaw torque by providing a braking force to one

side of the vehicle. Individual torque control however, has the ability to induce the same

amount of yaw torque by applying less braking force to one side of the vehicle while

accelerating the wheels on the opposite side by an equal amount. Therefore, individ-

ual torque control of each wheel provides much more maneuverability than differential

braking alone and can maintain vehicle speed.

5.4.1 Nominal Case

The front steering angle has the most control authority in all three of the considered

vehicle models. Therefore, it is the primary effector used to minimize the main objective

of tracking the yaw rate. Due to the coupling of the yaw rate and sideslip equations
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of motion (Equations (3.2) and (3.7) respectively), the QP optimization results in com-

mands for all other available effectors that oppose the front steering command in an

effort to keep the sideslip angle small. The importance of the sideslip objective can

be manipulated by the choice of the quadratic penalty on the virtual effector. This is

shown by the differential braking commands for the 3-input vehicle model. A quadratic

penalty of Qν = 1e3 results in minimal use of the differential braking commands as the

controller relies heavily on the virtual effector to minimize sideslip. Less braking force

opposing the steering angle allows for better yaw rate tracking at lower speeds. The

larger penalty of Qν = 1e7 makes the sideslip objective more of a priority for the real ef-

fectors. Therefore, Qν = 1e7 provides slightly better sideslip minimization for all vehicle

models under nominal operation. The difference in magnitude of the braking commands

for the 3-input vehicle is shown in Figure 5.2 with plots of the commanded braking force

for different values of Qν . The corresponding difference in sideslip tracking appears to

be small for the 3-input vehicle model (Figure 5.3a) while the difference for the 4-input

model is more significant (Figure 5.3b).
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Figure 5.2: Nominal case braking commands at 55mph for different values of Qν
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Figure 5.3: Nominal case sideslip angle tracking at 55mph.

The results for each of the mentioned virtual effector weights Qν = 1e3 and Qν = 1e7

are included in the tabulated results at the end of the chapter. For the sake of consistency

all of the figures for the nominal case are results from simulations run with a quadratic

penalty of Qν = 1e7 on the virtual effector.

The 3-input vehicle model has the least amount of effectors to oppose the front steering

input and is able to provide lower RMS yaw rate tracking error than the other two vehicle

models. Similar to the front steering input, rear steering also has a direct effect on both

states. The linear model (5.2) reveals that the front and rear steering inputs affect

sideslip in the same manner but have an opposite effect on the yaw rate. The resulting

commands will steer all tires in the same direction. The front wheels must be commanded

a larger angle than the rear however, to produce a yaw rate. These commands will result

in a lane change maneuver but the yaw rate tracking will be poor. Figure 5.4 shows the

large rear steering command and poor yaw rate tracking that results when a nominal

weight of Qδr
= 1 is used. Since the rear steering input has the ability to directly

affect both states, the rear steering commands are unaffected by the choice of the virtual
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Figure 5.4: Poor yaw rate tracking due to rear steering command. Qδr
= 1

effector penalty Qν . A large quadratic weight of 1e10 was therefore assigned to δr to

reduce the undesirable commands and ensure good yaw rate tracking. Figure 5.6 shows

the rear steering command for the new weighting matrix Q along with the improved yaw

rate tracking. The design goal of the controller is to track a desired yaw rate, therefore

all of the results generated for this thesis utilize a quadratic penalty of 1e10 for the rear

steering input. The 6-input vehicle model provides the same performance as the 4-input

model for the nominal case when Qν = 1e3.

5.4.2 Failure Case

In the event of a front steering failure, the controller must cancel the effect caused by

the front wheels in addition to maintaining good yaw rate tracking. This type of failure

is difficult to recover from, even for the double lane change maneuver considered. The

results in Table 5.2 show that a lower quadratic penalty of Qν = 1e3 gave the lowest

tracking error for both yaw rate and sideslip for all of the vehicle models.

Figure 5.8 displays the controller’s ability to maintain best possible yaw rate tracking

through reconfiguration while respecting the limitations of the remaining effectors. Both
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of the differential braking commands hit their limits but are still unable to provide enough

force to track the desired yaw rate. The 4-input vehicle model is able to provide good

yaw rate tracking even during a serious failure. Figure 5.9 shows that the rear steering

and the differential braking are necessary to make up for the jammed front wheels. The

6-input vehicle model provides slightly better performance than the 4-input model in

the failure case due to its ability to keep the wheel torque commands further from their

limits than the differential braking.

Table 5.1: Nominal Case - no failures
3-Input 4-Input 6-Input

Vel Qν RMS r RMS β RMS r RMS β RMS r RMS β
(mph) (1e∗) (deg/s) (deg) (deg/s) (deg) (deg/s) (deg)

45 3 0.0778 0.0222 0.1296 0.0220 0.1296 0.0220
45 7 0.0837 0.0170 0.1678 0.0081 0.1747 0.0085

55 3 0.0381 0.1145 0.0485 0.1135 0.0485 0.1135
55 7 0.0376 0.1039 0.0587 0.0700 0.0612 0.0630

65 3 0.1452 0.2826 0.1111 0.2781 0.1111 0.2781
65 7 0.1375 0.2685 0.0921 0.2203 0.0885 0.2093

Table 5.2: Front Steering Failure at 2.25s
3-Input 4-Input 6-Input

Vel Qν RMS r RMS β RMS r RMS β RMS r RMS β
(mph) (1e∗) (deg/s) (deg) (deg/s) (deg) (deg/s) (deg)

45 3 4.5795 0.5797 0.3920 1.4248 0.3867 1.2255
45 7 4.8792 0.5983 0.5167 1.6312 0.5449 1.4367

55 3 3.0645 0.7366 0.2744 1.5617 0.2645 1.3770
55 7 3.5522 0.7408 0.3232 1.6971 0.3295 1.5233

65 3 1.9753 0.9872 0.5794 1.8633 0.5418 1.6785
65 7 2.3252 0.9797 0.5869 1.9694 0.5553 1.7940
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Figure 5.5: Nominal Case 3-Input: 55mph using Qν = 1e7
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Figure 5.7: Nominal Case 6-Input: 55mph using Qν = 1e7
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Figure 5.8: Steering Failure, 3-Input: 55mph using Qν = 1e3
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Figure 5.9: Steering Failure 4-Input: 55mph using Qν = 1e3
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Figure 5.10: Steering Failure 6-Input: 55mph using Qν = 1e3



Chapter 6

Conclusion

In this thesis, a quadratic programming based control allocation procedure has been

shown to provide intelligent distribution of control effort among the effectors in both

nominal and failure cases. The addition of the virtual effector ν provided a decoupling

effect in the QP optimization so that opposing commands would be minimized in the

presence of conflicting objectives. The resulting QP problem setup produces commands

which do their best to keep the sideslip angle small while maintaining accurate tracking

of the desired yaw rate. The simulation results show that the selection of the quadratic

weight matrix Q, the virtual effector weight Qν in particular, significantly affects the

output dynamics. The choice of Qν = 1e7 gave good sideslip minimization in the nominal

case while yaw rate tracking was only better for speeds of 55 and 65mph. Qν = 1e3 gave

the best tracking for both objectives during a steering failure. The extra maneuverability

provided by additional effectors is a clear advantage in the failure case. The 3-input

vehicle model could not track the desired yaw rate but the 4-input and 6-input models

both gave very good results. The 6-input vehicle slightly out performed the 4-input

vehicle during the failure case for Qν = 1e3. The proposed control strategy offers

different degrees of design freedom which should be taken into account depending on

the specific design goal.

The majority of control allocation research has been published for aerospace and

underwater applications where overactuated vehicles are necessary for good maneuver-

ability in three dimensional space. Overactuated ground vehicles are becoming more

48
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popular however, as performance demands increase with the advancement of technol-

ogy. The overactuated ground vehicle models presented in this thesis have the ability to

satisfy multiple control objectives which necessitate the development of a good control

scheme. Control allocation and its reconfiguration abilities prove to be very useful in

dealing with overactuated systems such as the proposed ground vehicle models. Although

the steering failure presented is not likely in today’s mechanically steered automobiles,

the fear of such a failure has prevented steer-by-wire systems from being implemented

in production vehicles. The steer-by-wire concept has drawn a lot of attention in the

area of vehicle stability control systems, and the proposed controller’s ability to recover

from a steering failure could be of significant value in this area of research. Overall, for

basic control allocation purposes the proposed QP based method provides fast on-line

commands yielding good results.

The results presented here are very promising and naturally lead to areas of future

investigation. The simulation of maneuvers other than a double lane change should

offer more insight into the controller’s behavior and allow for the development of an

intelligent strategy for tuning the weighting matrices (Q and c) of the QP problem.

Also, an evaluation of driver-in-the-loop performance would be necessary if such a control

strategy were to be used in a vehicle stability control system. Another logical step in

continuing this research is actual implementation and testing, but a couple of issues must

first be addressed:

1. The controller is only able to reconfigure the effector commands if it is alerted of

a failure, therefore a suitable fault detection system must be incorporated into the

control system design.
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2. In Chapter 5, it was shown that noisy state estimates will cause the controller to

produce high frequency effector commands. Future work will include investigating

new and existing ways to alter the frequency content of the QP solution in order

to achieve smoother commands.

The CA problem is a relatively small scale problem and the solution does not change a

great deal from one time step to the next. Most QP software that is currently available

is for finding an accurate solution to large scale problems, and is therefore not very

efficient for smaller problems. Future work also involves the development of a fast QP

solver geared toward finding an approximate solution to small scale problems.



Appendix A

Computer Code

A.1 Initialization and Simulation Routine

% main.m - This mfile is the main file. It sets up the desired yaw

% rate trajectory and initializes the constant vehicle parameters and

% linear vehicle model used by the controller. It also calculates the

% LQR gains and sets up the desired failure case. The simulink

% simulation file car4.mdl is then run one time for each velocity

% specified in the vector ’vel’ and for each quadratic weight on the

% virtual effector specified in the vector ’wBeta’.

clear all

close all

clc

% set up desired yaw profile===========================================

lanes = 2; %how many lanes to change(setup desired position vector)

psi_des(1) = 0;%lane change ~4m = 157.5in

rdes(1) = 0;

tt = 0;

dt = 0.01; %time step

in = 0;

for ii = 1:1200

if ii<396

psi_des(ii) = 0;

rdes(ii) = 0;

pos_des(ii) = 0;

end

if ((ii>395) & (ii<788))

psi_des(ii) = 0.075*(1-cos(1.60*tt(ii-1))); % desired heading

rdes(ii) = (psi_des(ii) - psi_des(ii-1))/dt; % desired yaw rate

pos_des(ii) = in+(psi_des(ii-1)+psi_des(ii))*dt/2;

in = pos_des(ii);

end

if ii>=788

psi_des(ii) = 0;

rdes(ii) = 0;
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pos_des(ii) = in;

end

tt(ii) = dt*(ii-1);

end

r_des = [tt’ rdes’];

psi_des = [tt’ psi_des’];

pos_des = [tt’ lanes*13.58*pos_des’];

% Project parameters ==================================================

g = 9.81; % gravity (m/s^2)

lb_N = 4.448; % converts lbs to N

rad_d = 180/pi; % converts radians to degrees

% car parameters %

L = 2.715; % wheelbase of car (m)

T_f = 1.554; % track width of front axle (m)

T_r = 1.534; % trach width of rear axle (m)

W = 13735.424; % curb weight of car + 200lb driver(N)

a = 1.013; % distance from front wheel to cg (m)

b = L-a; % distance from rear wheel to cg (m)

Wf = W*b/L; % weight of front 1/2 car (N)

Wr = W*a/L; % weight of rear 1/2 car (N)

mass = W/g; % mass of car (kg)

Ixx =(0.18*3088-150) *32.174*0.04214011; %roll moment of inertia

Iyy =(0.99*3088-1149)*32.174*0.04214011; %pitch moment of inertia

Izz =(1.03*3088-1206)*32.174*0.04214011; %yaw moment of inertia(kg*m^2)

hcg = 0.4*1.4554; %height of center of gravity(m)(40%roof height)

hf = 0.127; hr = 0.127; % height of roll center in front & rear (m)

del_h = hr-hf; % difference in roll center heights

if del_h == 0 % calc distance between cg and roll axis

h1 = hcg-hf;

else

h2 = a*del_h/(a+b);

h1 = hcg-hf-h2;

end

Ca_f = 1975*180/pi; % tire stiffness x2 front axl (N/rad)

Ca_r = 1575*180/pi; % tire stiffness x2 rear axl (N/rad)

% Roll stiffness for Front and Rear %

Kphf = 750*180/pi; % total stiffness fr axl (N*m/rad)

Kphr = 650*180/pi; % total stiffness rr axl (N*m/rad)
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Kus=Wf/(Ca_f*pi/180)-Wr/(Ca_r*pi/180) % understeer gradient

count = 1;

vel = [45, 55, 65]; % simulate at these velocities (mph)

for ii = 1:length(vel)

% Linear Car Model ================================================

V = vel(ii)*0.44704; % mi/hr x0.44704 =(m/s)

C0 = Ca_f + Ca_r;

C1 = a*Ca_f - b*Ca_r;

C2 = a^2 * Ca_f + b^2 * Ca_r;

A = [-C0/(mass*V), -C1/(mass*V^2)-1 ; %[beta]

-C1/Izz, -C2/(V*Izz) ]; %[ r ]

B = [Ca_f/(mass*V), Ca_r/(mass*V), 0, 0, 1;%[delt_f]

a*Ca_f/Izz, -b*Ca_r/Izz, T_f/(2*Izz), %[delt_r]

T_r/(2*Izz), C1*mass*V/(Izz*C0)]; %[delFxf]

%[delFxr]

%[virEff]

C = [1 0; 0 1];

D = zeros(size(B));

[mm,nn]=size(B); % Quad_Prog s-function parameters

% Controller Gains ================================================

[Ad, Bd] = c2d(A,B,0.01); % discrete B is used by QP (Bd*u = ubar)

% add integrators to sys to minimize error

Ap = [A, zeros(2,1);0, 1, 0];

Bp = [1 0; 0 1; 0 0];

[Ad, Bpd] = c2d(Ap,Bp,0.01); %gains computed assuming perfect input

[K,S,E] = dlqr(Ad,Bpd,0.5*eye(3),eye(2)); % compute LQR gains

algName = {’QP’};%,’SP’};%,’LS’};

algFlg = [1];

for jj = 1:length(algFlg)

% Run Simulation ==============================================

mu = 0.8; %approx coef of static friction between tire and road

algorithm = algFlg(jj); % 1: QP, 3: SPQP, 0: LS

wBeta = [1e3 1e7]; %quadratic weight on "virtual-effector"
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Beta = [3 7];

% implement failures

fault1 = diag([1, 1, 1, 1, 1]); % condition before failure

thresh = 5.25; % time of failure

fault2 = diag([0, 1, 1, 1, 1]); % condition after failure

FailName = ’Fsteer’; % name of the failure

for kk = 1:length(wBeta)

wB = wBeta(kk);

% save all simulation data

cmd = sprintf(’save results\\%s_%s_B%i_%i.mat yawRateR

sideslipR rollRateR rollAngR yawErrR yawDes

posDes Cmds psiDes X Y heading sigma V

algorithm Bd fLim rLim ubar’, FailName,

algName{jj}, Beta(kk), vel(ii));

fprintf(’running simulation %i of %i ... ’, count,...

length(vel)*length(algFlg)*length(wBeta));

sim(’car4’,[3, 10]); % run the simulation

fprintf(’done\n’);

eval(cmd);

count = count + 1;

end

end

end

analysis(vel,algName,Beta,FailName); % function to analyze sim results

% plots; % generate plots

A.2 S-function Implementation of the Vehicle Model

% John Plumlee

% car_eom.m - This s-function simulates the nonlinear differential

% equations of motion for the 4 wheeled car model with front and rear

% steering capabilities.

function [sys,x0,str,ts] = car_eom(t,x,u,flag)

switch flag,

case 0, [sys,x0,str,ts]=mdlInitializeSizes;
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case 1, sys=mdlDerivatives(t,x,u);

case 3, sys=mdlOutputs(t,x,u);

case { 2, 4, 9 }

sys = []; % Unused flags

otherwise error([’Unhandled flag = ’,num2str(flag)]);

end

%======================================================================

function [sys,x0,str,ts]=mdlInitializeSizes

global betadot

betadot = 0; % used by dFz, must be global

sizes = simsizes;

sizes.NumContStates = 8;

sizes.NumDiscStates = 0;

sizes.NumOutputs = 8;

sizes.NumInputs = 7;

sizes.DirFeedthrough = 0;

sizes.NumSampleTimes = 1; % at least one sample time is needed

sys = simsizes(sizes);

x0 = [0 0 0 0 0 0 0 0]; % initial conditions

str = []; % str is always an empty matrix

ts = [0 0]; % initialize the array of sample times

return

%======================================================================

function xdot=mdlDerivatives(t,x,u)

global betadot

% car parameters %

g = 9.81; % accelleration due to gravity (m/s^2)

mu = 0.85; % apprx cf of static friction b/w tire and road

L = 2.715; % wheelbase of car (m)

T_f = 1.554; % track width of front axle (m)

T_r = 1.534; % trach width of rear axle (m)

W = 13735.424; % curb weight of car + 200lb driver(N)

a = 1.013; % distance from front wheel to cg (m)

b = L-a; % distance from rear wheel to cg (m)

Wf = W*b/L; % weight of front 1/2 car (N)

Wr = W*a/L; % weight of rear 1/2 car (N)

mass = W/g; % mass of car (kg)

Ixx = (0.18*3088-150)*32.174*0.04214011; %roll moment of inertia

Izz = (1.03*3088-1206)*32.174*0.04214011; %yaw moment of inertia(kg*m^2)

hcg = 0.4*1.4554; % height of center of gravity (m(40%roof height)
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hf = 0.127; hr = 0.127; % height of roll center in front & rear (m)

del_h = hr-hf; % difference in roll center heights

if del_h == 0 % calc distance between cg and roll axis

h1 = hcg-hf;

else

h2 = a*del_h/(a+b)+hf;

h1 = hcg-h2;

end

% Roll stiffness and damping coeffs %

Kphf = 750*180/pi; % total stiffness front axle (N*m/rad)

Kphr = 650*180/pi; % total stiffness rear axle (N*m/rad)

Bphf = 900; % total damping front axle (N*m*s/rad)

Bphr = 850; % total damping rear axle (N*m*s/rad)

% Inputs

delt_f = u(1); % steer angle of inner tire (rad)

delt_r = u(2); % steer angle of outer tire

DFx_f = u(3); % differential braking command front axle (N)

DFx_r = u(4); % differential braking command front axle

Fxf = u(5); % front axle drive force? (N)

Vdot = u(6); % acceleration (m/s^2)

V = u(7); % Velocity (m/s)

%States

beta = x(1); % sideslip angle (rad)

psidot = x(2); % yaw rate (rad/s)

psi = x(3); % yaw/heading angle (rad)

phidot = x(4); % roll rate (rad/s)

phi = x(5); % roll angle (rad)

% vertical force difference across axle, front and rear

dFzf = (Kphf*phi+Bphf*phidot + Wf/g*hf*(Vdot*sin(beta)...

+V*betadot*cos(beta) + psidot*V*cos(beta)))/T_f;

dFzr = (Kphr*phi+Bphr*phidot + Wr/g*hr*(Vdot*sin(beta)...

+V*betadot*cos(beta) + psidot*V*cos(beta)))/T_r;

Fzf = Wf/2; % normal static load on front tires

Fzr = Wr/2; % normal static load on rear tires

if dFzf > Fzf % restrict 2 wheel lift-off

dFzf = Fzf;end

if dFzr > Fzr

dFzr = Fzr;end
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FzRf = (Fzf+dFzf); % norm force on right front tire (N)

FzLf = (Fzf-dFzf); % norm force on left front tire

FzRr = (Fzr+dFzr); % norm force on right rear tire

FzLr = (Fzr-dFzr); % norm force on left rear tire

if FzRf <= 0 % restrict 2 wheel lift-off

FzRf = 1e-6;end

if FzRr <= 0

FzRr = 1e-6;end

if FzLf <= 0

FzLf = 1e-6;end

if FzLr <= 0

FzLr = 1e-6;end

% longitudinal forces at tires due to braking command (N)

if DFx_f>0

FxRf = Fxf - DFx_f;

FxLf = 0;

else

FxRf = 0;

FxLf = Fxf + DFx_f;

end

if DFx_r>0

FxRr = 0 - DFx_r;

FxLr = 0;

else

FxRr = 0;

FxLr = 0 + DFx_r;

end

% tire slip angles (rad)

alph_Rf =atan((V*sin(beta)+psidot*a)/(V*cos(beta)-psidot*T_f/2))-delt_f;

alph_Lf =atan((V*sin(beta)+psidot*a)/(V*cos(beta)+psidot*T_f/2))-delt_f;

alph_Rr =atan((V*sin(beta)-psidot*b)/(V*cos(beta)-psidot*T_r/2))-delt_r;

alph_Lr =atan((V*sin(beta)-psidot*b)/(V*cos(beta)+psidot*T_r/2))-delt_r;

% lateral forces at tires (N)

FyRf = calc_Fy(FzRf/1000, alph_Rf*180/pi);

FyLf = calc_Fy(FzLf/1000, alph_Lf*180/pi);

FyRr = calc_Fy(FzRr/1000, alph_Rr*180/pi);

FyLr = calc_Fy(FzLr/1000, alph_Lr*180/pi);

% calculate the derivatives
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betadot = ((FyRf+FyLf)*cos(delt_f) + (FxRf+FxLf)*sin(delt_f) ...

+(FyRr+FyLr)*cos(delt_r) + (FxRr+FxLr)*sin(delt_r)) ...

/(mass*V*cos(beta)) - (Vdot*tan(beta))/V - psidot;

rdot = (a*((FyRf+FyLf)*cos(delt_f) + (FxRf+FxLf)*sin(delt_f)) ...

-b*((FyRr+FyLr)*cos(delt_r) + (FxRr+FxLr)*sin(delt_r)) ...

+T_f/2*((FyRf-FyLf)*sin(delt_f) + (FxLf-FxRf)*cos(delt_f)) ...

+T_r/2*((FyRr-FyLr)*sin(delt_r) + (FxLr-FxRr)*cos(delt_r)))/Izz;

phiddot = (mass*h1*g*sin(phi) - (Kphf+Kphr)*phi - (Bphf+Bphr)*phidot ...

-mass*h1*(Vdot*sin(beta) + V*betadot*cos(beta) ...

+psidot*V*cos(beta))*cos(phi))/Ixx;

% position, space fixed frame

Xdot = V*(cos(beta)*cos(psi)-sin(beta)*sin(psi));

Ydot = V*(cos(beta)*sin(psi)+sin(beta)*cos(psi));

Fxr = (FyLf+FyRf)*sin(delt_f) - (FxLf+FxRf)*cos(delt_f) ...

+ mass*Vdot*cos(beta) - mass*V*(betadot+psidot)*sin(beta);

xdot = [betadot, rdot, psidot, phiddot, phidot, Xdot, Ydot, Fxr]’;

return

%=======================================================================

function yy=mdlOutputs(t,x,u);

yy = [x];

return

%=======================================================================

function Fy = calc_Fy(Fz, alph)

% Nonlinear tire force model

% input: vertical force Fz in kN, slip angle alph in deg

% output: lateral force Fy in N

% Pacejka coefficients of a real data set SAE Paper #870421

a1 = -22.1; %3.6;

a2 = 1011; %1200;

a3 = 1078;

a4 = 1.82;

a5 = 0.208; %0.25;

a6 = 0;



59

a7 = -0.354;

a8 = 0.707;

a9 = 0.028;

a10 = 0;

a11 = 14.8;

a12 = 0.022;

a13 = 0;

C = 1.30;

D = a1*Fz^2+a2*Fz; % represents the peak side force

B = (a3*sin(a4*atan(a5*Fz)))/(C*D);

E = a6*Fz^2+a7*Fz+a8;

BCD = a3*sin(a4*(atan(a5*Fz))); % represents cornering stiffness

Phi = (1-E)*alph+(E/B)*(atan(B*alph));

Fy = -D*sin(C*(atan(B*Phi))); % calc lateral force on the inner tires

A.3 Implementation of Nonlinear Tire Model and Friction Circle

% John Plumlee 3/12/04

% fricCirc.m - This s-function calculates the max force avaliable in the

% x direction for each tire of a four wheeled ground vehicle based on

% the fricion circle concept. The Pacejka tire model is used to simulate

% nonlinear tire behavior.

function [sys,x0,str,ts] = fricCirc(t,x,u,flag,mu)

switch flag,

case 0, [sys,x0,str,ts]=mdlInitializeSizes;

case 3, sys=mdlOutputs(t,x,u,mu);

case { 1, 2, 4, 9 }

sys = []; % Unused flags

otherwise error([’Unhandled flag = ’,num2str(flag)]);

end

%=======================================================================

function [sys,x0,str,ts]=mdlInitializeSizes

sizes = simsizes;

sizes.NumContStates = 0;

sizes.NumDiscStates = 0;

sizes.NumOutputs = 2;

sizes.NumInputs = 7;
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sizes.DirFeedthrough = 1;

sizes.NumSampleTimes = 1; % at least one sample time is needed

sys = simsizes(sizes);

x0 = []; % initial conditions

str = []; % str is always an empty matrix

ts = [0.01 0]; % initialize the array of sample times

return

%=======================================================================

function yy=mdlOutputs(t,x,u,mu);

global betadot

% car parameters %

g = 9.81; % gravity (in/s^2)

L = 2.715; % wheelbase of car (m)

T_f = 1.554; % track width of front axle (m)

T_r = 1.534; % trach width of rear axle (m)

W = 13735.424; % curb weight of car + 200lb driver(N)

a = 1.013; % distance from front wheel to cg (m)

b = L-a; % distance from rear wheel to cg (m)

Wf = W*b/L; % weight of front 1/2 car (N)

Wr = W*a/L; % weight of rear 1/2 car (N)

mass = W/g; % mass of car (kg)

Izz = (1.03*3088-1206)*32.174*0.04214011;%yaw moment of inertia (kg*m^2)

hcg = 0.4*1.4554; % height of center of gravity(m)(40%roof height)

hf = 0.127; hr = 0.127; % height of roll center in front & rear (m)

del_h = hr-hf; % difference in roll center heights

if del_h == 0 % calc distance between cg and roll axis

h1 = hcg-hf;

else

h2 = a*del_h/(a+b)+hf;

h1 = hcg-h2;

end

% Roll stiffness and damping coeffs %

Kphf = 750*180/pi; % total stiffness front axle (N*m/rad)

Kphr = 650*180/pi; % total stiffness rear axle (N*m/rad)

Bphf = 900; % total damping front axle

Bphr = 850; % total damping rear axle

delt_f = u(1); % steer angle of inner tire

delt_r = u(2); % steer angle of outer tire

V = u(3); % Velocity (m/s)
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Vdot = 0;

beta = u(4); % sideslip angle (rad)

psidot = u(5); % yaw rate (rad/s)

phidot = u(6); % roll rate (rad/s)

phi = u(7); % roll angle (rad)

% vertical force difference across axle, front and rear

dFzf = (Kphf*phi+Bphf*phidot + Wf/g*hf*(Vdot*sin(beta)...

+V*betadot*cos(beta) + psidot*V*cos(beta)))/T_f;

dFzr = (Kphr*phi+Bphr*phidot + Wr/g*hr*(Vdot*sin(beta)...

+V*betadot*cos(beta) + psidot*V*cos(beta)))/T_r;

Fzf = Wf/2; % normal static load on fr tires

Fzr = Wr/2; % normal static load on rr tires

if dFzf > Fzf

dFzf = Fzf;end

if dFzr > Fzr

dFzr = Fzr;end

FzRf = (Fzf+dFzf); % norm force on right front tire (N)

FzLf = (Fzf-dFzf); % norm force on left front tire

FzRr = (Fzr+dFzr); % norm force on right rear tire

FzLr = (Fzr-dFzr); % norm force on left rear tire

if FzRf <= 0 % restrict 2 wheel lift-off

FzRf = 1e-6;end

if FzRr <= 0

FzRr = 1e-6;end

if FzLf <= 0

FzLf = 1e-6;end

if FzLr <= 0

FzLr = 1e-6;end

% calculate tire slip angles (rad)

alph_Rf =atan((V*sin(beta)+psidot*a)/(V*cos(beta)-psidot*T_f/2))-delt_f;

alph_Lf =atan((V*sin(beta)+psidot*a)/(V*cos(beta)+psidot*T_f/2))-delt_f;

alph_Rr =atan((V*sin(beta)-psidot*b)/(V*cos(beta)-psidot*T_r/2))-delt_r;

alph_Lr =atan((V*sin(beta)-psidot*b)/(V*cos(beta)+psidot*T_r/2))-delt_r;

% lateral forces at tires (N)

FyRf = calc_Fy(FzRf/1000, alph_Rf*180/pi);

FyLf = calc_Fy(FzLf/1000, alph_Lf*180/pi);

FyRr = calc_Fy(FzRr/1000, alph_Rr*180/pi);

FyLr = calc_Fy(FzLr/1000, alph_Lr*180/pi);
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% Max longitudinal force allowed by the friction circle

FxRf = sqrt(abs((FzRf*mu)^2 - FyRf^2));

FxLf = sqrt(abs((FzLf*mu)^2 - FyLf^2));

FxRr = sqrt(abs((FzRr*mu)^2 - FyRr^2));

FxLr = sqrt(abs((FzLr*mu)^2 - FyLr^2));

front = min(FxRf,FxLf);

rear = min(FxRr,FxLr);

yy = [front;rear];

return

%======================================================================

function Fy = calc_Fy(Fz, alph)

% input: vertical force Fz in kN, slip angle alph in deg

% output: lateral force Fy in N

% Pacejka coefficients of a real data set SAE Paper #870421

a1 = -22.1; %3.6;

a2 = 1011; %1200;

a3 = 1078;

a4 = 1.82;

a5 = 0.208; %0.25;

a6 = 0;

a7 = -0.354;

a8 = 0.707;

a9 = 0.028;

a10 = 0;

a11 = 14.8;

a12 = 0.022;

a13 = 0;

C = 1.30;

D = a1*Fz^2+a2*Fz; % represents the peak side force

B = (a3*sin(a4*atan(a5*Fz)))/(C*D);

E = a6*Fz^2+a7*Fz+a8;

BCD = a3*sin(a4*(atan(a5*Fz))); % represents cornering stiffness

Phi = (1-E)*alph+(E/B)*(atan(B*alph));

Fy = -D*sin(C*(atan(B*Phi))); % calc lateral force on the inner tires
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A.4 Implementation of Quadratic Programming Based Control Allocation

% Quad_Prog.m - This S-function is the quadratic programming based

% control allocation routine used by the vehicle model. It takes as

% inputs the discretized input effectiveness matrix from the linear car

% model, the desired virtual effect calculated by the LQR gains and the

% front and rear braking limits calculated by fricCirc.m. The outputs

% are the computled command vector and allocation error.

function [sys,x0,str,ts] = QuadProg(t,x,u,flag,algorithm,mm,nn,wB)

switch flag,

case 0, [sys,x0,str,ts]=mdlInitializeSizes(mm,nn);

case 2, sys=mdlUpdate(t,x,u,algorithm,mm,nn,wB);

case 3, sys=mdlOutputs(t,x,u,mm,nn);

case { 1, 4, 9 }

sys = []; % Unused flags

otherwise error([’Unhandled flag = ’,num2str(flag)]);

end

%======================================================================

function [sys,x0,str,ts]=mdlInitializeSizes(mm,nn)

sizes = simsizes;

sizes.NumContStates = 0;

sizes.NumDiscStates = nn*4+3;

sizes.NumOutputs = nn+3;

sizes.NumInputs = mm*nn+mm+2;

sizes.DirFeedthrough = 1;

sizes.NumSampleTimes = 1;

sys = simsizes(sizes);

x0 = [zeros(nn,1); 0; 1; 1; zeros(nn*3,1)];%initial conditions for sys

str = []; % str is always an empty matrix

ts = [0.01 0]; % initialize the array of sample times

return

%======================================================================

function sys=mdlUpdate(t,x,u,algorithm,mm,nn,wB)

% Inputs

B = reshape(u(1:mm*nn,1),mm,nn); % Effectiveness Matrix

ubar = u(mm*nn+(1:mm),1); % desired control effect

c = zeros(nn,1); % linear weight matrix
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Q = [1 1e10 1 1 wB]; % quadratic weight matrix (Diagonalized later)

limIdx = mm*nn+mm+1; % index of braking limits

% position limits of effectors (inequality constraints)

xhi = [ 0.5 0.5 u(limIdx) u(limIdx+1) 100]’;

xlo = [-0.5 -0.5 -u(limIdx) -u(limIdx+1) -100]’;

% Uncomment these for steering failures

% if t>5.24 % front steering failure, stuck-at fault

% xhi = [ x(1) 0.5 u(limIdx) u(limIdx+1) 100]’;

% xlo = [ x(1) -0.5 -u(limIdx) -u(limIdx+1) -100]’;

% end

% if t>5.49 % rear steering failure, stuck-at fault

% xhi = [ 0.5 x(2) u(limIdx) u(limIdx+1) 100]’;

% xlo = [ -0.5 x(2) -u(limIdx) -u(limIdx+1) -100]’;

% end

% Command History

xxk1 = reshape(x([1:nn]),nn,1); % cmd from last time step (k-1)

xxk2 = reshape(x(nn+3+[1:nn]),nn,1); % cmd (k-2)

xxk3 = reshape(x(2*nn+3+[1:nn]),nn,1);

xxk4 = reshape(x(3*nn+3+[1:nn]),nn,1);

xxh = [xxk1, xxk2, xxk3, xxk4];

c = -1e-3*eye(nn)./(0.01)*xxk1; % setup to penalize cmd velocity

c = c + 1e-5*eye(nn)./(0.01^2)*(xxk2-2*xxk1);% penalize cmd vel & accel

% Matlab’s quadratic programming solver

ops = optimset(’Display’,’off’); % set up options

warning off;

[uinput,fval,exflg] = quadprog(diag(Q),c,[],[],B,ubar,xlo,xhi,[],ops);

if isempty(uinput)

uinput = xx(nn,1);

fprintf(’uinput is empty QP solution is not good\n’);

end

% Allocation Error

cErr = ubar - B(:,:)*reshape(uinput,nn,1);

% save CA error and command history
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output4 = [norm(cErr);1;1];

output5 = reshape(xxh(:,1:3),nn*3,1);

sys = [uinput;output4;output5];

return

%======================================================================

function y=mdlOutputs(t,x,u,mm,nn);

y = x(1:nn+3);

return
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