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Abstract

An implicit method is developed for the numerical solution of option pricing models where it is assumed
that the underlying process is a jump diffusion. This method can be applied to a variety of contingent
claim valuations, including American options, various kinds of exotic options, and models with uncertain
volatility or transaction costs. Proofs of timestepping stability and convergence of a fixed point iteration
scheme are presented. For typical model parameters, it is shown that the fixed point iteration reduces
the error by two orders of magnitude at each iteration. The correlation integral is computed using a fast
Fourier transform (FFT) method. Techniques are developed for avoiding wrap-around effects. Numerical
tests of convergence for a variety of options are presented.
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1 Introduction

In recent years, there have been significant advances in derivative security pricing, at both the theoretical
level and on the empirical side. In terms of theory, the Fourier inversion technique was introduced to the fi-
nance literature by Heston (1993) to obtain closed form solutions for the values of vanilla European options
in the stochastic volatility context. This approach has been exploited by many authors to derive similar so-
lutions in models where the underlying state variables follow more complicated and typically discontinuous
stochastic processes. Examples of this include Bates (1996), who augments the Heston model by assuming
that the underlying asset price follows a compound Poisson process with lognormally-distributed jumps,
Scott (1997) and Bakshi et al. (1997) who present option valuation models with stochastic volatility, jumps,
and stochastic interest rates, and Duffie et al. (2000) who examine a wide variety of models, including gen-
eralizations of the above where the volatility of the underlying asset is also described by a jump-diffusion
process. The Fourier inversion approach has also been used to obtain closed form solutions for option prices�
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under more general Lévy processes by authors such as Madan et al. (1998), Lewis (2001) and Carr and Wu
(2002).

Along with these theoretical advances, there have been numerous empirical studies documenting the
importance of jumps. In some cases, the investigation concentrates directly on the underlying state variables
(i.e. the “real world” probability measure), whereas other studies use option price data to implicitly estimate
parameters of the assumed process for the underlying (i.e. the “risk-neutral” measure). Examples include
Jorion (1988) and Bates (1996) in the case of foreign exchange rates, Das (2002) in the case of interest rates,
Bakshi and Cao (2002) in the case of options on individual stocks, and, most prominently, a large number of
papers in the general area of stock index and stock index futures options. These include Bates (1991, 2000),
Bakshi et al. (1997), Pan (2002), Andersen et al. (2002), and Eraker et al. (2003) and references therein.

Much of this research has been motivated by the well-known deficiencies of the benchmark Black-
Scholes model for option pricing, i.e. the “volatility smile”. One alternative tack, of significant interest to
practitioners, is to return to continuous univariate diffusion models but to specify the volatility as a deter-
ministic function of time and the price of the underlying asset. Among several others, the papers by Dupire
(1994) and Andersen and Brotherton-Ratcliffe (1998) are particularly useful references. This approach has
been criticized because of overfitting and non-stationarity of parameters. Andersen and Andreasen (2000)
have recently staked out a middle ground by combining the deterministic volatility approach with lognor-
mally distributed Poisson jumps with constant parameters. They argue that this alleviates many of the
concerns, noting that “by letting the jump-part of the process dynamics explain a significant part of the
volatility smile/skew, we generally obtain a ‘reasonable’, stable [deterministic volatility] function, without
the extreme short-term variation typical of the pure diffusion approach” (Andersen and Andreasen, 2000, p.
233).

Although this is an impressive array of analytical results and empirical evidence regarding the impor-
tance of jumps, it is mostly confined to plain vanilla European style options (and options on futures). A
large amount of the empirical evidence is based on S&P 500 index options, which are European style. It is
also worth noting that the study by Bakshi and Cao (2002) on individual stocks considers only short-term
out-of-the-money options. As these are quite unlikely to be exercised early, analytic European option val-
uation formulas can be used. An important exception to this focus on European style instruments is the
work of Bates (1991, 1996, 2000), who uses an extension of the Barone-Adesi and Whaley (1987) analytic
approximation for American option values in the Black-Scholes lognormal diffusion context. However, this
approximation was derived only in the constant volatility case with lognormal jumps. While it appears to
be reasonably accurate in the cases considered by Bates, it may not be for other parameter values or for the
case of long-dated options.1

The preceding discussion indicates that more work is needed on numerical approaches in models where
the underlying variables follow discontinuous processes. In addition to American style options (with finite
maturities), numerical methods are required to value most exotic or path-dependent options of practical
significance (e.g. discretely observed barrier, lookback, and Asian options). Numerical techniques are also
required when jumps are combined with non-constant local volatilities to calibrate models to observed prices
of European options, as in the model of Andersen and Andreasen (2000).

In general, the valuation of a contingent claim under a jump diffusion process requires solving a partial
integro-differential equation (PIDE). Very little work has been carried out for numerically pricing options
under jump diffusion processes. The method suggested by Amin (1993) is an explicit type approach based
on multinomial trees. As is well-known, such methods have timestep limitations due to stability consider-
ations, and are generally only first order correct. Zhang (1997) develops a method which treats the jump
integral term in explicit fashion, and the remaining terms in the PIDE implicitly. Unfortunately, rather re-

1Barone-Adesi and Whaley (1987) report that the accuracy of the approximation in the Black-Scholes setting deteriorates for
options with maturities longer than one year.
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strictive stability conditions are required. Meyer (1998) uses the method of lines to value American options
where the underlying asset can jump to a finite number of states. More recently, a method based on use
of a wavelet transform has been suggested by Matache et al. (2002). The basic idea is to use a wavelet
transform to approximate the dense matrix discrete integral operator by dropping small terms. Andersen
and Andreasen (2000) used an operator splitting type of approach combined with a fast Fourier transform
(FFT) evaluation of a convolution integral to price European options with jump diffusion, where the diffu-
sion terms involved non-constant local volatilities. However, an operator splitting approach cannot easily
handle American options or nonlinear option valuation models (e.g. transaction costs or uncertain parame-
ters, as discussed in Wilmott (1998) and references provided there). Andersen and Andreasen (2000) also
report results for Bermudan put, forward start, and Asian options.2 Longstaff and Schwartz (2001) show
that their least squares Monte Carlo technique can be used to value Bermudan put options. The use of Monte
Carlo techniques for barrier options under jump diffusion has been explored by Metwally and Atiya (2002).
However, for low dimensional valuation problems, Monte Carlo methods are much slower than available
alternatives.

In this paper, we develop a different approach. Our technique is similar in some respects to Zhang
(1997), though less constrained in terms of stability restrictions. Our method also offers a higher rate of
convergence than Zhang’s. Similar comments apply if we compare our approach to that of Andersen and
Andreasen (2000). For some simple cases, their approach might be slightly more efficient than ours, but
we offer a more general purpose method which is capable of handling a much wider array of contracts.
We confine our attention to the relatively simple case of compound Poisson jump diffusion processes for a
single underlying stochastic variable, deferring the treatment of the more complicated cases of general Lévy
processes and multiple state variables to future work. As in Andersen and Andreasen (2000), we do not
assume constant coefficients for the diffusion part of the process. We prove that the jump diffusion term
can be discretized explicitly, and, when coupled with an implicit treatment of the usual PDE, the resulting
timestepping method is unconditionally stable. However, in order to achieve second order convergence, an
implicit treatment of the jump integral term is preferred. We prove that a simple fixed point iteration scheme
can be used to solve the discretized algebraic equations, and that this iteration is globally convergent. In
fact, for typical values of the timestep size and Poisson arrival intensity, the error is reduced by two orders
of magnitude at each iteration.

We also develop a method for efficiently computing the jump integral term. We make no assumptions
about the probability density for the jump term. This general approach requires the evaluation of correlation
type integrals, as in Zhang (1997), compared to the convolution integral which is common in the literature.
The correlation integral term can be rapidly computed using FFT methods. In contrast with previous work,
we do not assume that the grid is equally spaced in either the underlying asset price or its logarithm. This
is a major advantage for the pricing of contracts with barrier provisions, which typically require a fine grid
spacing near barriers in order to achieve sufficient accuracy. We also show how to eliminate the wrap-around
effects which often plague FFT methods.

A major advantage of the method developed here is that it is straightforward to add a jump process to
existing option pricing software. In particular, existing software that uses an implicit approach for valuing
American options can be simply modified to price American options with jump diffusion. A variety of
exotic and path-dependent contracts can be handled in a straightforward way, and nonlinear models such as
transaction costs or uncertain parameters can also be easily extended to the jump diffusion case.

The remainder of the paper is structured as follows. Section 2 outlines the underlying model and nota-
tion. Section 3 describes the implicit discretization method and its stability properties. Section 4 considers
the Crank-Nicolson case, which can be used to achieve higher rates of convergence. The fixed point itera-

2Andersen and Andreasen (2000) use Monte Carlo methods rather than their operator splitting approach for forward start and
Asian options.
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tion technique is discussed in Section 5. A detailed analysis of some of the subtle numerical issues involved
is presented in Section 6. Section 7 presents a selection of illustrative results, including cases of Euro-
pean options, American options, digital options, alternative distributions for the proportional jump size, and
contracts with barrier features. Section 8 provides a final summary.

2 The Basic Model

This section presents the model for the evolution of the price of the underlying asset and the general form of
the PIDE to be solved for option valuation. Let S represent the underlying stock price. Movements in this
variable over time are assumed to be described by a jump diffusion process of the form

dS
S
� νdt � σdz ��� η � 1 � dq � (2.1)

where ν is the drift rate, σ is the volatility associated with the continuous (Brownian) component of the
process, dz is the increment of a Gauss-Wiener process, dq is a Poisson process which is assumed to be
independent of the Brownian part (note that dq � 0 with probability 1 � λdt and dq � 1 with probability
λdt, where λ is the Poisson arrival intensity), and η � 1 is an impulse function producing a jump from S to
Sη. We denote the expected relative jump size by κ � E � η � 1 � . For ease of notation, we have made two
simplifications in equation (2.1): (i) we have ignored dividends (it is straightforward to add a continuous
dividend yield to the underlying process, or to handle a discrete dividend in the numerical algorithm); and
(ii) we have specified σ as a constant, although it can be a deterministic function of S and t.

Under equation (2.1), the stock price S has two sources of uncertainty. The term σdz corresponds to
normal levels of uncertainty while the term dq describes exceptional events. If the Poisson event does not
occur (dq � 0), then equation (2.1) is equivalent to the usual stochastic process of geometric Brownian
motion assumed in the Black-Scholes model (with the additional assumption that σ is constant). If, on the
other hand, the Poisson event occurs, then equation (2.1) can be written as

dS
S 	 � η � 1 �
� (2.2)

where η � 1 is an impulse function producing a jump from S to Sη. Consequently, the resulting sample
path for the stock S will be continuous most of the time with finite negative or positive jumps with various
amplitudes occurring at discrete points in time.

Let V � S � t � be the value of a contingent claim that depends on the underlying stock price S and time t.
As is well-known, the following backward PIDE may be solved to determine V :

Vτ
� 1

2
σ2S2VSS

��� r � λκ � SVS � rV ��� λ  ∞

0
V � Sη � g � η � dη � λV ��� (2.3)

where τ � T � t is the time until expiry at date T , r is the continuously compounded risk free interest rate,
and g � η � is the probability density function of the jump amplitude η with the obvious properties that � η,
g � η ��� 0 and � ∞

0 g � η � dη � 1. An important special case is where σ is constant and the jump size distribution
is lognormal, this being the well-known model of Merton (1976). For brevity, the details of the derivation
of equation (2.3) have been omitted (for further details, see Merton, 1976; Wilmott, 1998; Andersen and
Andreasen, 2000, among others).3 For future convenience, note that equation (2.3) can be rewritten in

3It is important to note that we have followed Merton (1976) and assumed that jump risk is diversifiable. This is obviously not
suitable in all contexts, the obvious exception being that where the underlying asset is a stock index. In this case, as noted by Naik
and Lee (1990) and Bates (1991), one needs to construct a general equilibrium model. Under suitable assumptions on preferences,
a PIDE of the same form as (2.3) can be obtained, as in Bates (1991). As our primary interest is the numerical algorithm, we do not
pursue this issue in any further detail here.
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slightly different form as

Vτ
� 1

2
σ2S2VSS

��� r � λκ � SVS � � r � λ � V � λ  ∞

0
V � Sη � g � η � dη � (2.4)

3 Implicit Discretization Methods

This section explores discretization methods for the PIDE, where the terms not involving the jump integral
are handled implicitly. A straightforward approach to the numerical solution of equation (2.4) would be
to use standard numerical discretization methods for the non-integral terms (as described, for example in
Tavella and Randall, 2000), in combination with numerical integration methods such as Simpson’s rule or
Gaussian quadrature. However, such an approach is computationally expensive, as noted by Tavella and
Randall. It is more efficient to transform the integral in equation (2.4) into a correlation integral. This allows
efficient FFT methods to be used to evaluate the integral for all values of S.

Let
I � S � �  ∞

0
V � Sη � g � η � dη � (3.1)

Setting x � log � S � and using the change of variable y � log � η � gives

I �  ∞� ∞
V � x � y � f � y � dy � (3.2)

where f � y � � g � ey � ey and V � y � � V � ey � . Note that f � y � is the probability density of a jump of size y �
log � η � . Equation (3.2) corresponds to the correlation product � of V � y � and f � y � , so we can write (3.2)
more succinctly as

I � V � f � (3.3)

If f is an even function (i.e. f � x � � f � � x � ), then (3.3) corresponds to the convolution product.
We can write the correlation integral (3.2) in discrete form as

Ii
� j � N � 2

∑
j � � N � 2 � 1

V i � j f j∆y � O � � ∆y � 2 � � (3.4)

where Ii
� I � i∆x � , V j

� V � j∆x � ,
f j
�  x j � ∆x � 2

x j � ∆x � 2 f � x � dx � (3.5)

and x j
� j∆x. Note that we have assumed that ∆y � ∆x, and that in (3.4) N is selected sufficiently large so

that the solution in areas of interest is unaffected by the application of an asymptotic boundary condition
for large values of S. In particular, we assume that V N � 2 � j � j � 0 can be approximated by an asymptotic
boundary condition. In practice, since f j decays rapidly for � j ��� 0, this should not cause any difficulty.
Also note that V � N � 2 � j � j  0, can be interpolated from known values Vk, since these points represent values
near S � 0. Since it will be used in subsequent sections, an important property to note is that

f j � 0 �!� j
j � N � 2
∑

j � � N � 2 � 1
f j∆y " 1 � (3.6)

This follows because f � y � is a probability density function and f j is defined by equation (3.5).
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The discrete form of the correlation integral (3.4) uses an equally spaced grid in log S coordinates. While
this is convenient for a FFT evaluation of the correlation integral, it is not particularly suitable for discretizing
the PDE. We will use an unequally spaced grid in S coordinates for the PDE discretization # S0 �$�$�$�%� Sp & . Let

V n
i
� V � Si � τn �
� (3.7)

Now, V j will not necessarily coincide with any of the discrete values Vk in equation (3.7). Consequently, we
will linearly interpolate (using Lagrange basis functions defined on the S grid) to determine the appropriate
values, i.e. if

Sϒ ' j ( " e j∆x " Sϒ ' j ()� 1 � (3.8)

then
V j

� ψϒ ' j ( Vϒ ' j ( � � 1 � ψϒ ' j ( � Vϒ ' j ()� 1
� O � � ∆Sϒ ' j (*� 1 � 2 � 2 � � (3.9)

where ψϒ ' j ( is an interpolation weight, and ∆Si � 1 � 2 � Si � 1 � Si. We are now faced with the problem that the
integral Ii is evaluated at a point S � exi which does not coincide with a grid point Sk. We simply linearly
interpolate the Ii to get the desired value. If exΠ + k , " Sk " exΠ + k , - 1 , then

I � Sk � � φΠ ' k ( IΠ ' k ( ��� 1 � φΠ ' k ( � IΠ ' k ()� 1
� O � � exΠ + k , � exΠ + k , - 1 � 2 � � (3.10)

where φΠ ' k ( is an interpolation weight. Note that

0 " φi " 1

0 " ψi " 1 � (3.11)

Combining equations (3.4), (3.9), and (3.10) gives

I � Sk � � j � N � 2
∑

j � � N � 2 � 1
χ � V � k � j � f j∆y � (3.12)

where V � #V0 � V1 �$�$�$�
� Vp &). and

χ � V � k � j � � φΠ ' k (�/ ψϒ ' Π ' k ()� j ( Vϒ ' Π ' k ()� j ( ��� 1 � ψϒ ' Π ' k (*� j ( � Vϒ ' Π ' k ()� j (*� 1 0��� 1 � φΠ ' k ( � / ψϒ ' Π ' k ()� 1 � j ( Vϒ ' Π ' k ()� 1 � j ( ��� 1 � ψϒ ' Π ' k ()� 1 � j ( � Vϒ ' Π ' k ()� 1 � j ()� 1 0 � (3.13)

For future reference, note that χ � V � k � j � is linear in V , and that if ι � # 1 � 1 �$�$�$�%� 1 & . , then it follows from
properties (3.11) that

χ � ι � k � j � � 1 � k � j � (3.14)

We can now consider the complete discretization of equation (2.4). The integral term is approximated
using equation (3.12). We use a fully implicit method for the usual PDE, and then use a weighted timestep-
ping method for the jump integral term. Letting V n

i denote the solution at node i and time level n, the discrete
equations can be written as

V n � 1
i # 1 ��� αi

� βi
� r � λ � ∆τ & � ∆τβiV n � 1

i � 1 � ∆ταiV n � 1
i � 1� V n

i
��� 1 � θJ � ∆τλ

j � N � 2
∑

j � � N � 2 � 1
χ � V n � 1 � i � j � f j∆y � θJ∆τλ

j � N � 2
∑

j � � N � 2 � 1
χ � V n � i � j � f j∆y � (3.15)

Note that θJ
� 0 corresponds to an implicit handling of the jump integral, whereas θJ

� 1 indicates an
explicit treatment of this term.
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Discretizing the first derivative term of equation (2.4) with central differences leads to

αi 1 central
� σ2

i S2
i� Si � Si � 1 � � Si � 1 � Si � 1 � � � r � λκ � Si

Si � 1 � Si � 1

βi 1 central
� σ2

i S2
i� Si � 1 � Si � � Si � 1 � Si � 1 � � � r � λκ � Si

Si � 1 � Si � 1
� (3.16)

If αi 1 central or βi 1 central is negative, oscillations may appear in the numerical solution. These can be
avoided by using forward or backward differences at the problem nodes, leading to (forward difference)

αi 1 forward
� σ2

i S2
i� Si � Si � 1 � � Si � 1 � Si � 1 �

βi 1 forward
� σ2

i S2
i� Si � 1 � Si � � Si � 1 � Si � 1 � � � r � λκ � Si

Si � 1 � Si
� (3.17)

or (backward difference)

αi 1 backward
� σ2

i S2
i� Si � Si � 1 � � Si � 1 � Si � 1 � � � r � λκ � Si

Si � 1 � Si

βi 1 backward
� σ2

i S2
i� Si � 1 � Si � � Si � 1 � Si � 1 � � (3.18)

Algorithmically, we decide between a central or forward discretization at each node for equation (3.15) as
follows:

If #αi 1 central � 0 and βi 1 central � 0 & then

αi
� αi 1 central

βi
� βi 1 central

ElseIf # βi 1 forward � 0 & then

αi
� αi 1 forward

βi
� βi 1 forward

Else

αi
� αi 1 backward

βi
� βi 1 backward

EndIf

(3.19)

Note that the test condition (3.19) guarantees that αi and βi are non-negative. For typical parameter values
and grid spacing, forward or backward differencing is rarely required for single factor options. In practice,
since this occurs at only a small number of nodes remote from the region of interest, the limited use of a low
order scheme does not result in poor convergence as the mesh is refined. As we shall see, requiring that all
αi and βi are non-negative has important theoretical ramifications.

As S 2 0, equation (2.3) reduces to Vτ
� � rV , which is simply incorporated into the discrete equations

(3.15) by setting αi
� βi

� λ � 0 at Si
� 0. In practice we truncate the S grid at some large value Sp

� Smax,
where we impose Dirichlet conditions. This is done by replacing equation (3.15) at S � Smax

� Sp with the
specification that V n � 1

p is equal to the relevant Dirichlet condition.
We now proceed to consider the stability of the discretization (3.15). In particular, we have the following

result:
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Theorem 3.1 (Stability of scheme (3.15)). The discretization method (3.15) is unconditionally stable for
any choice of θJ � 0 " θJ " 1, provided that3 αi � βi � 0;3 the discrete probability density f j has the properties (3.6);3 the interpolation weights satisfy (3.11);3 r� λ � 0.

Proof. Let V n � #V n
0 � V n

1 �$�$�$�4� V n
p & . be the discrete solution vector to equation (3.15). Suppose the initial

solution vector is perturbed, i.e.
V̂ 0 � V 0 � E0 � (3.20)

where En � # En
0 �$�$�$�4� En

p &). is the perturbation vector. Note that E n
p
� 0 since Dirichlet boundary conditions

are imposed at this node. Then we obtain the following equation for the propagation of the perturbation
(noting that χ is a linear operator)

En � 1
i # 1 ��� αi

� βi
� r � λ � ∆τ & � ∆τβiEn � 1

i � 1 � ∆ταiEn � 1
i � 1� En

i
��� 1 � θJ � ∆τλ

j � N � 2
∑

j � � N � 2 � 1
χ � En � 1 � i � j � f j∆y � θJ∆τλ

j � N � 2
∑

j � � N � 2 � 1
χ � En � i � j � f j∆y � (3.21)

Defining 5
E
5

n � max
i
�Ei � n � (3.22)

it follows from properties (3.6), (3.11), and (3.14) and αi � βi � 0 that�En � 1
i �6# 1 ��� αi

� βi
� r � λ � ∆τ & " 5

E
5

n ��� 1 � θJ � ∆τλ
5
E
5

n � 1 � θJ∆τλ
5
E
5

n� ∆τβi �En � 1
i � 1 � � ∆ταi �En � 1

i � 1 �7� (3.23)

This implies �En � 1
i �6# 1 ��� αi

� βi
� r � λ � ∆τ & " � ∆τβi

� ∆ταi � 5 E 5 n � 1 (3.24)� 5 E 5 n ��� 1 � θJ � ∆τλ
5
E
5

n � 1 � θJ∆τλ
5
E
5

n � (3.25)

Now, equation (3.25) is valid for all i  p. In particular, it is true for node i 8 , where

max
i
�En � 1

i � � �En � 1
i 9 �7� (3.26)

Writing equation (3.25) for i � i 8 gives5
E
5

n � 1 # 1 ��� r � θJλ � ∆τ & � 5
E
5

n � 1 � θJ∆τλ �
� (3.27)

and thus 5
E
5

n � 1 " 5
E
5

n
� 1 � θJ∆τλ �� 1 ��� r � θJλ � ∆τ �" 1 � (3.28)

This result is somewhat surprising, since we can discretize the correlation integral term explicitly (θJ
�

1), yet scheme (3.15) remains unconditionally stable. Note that Zhang (1997) derived a conditionally stable
method. The conditional stability was a result of a slightly different timestepping approach compared to that
in equation (3.15).
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4 Crank-Nicolson Discretization

The discretization method used in the previous section is only first order correct in the time direction. In
order to improve the timestepping error, we can use a Crank-Nicolson method. Such an approach results in
the following set of discrete equations

V n � 1
i : 1 ��� αi

� βi
� r � λ � ∆τ

2 ; � ∆τ
2

βiV n � 1
i � 1 � ∆τ

2
αiV n � 1

i � 1� V n
i : 1 � � αi

� βi
� r � λ � ∆τ

2 ; ��� 1 � θJ � λ∆τ
j � N � 2
∑

j � � N � 2 � 1
χ � V n � 1 � i � j � f j∆y� θJλ∆τ

j � N � 2
∑

j � � N � 2 � 1
χ � V n � i � j � f j∆y � (4.1)

A full Crank-Nicolson method is obtained by setting θJ
� 1 < 2 in equation (4.1). If we define the matrix M

such that�=#MV n & i � V n
i
� αi

� βi
� r � λ � ∆τ

2
� ∆τ

2
βiV n

i � 1 � ∆τ
2

αiV n
i � 1 � ∆τ

2
λ

j � N � 2
∑

j � � N � 2 � 1
χ � V n � i � j � f j∆y � (4.2)

then we can write equation (4.1) as # I � M & V n � 1 � # I � M & V n � (4.3)

Alternatively, we can define B � # I � M & � 1 # I � M & , so that equation (4.3) can be written as

V n � BnV 0 � (4.4)

Consequently, an initial perturbation vector E 0 will generate a perturbation at the nth step, E n, given by
En � BnE0.

The stability of the operator B is defined in terms of the power boundedness of B. If n is the number
of timesteps and p is the number of grid nodes, then given some matrix norm

5?>@5
, we say that B is strictly

stable if 5
Bn
5 " 1 � n � p � (4.5)

Following Giles (1997), strong stability is defined as5
Bn
5 " C � n � p � (4.6)

and algebraic stability is defined as 5
Bn
5 " Cns pq � n � m � (4.7)

where C � s � q � 0 are constants independent of n and p.
Algebraic stability is obviously a weaker condition than either strict or strong stability. Note that the

Lax Equivalence Theorem states that strong stability is a necessary and sufficient condition for convergence
for all initial data. Weaker algebraic stability yields convergence only for certain initial data. For a more
detailed discussion of this, see Giles (1997).

If µi are the eigenvalues of B, then a necessary condition for strong stability is that � µ i �A" 1, and that any� µi � � 1 has multiplicity one. From equation (4.2) and properties (3.6), we have that3 The off-diagonals of M are all non-negative.
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3 The diagonals of M (excluding the last row) are strictly negative.3 Assuming that r � 0, ∑ j � p
j � 0 Mi j  0 for i � 0 �$�$�$�4� p � 1.3 The last row of M is identically zero due to the Dirichlet boundary condition.

It then follows that all the Gerschgorin disks of M are strictly contained in the left half of the complex plane,
with one eigenvalue identically zero. Hence all the eigenvalues of B are strictly less than one in magnitude,
with one eigenvalue having modulus one. As a result, B satisfies the necessary conditions for strict stability.

However, since B is non-symmetric, this is not sufficient for power boundedness of B (see Borovykh
and Spijker, 2000, for a counterexample). As discussed in Kraaijevanger et al. (1987) and Lenferink and
Spijker (1991), we can guarantee algebraic stability by examining the γ numerical range of the matrix M. In
the case γ � 1, the numerical range of M coincides with the convex hull of the Gerschgorin disks of M when
the maximum norm is used in equation (4.7). These results can be summarized in the following theorem:

Theorem 4.1 (Algebraic Stability of Crank-Nicolson Timestepping). The Crank-Nicolson discretization
(4.1) is algebraically stable in the sense that5

Bn
5

∞ " Cn1 � 2 � n � p �
where C is independent of n � p.

Proof. Since all the Gerschgorin disks of M are in the left half of the complex plane, this follows from the
results in Lenferink and Spijker (1991).

In fact, we believe that the algebraic stability estimate is overly pessimistic. For the case of constant co-
efficients with a log-spaced grid, in Appendix A we show using Von Neumann analysis that Crank-Nicolson
timestepping with the correlation product is unconditionally strictly stable. However, it is interesting to note
that if we use Crank-Nicolson weighting for the PDE terms and an explicit method for the jump diffusion
term (θJ

� 1 in equation (4.1)), then a Von Neumann analysis shows that this method is only conditionally
stable (λ∆τ must be sufficiently small).

5 Fixed Point Iteration Method

When using an implicit discretization, it is computationally inefficient to solve the full linear system because
the correlation product term makes the system dense. Consequently, in this section we will explore the
use of a fixed point iteration to solve the linear system which results from an implicit discretization of
the correlation product term. This idea was suggested in Tavella and Randall (2000), but no convergence
analysis was given.

Define the matrix M̂ such that�B# M̂V n & i � V n
i
� αi

� βi
� r � λ � ∆τ � ∆τβiV n

i � 1 � ∆ταiV n
i � 1 � (5.1)

and the vector Ω � V n � such that #Ω � V n � & i � j � N � 2
∑

j � � N � 2 � 1
χ � V n � i � j � f j∆y � (5.2)

Note that Ω � V n � is a linear function of V n. Then we can write a fully implicit (θ � 0) or Crank Nicolson
(θ � 1 < 2) discretization as# I � � 1 � θ � M̂ & V n � 1 � # I � θM̂ & V n ��� 1 � θ � λ∆τΩ � V n � 1 � � θλ∆τΩ � V n �
� (5.3)

We can then derive the fixed point iteration method
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Fixed Point Iteration

Let � V n � 1 � 0 � V n

Let V̂ k � � V n � 1 � k
For k � 0 � 1 � 2 �$�$�$� until convergence

Solve/ I � � 1 � θ � M̂ 0 V̂ k � 1� / I � θM̂ 0 V n��� 1 � θ � λ∆τΩ � V̂ k � � θλ∆τΩ � V n �
If max

i

� V̂ k � 1
i � V̂ k

i �
max � 1 �
� V̂ k � 1

i �C�  tolerance then quit

EndFor

(5.4)

Letting ek � V n � 1 � V̂ k, the convergence of the fixed point scheme can be summarized in the following
theorem:

Theorem 5.1 (Convergence of the fixed point iteration). Provided that3 αi � βi � 0 (see Section 3);3 the discrete probability density f j has the properties (3.6);3 the interpolation weights satisfy (3.11);3 r � 0 � λ � 0;

then the fixed point iteration (5.4) is globally convergent, and the maximum error at each iteration satisfies5
ek � 1

5
∞ " 5

ek
5

∞

� 1 � θ � λ∆τ
1 ��� 1 � θ � � r � λ � ∆τ

�
Proof. It is easily seen from iteration (5.4) that ek satisfies/ I � � 1 � θ � M̂ 0 ek � 1 � � 1 � θ � λ∆τΩ � ek �
� (5.5)

Following the same steps used to prove Theorem 3.1, we therefore obtain5
ek � 1

5
∞ " 5

ek
5

∞

� 1 � θ � λ∆τ
1 ��� 1 � θ � � r � λ � ∆τ 1 � (5.6)

Note that typically λ∆τ D 1, so that5
ek � 1

5
∞ 	 5

ek
5

∞
� 1 � θ � λ∆τ � (5.7)

which will result in rapid convergence. It is also interesting to observe that the number of iterations required
for convergence is independent of the number of nodes in the S grid.
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6 More Details Regarding Numerical Issues

To complete the discussion of our numerical algorithm, we need to consider issues such as evaluating the
jump integral term, interpolation, wrap around effects, and how to incorporate early exercise features. This
section discusses these issues in the particular context of the model of Merton (1976) with log-normally
distributed jumps. As we have shown, it is possible to write the PIDE as a PDE and a correlation product
(equation (3.3)). Note that each iteration of the scheme (5.4) requires evaluation of this correlation integral
for all points on the PDE grid.

Fast evaluation of this integral using FFT methods necessitates transformation to an equally spaced grid
in x � log � S � coordinates. If the original PDE grid is equally spaced in log � S � , then there is clearly no
difficulty. However, this type of grid spacing is highly inefficient for cases involving discontinuous payoffs
or barriers. We therefore prefer not to restrict the type of grid used for the original PDE. Recall that the
correlation integral is

I � x � �  ∞� ∞
V � x � y � f � y � dy �

or, in discrete form

Ii
� j � N � 2

∑
j � � N � 2 � 1

V i � j f j∆y � O � � ∆y � 2 � �
where Ii

� I � i∆x � , V j
� V � j∆x � , f j

� f � j∆y � . We have also assumed that ∆y � ∆x, and that V � log S � � V � S � .
Now, V j will not necessarily coincide with any of the discrete values Vk in equation (3.15). Conse-

quently, we will linearly interpolate to determine the appropriate values, as in equation (3.9). Since equation
(3.4) has the form of a discrete correlation, FFT methods are an obvious choice to compute this efficiently.
Assuming that f is real, then

FFT � I � k � � FFT � V �$� k � FFT � f �$� 8k � (6.1)

where � > � 8 denotes the complex conjugate. Since f � z � is the probability density of z � log η, which is a
specified function, we can simply precompute FFT � f � on the required equally spaced grid in z coordinates.
We can then carry out an inverse FFT to obtain the values of the correlation integral on the equally spaced
x � log S grid. A further interpolation step is required to obtain the value of the correlation integral on the
original S grid (equation (3.10)).

We can summarize the steps needed to generate the required values I � Sk � , k � 0 �$�$�$�%� p as follows:3 Interpolate the discrete values of V onto an equally spaced log � S � grid. This generates
the required values of V j .3 Carry out the FFT on this data.3 Compute the correlation in the frequency domain (with precomputed FFT � f � ), us-
ing equation (6.1).3 Invert the FFT of the correlation.3 Interpolate the discrete values of I � xi � onto the original S grid.

(6.2)

Note that as long as linear or higher order interpolation is used, this procedure is second order correct, which
is consistent with the discretization error in the PDE and the midpoint rule used to evaluate the integral (3.4).
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In principle, we can avoid the interpolation steps in the above procedure if we use special techniques for
computing the FFT for unequally spaced data. There are several methods for computing the inverse FFT
problem (i.e. given unequally spaced data, determine the Fourier coefficients), as well as the forward FFT
problem (given the Fourier coefficients, determine the inverse transform values on an unequally spaced grid)
(see, for example Ware, 1998; Duijndam and Schonewille, 1999; Potts et al., 2001). However, it should be
noted that we are not particularly interested in obtaining highly accurate estimates of the discrete Fourier
coefficients, as we simply need to evaluate the correlation integral correct to second order. Consequently,
for our purposes there is no particular benefit in terms of accuracy in using these methods. We will use
the interpolation method (6.2) followed by the standard FFT to calculate our illustrative results below in
Section 7.

Another issue requiring attention is that the FFT algorithm effectively assumes that the input functions
are periodic. This may cause “wrap around pollution” unless special care is taken when implementing the
algorithm. The integral (3.2) is approximated on the finite domain

I � x � �  ymax

ymin

V � x � y � f � y � dy � (6.3)

The PDE part of the PIDE (2.4) is computed using the finite computational domain # 0 � Smax & , using the
discrete grid S0 � S1 �$�$�$�4� Sp. Initially, we chose

ymax
� log � Smax �

ymin
� log � S1 �
� (6.4)

assuming S1 � 0. Note that ymin
� log � S1 � since normally S0

� 0, so that log � S0 � � � ∞.
Generally, f � y � which represents the probability density of a jump of S 2 Sη (where y � logη) is rapidly

decaying for � y �FE 0. However, V � y � does not decay to zero near y � ymin � ymax. Typically, V � S �G" Const. S
as S 2 ∞, and V � S � 	 Const. as S 2 0, or in y � log S coordinates,

V � y �G" Const. ey � y 2 ∞ (6.5)	 Const. � y 2H� ∞ � (6.6)

This will cause undesirable wrap around effects if we use an FFT approach to evaluate the integral (6.3),
since the discrete Fourier transform (DFT) is effectively applied to the periodic extension of the input func-
tions. To avoid these problems, we will extend the domain of the integral to the left and right, by a size
which reflects the width of the probability density. In other words, we will actually evaluate

Iext
� x � �  ymax � ∆y -

ymin � ∆y I V � x � y � f � y � dy � (6.7)

using FFT methods. The unknown values of V � u � for u JK# ymax � ymax
� ∆y � & are estimated using simple

linear extrapolation (assuming equation (6.5) holds). The values in the left extension can be determined
from interpolation on the original S grid.

This extended domain is then used as input to the forward DFT, the correlation computation (in the
spectral domain), and the inverse DFT. The values in the domain extensions are affected by wrap around
and are discarded. This causes no difficulty in the right extension. In the left extension, we actually need an
estimate of the value V � S0

� 0 � . This is obtained by extrapolation of the values at S1 � S2.4

4Of course, the value of the integral (3.1) is trivial in many cases when S L 0, but this approach is always valid.
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We can break up the extended integral (6.7) into the original integral and the extensions

Iext
� x � �  ymax � ∆y -

ymin � ∆y I V � x � y � f � y � dy�  ymax � ∆y -
ymax

V � x � y � f � y � dy �  ymax

ymin

V � x � y � f � y � dy �  ymin

ymin � ∆y I V � x � y � f � y � dy � (6.8)

Now, we assume that ymin � ymax are selected so that the value of the integral at any point ymin D x D ymax is
relatively unaffected by the choice of ymin � ymax. However, at x � ymax, the integral in the domain extension
to the right clearly affects the value, due to the term

I � ymax � �  ymax � ∆y -
ymax

V � ymax
� y � f � y � dy �

Since this point is remote from the region of interest, it is not necessary to obtain a highly accurate value
for this integral. However, we do not wish the value to be completely unrealistic due to wrap around. We
therefore assume that V � y � is given by equation (6.5). We then determine ∆y � by requiring that� e∆y - f � ∆y � �M�N tolR � (6.9)

As for the domain near ymin, we use a slightly different approach. If the point S � 0 (log S 2O� ∞)
is included in the original grid, we ignore this point and set ymin

� log � S1 � , assuming S1 � 0. Now, near
x � ymin the integral in the extended domain (to the left) is given by

I � ymin � �  ymin

ymin � ∆y I V � ymin
� y � f � y �$� dy � (6.10)

Again, to minimize wrap around, we determine ∆y � so that these effects will be minimized for the integral
evaluated at x � ymin. Assuming V behaves near y � � ∞ as in equation (6.6), then we determine ∆y � by� f � � ∆y

� �M�P tolL � (6.11)

The domain extensions are illustrated in Figures 1-2. Typically, we chose tolL
� tolR � 10 � 6.

We next briefly describe how to extend the ideas presented thus far (which have been in the context of
European options) to the case of American options. Suppose that we have to value an American style option
where the holder of the contract can exercise at any time and receive a payoff of V 8 � S � τ � . This pricing
problem can be written as the differential linear complementarity problem

Vτ � � 1
2

σ2S2VSS
��� r � λκ � SVS � � r � λ � V � λ  ∞

0
V � Sη � g � η � dη � � 0 (6.12)

V � V 8 � 0 � (6.13)

where at least one of equations (6.12) and (6.13) must hold with equality. We can easily combine the fixed
point iteration with the penalty method described in Forsyth and Vetzal (2002) to solve this complementarity
problem.

Finally, we conclude this section by noting that in some cases, a fast Gauss transform (see Greengard
and Strain, 1991) could also be used to evaluate the correlation integral with a computational complexity
of O � N � . The use of this method has been explored in the general option pricing context by Broadie and
Yamamoto (2002). In the particular case of jump diffusions, this approach would work for the case where
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log(Smax)

Domain
is expanded

Log stock price

Option Value on the log grid

0

Option Value

Stock price

Strike

Payoff

Smax

FIGURE 1: The value of the option is interpolated onto the log-spaced grid. The right hand side boundary
of the log-spaced grid ymax Q log R Smax S is expanded by ∆y T , where ∆y T is given by equation (6.9).

log(Smax)

Domain
is expanded

Log stock price

Option Value on the log grid

0

Option Value

Stock price

SmaxStrike

Payoff

FIGURE 2: The value of the option is interpolated onto the log-spaced grid. However, the value of the option
V R S U τ S at S Q 0 is not used. The left hand side boundary grid point is chosen to be logS1 where S1 is the
grid point nearest to S Q 0. This left boundary is then expanded by ∆y V , which is given by equation (6.11).

the jump size is lognormally distributed. It is not clear if it could be applied for other jump distributions.5

On grounds of generality, at this stage we therefore prefer to use the FFT. Note that all of the theoretical
results in terms of convergence rates given previously would be unchanged if the fast Gauss transform were
used instead of the FFT. It is possible, however, that the alternative method would be more efficient.

5Broadie and Yamamoto (2002) suggest some extensions to the fast Gauss transform in order to apply it to the double exponential
jump distribution of Kou (2002), but they do not present any results for these extensions.

15



Parameter Values
σ 0.15
r 0.05
γ 0.45
µ -0.90
λ 0.10
T 0.25
K 100.00

TABLE 1: Input data used to value European options under the lognormal jump diffusion process. These
parameters are approximately the same as those reported in Andersen and Andreasen (2000) using European
call options on the S&P 500 stock index in April of 1999.

7 Results

This section presents numerical results for various options, including vanilla European and American op-
tions, digital options, and options with barrier features. Unless stated otherwise, we use the Crank-Nicolson
discretization scheme (4.1). The discrete system of equations is solved using the fixed point iteration method
(5.4) with a convergence tolerance of 10 � 6.

We begin by considering European options under the assumptions that the continuous part of the un-
derlying stock price process follows geometric Brownian motion and that the proportional jump size is
lognormally distributed. This allows us to check the accuracy of our algorithm against the analytic solution
of Merton (1976). Table 1 contains the input parameters (note that the mean of the jump distribution is µ
and its standard deviation is γ). These are roughly the same as those estimated by Andersen and Andreasen
(2000) using European call options on the S&P 500 stock index in April of 1999. As discussed by Andersen
and Andreasen, these implied parameters are not consistent with the historical time series behavior of the
underyling index, but that is only to be expected as they are based on the market’s implied pricing measure,
rather than the historical measure. Note that (in the market’s pricing measure), if a jump occurs it is likely
to involve a large negative drop, the mean value being a decline of about 55%.

We are particularly interested in the convergence properties of the algorithm as the grid is refined. For
each test, as we double the number of grid points we cut the timestep size (∆τ � � 01 on the coarsest grid) in
half. The convergence ratio presented in the tables below is defined in the following way. Let

∆τ � max
n

� τn � 1 � τn �
�
∆S � max

i

� Si � 1 � Si �
�
Note that we are allowing here for the possibility of using variable timestep sizes (to be explained below),
although most of our tests will simply use a constant timestep size. If we then carry out a convergence study
letting h 2 0 where

∆S � Const. h

∆τ � Const. h �
then we can assume that the error in the solution (at a given node) is

Vapprox
� h � � Vexact

� Const. hξ �
16



Interpolation Scheme
Size of No. of Linear Quadratic Cubic
S grid Timesteps Value R Value R Value R
128 25 3.146361 n.a. 3.145896 n.a. 3.146361 n.a.
255 50 3.148354 n.a. 3.148249 n.a. 3.148354 n.a.
509 100 3.148856 3.973 3.148831 4.039 3.148832 4.175

1017 200 3.148983 3.949 3.148977 3.990 3.148977 3.287
2033 400 3.149015 4.001 3.149014 4.007 3.149014 3.997
4065 800 3.149023 3.997 3.149023 4.002 3.149023 3.997

TABLE 2: Value of a European put option at S Q 100 using Crank-Nicolson timestepping for linear,
quadratic and cubic interpolation. The interpolation schemes are used to transfer data between the non-
uniform S grid and the uniform log-spaced FFT grid. The input parameters are provided in Table 1. The
convergence ratio R is defined in equation (7.1). The exact solution is 3 W 149026. The number of points used
for the FFT grid is 2α, where α is the smallest integer such that the number of nodes in the non-uniform S
grid p X 2α.

The convergence ratio is then defined as

R � Vapprox
� h < 2 �Y� Vapprox

� h �
Vapprox

� h < 4 �Y� Vapprox
� h < 2 � � (7.1)

In the case of quadratic convergence (ξ � 2), then R � 4, while for linear convergence (ξ � 1), R � 2.
Recall that interpolation is required to transform data from the clustered PDE grid to the equally spaced

logS grid, and vice versa. In Table 2, we compare linear interpolation (see equations (3.9)-(3.10)) with
quadratic and cubic Lagrange interpolation for a vanilla European put option with different numbers of
points on the FFT grid.

In Table 2 we observe quadratic convergence to the exact solution for all three interpolation schemes.
Note that our earlier theoretical analysis for stability and convergence of the fixed point iteration was based
on linear interpolation. This was required because linear interpolation is the only Lagrange interpolation
method which has non-negative weights. Although it is not the case for these particular parameter values, our
numerical experiments indicate that quadratic interpolation is often more efficient than linear interpolation
(although the rate of convergence rate is theoretically the same for both methods). Consequently, in all
subsequent examples we will use quadratic interpolation. In Table 3 we show the convergence rate for a call
option using the data in Table 1. For each value of S in the table, we observe quite smooth second order
convergence.6

We now consider the issues raised by the presence of a discontinuity in the payoff. Oscillations are
more likely to be a problem in this context if we use Crank-Nicolson timestepping, and, unless care is taken,
rates of convergence can be reduced. A detailed discussion of this can be found in Pooley et al. (2002) for
the case without jumps. Following Rannacher (1984), it is possible to restore quadratic convergence if any
discontinuities in the payoff (arising either due to the payoff function itself in the case of a digital option, or
from the application of a discretely observed barrier) are l2 projected onto the space of linear Lagrange basis
functions, and a fully implicit method is used for a small number of timesteps after any discontinuities arise.
We will refer to this technique as Rannacher timestepping. While it does ensure quadratic convergence, it

6As an aside, all of our tests were performed on an Intel P4 PC running at 2.0GHz with 2 gigabytes of RAM, using the g++
compiler under Red Hat Linux. Solution times for the examples in Table 3 ranged from around 1/100th of a second for the coarse
grid with 128 nodes and 25 timesteps to about 1/3 of a second for the case with 1017 spatial nodes and 100 timesteps, and up to
about 7 seconds for the finest grid with 4065 nodes and 800 timesteps.
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Size of No. of S Q 90 S Q 100 S Q 110
S grid Timesteps Value R Value R Value R
128 25 0.526562 n.a. 4.388091 n.a. 12.641501 n.a.
255 50 0.527379 n.a. 4.390462 n.a. 12.642942 n.a.
509 100 0.527574 4.186 4.391050 4.039 12.643290 4.125

1017 200 0.527622 4.042 4.391197 3.991 12.643377 4.008
2033 400 0.527634 4.046 4.391233 4.005 12.643399 4.059
4065 800 0.527637 4.023 4.391243 4.002 12.643404 4.049

TABLE 3: Value of a European call option using Crank-Nicolson timestepping. The input parameters are
provided in Table 1. The convergence ratio R is defined in equation (7.1). The exact solution is 0 W 527638 at
S Q 90, 4 W 391246 at S Q 100, and 12 W 643406 at S Q 110. The number of points used for the FFT grid is 2α,
where α is the smallest integer such that the number of nodes in the non-uniform S grid p X 2α. Quadratic
interpolation is used.

Size of No. of S Q 90 S Q 100 S Q 110
S grid Timesteps Value R Value R Value R
128 25 0.855482 n.a. 0.387139 n.a. 0.077539 n.a.
255 50 0.855034 n.a. 0.387151 n.a. 0.077830 n.a.
509 100 0.854935 4.577 0.387152 7.157 0.077899 4.160

1017 200 0.854910 3.924 0.387153 2.219 0.077917 3.896
2033 400 0.854902 2.824 0.387153 3.590 0.077922 3.970
4065 800 0.854899 3.327 0.387153 4.124 0.077923 4.005

TABLE 4: Value of a European digital put option using Rannacher timestepping and l2 projection. The input
parameters are provided in Table 1. The convergence ratio R is defined in equation (7.1). The exact solution
is 0 W 854898 at S Q 90, 0 W 387153 at S Q 100, and 0 W 077923 at S Q 110. The number of points used for the
FFT grid is 2α, where α is the smallest integer such that the number of nodes in the non-uniform S grid
p X 2α. Quadratic interpolation is used.

does not guarantee the absence of oscillations. Typically, however, the use of the fully implicit timesteps
smooths out the function enough that oscillations are not a problem.

Of course, the forgoing discussion is for the case without jumps. However, we can intuitively expect
that the result should also hold for the jump diffusion case since integration is a smoothing operation. Ac-
cordingly, we will investigate the application of Rannacher timestepping in the jump diffusion context for a
digital put option which pays $1 at maturity if the underlying stock price is below the strike price. Table 4
gives a convergence study for the digital put with jumps, using Rannacher timestepping (with two fully im-
plicit steps) and l2 projection. As shown in this table, quadratic convergence is generally achieved, though
perhaps a bit more erratically than for the vanilla payoff as shown in Table 3. Figure 3 provides plots of
the solution value for a digital put along with its first and second derivatives with respect to the underlying
asset value (i.e. delta and gamma) for both Crank-Nicolson and Rannacher timestepping. The plots are all
smooth when we use Rannacher timestepping, but there is an oscillation near the discontinuity in the payoff
when the solution value is calculated using Crank-Nicolson. Naturally, this leads to even worse behavior in
the derivatives, as shown in panels (c) and (e) of Figure 3.

Our next two numerical tests incorporate the use of an automatic timestep size selector as described in
Johnson (1987). This offers a couple of advantages. First, it is not generally possible to achieve second order
convergence for American options using constant timesteps (Forsyth and Vetzal, 2002). Second, variable
timestepping can be very efficient for long-dated options. The procedure is as follows. An initial timestep
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(b) Digital put value: Rannacher.
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(c) Digital put delta: Crank-Nicolson.
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(d) Digital put delta: Rannacher.
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(e) Digital put gamma: Crank-Nicolson.
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(f) Digital put gamma: Rannacher.

FIGURE 3: Digital put option value, delta and gamma for Rannacher and Crank-Nicolson timestepping.
The input parameters are provided in Table 1.
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is given and the next timestep is computed according to

τn � 2 � τn � 1

τn � 1 � τn
� d

maxi ZV n - 1
i
� Vn

i Zmax ' 1 1 ZV n
i Z ( � (7.2)

where d specifies the maximum relative change allowed. Initially we set d � � 1, and we divide this value by
two at each grid refinement. An initial timestep of � 01 on the coarsest grid is used, and this initial timestep
is reduced by four at each refinement.

The first test to incorporate variable timesteps involves an alternative distribution for the jump size. Kou
(2002) suggests the double exponential distribution for the log jump size, observing that it has desirable
analytical properties. In addition to deriving a closed form solution for the value of European vanilla options
(as in the Merton (1976) lognormally distributed jump model), Kou notes that analytic solutions can be
derived for some exotic options for the double exponential case because the first passage time to a flat
boundary can be calculated. This is not possible in the lognormal case.

In the model of Kou (2002),

f � x � � pη1 exp � � η1x � H � x � � qη2 exp � η2x � H � � x �
� (7.3)

where η1 � 1, η2 � 0, p � 0, q � 1 � p � 0, and H � > � is the Heaviside function. As noted by Kou, the
condition η1 � 1 is used to ensure that the proportional jump and stock price have finite expectation. In this
model, κ � E # J � 1 & � pη1

η1 � 1
� qη2

η2 � 1 � 1.
To provide a basis for comparison with the lognormal distribution, we attempted to find parameters for

the double exponential distribution which match those used for the lognormal given in Table 1. This did
not work well for those parameters, as the mean is too far below zero, resulting in only the left tail of the
double exponential being used. To remedy this, we shifted the lognormal mean from its value of -.90 in
Table 1 to -.10. We then performed a numerical search to find parameters to match the first three central
moments of the two distributions as closely as possible. We obtained values of p � 0 � 3445, η1

� 3 � 0465, and
η2
� 3 � 0775. Figure 4 shows the double exponential probability density function and the normal probability

density function for our parameter values. Note that the double exponential distribution has a discontinuity
at zero. This can be expected to cause some problems for our numerical integration using an FFT method.

Table 5 presents numerical convergence tests for pricing a European call option. In an attempt to deal
with the discontinuity at zero, the number of points used on the uniform-spaced x grid has been oversampled
to a greater extent than in the lognormal case. In particular, the number of points on the FFT grid is 8 [ 2α,
where α is the smallest integer such that 2α is at least equal to the number of nodes in the S grid. Rannacher
timestepping is used. In contrast to our earlier examples, we do not obtain second order convergence here.
Instead the results indicate convergence at a linear (or perhaps slightly higher) rate to the exact solution.7

Despite the discontinuity, we observe smooth solution plots for the solution value, delta, and gamma in
Figure 5. One other point worthy of mention: as noted in the caption to Table 5, the exact value is 0 � 672677
at S � 90, 3 � 973479 at S � 100, and 11 � 794583 at S � 110. By way of comparison, the exact value under the
lognormal jump distribution (given the parameters that match the first three central moments of the double
exponential distribution) is 0 � 681403 at S � 90, 4 � 005789 at S � 100, and 11 � 839672 at S � 110. This
suggests that pricing differences between these two jump distributions may not be very significant, if the
parameters are calibrated similarly. Of course, there may be more significant differences for other parameter
values or for different payoff functions.

7Some other numerical experiments indicate that we can achieve quadratic convergence in the double exponential case if we
restrict the parameters so that the distribution is continuous at zero (i.e. set p L 0 \ 50 ] η1 L η2). This still requires a heavily
oversampled FFT grid relative to the lognormal case in order to adequately capture the sharp peak of the distribution.
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FIGURE 4: Overall comparison of the normal (µ Q_^ W 10 U γ Q W 45) and double exponential probability density
functions (p Q 0 W 3445, η1 Q 3 W 0465, η2 Q 3 W 0775).

Our second test involving variable timesteps is the valuation of an American put option. As mentioned
in Section 6, this is easily handled in our framework by combining the fixed point iteration with the penalty
method described in Forsyth and Vetzal (2002). In order to achieve higher than linear convergence, it is also
necessary in this context to use variable timestepping. This is formally shown by Forsyth and Vetzal (2002)
(for the no-jump case). The intuition is quite simple: when the exercise boundary is changing rapidly (i.e.
near the expiry date), smaller timesteps are required. Table 6 presents the results for the case of lognormally
distributed jumps. Once again, we observe second order convergence, and there is no evidence of oscillations
in either the solution or its first two derivatives with respect to the underlying stock price (see Figure 6). Also
note that in this case the analytic approximation of Bates (1991) is quite accurate for the out of the money
case where S � 110, about eight cents too low when S � 100, and around 70 cents too low for the in the
money case with S � 90. This suggests that (at least for our parameter values), Bates’s approximation is not
very accurate (in terms of absolute pricing error), unless the option is deep out of the money.

The last set of results to be presented are for the case of a European call option with a Parisian knock-
out feature. The particular case we consider here is an up-and-out call with daily discrete observation
dates. This contract ceases to have value if S is above a specified barrier level for a specified number of
consecutive monitoring dates. As with many path-dependent contracts, this can be valued by solving a
set of one-dimensional problems which exchange information at monitoring dates. See Vetzal and Forsyth
(1999) for a complete discussion in the case without jumps. However, it is easy to incorporate jumps by
simply adding a jump integral term to each of the one-dimensional problems. Note also that we can use the
same procedure to value a variety of similar contracts, such as knock-in contracts, double barrier contracts,
delayed barrier options (for which the knock-out condition applies if the total number of observations over
the barrier during the life of the contract reaches the specified level), step options (which lose a fraction
of their value for each day the underlying asset lies above the barrier level, see Linetsky (1999) for more
details), etc.8

8Other path-dependent contracts such as Asian options can also be handled using this approach of solving a set of one-
dimensional problems. An additional complication in the case of Asian options is that a suitable form of interpolation is required
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Size of No. of S Q 90 S Q 100 S Q 110
S grid Timesteps Value R Value R Value R
128 34 0.671314 n.a. 3.969969 n.a. 11.78927 n.a.
255 65 0.672213 n.a. 3.972476 n.a 11.79248 n.a.
509 132 0.672535 2.791 3.973107 3.972 11.79367 2.688

1017 266 0.672630 3.358 3.973322 2.936 11.79416 2.431
2033 533 0.672660 3.225 3.973407 2.511 11.79438 2.244
4065 1067 0.672670 2.917 3.973445 2.281 11.79448 2.130

TABLE 5: Value of a European vanilla call option using Rannacher timestepping with variable timestep
sizes for the double exponential probability density function (7.3). The timesteps are selected using equation
(7.2), with d Q 0 W 1 on the coarsest grid, and divided by two for each grid refinement. The input parameters
are σ Q 0 W 15, r Q 0 W 05, λ Q 0 W 1, T Q 0 W 25, K Q 100, η1 Q 3 W 0465, η2 Q 3 W 0775, and p Q W 3445. The
convergence ratio R is defined in equation (7.1). The exact solution is 0 W 672677 at S Q 90, 3 W 973479 at
S Q 100, and 11 W 794583 at S Q 110. The number of points used for the FFT grid is 8 ` 2α, where α is the
smallest integer such that the number of nodes in the non-uniform S grid p X 2α. Quadratic interpolation is
used.

Size of No. of S Q 90 S Q 100 S Q 110
S grid Timesteps Value R Value R Value R
128 32 10.000000 n.a. 3.236354 n.a. 1.417613 n.a.
255 58 10.002938 n.a. 3.240286 n.a 1.419269 n.a.
509 117 10.003519 5.058 3.241045 5.182 1.419676 4.077

1017 235 10.003791 2.137 3.241207 4.699 1.419774 4.139
2033 470 10.003815 11.653 3.241243 4.463 1.419798 4.143
4065 940 10.003822 3.213 3.241251 4.331 1.419803 4.127

TABLE 6: Value of an American put option using Rannacher timestepping with variable timestep sizes.
The timesteps are selected using equation (7.2), with d Q 0 W 1 on the coarsest grid, and divided by two for
each grid refinement. The input parameters are provided in Table 1. The convergence ratio R is defined
in equation (7.1). The approximate analytic values from Bates (1991) are 9 W 304946 at S Q 90, 3 W 163112 at
S Q 100, and 1 W 411669 at S Q 110. The number of points used for the FFT grid is 2α, where α is the smallest
integer such that the number of nodes in the non-uniform S grid p X 2α. Quadratic interpolation is used.

For our test, the barrier is set at S � 120 and the required number of consecutive daily observations for
knock-out is 10. We consider the lognormal jump distribution case with the same input parameters as in
Table 1. Note that we specify the barrier observation interval as 1/250, based on 250 trading days per year.
In Table 7, we present our convergence results. We use constant timestepping (∆τ � � 002 on the coarse grid)
and the solution is l2 projected after each barrier observation date. Rannacher timestepping is used after
each observation. As expected, quadratic convergence is obtained.

In Figure 7, we compare the solutions of a Parisian call knock-out option with discrete daily observation
dates with and without jumps. To ensure a consistent basis for comparison, we use the following procedure:

1. Given some parameters (in this example we use the values provided in Table 1), compute the analytical
solution Vjump at the strike K � 100 of a vanilla European call option.

2. Use a constant volatility Black-Scholes model with no jumps to determine the implied volatility

because the number of possible values for the average value of the underlying stock grows exponentially, and it is not possible to
solve a one-dimensional problem for every possible value of the average. See Zvan et al. (1999) for a thorough analysis in the no
jump case.
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(a) Call option value.
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(b) Call option delta.
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(c) Call option gamma.

FIGURE 5: Call option value, delta and gamma for Rannacher timestepping using the double exponential
probability density function (7.3). The input parameters are provided in the caption to Table 5.

σimplied which matches the option price to the jump diffusion value Vjump at the strike K.

3. Value the Parisian knock-out call option with discrete daily observation dates with jumps using the
same parameters as in Step 1.

4. Value the Parisian knock-out call option with discrete daily observation dates using a constant volatil-
ity model (no jumps) but with the implied volatility σimplied estimated in Step 2.

We observe in Figure 7 that the difference in pricing can be significant for these parameter values,
depending on the underlying asset price. The largest differences are near S � 110, where the model with
jumps produces values of about 8 � 78 (as shown in Table 7), but the values for the no-jump model are around
7 � 25. For S ranging between about 98 and around 119, the jump model produces higher option values, but
outside this range (in either direction) the model without jumps produces higher values.

It is worth concluding this section by making some comparisons with other methods which have been
proposed in the literature. When pricing options under the jump diffusion process, the main computational
cost is the evaluation of the integral term of (2.4). The approach presented in Andersen and Andreasen
(2000) is based on a FFT-ADI finite difference method. This method evaluates the convolution integral
twice at each timestep, thus requiring a total of four FFT computations (two forward FFTs, and two reverse
FFTs). Note that the method in Andersen and Andreasen (2000) is second order accurate. If N is the number
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(a) American put option value.
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(b) American put option delta.
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(c) American put option gamma.

FIGURE 6: American put option value, delta and gamma for Rannacher timestepping with 128 points on the
non-uniform S grid and an initial timestep of 0 W 01.

of timesteps, and p the number of nodes in the S grid, then both Andersen and Andreasen’s method and the
method in this work have complexity O � N p log p � .

In Table 8, we see that the number of iterations required for convergence (at each timestep) depends on
the convergence tolerance. For a typical convergence tolerance of 10 � 6, at most three iterations per step are
required (on average). In this case, about six FFT computations are required per timestep. Consequently,
for vanilla European options (with jumps), the method of Andersen and Andreasen (2000) may be more
efficient than the pure Crank-Nicolson timestepping method developed here.

However, in the case of American options, it is not clear how the approach in Andersen and Andreasen
(2000) could be modified to handle the early exercise constraint implicitly, unless some form of iteration is
used. In contrast, our technique can handle implicit treatment of the American constraint in a straightforward
fashion.

The technique developed in Matache et al. (2002) uses a wavelet method for the evaluation of the jump
integral term. This has complexity O � N p � log p � 2 � , in contrast to a complexity of O � N p log p � (for one
dimensional problems) for the method developed here. In addition, it is not obvious how to generalize the
technique in Matache et al. (2002) to nonlinear cases such as uncertain volatility or transaction costs models,
which can easily be handled using our method.

Finally, we note that the method in Zhang (1997) uses an explicit evaluation of the correlation integral
term, and hence is only first order accurate. The approach of Meyer (1998) is restricted to cases where the
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Size of No. of S Q 90 S Q 100 S Q 110
S grid Timesteps Value R Value R Value R
101 125 0.524766 n.a. 4.193418 n.a 8.762555 n.a.
201 250 0.523168 n.a 4.212131 n.a 8.779253 n.a.
401 500 0.522761 3.930 4.216747 4.053 8.782267 5.540
801 1000 0.522660 4.002 4.217902 3.997 8.783008 4.068

1601 2000 0.522634 4.015 4.218192 3.990 8.783199 3.875

TABLE 7: Value of an up-and-out Parisian call option using Rannacher timestepping with constant timesteps
(∆τ Q W 002 on the coarsest grid) and l2 projection. The input parameters are given in Table 1. The barrier is
set at S Q 120 and 10 consecutive daily observations are required to knock-out. The convergence ratio R is
defined in equation (7.1). The number of points used for the FFT grid is 2α, where α is the smallest integer
such that the number of nodes in the non-uniform S grid p X 2α. Quadratic interpolation is used.
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FIGURE 7: Parisian knock-out call option with discrete daily observation dates with and without jumps. The
barrier is set at S Q 120 and the number of consecutive daily observations to knock-out is 10.

underlying asset can only jump to a (small) finite number of states.

8 Conclusion

In this paper, we have shown that an explicit evaluation of the correlation integral in the jump diffusion
PIDE, coupled with an implicit discretization of the usual PDE terms, is unconditionally stable. However,
since this method is only first order correct, an implicit method is preferred. We show that Crank-Nicolson
timestepping is algebraically stable, and in the special case of an equally spaced logS grid with constant
parameters, we can prove that Crank-Nicolson timestepping is strictly stable.

If implicit timestepping is used, then the direct evaluation of the correlation integral appearing in the
PIDE would require a dense matrix solve. To avoid this computational complexity, a fixed point iteration
method is developed. For typical parameter values, this fixed point iteration converges very quickly (the
error is reduced by two orders of magnitude at each iteration).

Each fixed point iteration requires evaluation of the correlation integral. We use Lagrange interpolation
to transfer the data on the clustered PDE grid to an equally spaced logS grid. An FFT method is then used
to evaluate the correlation integral, and Lagrange interpolation is used to transfer data back to the PDE grid.
We demonstrate how to extend the logS grid to avoid FFT wrap around effects. This is done by taking into
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Number of points N Timesteps Iterations (tol Q 10 V 6) Iterations (tol Q 10 V 8)
128 25 77 100
255 50 150 200
509 100 300 390

1017 200 600 600
2033 400 1091 1200
4065 800 1600 2400

TABLE 8: Number of iterations for a European call option under jump diffusion using Crank-Nicolson
timestepping. The input parameters are provided in Table 1. The convergence tolerance tol is defined in
equation (5.4).

account the properties of the jump size probability density.
The methods developed in this paper can be applied to arbitrary jump size probability densities. Further-

more, we have demonstrated that this method can be used to obtain implicit solutions to American options
with jump diffusion. Since the method used to handle the jump diffusion term implicitly is a simple fixed
point iteration, then it is a very simple matter to modify an existing exotic option pricing library to handle
the jump diffusion case. All that is required is that a function be added to the library which, given the current
vector of discrete option prices, returns the vector value of the correlation integral. This vector is then added
to the right hand side of the fixed point iteration.

There are several obvious avenues for future research. One would be a detailed analysis of pricing and
hedging various types of exotic options under a jump diffusion process. Similarly, it would be interesting
to explore the effects of uncertain parameters or transactions costs, as described in Wilmott (1998) for the
diffusion case. Another possibility would be to extend the analysis to more complex models for the evolution
of the underlying state variable. Among the candidates here are more general Lévy processes than the jump
diffusion case, or multifactor models such as those recently explored by Eraker et al. (2003), which feature
stochastic volatility with Poisson jumps in both the state variable itself and its volatility.

Appendix

A Von Neumann Stability Analysis

In this Appendix, we will carry out a Von Neumann stability analysis for Crank-Nicolson timestepping in
the special case of constant parameters and an equally spaced grid in logS coordinates.

From equations (2.4) and (3.2),

Vτ
� 1

2
σ2S2VSS

��� r � λκ � SVS � � r � λ � V � λ  ∞� ∞
V � y � f � y � logS � dy � (A.1)

where V � x � τ � � V � exp � x �
� τ � and f � y � � f � exp � y �$� . Using the change of variable x � log � S � and substituting
into (A.1), we obtain

V τ
� 1

2
σ2V xx

��� r � λκ � 1
2

σ2 � V x � � r � λ � V � λ  ∞� ∞
V � y � f � y � x � dy � (A.2)

From equation (A.2), it can be observed that the integral part of the PIDE is simply a correlation product.
Using the correlation operator � from equation (3.3), equation (A.2) can be written as

V τ
� 1

2
σ2V xx

��� r � λκ � 1
2

σ2 � V x � � r � λ � V � λV � f � (A.3)
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A Crank-Nicolson discretization of equation (A.3) is

V n � 1
i � V n

i

∆τ
� λ

2 / � V � f � ni ��� V � f � n � 1
i 0� 1

2 a 12σ2 b V n � 1
i � 1 � 2V n � 1

i
� V n � 1

i � 1

∆x2 c ��� r � λκ � 1
2

σ2 � b V n � 1
i � 1 � V n � 1

i � 1

2∆x c � � r � λ � V n � 1
i d� 1

2 a 12σ2 b V n
i � 1 � 2V n

i
� V n

i � 1

∆x2 c ��� r � λκ � 1
2

σ2 � b V n
i � 1 � V n

i � 1

2∆x c � � r � λ � V n
i d � (A.4)

Equation (A.4) can be written as

V n � 1
i : 1 ��� α � β � r � λ � ∆τ

2 ; � ∆τ
2

βV n � 1
i � 1 � ∆τ

2
αV n � 1

i � 1� V n
i : 1 � � α � β � r � λ � ∆τ

2 ; � ∆τ
2

βV n
i � 1

� ∆τ
2

αV n
i � 1

� ∆τ
2

λ / � V � f � ni ��� V � f � n � 1
i 0 � (A.5)

where

α � σ2

2∆x2 � r � λκ � σ2

2
2∆x

(A.6)

β � σ2

2∆x2
� r � λκ � σ2

2
2∆x

� (A.7)

Let V̂ n � #V n
0 � V n

1 �$�$�$�4� V n
p &). be the discrete solution vector to equation (A.3). Suppose the initial solution

vector is perturbed, i.e. V̂ 0 � V 0 � E0, where En � # En
0 �$�$�$�%� En

p &). is the perturbation vector. Note that E n
p
� 0

since Dirichlet boundary conditions are imposed at this node. Then, from equation (A.5), we we obtain the
following equation for the propagation of the perturbation

En � 1
i : 1 ��� α � β � r � λ � ∆τ

2 ; � ∆τ
2

βEn � 1
i � 1 � ∆τ

2
αEn � 1

i � 1� En
i : 1 � � α � β � r � λ � ∆τ

2 ; � ∆τ
2

βEn
i � 1

� ∆τ
2

αEn
i � 1

� ∆τ
2

λ / � E � f � ni ��� E � f � n � 1
i 0 � (A.8)

In the following we determine the stability of our discretization scheme using the von Neumann ap-
proach (Richtmyer and Morton, 1967). In order to apply the Fourier transform method, we assume that
the boundary conditions can be replaced by periodicity conditions. We define the inverse discrete Fourier
transform (DFT) as follows (note that we have selected a particular scaling factor)

En
i
� 1

XN

N
2

∑
k � � N

2 � 1

Cn
k exp �fe � 1

2π
N

ik � (A.9)

fi
� 1

XN

N
2

∑
l � � N

2 � 1

Fl exp � e � 1
2π
N

il ��� (A.10)

where Ck and Fl correspond respectively to the discrete Fourier coefficients of E and f , and XN
� xN � 2 �

x � N � 2 � 1 is the width of the domain along the x-axis. Note that the notation Cn
k should be interpreted as � Ck � n,

i.e. in this case n is a power, not a superscript.
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The forward transforms are

Cn
k
� XN

N

N
2

∑
i � � N

2 � 1

En
i exp � � e � 1

2π
N

ik � (A.11)

Fl
� XN

N

N
2

∑
i � � N

2 � 1

fi exp � � e � 1
2π
N

il � � (A.12)

The discrete correlation is given by � E � f � ni � XN

N

N
2

∑
j � � N

2 � 1

En
j f j � i � (A.13)

which is second order accurate. Substituting (A.9) and (A.10) into (A.13), we obtain� E � f � ni � XN

N

N
2

∑
j � � N

2 � 1

1
XN

N
2

∑
k � � N

2 � 1

Cn
k exp � e � 1

2π
N

jk � 1
XN

N
2

∑
l � � N

2 � 1

Fl exp � e � 1
2π
N
� j � i � l �

� 1
XN

1
N

N
2

∑
k � � N

2 � 1

N
2

∑
l � � N

2 � 1

Cn
k Fl exp � � e � 1

2π
N

il � N
2

∑
j � � N

2 � 1

exp �Ye � 1
2π
N

jk � exp �fe � 1
2π
N

jl ���
Using the orthogonality condition

N
2

∑
j � � N

2 � 1

exp � e � 1
2π
N

jk � exp � e � 1
2π
N

jl � �hg N if l � � k
0 otherwise

� (A.14)

we find that � E � f � ni � 1
XN

N
2

∑
k � � N

2 � 1

Cn
k F� k exp � e � 1

2π
N

ik � � (A.15)

Substituting (A.9) and (A.15) into (A.8) gives

1
XN

N
2

∑
k � � N

2 � 1

Cn � 1
k exp �fe � 1

2π
N

ik � : 1 ��� α � β � r � λ � ∆τ
2 ;� ∆τ

2
β

1
XN

N
2

∑
k � � N

2 � 1

Cn � 1
k exp � e � 1

2π
N
� i � 1 � k � � ∆τ

2
α

1
XN

N
2

∑
k � � N

2 � 1

Cn � 1
k exp � e � 1

2π
N
� i � 1 � k ��

1
XN

N
2

∑
k � � N

2 � 1

Cn
k exp �fe � 1

2π
N

ik � : 1 � � α � β � r � λ � ∆τ
2 ;� ∆τ

2
β

1
XN

N
2

∑
k � � N

2 � 1

Cn
k exp � e � 1

2π
N
� i � 1 � k � � ∆τ

2
α

1
XN

N
2

∑
k � � N

2 � 1

Cn
k exp � e � 1

2π
N
� i � 1 � k �

� ∆τ
2

λ ij 1
XN

N
2

∑
k � � N

2

Cn
k F� k exp � e � 1

2π
N

ik � � 1
XN

N
2

∑
k � � N

2

Cn � 1
k F� k exp � e � 1

2π
N

ik �lkm (A.16)
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Because of linearity, each Fourier component can be treated separately. Equation (A.16) becomes

Cn � 1
k exp �fe � 1

2π
N

ik � : 1 ��� α � β � r � λ � ∆τ
2 ;� ∆τ

2
βCn � 1

k exp �ne � 1
2π
N
� i � 1 � k � � ∆τ

2
αCn � 1

k exp �fe � 1
2π
N
� i � 1 � k ��

Cn
k exp � e � 1

2π
N

ik � : 1 � � α � β � r � λ � ∆τ
2 ;� ∆τ

2
βCn

k exp �ne � 1
2π
N
� i � 1 � k � � ∆τ

2
αCn

k exp �Ye � 1
2π
N
� i � 1 � k �� ∆τ

2
λ : Cn

k F� k exp � e � 1
2π
N

ik � � Cn � 1
k F� k exp � e � 1

2π
N

ik � ; � (A.17)

Dividing equation (A.17) by Cn
k exp � e � 1 2π

N ik � , we obtain

Ck : 1 ��� α � β � r � λ � ∆τ
2 ; � ∆τ

2
βCk exp �ne � 1

2π
N

k � � ∆τ
2

αCk exp � � e � 1
2π
N

k � � Ck
λ∆τ

2
F� k�: 1 � � α � β � r � λ � ∆τ

2 ; � ∆τ
2

βexp � e � 1
2π
N

k � � ∆τ
2

αexp � � e � 1
2π
N

k � � ∆τ
2

λF� k � (A.18)

Factoring the Ck term, equation A.18 becomes

Ck
� / 1 � � α � β � r � λ � ∆τ

2 0 � ∆τ
2 βexp � e � 1 2π

N k � � ∆τ
2 αexp � � e � 1 2π

N k � � ∆τ
2 λF� k/ 1 ��� α � β � r � λ � ∆τ

2 0 � ∆τ
2 βexp � e � 1 2π

N k � � ∆τ
2 αexp � � e � 1 2π

N k � � ∆τ
2 λF� k

� (A.19)

Recalling (A.7), it follows that

α � β � r � λ � σ2

2∆x2 � � r � λκ � 1
2 σ2 �

2∆x
� σ2

2∆x2
� � r � λκ � 1

2 σ2 �
2∆x

� r � λ� σ2

∆x2
� r � λ �

and

∆τβexp �ne � 1
2π
N

k � � ∆ταexp � � e � 1
2π
N

k � � σ2∆τ
2∆x2 : exp �fe � 1

2π
N

k � � exp � � e � 1
2π
N

k � ;� ∆τ � r � λκ � 1
2 σ2 �

2∆x[ : exp �ne � 1
2π
N

k � � exp � � e � 1
2π
N

k � ;� σ2∆τ
∆x2 cos � 2π

N
k �� e � 1 ∆τ � r � λκ � 1

2 σ2 �
∆x

sin � 2π
N

k � �
29



Using the above results in (A.19), we find

Ck
�$o

1 �qp σ2

∆x2
� r � λ r ∆τ

2 s � 1
2

o
σ2∆τ
∆x2 cos � 2π

N k � � e � 1 ∆τ
∆x � r � λκ � 1

2 σ2 � sin � 2π
N k � � ∆τλF� k so

1 � 1
2 p σ2

∆x2
� r � λ r ∆τ s � 1

2

o
σ2∆τ
∆x2 cos � 2π

N k � � e � 1 ∆τ
∆x � r � λκ � 1

2 σ2 � sin � 2π
N k � � ∆τλF� k � s � (A.20)

Letting

FR� k
� Re � F� k �

F I� k
� Im � F� k �
�

equation (A.20) gives�Ck � 2 �o
1 �qp σ2

∆x2
� r � λ r ∆τ

2
� σ2∆τ

2∆x2 cos � 2π
N k � � ∆τ

2 λFR� k s 2 � / ∆τ
2∆x � r � λκ � 1

2 σ2 � sin � 2π
N k � � λ ∆τ

2 F I� k 0 2o
1 � p σ2

∆x2
� r � λ r ∆τ

2 � σ2∆τ
2∆x2 cos � 2π

N k � � ∆τ
2 λFR� k s 2 � / ∆τ

2∆x � r � λκ � 1
2 σ2 � sin � 2π

N k � � λ ∆τ
2 F I� k 0 2

� (A.21)

or �Ck � 2 �o
1 � r∆τ

2 � σ2∆τ
2∆x2 � 1 � cos � 2π

N k �@� � ∆τλ
2 � 1 � FR� k

� s 2 � / ∆τ
2∆x � r � λκ � 1

2 σ2 � sin � 2π
N k � � λ ∆τ

2 F I� k 0 2o
1 � r∆τ

2
� σ2∆τ

2∆x2 � 1 � cos � 2π
N k �@� � ∆τλ

2 � 1 � FR� k
� s 2 � / ∆τ

2∆x � r � λκ � 1
2 σ2 � sin � 2π

N k � � λ ∆τ
2 F I� k 0 2

� (A.22)

Note that

F� k
� XN

N

N
2

∑
j � � N

2 � 1

f j exp � e � 1
2π
N

k j ��� (A.23)

Then, from (3.6), we have

XN

N

N
2

∑
j � � N

2 � 1

f j " 1 � (A.24)

so that �F� k �A" 1 � (A.25)

and hence � 1 " FR� k " � 1 � (A.26)

It then follows that (� k Jt� N < 2 � 1 �$�$�$�$� � N < 2)uuuu 1 � r∆τ
2
� σ2∆τ

2∆x2
� 1 � cos � 2π

N
k �v� � ∆τλ

2
� 1 � FR� k

� uuuu �uuuu 1 � r∆τ
2
� σ2∆τ

2∆x2
� 1 � cos � 2π

N
k �w� � ∆τλ

2
� 1 � FR� k

� uuuu �
(A.27)

and consequently �Ck �P 1 �x� k, so the scheme is unconditionally strictly stable.
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