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Joint Source-Channel Coding for Deep-Space

Image Transmission using Rateless Codes

O. Y. Bursalioglu, G. Caire, and D. Divsalar

Abstract

A new coding scheme for image transmission over noisy channel is proposed. Similar to standard

image compression, the scheme includes a linear transform followed by successive refinement scalar

quantization. Unlike conventional schemes, in the proposed system the quantized transform coefficients

are linearly mapped into channel symbols using systematic linear encoders. This fixed-to-fixed length

“linear index coding” approach avoids the use of an explicitentropy coding stage (e.g., arithmetic or

Huffman coding), which is typically fragile to channel post-decoding residual errors. We use linear

codes overGF(4), which are particularly suited for this application, sincethey are matched to the dead-

zone quantizer symbol alphabet and to the QPSK modulation used on the deep-space communication

channel. We optimize the proposed system where the linear codes are systematic Raptor codes over

GF(4). The rateless property of Raptor encoders allows to achievea “continuum” of coding rates, in order

to accurately match the channel coding rate to the transmission channel capacity and to the quantized

source entropy rate for each transform subband and refinement level. Comparisons are provided with

respect to the concatenation of state-of-the-art image coding and channel coding schemes used by Jet

Propulsion Laboratories (JPL) for the Mars Exploration Rover (MER) Mission.
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I. INTRODUCTION

In conventional digital image transmission over noisy channels, the source coding and channel

coding stages are designed and operated separately. Image coding is usually implemented by a

linear transformation (e.g., DCT, Wavelet), followed by the transform coefficients quantization

and by entropy coding of the resulting quantization bits. Due to the lack of robustness of standard

entropy coding schemes, a few bit errors after the channel decoder may dramatically corrupt

the decoded image. To prevent this catastrophic error propagation, the source is partitioned into

segments, such that the effect of errors is spatially confined. In order to preserve integrity, which

is a strict requirement in deep-space scientific missions, the segments affected by errors are re-

transmitted at the cost of significant delay and power expenditure. Because of the sharp waterfall

behavior of the Bit-Error Rate (BER) of the powerful channelcoding schemes used in deep-

space communications, slight changes in the transmission channel quality (e.g., SNR fluctuations

due to atmospheric conditions or antenna misalignment) result in dramatic degradation of the

post-decoding BER, producing sequences of highly corrupted segments that need retransmission

[1].

In this paper we consider the application of the Joint SourceChannel Coding (JSCC) scheme

developed in fOzgun-Maria-JSCC-08, [4] to the specific problem of deep-space image transmis-

sion. The proposed JSCC scheme consists of a successive refinement (also referred to as “em-

bedded”) quantizer, and a family of linear codes that directly map the sequences of quantization

symbols generated at each refinement level into channel codewords. This approach is referred

to as Quantization with Linear Index Coding(QLIC). The linear mapping of the redundant

quantization symbols into channel-encoded symbols replaces the non-linear entropy coding stage

of conventional source encoders. QLIC can achieve the same (optimal) entropy compression rate

of conventional entropy encoders, but it is much better conditioned in terms of residual error

propagation. Similar to JPEG2000 [5], we apply Discrete Wavelet Transform to the image and

then quantize the transform coefficients using a dead-zone quantizer. Since an embedded dead-

zone quantizer divides the quantization cells into at most three regions at every refinement level,

the quantization indices are naturally represented as non-binary symbols. Differently from our

previous work in [2], [4], here we use nonbinary Raptor codes(notably, overGF(4)) for QLIC.

We prove an “isomorphism” between the original source-channel coding problem and a “virtual”
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purely channel coding problem where the source symbols are sent through an appropriate discrete

symmetric memoryless channel overGF(4) and the channel-coded symbols are sent through the

AWGN channel with QPSK modulation, which is the standard in deep-space communications.

This isomorphism allows us to cast the non-standard code optimization in the source-channel

coding case as a more familiar optimization for the purely channel coding case, which we solve

by using a modified EXIT chart technique [6].

The three components the proposed JSCC scheme, namely a wavelet transform, a scalar

embedded quantizer, and a linear encoding stage, are examined in Sections III, IV and V,

respectively. Section II introduces the notation used throughout the paper and defines the relevant

system optimization problem for JSCC based on the concatenation of embedded quantization and

channel coding in general. In Sec. VI1, we compare the performance of the proposed scheme

with the state-of-the art image transmission scheme for deep-space communication channel.

This baseline schemeis based on the separation of source compression and channelcoding. Our

results show that when the channel quality is perfectly known, the highly optimized baseline

scheme providesslightly higher efficiency. However, as soon as the channel conditions degrade,

the proposed JSCC scheme offers significantrobustnessadvantages. In particular, it is able to

handle fluctuations of the channel SNR as large as 1 dB below its nominal value, with visually

acceptable quality and without requiring retransmissions.

II. SYSTEM SETUP

The deep-space transmission channel is represented by the discrete-time complex baseband

equivalent model

yt = µ(xt) + zt, t = 1, 2, . . . , (1)

whereyt ∈ C, xt ∈ GF(q) is a coded symbol taking on values in a finite field,µ : GF(q) → X

is a labeling mapof a signal constellationX = {X0, . . . ,Xq−1} with the elements ofGF(q)

and zt ∼ CN (0, N0) is the complex circularly symmetric AWGN. The channel signal-to-noise

ratio (SNR) is given byEs/N0, whereEs = 1
q

∑q−1
j=0 |Xj|2 is the average power of the signal

1These results appeared previously in [7] as a conference proceeding. This work includes more details about the scheme and

derivations.
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constellation. We indicate byCX(Es/N0) the maximum achievable rate of channel (1) when the

input xt is i.i.d. and uniformly distributed overGF(q). 2

A source block of lengthK is denoted byS ∈ R
s×K , whereS(i, :) = (S(i, 1), . . . , S(i, K)) is

thei-th row ofS, with varianceσ2
i

∆
= 1

K
E[‖S(i, :)‖2], is referred to as referred to as thei-th source

component. A (s×K)-to-N source-channel code for sourceS and channel (1) is formed by an

encoding functionS 7→ x = (x1, . . . , xN ), and by a decoding functiony = (y1, . . . , yN) 7→ Ŝ.

Letting di =
1
K
E[‖S(i, :)− Ŝ(i, :)‖2] denote the mean-square error for thei-th component, the

weighted mean-square error (WMSE) is defined by

D =
1

s

s∑

i=1

vidi, (2)

where{vi} is a set of non-negative weights that depends on the specific application (see Section

III). Let ri(·) denote the rate-distortion (R-D) function of theith source component with respect

to the MSE distortion. Then the R-D function ofS with respect to the WMSE distortion is given

by

R(D) = min
1

s

s∑

i=1

ri(di), subject to
1

s

s∑

i=1

vidi = D, (3)

where the optimization is with respect to the valuesdi ≥ 0 for i = 1, . . . , s. For example, for

parallel Gaussian sources and equal weights (vi = 1 for all i), (3) yields the well-known “reverse

waterfilling” formula (see [8, Theorem 10.3.3]). For a family of successive refinement source

codes with R-D functionsri(d), i = 1, . . . , s, assumed to be convex, non-increasing [3] and

identically zero ford > σ2
i , the operational R-D function of the sourceS is also given by (3).

Therefore, in the following,R(D) is used to denote the actual operational R-D function of for

some specific, possibly suboptimal, successive refinement source code.

We define the source-channel bandwidth efficiency of the encoderS 7→ x as the ratiob = N
sK

,

measured in channel uses per source sample. This corresponds to the familiar notion of “bit

per pixel” in the case where the source symbols are pixels (image coding) and the channel is

just a storage device for which one channel use corresponds to storing one bit. By analogy, in

this paperb will expressed in “symbol per pixel” (spp). It is immediate from the definition of

2We shall refer toCX(Es/N0) as “channel capacity” even though, for general constellations, the uniform input probability

may not be capacity achieving. As a matter of fact, for the case of QPSK considered in the rest of the paper the uniform input

probability does achieve capacity.
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R-D function that the minimum distortionD achievable at channel capacityCX(Es/N0) and

source-channel bandwidth efficiencyb is given byD = R−1(bCX(Es/N0)).

III. SUBBAND CODING

Images are decomposed into a set of source components by a Discrete Wavelet Transform

(DWT). In this work we make use of the DWT described in JPEG2000 [5] for lossy compression.

With W levels of DWT, the transformed image is partitioned into3W+1 “subbands”. A subband

decomposition example is given in Fig. 1-A forW = 3. This produces3W + 1 = 10 subbands,

which in the figure are indicated by LL0, HL1, LH1, HH1, HL2, LH2, HH2, HL3, LH3, HH3,

respectively. The subbands have different lengths, all multiples of the LL0 subband length. For

simplicity, we partition the DWT into source components of the same length, all equal to the the

length of the LL0 subband. This yieldss = 22W source component blocks of lengthK = K2/s,

whereK ×K indicates the size of the original image in pixels.

Since this DWT is a bi-orthogonal transform, the MSE distortion in the pixel domain is not

equal to the MSE distortion in the wavelet domain. In our case, for W = 3, the weight of a

source component block in subbandw = {1, . . . , 10} is given by thew-th coefficient of the

vector [l6, l5h, l5h, l4h2, l3h3, l3h3, l2h2, lh, lh, h2], where, for the particular DWT considered

(namely, the CDF 9/7 [9] wavelet), we havel = 1.96 and h = 2.08 [5]. The subband LL0

(A) (B)

Figure 1. (A):W = 3, partitioning of an image into10 subbands and64 source components. (B): Quantization cell indexing

for a embedded dead-zone quantizer withp = 1, 2, 3.

consists approximatetely of a decimated version of the original image. In order to obtain better

compression in the transform domain, a Discrete Cosine Transform (DCT) is applied to subband
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LL0 so that its energy is “packed” into a very few coefficientsThe resulting few high-energy

coefficients are separately encoded and transmitted as partof the header. This is highly protected

by a sufficiently low rate channel code and is not discussed further in this work since it has

a negligible contribution to the overall coding length. After extracting these few high-energy

coefficients, all subbands show similar marginal statistics, well-suited for the embedded dead-

zone quantizer described in the next section.

IV. EMBEDDED SCALAR QUANTIZATION

The simplest form of quantization defined in JPEG2000 is a uniform scalar quantizer where

the center cell’s width is twice the width of the other cells,at any resolution level. For example,

Fig. 1-B shows such a quantizer with3 resolution levels. This scheme, referred to as “dead-

zone” quantizer, is adopted in this work. We indicate the cell partition at every level by symbols

{0, 1, 2} as shown in Fig.1-B. The scalar quantization function is denoted byQ : R → {0, 1, 2}P ,

where2P+1 − 1 is the number of quantization regions for the highest level of refinement. Let

u(i) = Q(S(i, :)) denote the block of ternary quantization indices, formatted as aP ×K array.

The p-th row of u(i), denoted byu(i)(p, :), is referred to as thep-th “symbol-plane”, where

u(i)(1, :) corresponds to the coarser refinement andu(i)(P, :) to the finest. A refinement level

p consists of all symbol planes from 1 top. The quantization distortion for thei-th source

component at refinement levelp is denoted byDQ(i, p).

The quantizer outputu(i) can be considered as adiscrete memoryless source, with entropy rate

H(i) = 1
K
H(u(i)) (in bits/source symbol). The chain rule of entropy [8] yieldsH(i) =

∑P
p=1H

(i)
p ,

with H
(i)
p = 1

K
H
(
u(i)(p, :)

∣∣u(i)(1, :), . . . ,u(i)(p− 1, :)
)
, p = 1, . . . , P. Then, the set of R-D

points achievable by the concatenation of the quantizer using 0, 1, . . . , P quantization levels3

and ideal entropy coding is given by
(

p∑

j=1

H
(i)
j , DQ(i, p)

)
, p = 0, . . . , P, (4)

where, by definition,DQ(i, 0) = σ2
i . Using time-sharing, any point in the convex hull of the

above achievable points is also achievable. Therefore, theoperational R-D curveri(d) of the

scalar quantizer is given by thelower convex envelopeof the points in (4).

3Notice: 0 quantization levels indicates that the whole source component is reconstructed at its mean value.
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By construction,ri(d) is piecewise linear, convex and decreasing on the domainDQ(i, P ) ≤
d ≤ σ2

i . As such, it is possible to representri(d) as the pointwise maximum of the family of

straight lines joining the pairs of R-D points in (5), for consecutive indicesp andp+ 1. Using

this observation in (3), the minimum WMSE distortion with capacityCX(Es/N0) and bandwidth

efficiency b is the result of the linear program:

minimize
1

s

s∑

i=1

vidi (5)

subject to
1

s

s∑

i=1

γi ≤ bCX(Es/N0); DQ(i, P ) ≤ di ≤ σ2
i , ∀i; γi ≥ ai,pdi + bi,p, ∀i, p,

whereai,pd+bi,p is thep-th straight line (for appropriate coefficients (ai,p, bi,p) obtained by linear

interpolation of the points in (4)) formingri(d) as said before.4

While (5) assumes a capacity achieving channel code, in the proposed JSCC scheme the

refinement levels (symbol planes) of each source component are encoded by actual codes of finite

block length. Lettingn(i)
p denote the number of channel encoded symbols for thepth plane of the

ith source component, the total channel coding block length is given by N =
∑s

i=1

∑P
p=1 n

(i)
p .

Consistent with the definition of the Raptor codeoverheadfor channel coding applications [6],

we define the overheadθ(i)p for JSCC such thatn(i)
p =

KH
(i)
p (1+θ

(i)
p )

CX(Es/N0)
, whereKH

(i)
p /CX(Es/N0)

is the information theoretic lower bound to the block length, obtained from the source-channel

coding converse theorem [8, Theorem 8.13.1].

In the case of a family of practical codes characterized by their overhead coefficients{θ(i)p }, the

computation of the achievable R-D function takes on the sameform of (5), where the coefficients

{ai,p, bi,p} are obtained from the linear interpolation of the modified R-D points
(

p∑

j=1

H
(i)
j (1 + θ

(i)
j ), DQ(i, p)

)
, p = 0, . . . , P. (6)

(see [4] for details). For given code families and block lengths, the overhead factorsθ(i)p can be

experimentally determined, and used in the system optimization.

To give an idea of the symbol plane entropies resulting from deep-space images, in (7) we

give such values for the first source component (subband LL0 after DCT) of a test image from

4The details of linear interpolation are trivial and are omitted for the sake of brevity.
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the Mars Exploration Rover, which will be referred to in the following as image MER1:
[
H

(1)
1 , . . . , H

(1)
8

]
= [0.0562, 0.0825, 0.2147, 0.4453, 0.8639, 1.1872, 1.1917, 1.1118] . (7)

By examining a large library of such images, we observed thatthe range of values shown in (7)

are typical for this application.

V. CHANNEL CODING OPTIMIZATION

In this section we discuss the optimization of the linear channel coding stage. For simplicity,

we focus on a single discrete sourceu ∈ GF(q)K with entropyH, to be transmitted over the

AWGN channel (1) with capacityCX(Es/N0). Obviously, the optimization procedure devised

here can be applied to each source component and quantization layer pair (i, p), by letting

H = H
(i)
p and block lengthn = n

(i)
p .

Linear source codes are known to achieve the entropy rate of memoryless sources [10]. Several

works have considered entropy-achieving fixed-to-fixed linear coding for “almost-lossless” data

compression [11], [12], [13], [14] and [15]. Linear data compression codes can be directly

obtained from linear error correcting codes originally designed for additive-noise discrete mem-

oryless channels. This is due to the following fact [14]. Consider a linear fixed length data

compression code given by aK × n matrix H which maps the source vectoru (of lengthK)

to the compressed vectorc = uH. The optimalmaximum a posteriori(MAP) decoder selects

û to be the most likely source vector satisfyinĝuH = c. Next, consider a discrete additive

noise channely = x + u, where the sourceu acts as the additive noise. Letx be a codeword

of the a linear code with parity-check matrixH. The MAP decoder in this case computes the

syndromec = yH = uH and findsû to be the most likely noise realization satisfying the

syndrome equation̂uH = c. Then, it obtains the MAP decoded codeword asx̂ = y − û. It

is clear that the optimal decoder for the data compression problem is identical to the optimal

decoder for the channel coding problem. Therefore, the achieved block error rates are identical.

As a consequence, ifH denotes a sequence (for increasingK) of capacity achieving parity-check

matrices for the discrete additive noise channely = x+ u, then thesamesequence of matrices

achieves the entropy of the sourceu. In fact, in this case channel capacity and source entropy

are related byC = log q −H.

In order to extend the above argument from pure data compression to the transmission of

compressed data over a noisy channel it is sufficient to concatenate two linear encoding stages,
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c = uHcomp for data compression, andx = cGcod for channel coding. Since the concatenation of

two linear maps is a linear map, by optimizing over all linearmaps (not necessarily decomposed

as the productHcompGcod), it follows that there must exist good linear joint source-channel

codes. From now on, we shall indicate this single encoding map by x = uH. This can also

be interpreted assystematic encodingfollowed by puncturing of the source symbols. Encoding

with the systematic generator matrixG = [I,H] yields the systematic codeword[u,x = uH].

Then, the source symbolsu are completely punctured and onlyx is transmitted. This approach

is meaningful from an information theoretic viewpoint since, in the limit of large block length,

any scheme transmitting the (redundant) source symbols directly over the channel is necessarily

bounded away from capacity. In fact, the source symbols are non-uniformly distributed with

entropyH < log q and therefore do not follow the capacity-achieving distribution. Viewing

the encoding map as systematic encoding followed by puncturing will be instrumental to the

proposed use of systematic Raptor codes for this problem, asdiscussed later on.

Up to this point we assumed that the noisy channel is also additive overGF(q), and therefore

it is “matched” to the source alphabet, so that linearity canbe defined. However, in the case of

deep-space transmission, the channel (1) is defined over thecomplex field, and the codeword

x is mapped onto a sequence of modulation symbols by the labeling mapµ. In order to carry

over the previous arguments to this case we need a “matching condition” between the additive

group of the source alphabetGF(q) and an isometry group induced on the signal constellation.

For this purpose, we considergeometrically uniformconstellations as defined in [16].

Definition 1: A signal setX is calledgeometrically uniformif, given any two pointsXa,Xb ∈
X, there exists an isometrywa,b : C → C that mapsXa into Xb while leavingX invariant. ♦

The set of all isometries that leaveX invariant forms the symmetry group ofX, under the

operation of mapping composition. A subgroupG(X) of the symmetry group of minimal size

able to generate the whole constellationX as the orbit of any of its points is called agenerating

group [16]. By definition, |G(X)| = |X| = q. Given an initial pointX0 ∈ X, we haveX =

{w(X0) : w ∈ G(X)}. This induces a one-to-one mappingµ : G(X) → X referred to as an

isometric labeling. The isometric labelingµ induces a group structure onX. At this point, the

sought “matching” condition can be stated as follows: we letX be a geometrically uniform signal

constellation admitting a generating groupG(X) isomorphic to the additive group ofGF(q).

For example, aq-PSK signal constellation is geometrically uniform, and admits a generating

May 3, 2014 DRAFT
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group formed by the set of rotations of multiples of2π
q

. This group is isomorphic to the additive

group ofZq (integers moduloq). Forq prime, the ringZq coincides with the fieldGF(q), therefore

the generating group of theq-PSK constellation is isomorphic to the additive group ofGF(q).

A possible approach for our code design considersq prime and usesq-PSK as constellation.

In particular,q = 3 is sufficient to represent the dead-zone quantizer symbols and the 3-PSK

generating group consists of the rotationsG = {I, R,R2} whereR is a π/3 rotation inC.

Another example is provided byq = 4. The additive group ofGF(4) = {(0, 0), (1, 0), (0, 1), (1, 1)}
(binary vectors of length 2, with modulo 2 addition) is isomorphic to the additive group of

GF(2)×GF(2). This group is isomorphic to the isometry group formed byG = {I, Rx, Ry, Rxy},

whereI is identity,Rx is reflection with respect to the real axis,Ry is reflection with respect

to the imaginary axis, andRxy = RxRy is reflection with respect to the origin. Note that the

isometric labeling of the 4-PSK constellation by the elements of GF(4) coincides with the well-

known Gray Mapping, which is routinely used in deep-space communications.

With the above conditions onX and its isometric labelingµ, we introduce the following

notation:wx ∈ G(X) denotes the isometry such thatwx(µ(0)) = µ(x); wx for a sequence

x ∈ GF(q)n denotes the sequence of isometrieswxt for t = 1, . . . , n; µ(x) indicates the sequence

of constellation pointsµ(xt) for t = 1, . . . , n.

We wish to translate the non-conventional source-channel coding problem at hand into a

channel coding problem defined over a particular channel, that we refer to as the associated

two-block composite channel. We do so in order to reuse known techniques for optimizing the

linear encoding matrixH for the associated channel coding problem.

Definition 2: The associated two-block composite channel is aq-ary input channel where the

input is divided into two blocks, indicated byv andc, of lengthK andn, respectively. The first

block is sent through the discrete additive noise channel defined bys = v−u, where operations

are overGF(q) and whereu has the same statistics of the source. The second block is sent

through theq-ary AWGN channel defined byr = µ(c) + z, wherez ∼ CN (0, N0I), as in the

original AWGN channel (1). ♦

For the associated two-block composite channel, we consider the systematic encoder[v, c =

vH]. Then, we have:

Theorem 1:The source-channel coding scheme with sourceu, linear encoderx = uH,

transmission over the noisy channely = µ(x)+z, and MAP decoding, isequivalentto a channel
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coding scheme over the associated two-block composite channel with systematic encoding and

MAP decoding, in the sense that the error region of the source-channel MAP decoder of the

former is congruent (via an isometric transformation) to the error region of the MAP decoder

of the latter, for any source vectoru and transmitted information vectorv. The isometric

transformation of the two error regions depends, in general, on u andv.

Proof: Since the two-block composite channel is symmetric by construction, and the sys-

tematic code[v, c = vH] is linear, it is immediate to show that the MAP decoding errorregions

for different codewords are mutually congruent. Hence without loss of generality, it is sufficient

to considerv = 0, yielding the all-zero codeword. The MAP decoder for the source-channel

coding scheme is given by

û = arg max
u′:x′=u′H

exp

(
− 1

N0
‖y − µ(x′)‖2

)
PU(u

′). (8)

The MAP decoder for the two-block composite channel coding scheme is given by

v̂ = arg max
v′:c′=v′H

exp

(
− 1

N0
‖r− µ(c′)‖2

)
PU(v

′ − s). (9)

Using the properties of the geometrically uniform constellation X, the generic term in the

maximization of (8) can be written as

exp

(
‖y − µ(x′)‖2

−N0

)
PU(u

′) = exp

(
‖µ(x) + z− µ(x′)‖2

−N0

)
PU(u

′)

= exp

(
‖wx(µ(0)) + z− µ(x′)‖2

−N0

)
PU(u

′)

= exp

(
‖µ(0) + w−x(z)− w−x(µ(x

′))‖2
−N0

)
PU(u

′)

= exp

(
‖µ(0) + w−x(z)− µ(x′ − x)‖2

−N0

)
PU(u

′). (10)

Whenv = 0 is transmitted, the generic term in the maximization of (9) becomes

exp

(
‖µ(0) + z− µ(c′)‖2

−N0

)
PU(v

′ + u) = exp

(
‖µ(0) + z− µ(v′′ − u)H)‖2

−N0

)
PU(v

′′)

= exp

(
‖µ(0) + z− µ(c′′ − x)‖2

−N0

)
PU(v

′′), (11)

where we used the change of variablev′ + u = v′′ and we definedc′′ = v′′H.
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The error region of (8) is given by:

E(u) = {z ∈ C
n : û 6= u|u is generated by the source} (12)

For the same realization ofu, the error region of (9) when the all-zero codeword is transmitted

is given by:

E0(u) = {z ∈ C
n : v̂ 6= 0|u is the discrete channel noise} . (13)

By comparing (10) and (11) and noticing that the sets of vectors
{
(x′ − x,u′) : u′ ∈ GF(q)K

}

and
{
(c′′ − x,v′′) : v′′ ∈ GF(q)K

}
are identical, we have that ifz ∈ E0(u) thenw−x(z) ∈ E(u)

and, vice versa, ifz ∈ E(u) thenwx(z) ∈ E0(u). Sincewx is an isometry ofCn, the congruence

of the error regionsE(u) andE0(u) is established.

By noticing that the Gaussian distribution is invariant with respect to isometries, the conditional

probability of error for the joint source-channel coding schemeP(z ∈ E(u)|u) and for the

associated channel coding schemeP(z ∈ E0(u)|u) are identical, for all realizations of the source

vectoru. Furthermore, we also show in Appendix A that a similar equivalence holds for the

suboptimal Belief Propagation (BP) decoder [17], in the sense that at every iteration of the

decoder, the set of messages generated by the message-passing BP decoder for the source-

channel coding scheme can be mapped into the corresponding set of messages generated by

the message-passing BP decoder for the associated channel coding scheme by a probability-

preserving mapping [18]. It follows that good systematic codes for the two-block composite

channel (either under MAP decoding or under BP decoding) yield immediately good codes (with

identical performance) for the source-channel coding problem. Notice that, with no restriction on

decoding complexity and block length, successful decodingcan be achieved with high probability

if n > KH/CX(Es/N0), which is also the Shannon limit for the two-block compositechannel.

Focusing on practical coding design with affordable complexity, the proposed coding opti-

mization strategy consists of choosing a family of good systematic codes under BP decoding

for the two-block composite channel. Since the source entropy varies from image to image,

across the source componentsi (DWT subbands) and symbol planesp, it is necessary to choose

families of codes spanning a very wide range of coding rates.Systematic Raptor codes are ideal

candidates for this application since they can produce parity symbols “on demand”, and cover

a continuum of coding rates. In addition, they have excellent performance under BP decoding.

Non-universality of Raptor codes for general noisy channels is well-known (see [6]), and it
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is established by the fact that thestability conditionon the fraction of degree-2 output nodes

depends on the channel parameter. Following the approach of[6], in Appendix B, we extended

the stability condition to the case of the two-block composite channel andq-ary Raptor codes. It

turns out that in this case the stability condition is a function of both the symbol plane entropy

H = H
(i)
p and the channel capacityC = CX(Es/N0). Hence, the Raptor degree distribution must

be optimized for each pair of(H,C) values. We perform this optimization using “EXIT charts”

and linear programming, extending [6] and [19] to handle thetwo-block composite channel.

Before entering the details of the EXIT chart analysis and Raptor code optimization, a final

remark on the signal constellation is in order. Since the dead-zone quantizer symbols are ternary,

q must be at least 3. We considered both3-PSK and QPSK (with Gray Mapping) constellations.

Although3-PSK is more naturally matched to the ternary source alphabet, the QPSK modulation

has higher capacity. Hence, it is not a priori obvious which of the two constellation performs

better in our context. In our experiments we observed that QLIC with q = 3, using the3-PSK

constellation, did not provide any improvement over the case q = 4 with the QPSK constellation.

Since QPSK with Gray mapping is standardized in deep-space communications, and the BP

decoder is simplified for powers of 2 field size (see [19]),q = 4 represents a better and more

natural choice. Thus, in the following we only focus on QPSK and codes overGF(4).

A. EXIT Chart Analysis for the Two-Block Composite Channel

Figure 2. The Tanner Graph of a Raptor Code with LDPC code.

We assume that the reader is familiar with Raptor codes, their systematic encoding and BP
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iterative decoding, and with the Gaussian approximation EXIT chart analysis technique of BP

decoding for standard binary codes over memoryless binary-input output-symmetric channels

(see [6]). Here, we focus on the aspects specific to our problem.

A Raptor code is formed by the concatenation of a pre-code, here implemented by a high

rate regular LDPC code, and an “LT” code, which is a low-density generator matrix code with

a special generator matrix degree distribution [6]. For theTanner graph of the LT code, we

define the input nodes and the output nodes. For the Tanner graph of the LDPC code, we define

the variable nodes and the check nodes (see Fig. 2). We consider Raptor codes overGF(4)

with systematic encoding. The firstK output symbols of the Tanner graph of Fig. 2 are the

systematic symbols, corresponding to the source blocku. The remainingn output nodes are the

non-systematic (parity) symbols, corresponding to the codewordx. Thanks to the equivalence

of Theorem 1 and to the analogous equivalence for BP decoding[2], [18], we consider the

transmission of the Raptor codeword over the two-block composite channel where the first block

of K symbols go through the additive noise overGF(4) with noise identically distributed as the

source vectoru, and the second block ofn symbols is mapped onto QPSK by Gray mapping

and is sent through the AWGN channel (1). Hence, the rest of this section is dedicated to the

Raptor code ensemble optimization (namely, the optimization of its degree distribution) for the

associated two-block composite channel.

For codes overGF(4) we use the Gaussian approximation approach proposed in [19]. In par-

ticular, the conditional distribution of each messageL in Log-Likelihood Ratio (LLR) domain5

is assumed to be GaussianL ∼ N (υ1,Συ), where [Συ]i,j = 2υ for i = j and [Συ]i,j = υ for

i 6= j. It can be noticed that the conditional distribution depends only on a single parameter

υ thanks to symmetry and permutation invariance assumption of the messages as defined in

[19]. Letting V the code variable corresponding to the edge messageL, we define the mutual

information functionJ(υ) ∆
= I(V ;L) = 1−E

[
log4

(
1 +

∑3
i=1 e

−Li
)]

. We use base-4 logarithm

for mutual information calculations, hence in these sections H andC are in units of two bits

per source symbol or per channel symbol, respectively.

The EXIT chart is the mapping function of a multidimensionaldynamic system that describes

5The BP messages forq-ary codes can be either represented as probability vectors(of lengthq) or as LLR vectors of length

q− 1. If m is a message in the probability domain, the corresponding message in the LLR domain, denoted byL, has elements

Li = log(m0/mi) for i = 0, . . . , q − 1.
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the evolution of the mutual information between the Tanner graph variables and the corresponding

messages passed along the Tanner graph edges by the BP decoder. The stationary points of such

dynamic system are given as the solutions of a set of EXIT chart fixed-point equations, given

in terms of the followingstate variables:

- x denotes the average mutual information between a randomly chosen input node symbol and

the corresponding message sent downward to an adjacent edge(from input to output nodes).

See Fig. 2.

- y denotes the average mutual information between a randomly chosen input node symbol and

the corresponding message received upward from an adjacentedge (from output to input nodes).

- X denotes the average mutual information between a randomly chosen variable node symbol

and the corresponding message sent upward to an adjacent edge (from variable to check nodes).

- Y denotes the average mutual information between a randomly chosen variable node symbol

and the corresponding message received downward from an adjacent edge (from check to variable

nodes).

The degree distributions for the Tanner graph in Fig. 2 are defined as follows:

- For the LDPC code, we letλ(x) =
∑

i λix
i−1 and ρ(x) =

∑
j ρjx

j−1 denote the generating

functions of the edge-centric left and right degree distributions, and we let

Λ(x) =
∑

i

Λix
i =

(∫ x

0

λ(u)du

)
/

(∫ 1

0

λ(u)du

)
,

denote the node-centric left degree distribution.

- For the LT code, we letι(x) =
∑

i ιix
i−1 denote the edge-centric degree distribution of the

input nodes, and we letω(x) =
∑

j ωjx
j−1 denote the edge-centric degree distribution of the

“output nodes”. The node-centric degree distribution of the output nodes is given by

Ω(x) =
∑

i

Ωjx
j =

(∫ x

0

ω(u)du

)
/

(∫ 1

0

ω(u)du

)
.

- For the concatenation of the LT code with the LDPC code we also have the node-centric degree

distribution of the LT input nodes. This is given by

(x)ג =
∑

i

ixג
i =

(∫ x

0

ι(u)du

)
/

(∫ 1

0

ι(u)du

)
.

Note that for large number of nodes we have the following approximation forג(x) ∼ eα(x−1) =
∑

n
αne−α

n!
xn whereα =

∑
i iiג is the average node degree for the input nodes [6]. Henceι(x)
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is approximated by the following coefficients

ιi = αi−1e−α/(i− 1)!. (14)

The capacities of the first and second components of the two-block composite channel are1−H

and C, respectively. A random edge(o, v) is connected with probabilityγ = K/(K + n) to

the first block and with probability1 − γ to the second block. As a consequence, it is just a

matter of a simple exercise to obtain the following EXIT equations for the LT code component

(Detailed derivations for binary Raptor codes can be found in our previous work [2]):

x =
∑

k

∑

i

ΛkιiJ((i− 1)J−1(y) + kJ−1(Y)), (15)

y = 1−
∑

j

ωj

{
γJ((j − 1)J−1(1− x) + J−1(H)) + (1− γ)J((j − 1)J−1(1− x) + J−1(1− C))

}
.

(16)

Also, notice thatγ = rltrldpc, whererlt = 1
α
∑

j ωj/j
and rldpc = 1 −

∑
i iλi∑
j jρj

are the coding rates

of the LT code and of the LDPC code, respectively.

The EXIT equations for the LDPC component are well-known andare given by:

X =
∑

k

∑

i

λkגiJ((k − 1)J−1(Y) + iJ−1(y)), (17)

Y = 1−
∑

ℓ

ρℓJ((ℓ− 1)J−1(1− X)). (18)

Eventually, (15), (16), (17), and (18) form the system of fixed-point equations describing the

stationary points the EXIT chart of the concatenated LT – LDPC graph, with parametersH,C

andγ, and the degree sequencesω, ι, ρ andλ.

The error probability of the output nodes corresponding to the first block ofK output nodes,

sent through the discrete additive noise component of the two-block channel, is identical to the

error probability of the source symbols in the source-channel equivalent problem. Therefore,

the key quantity of interest for the performance of the JSCC scheme is the error probability

of such output nodes. This is can be obtained, within the assumptions of EXIT chart approx-

imation, as follows. The mean of the LLR of such an output nodeof degreej is given by

υj = J−1 (1− J (jJ−1(1− x)))+J−1(1−H). By the channel symmetry and the code linearity,

the EXIT chart is derived under all-zero codeword assumption. Hence, decoding is successful

if the LLR vector has positive components. For an output nodeof degreej, this results in the
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symbol error rate (SER)1 − P(L ≥ 0), with L ∼ N (υj1,Συj ). By averaging over the degree

distribution, the desired average SER is given by

Pe =
∑

j

Ωj

[
1−Q3

(
−
√
υj

2

)]
. (19)

B. LT Degree Distribution Optimization

For simplicity, we fix the LDPC code to be a regular(2, 100) code (rldpc = 0.98). For this

LDPC code, we find the mutual information thresholdY0(α) (using (17) and (18)) such that for

y ≥ Y0(α) the LDPC EXIT converges toY = 1, with stand-alone iterations. The value ofY0(α)

depends on the LT input degree distributionι(x), which in turns depends onα via (14). The

functionY0(α) is monotonically decreasing. Therefore, higher values ofα yield less restrictive

requirements for the mutual information that the LT code must attain in order to allow the LDPC

code to converge toY = 1 (vanishing error probability). On the other hand, larger values ofα

yield smaller LT coding raterlt, and therefore are more conservative with respect to the system

bandwidth efficiency.

Next, we use (15) and (16) to eliminatex and writey recursively. The fixed-point equation for

y depends on the inputY coming from the LDPC graph. In order to obtain a tractable problem,

we decouple the system of equations (17-18) and (15-16) the target mutual informationY0(α)

and disregarding the feedback from LDPC to LT in the BP decoder (i.e., letting Y = 0 in

(15). This is equivalent to running BP with the following schedule: first iterate the LT code till

convergence, and then iterate the LDPC code till convergence. The resulting recursion mapping

function fH,C,γ,α
j (y) for a degree-j output node is given by

fH,C,γ,α
j (y)

∆
=

{
γJ

(
(j − 1)J−1(1−

∑

i

ιiJ((i− 1)J−1(y))) + J−1(H)

)

+(1− γ)J

(
(j − 1)J−1(1−

∑

i

ιiJ((i− 1)J−1(y))) + J−1(1− C)

)}
.(20)

We conclude that the LT EXIT recursion converges to the target Y0(α) if

y < 1−
∑

j

ωjf
H,C,γ,α
j (y), ∀y ∈ [0,Y0(α)] . (21)

In order to ensure this condition, we sample the interval[0,Y0(α)] on a sufficiently fine grid

of points{yi}, and obtain a set of linear constraints for the variables{ωj}. The code ensemble
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optimization consists of maximizingrlt for given H,C pair, subject to the condition that the

BP decoder converges to vanishing error probability. The optimization variables are{ωj} andα.

Since the LDPC code is fixed,γ is a function ofα, {ωj}. In order to linearize the constraints in

{ωj} we replaceγ in (21) with its ideal valueC/(C +H), arguing that good codes must have

γ ≈ C/(C +H). This yields the optimization problem:

minα min{ωj} α
∑

j

ωj

j

s. t.
∑

j

ωj = 1, ωj ≥ 0,

yi < 1−
∑

j

ωjf
H,C, C

C+H
,α

j (yi), ∀ yi ∈ [0,Y0(α)]. (22)

For fixedα, (22) is a linear program with respect to{ωj}. Hence, we can run an educated line

search with respect to the scalar variableα and, for each tentativeα, easily optimize over{ωj}.

Let Ψ(υ)
∆
= E

[
1−e−L1+e−L2−e−L3

1+e−L1+e−L2+e−L3

]
, then the stability condition obtained in Appendix B reads

[18]:

Ω2 ≥
γ/rldpc

2 (γΨ (J−1(1−H)) + (1− γ)Ψ (J−1(C)))
. (23)

We accept the solution of the optimization if (47) is satisfied. Otherwise, the optimization is

re-run with a more conservative value ofα.

VI. RESULTS

We present the performance of the QLIC scheme and compare it with the baseline (state-of-the

art) system used by Jet Propulsion Laboratories (JPL) for the Mars Exploration Rover (MER)

Mission. For the purpose of this comparison, we briefly present the current baseline system. The

scheme is based on a separated source and channel coding approach, concatenating an image

coding scheme called ICER [1] with standard codes for deep-space communications [20], [21].

ICER is a successive refinement, wavelet-based image compressor based on the same principles

of JPEG2000, including image segmentation, DWT, quantization, and entropy coding of the

blocks of quantization indices using interleaved entropy coding and an adaptive probability esti-

mator based on context models [1]. These components differ from their JPEG2000 counterparts

in order to handle specific needs of scientific images for deep-space exploration. ICER makes

use of a reversible integer-valued DWT [22] so that, if all the subbands data are fully transmitted,
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lossless reconstruction can be obtained. Since subband coefficients are integer values, the dead-

zone quantizer is also modified to work for integer values as described in [1]. The quantization

precision for each subband and the selection of which subbands should be transmitted in order

to minimize the total number of bits subject to a given targetreconstruction Peak SNR6 (PSNR)

are established dynamically, based on the actual image to beencoded, according to the relative

importance of each subband. The resulting priority-ordered bit planes are encoded one by one,

until the target PSNR (or total bit budget) is reached. ICER and JPEG2000 (using either lossless-

5/3 integer DWT or lossy-9/7 DWT) provide similar pure imagecompression performances, i.e.,

when used on noiseless channels [1]. In [23] we found that thepure compression performance

of the proposed QLIC scheme is also almost identical to ICER.This provides a good sanity

check for QLIC, which is not inferior to the state-of-the artas far as pure image compression

is concerned.

In order to increase robustness against channel errors, ICER partitions the image into segments.

A segment “loosely” corresponds to a rectangular region of the image (although in practice a

more sophisticated adaptive segmentation scheme is used).Each image segment is compressed

independently. In this way, the error propagation introduced by possible residual post-decoding

channel errors is limited to within a segment. The encoded bits corresponding to the segments

are concatenated and divided into fixed-length frames, thatare separately channel-encoded at

channel coding rateRc. This takes on values in a finite set of possible coding rates supported

by the family of deep-space channel coding schemes. The channel coding rateRc is chosen

according to the channel SNR. The presence of residual errors is detected with probability close

to 1 using standard error detection techniques, and the frames with residual post-decoding errors

are erased. Frame erasure is the main cause of data loss in thebaseline JPL scheme [1].

Since ICER is a progressive image compressor, all successfully decoded frames of a segment

before the first erased frame can be used for source reconstruction. The reconstruction quality

of a segment depends on the position of the first frame erasure(of course, the highest quality is

obtained if no erasure occurs). No unequal error protectionis used for the sequence of successive

frames forming a segment. Therefore, all frames have the same erasure probability [1]. As a

6The reconstruction PSNR is defined asPSNR = 10 log10
2i−1
D

whereD is the WMSE distortion and wherei = 12, since

for MER mission each pixel is a12-bit value in the original image.
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consequence, segments may be reconstructed at very different quality level, depending on the

presence and position of frame erasures. If a segment achieves too poor reconstruction quality,

the retransmission of the whole segment is requested. In MER, retransmissions are possible with

a delay roughly equal to the round trip time between Earth andMars which is between 7-30

minutes [24]. In addition, retransmissions require storing the images on the deep-space probe,

for a long time and a feedback channel from Earth to Mars for retransmission requests.

In our comparison, we consider just the spectral efficiency of the “active transmission” phase,

i.e., as defined by the parameterb. This is the ratio between channel uses (including retrans-

missions) and source samples. The comparisons reported here do not take into account the long

idle times and the enormous delay incurred by retransmissions, because the “cost” of these

system aspects is difficult to quantify from a communicationtheoretic viewpoint. However, we

hasten to say that the proposed JSCC schemedoes notrequire retransmissions unless the channel

SNR dramatically changes with respect to the nominal value assumed at the transmitter. Hence,

although the spectral efficiency performance is slightly inferior to the baseline system, this built-

in robustness able to avoid retransmissions is a very attractive feature in terms of delay and

system simplification. First, we considered a scenario where the target PSNR is fixed. For a
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Figure 3. FER vsEb/No curves for block length16Kb.

given set of test images7, we compare the two schemes in terms ofb versusEs/N0, for the

same target PSNR. The Frame Erasure Rate (FER) of the baseline system is a function of the

7Provided by JPL-MER Mission Group.
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channel SNR and of the channel coding rateRc used. The number of transmissions necessary

for the successful reconstruction of a segment is a geometric random variable with success

probability that depends on the FER, the number of framesF in a segment, and on the target

PSNR. As mentioned before, the reconstruction quality of a segment depends on the position

of the first erased frame in the segment. Upper and lower bounds to the success probability

developed in [23] show that, for the typically very high target PSNR required by deep-space

scientific imaging, the success probability is tightly approximated by(1−FER)F (i.e., a segment

is retransmitted whenever a frame is in error, irrespectively of its position). For a given channel

SNR, the baseline scheme chooses the deep-space channel code with maximum rateRc, subject

to the condition that the FER must be smaller than a target threshold (a typical target is10−6).

The target FER is fixed in order to achieve a desired, and typically very small, retransmission

probability. For a well matched SNR and rate pair, the FER is effectively very small and the

expected number of re-transmission is insignificant. In this case,b is very close to the “one-shot”

transmission value, i.e.B/(2Rc), whereB is the number of ICER-encoded bits per pixel at the

given target PSNR and the factor 2 comes from the fact that QPSK transmits 2 coded bits per

channel use.

For each fixedRc, the correspondingb vs.Es/N0 curve has a very pronounced “L” shape, due

to the sharp waterfall of the FER (see Fig. 3). Hence, the SNR axis can be split into intervals,

where each interval corresponds to the range ofEs/N0 values for which a given coding rate

“dominates”, i.e. yields the best efficiency (including retransmissions). IfEs/N0 is known in

advance, and the cost of retransmissions is neglected, for each SNR falling in a given interval,

the corresponding coding rate is selected. For the example considered in this paper, the target

PSNR is49 dB and the MER1 image (1024× 1024 BW uncoded 12-bit per pixel) is used. Fig.

4-A compares the resultingb vs Es/N0 performance of JSCC and of the baseline scheme. The

following comments are in order:

- The (∗)-curve corresponds to considering ideal capacity achieving codes for each symbol plane

in the JSCC scheme. This represents the best possible performance for the DWT and quantization

scheme used in the proposed system. This curve is also a very good approximation of the

performance of a separated scheme based on QLIC or ICER for pure compression, concatenated

with an ideal capacity achieving channel code, since the pure source compression performance

of ICER and QLIC is essentially indistinguishable [23].
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- The performance of the actual baseline scheme is shown as a superposition of four L-shaped

curves, each of which corresponding to one of the codes whoseFER performance is shown in

Fig. 3, as explained before. The steep increase ofb for small degradation ofEs/N0 beyond the

“knee” point of each L-shaped curve indicates that if the channel quality degrades slightly below

the threshold at which each channel code yields small FER, then the number of retransmissions

per segment increases dramatically. If such channel quality degradation occurs (e.g., atmospheric

propagation phenomena, rain conditions, antenna alignment fluctuations), then the conventional

system folds back onto a more conservative channel coding rate, and its performance moves on

the L-shaped curve to the left. The channel coding rate valueRc corresponding to each curve

is also shown in Fig. 4-A.

- Before designing degree distributions specifically for the Raptor codes overGF(4) as described

in Sec. V-A, we first used the degree distribution

Ω(x) = 0.008x+ 0.494x2 + 0.166x3 + 0073x4 + 0.083x5

+0.056x8 + 0.037x9 + 0.056x19 + 0.025x65 + 0.003x66, (24)

given in [25] for binary Raptor codes. The EXIT chart infinite-length performance and finite

length simulations for this non-optimized non-binary caseare shown in Fig. 4-A as the (−.)-

curve and the (�)-curve, respectively.

- In Sec. V we noted that the proposed method for the Raptor code degree distribution optimiza-

tion in (22) is a linear program when the parameterα and the LDPC code are fixed. As seen

in Sec. V-B,rlt is a function ofα andω(·). Hence, the aim is to maximizerlt by optimizing

ω(·) for fixed α, at each value ofEs/N0. The value ofα for given Es/N0 is obtained using

the non-optimized code simulations as follows: for the non-optimized ((−.) and (�)) cases the

distributionω(·) is given by (24) andrlt is provided by the simulation at eachEs/N0 point.

Then, we obtain the correspondingα by usingω(·) andrlt. Finally, for this fixed pair ofα and

Es/N0, we use the linear program in order to optimize the LT degree distribution. Although an

exhaustive search over the feasible range ofα may yield further improvements, the above simple

method already provides a noticeable performance enhancement both in terms of the EXIT chart

infinite-length performance (◦) and in terms of the finite-length simulation (⋄), with respect to

the corresponding non-optimized curves (−.) and (�).

Next, we focus on a particular channel SNR value (in particular, we chooseEs/N0 = 3 dB),
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and provide a zoomed version of Fig. 4-A around this value in Fig. 4-B. For this SNR, the

channel code with rateRc = 3/4 yields the best performance for the conventional system. Now

we consider the case of a mismatch between the actual and the nominal channel quality, i.e.,

we assume that the transmitter chooses the optimal scheme (baseline or proposed JSCC) for

the nominalEs/N0 = 3 dB, but the actual value ofEs/N0 is less than 3 dB. In this case, the

efficiencyb of the baseline system significantly decreases due to the retransmissions. At a certain

point, as the channel conditions worsens, the baseline system switches to the next lower channel

coding rateRc = 1/2. This happens atEs/N0 ≈ 2.8 dB. The proposed JSCC scheme has a better

built-in robustness to handle mismatched channel conditions, thanks to the QLIC linear map. We

observe that the JSCC scheme optimized forEs/N0 = 3 dB and with no retransmission yields

constantb and a slight degradation of the reconstruction PSNR over therange of channel SNR.

Due to mismatched channel conditions, there will be some residual error in the symbol planes.

However, as seen in Fig. 5-b,-c,-d,-e, the perceptive quality of the reconstructed image (and the

reconstruction PSNR) gracefully degrades and the perceived image quality is acceptable over a

wide range of channel SNRs, since there are no artificial “block effects” due to segment losses,

even though the channel SNR is as far as1 dB less than its nominal value of 3 dB. Similar

behaviors have been observed by extensive experimentation, not reported here for the sake of

brevity and space constraints.
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Figure 4. (A): b vs Es/N0 trade-off curves for various schemes. (B): Focusing onEs/N0 = 3 dB point. The image

reconstructions at various mismatched SNR values, indicated by (b), (c), (d), (e) in (B), are shown in Fig. 5.
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(a) (b) (c)

(d) (e)

Figure 5. Original MER1 image (a), and different image reconstructions atEs/N0 = 3 dB, and PSNR= 49 dB (b); at

Es/N0 = 2.8 dB, and PSNR= 48.19 dB (c); atEs/N0 = 2.5 dB, and PSNR= 45.63 dB (d); atEs/N0 = 2 dB and PSNR

= 38.60 dB (e). Notice that visible artifacts due to residual channel errors can be seen only in figure (e).

VII. CONCLUSIONS

We proposed a new coding scheme for digital image transmission over a discrete-time AWGN

channel. The scheme is based on the concatenation of a standard DWT, decomposing the

image into blocks of subband coefficients, and an embedded dead-zone quantizer that produces

sequences of ternary quantization indices for the successive refinement “planes” of each subband.

Then, the redundant symbol planes are mapped linearly into channel codewords, which are

modulated into constellation symbols and sent over the discrete-time AWGN channel. We showed

that if the quantization indices symbol alphabet additive group structure is matched to the signal

constellation generating group structure, the modulationmapping is an isometric labeling, and

the source-channel encoder is linear, then the source-channel coding problem is equivalent to a

channel coding problem over a composite two-block channel,where the first block corresponds
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to the transmission over a discrete additive noise channel with noise statistics identical to the

source statistics of the original source-channel coding problem, and the second block is the

AWGN channel with the isometric labeling included as part ofthe channel. This equivalence

holds for both the optimal MAP decoder and the suboptimal, low-complexity, BP decoder. This

allows us to optimize the source-channel coding ensemble asif it was a channel coding ensemble

for the equivalent channel. In particular, we propose to useRaptor codes overGF(4), since the

additive group ofGF(4) is naturally matched to the QPSK constellation generating group, and

Raptor codes provide the necessary rate flexibility to adaptthe system to the variations of the

source entropy rate, which may vary significantly dependingon the symbol plane, the subband,

and the image to be encoded.

The linear mapping from source to channel symbols allows to avoid the use of a conventional

entropy coding stage, as in conventional baseline systems,and this is expected to mitigate the

catastrophic error propagation which affects conventional schemes in the presence of channel

decoding residual errors. The proposed JSCC scheme is able to achieve pure image compres-

sion performance almost identical to the state-of-the art.While the proposed system for finite

block length and transmission on the AWGN channel yields lightly worse bandwidth efficiency

performance than the highly optimized baseline system usedby JPL in deep-space missions, the

results of Sec. VI show that, as expected, the new scheme has much improved robustness against

mismatched channel SNR conditions. While the baseline system requires the retransmission of

a whole segment in the presence of even one frame with residual post-decoding errors, the new

scheme yields perceptual good image reconstruction quality for SNR mismatch up to 1 dB below

its nominal value, without any retransmission.

APPENDIX

A. Isomorphism

In Sec. V, an isomorphism between JSCC and channel coding over the two-block composite

channel has been shown under MAP decoding. In this section, the isomorphism is established

under BP in the sense that at every iteration of the decoder, the set of messages generated by

the message-passing BP decoder for the source-channel coding scheme can be mapped into the

corresponding set of messages generated by the message-passing BP decoder for the associated

channel coding scheme by a probability-preserving mapping.
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To this end, BP equations for a systematic Raptor code overGF(q) with K input symbols

andK + n output symbols are given similar to [19]. The Tanner graph corresponding to the

systematic Raptor code is given in Fig. (2). LetG = [I;H] denote the encoding matrix of the

linear code formed by the Tanner graph of the systematic Raptor code. Then the codeword vector

d = [u c] = uH has lengthK + n, whereu is the message vector.

Let us consider thelth iteration of the BP decoder. BP messages can be represented in both

probability and LLR domain as discussed earlier. In order toprove isomorphism, next we work

in the probability domain where the messages are probability mass function (pmf) vectors of

sizeq with the following notation:

•
(l)mv,o and (l)mo,v are the messages passed from thevth input node to theoth output node

and from theoth output node to thevth input node, respectively, of the LT-decoder;

•
(l)mv,c and(l)mc,v are the messages passed from thevth variable node to thecth check node

and from thecth check node to thevth variable node, respectively, of the LDPC decoder;

• δ
(l),v
ldpc is the message generated from thevth LDPC variable node and passed to the corre-

sponding input node of the LT-decoder;

• δ
(l),v
lt is the message generated from thevth LT input node and passed to the corresponding

variable node of the LDPC decoder; and

• to is the input message to the BP decoder at theoth output node. This can be either the

a-priori source probability or the posterior symbol-by-symbol probability given the channel

outputs.

In case of a joint source-channel coding scheme the a-prioriinformation on the firstK

symbols are obtained from source statistics. Assume the source symbols,uv’s are i.i.d.

selected fromGF(q) with Pr{uv = g} = PU(g) for all g ∈ GF (q) and 1 ≤ v ≤ K. Let

PU
∆
= [PU(0), . . . , PU(q−1)] be a vector of sizeq representing the pmf vector for the source

distribution. Since the linear encoder is systematic

to = PU . (25)

On the other hand, for the two-block composite channel scheme, the to for the first K

symbols are calculated using the discrete channel transition probability of theGF(q) additive

noise channel. In this model, the transmitted vectorx is equal to the codewordd and the
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received vector isy = x− z where the operation is inGF(q). The noise symbolszo’s are

i.i.d. selected fromGF(q) with Pr{zo = g} = PU(g) for all g ∈ GF (q) and 1 ≤ o ≤ K

where the noise distribution is the same as the source distributionPU . Then,

to,k = Pr{yo|xo = k} = PU(yo − k) = PU(do − zo − k). (26)

For both the JSCC scheme and the composite block channel scheme, the codeword symbols

do for K + 1 ≤ o ≤ K + n are first mapped to points in the constellation signal setX by

µ(co). Henceyo = µ(do) + zo is received atoth output node wherezo ∈ CN (0, N0). Let

the pdf of the complex circularly symmetric AWGN noise is denoted byfz. Then

to,k = Pr{yo|µ(do) = µ(k)}

=
fz (||µ(do) + zo − µ(k)||)∑
k′ fz (||µ(do) + zo − µ(k′)||) (27)

Note that in AWGN initial channel message depends only on thedistance between the

observed vector and the hypotheses vector, hence we first focus on the calculation of the

distance term,||µ(do) + zo − µ(k)||.

||µ(do) + zo − µ(k)|| = ||wdo (µ(0)) + zo − µ(k)||

= ||µ(0) + w−do (zo)− w−do (µ(k)) ||

= ||µ(0) + w−do (zo)− µ (k − do) ||.

Substituting back into (27), we obtain

to,k =
fz (||µ(0) + w−do (zo)− µ (k − do) ||)∑
k′ fz (||µ(0) + w−do (zo)− µ (k′ − do) ||)

. (28)

Next we investigate the relationship between input vectorst of two different scenarios which

has been already discussed in Sec. V to be isomorphic to each other. For convenience, we

name the two-block composite channel as Scheme A and JSCC as Scheme B.

Scheme B: This case corresponds to the joint source-channelcoding problem where the

source vectoru whose pmf is given byPU is encoded byG andd = uG and the non-

systematic part of the codeword is transmitted through the AWGN channel where additive

noise vector isz. Then theBto for scheme B is given directly using (25) and (28):

Bto,k =





PU(k), if 1 ≤ o ≤ K
fz(||µ(0)+w−do (zo)−µ(k−do)||)∑
k′ fz(||µ(0)+w−do (zo)−µ(k′−do)||)

, otherwise.
(29)
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Scheme A: This case corresponds to the composite-channel coding problem where all zero

codeword (d = 0) is transmitted through the composite channel. For the additive GF(q)

channel we pick the noise pmf asPU . The noise realization for this channel is taken as

u (the same as the source vectoru used in Scheme B) and for the AWGN part the noise

vector components arew−do(zo) for the oth output forK + 1 ≤ o ≤ K + n. Notice that

pdf of the complex circularly symmetric AWGN noise in SchemeB and Scheme A are the

same since, the transformation is either a rotation or a reflection.

Then theAto,k for scheme A is given as follows directly using (26) and (28),

Ato,k =





PU(uo + k), if 1 ≤ o ≤ K
fZ (||µ(0)+w−do (zo)−µ(k)||)

∑
k′ fZ(||µ(0)+w−do (zo)−µ(k′)||)

, otherwise.
(30)

Next, we want to relateAt andBt in order to derive the relationship between BP messages

in schemes A and B in Theorem 2. To this end, we define a shift operation+ on pmf vectors

as follows [19]: Letg be an element ofGF(q) andm = [m0, m1, . . . , mq−1] be a pmf vector

of sizeq where the indicesi = 0, . . . , q − 1 of each vector component are also interpreted

as elements ofGF(q). Index i denotes theith element ofGF(q) given some enumeration of

the field elements where indices0 and1 are reserved for the zero and one elements of the

field, respectively. Thenm+g ∆
= [mg, mg+1, . . . , mq−1+g] where summation is in the field.

Then comparing (29) and (30), it is immediate to see that

At
−do =B t, 1 ≤ o ≤ K+ n. (31)

In the following theorem, we will prove that for any two schemes wheret’s are related by (31),

the BP messages are related by (33) and (34).

Theorem 2: Assume the input probability message vectors of two different schemes, A and B

are related as follows:

At
−do
o =B to, (32)

wheredo is the value of the transmitted codewordd = uG for scheme B at theoth location.

Then at any roundl, the relationship between the messages passed in schemes A and B are as

follows:

(l)bov = (l)a−uv
ov (33)

(l+1)bvo = (l+1)a−uv
vo , (34)
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(wherea is used to denote messages for Scheme-A andb is used for Scheme-B) anduv is the

value of thevth variable node at scheme B.

Before proving the theorem, next we introduce some useful notation and functions that will

be helpful to manipulate probability domain BP equations. The BP equations in the probability

domain can be written in a compact way using vector shift operations and Discrete Fourier

Transform (DFT) as done in [19]. One of these shift operations is × of [19] which is similar to

the previously defined+ where summation is changed with multiplication in the field,i.e.m×g ∆
=

[m0, mg, m2g, . . . , m(q−1)g]. The following properties from [19] are useful for our derivations:

(
m+g

)−g
= m, and

(
m×g

)×g−1

= m, if g 6= 0

(
m+i

)×g
=

(
m×g

)+ig−1

(
m×g

)+i
=

(
m+gi

)×g

In the following we useeTd to denote the scalar product of two vectors whilee · d denotes

componentwise multiplication which results in a vector. Similarly
·∏

denotes componentwise

multiplications of multiple vectors. Additive vector representation8 of g is denoted by ther-

dimensional vectorg. r-dimensional DFT and IDFT operations [19], [26] for vectorsof size

q = pr is described using the DFT pairf ,DFT(f) = d:

dg =
∑

h∈{0,...,p−1}r

fhe
j(2π/p)hT g, 0 ≤ g ≤ q − 1,

fh =
1

q

∑

g∈{0,...,p−1}r

dge
−j(2π/p)hT g, 0 ≤ h ≤ q − 1.

We also define a new functionΓ(·) and prove its properties which will be useful later in the

proof of the theorem. LetΓ(·) be a function fromGF(q) to complex vectors of sizeq where the

hth component of the resultant vector is given as follows:

[Γ(g)]h
∆
= e−

j2π
p

gT h, 0 ≤ h ≤ q − 1. (35)

8Note that finite fields exist for values ofq equal topr wherep is a prime number andr is a positive integer. Each element of

GF(pr) can be represented as anr-dimensional vector over{0, . . . , p−1}r. The sum of twoGF(pr) elements corresponds to the

sum of the vectors, evaluated as the modulo-p sum of vector components. This is called the additive vector-space representation.

May 3, 2014 DRAFT



30

Then it is easy to show the following properties ofΓ(·) function:

DFT
(
e+g
)

= DFT (e) · Γ(g) (36)

[IDFT(d)]+g = IDFT (d · Γ(g)) (37)

Γ(g)Γ(h) = Γ(g + h) (38)

We let gov = gvo ∈ GF(q) denote the value of the edge between the nodeso − v and define

N(v) as the set of outputo′ nodes adjacent to the nodev. Note that we use the sameN(v)

notation to denote the set of check nodes adjacent tov for LDPC part equations. It will be

self-evident from the equations which set is considered. Similar neighbor notationN(·) is also

used for other node types. Using the notation above, the updating rules for the LT and the LDPC

decoders for thelth iteration are given as follows:

(l)m×−g−1
ov

ov = IDFT

(
·∏

v′∈N(o):v′ 6=v
DFT

(
(l)m

×g−1
v′o

v′o

)
· DFT

(
t×(−1)−1

o

))
, (39)

(l+1)mvo =





(1/q)1, if l = 0;

U
[
δ
(l),v
ldpc·

·∏
o′∈N(v):o′ 6=o

(l)mo′v

]
otherwise,

(40)

where the operatorU normalizes the vector, in other wordsU [m] = m/
(
1Tm

)
.

(l)mvc =





(1/q)1, if l = 0;

U
[
δ
(l),v
lt ·

·∏
c′∈N(v):c′ 6=c

(l−1)mc′v

]
otherwise,

(l)m×−g−1
cv

cv = IDFT

(
·∏

v′∈N(c):v′ 6=v
DFT

(
(l)m

×g−1
v′c

v′c

))
.

The messagesδ(l),v
lt andδ(l),v

ldpc passed from the LT to the LDPC decoder and from the LDPC to

the LT-decoder respectively are defined by:

δ
(l),v
lt = U

[
·∏

o∈N(v)

(l)mov

]
, δ

(l),v
ldpc = U

[
·∏

c∈N(v)

(l)mcv

]
.

Proof: The proof is based on induction on(l). The relationship between the messages

corresponding to different schemes for the0th round, is verified first. Then round(l + 1) will

be proven assuming the hypotheses forlth round.

Round 0:
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Using (39-41) it is immediate to see that

(0)aov =(0) bov =
(1) avo =

(1) bvo = (1/q)1.

Hence (33) and (34) are verified forl = 0. Now let’s assume the theorem is true forlth round,

and prove it for(l + 1)th round using (33) and (34).

Roundl + 1:

(l+1)b×−g−1
ov

ov = IDFT

(
·∏

v′∈N(o):v′ 6=v
DFT

(
(l+1)b

×g−1
v′o

v′o

)
· DFT

(
Bt

×(−1)−1

o

))

(a)
= IDFT

(
·∏

v′∈N(o):v′ 6=v
DFT

((
(l+1)a

u
−v′

v′o

)×g−1
v′o

)
· DFT

((
At

−do
o

)×(−1)−1
))

(b)
= IDFT

(
·∏

v′∈N(o):v′ 6=v
DFT

((
(l+1)a

×g−1
v′o

v′o

)−uv′gv′o
)

· DFT

((
At

×(−1)−1

o

)−do(−1)
))

(c)
= IDFT

(
·∏

v′∈N(o):v′ 6=v
DFT

(
(l+1)a

×g−1
v′o

v′o

)
· DFT

(
At

×(−1)−1

o

)
· Γ(do)·

·∏
v′∈N(o):v′ 6=v

Γ(−u′
vgv′o)

)

(d)
= IDFT




·∏
v′∈N(o):v′ 6=v

DFT

(
(l+1)a

×g−1
v′o

v′o

)
· DFT

(
At

×(−1)−1

o

)
· Γ


do +

∑

v′∈N(o):v′ 6=v

−u′
vgv′o






(e)
= IDFT

(
·∏

v′∈N(o):v′ 6=v
DFT

(
(l+1)a

×g−1
v′o

v′o

)
· DFT

(
At

×(−1)−1

o

)
· Γ (uvgvo)

)

(f)
= IDFT

(
·∏

v′∈N(o):v′ 6=v
DFT

(
(l+1)a

×g−1
v′o

v′o

)
· DFT

(
At

×(−1)−1

o

))+uvgvo

(g)
=
(
(l+1)a×−g−1

ov
ov

)+uvgvo

(h)
=
(
(l+1)a−uv

ov

)×−g−1
ov

(l+1)bov =(l+1) a−uv
ov (41)

where(a) is due tolth round assumption (34);(b), (h) are due to (35), (35). Properties of the

Γ(.) function, namely (36-38) are used to derive steps(f), (c) and (d). Step (g) is simply the

corresponding BP equation (39) for Scheme A. Lastly(e) is due to the check constraint at the

oth output node.

Assume the relationship for LDPC part messages, namely(l)bcv,
(l) acv,

(l+1) bvc,
(l+1) avc similar

to (33), (34) is already given. Then (42) can be directly verified. For space concerns the
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assumption on the LDPC messages is not proven since it can be actually easily done using

a similar proof to the current one.

Bδ
(l+1),v
ldpc =

(
Aδ

(l+1),v
ldpc

)−uv

(42)

Then using (40), we write:

(l+2)bvo = U
[
Bδ

(l+1),v
ldpc ·

·∏
o′∈N(v):o′ 6=o

(l+1)bo′v

]
,

= U
[(

Aδ
(l+1),v
ldpc

)−uv

·
·∏

o′ 6=o

(
(l+1)ao′v

)−uv

]
,

(l+2)bvo = (l+2)a−uv
vo . (43)

(41) and (43) completes the proof.

Due to (31), according to Theorem (2), the BP messages of Scheme A and Scheme B can

be obtained from each other using the operation+. Hence it can be easily seen that the error

probability of Scheme B withu and z is equal to the error probability of Scheme A withu

andw−do(zo). Since AWGN is isomorphic, the average error probability ofScheme B (JSCC)

is equal to the average error probability of the Scheme A (composite two-block channel).

B. Stability Condition

In this section we extend the stability condition of Etesamiet al. [6] to LT codes overGF(4)

and the two-blocks composite channel of Definition 2 with parametersH andC. Let F be the

4× 4 DFT with elements[F]m,ℓ = e−jπ(m−1)(ℓ−1)/2 for m, ℓ ∈ {1, 2, 3, 4}. The BP messages for

q-ary codes can be either represented as probability vectors(of lengthq) or as LLR vectors of

length q − 1. Let LLR : m 7→ L denote the mapping of the probability representation into the

LLR representation from the probability domain. We define the mappingΦ : R3 → [0, 1]4 given

by

Φ(L)
∆
= F LLR−1(L).

Under the Gaussian approximationL ∼ N (υ1,Συ) of [19], already used in Sec. V-A, we have

E [Φ(L)] = [1, Ψ(υ), Ψ(υ), Ψ(υ)] , (44)

with

Ψ(υ)
∆
= E

[
1− e−L1 + e−L2 − e−L3

1 + e−L1 + e−L2 + e−L3

]
. (45)
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Since the right hand side of (44) depends only on a scalar value, when we consider the expectation

of LLR values under Gaussian approximation, it will suffice to work with a “scalar” version of

the expectation operator, denoted byEs. For example,Es [L] = υ is the short-hand notation for

E[L] = υ1. With this notation, we haveEs [Φ(L)] = Ψ(υ) = Ψ (Es [L]).

The BP message updating equations in the LLR domain, assuming an output node o with

neighborhoodN(o) of size |N(o)| = i and an input node v with neighborhoodN(v) of size

|N(v)| = j, are given by

Φ
(
L(l)

o,v

)
=

[
i−1∏

ı=1

Φ
(
L(l)

vı,o

)
]
· Φ(to)

L(l+1)
v,o =

j−1∑

=1

L(l)
o,v.

whereto denotes the LLR of the channel output for node o, andl denotes the BP iteration.

Following [6], we are interested in the evolution of the quantity Es

[
L

(l)
o,v

]
in a right neigh-

borhood of0. We can write

Es

[
L(l)

o,v

]
=
∑

i

ωiEs

[
L(l)

o,v | |N(o)| = i
]

=
∑

i

ωiΨ
−1
(
Ψ
(
Es

[
L(l)

o,v | |N(o)| = i
]))

=
∑

i

ωiΨ
−1
(
Es

[
Φ
(
L(l)

o,v | |N(o)| = i
)])

(a)
=
∑

i

ωiΨ
−1
{ [

γΨ
(
J−1(1−H)

)
+ (1− γ)Ψ

(
J−1(C)

)] [
Es

[
Φ
(
L(l)

v,o

)]]i−1
}

=
∑

i

ωiΨ
−1


[γΨ

(
J−1(1−H)

)
+ (1− γ)Ψ

(
J−1(C)

)]
·
[
∑

j

ιjΨ
(
(j − 1)Es

[
L(l−1)

o,v

])
]i−1


 ,

where in (a) we used the two-block composite channel property. For successful start of the

decoding under the Gaussian approximation, the quantityEs

[
L

(l)
o,v

]
must be strictly increasing

from one iteration to the other in a sufficiently small right neighborhood of zero. A necessary

condition is that

υ <
∑

i

ωiΨ
−1


[γΨ

(
J−1(1−H)

)
+ (1− γ)Ψ

(
J−1(C)

)]
[
∑

j

ιjΨ ((j − 1)υ)

]i−1

(46)

in a sufficiently small right neighborhood ofυ = 0. By taking derivative of both sides of (46)

with respect toυ at 0 and usingΨ(0) = 0 andΨ′(0) 6= 0 (see at the end of this section), after
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some algebra we arrive at the stability condition:

Ω2 ≥ Υ (γ, rldpc, H, C)
∆
=

γ/rldpc
2 (γΨ (J−1(1−H)) + (1− γ)Ψ (J−1(C)))

. (47)

Calculation of Ψ′(0). We rewriteΨ(υ) in (45) using the zero mean Gaussian random vector

L ∼ N (0,Συ) as

Ψ(υ) = E

[
1− e−L1−υ + e−L2−υ − e−L3−υ

1 + e−L1−υ + e−L2−υ + e−L3−υ

]
.

Using a Taylor expansion in a neighborhood ofυ = 0, we obtain

Ψ(υ) =
∞∑

n1=0

∞∑

n2=0

∞∑

n3=0

E [Ln1
1 Ln2

2 Ln3
3 ]

n1!n2!n3!
hn1,n2,n3(υ), (48)

whereη
∆
= n1 + n2 + n3 and

hn1,n2,n3(υ)
∆
=

∂η
(

1−e−l1−υ+e−l2−υ−e−l3−υ

1+e−l1−υ+e−l2−υ+e−l3−υ

)

∂ln1
1 ∂ln2

2 ∂ln3
3

∣∣∣∣∣∣
l1=l2=l3=0

. (49)

Let L̄ be a zero mean Gaussian random vector of sizeη with covariance matrixK = [Ki,j], and

let Ξη denote the collection of all unordered sequences of all unordered integer pairs, with each

sequence containing each integer from1 to η exactly once. Then, the well-known formula for

the higher moments of real Gaussian random variable yields,

E

[
η∏

t=1

L̄t

]
=





0, for η odd
∑

(i1,j1,...,iη/2,jη/2)∈Ξη

∏η/2
s=1Kis,js, for η even.

(50)

Specializing the components ofL̄ to be L̄m = L1 for 1 ≤ m ≤ n1, L̄m = L2 for n1 + 1 ≤ m ≤
n1 + n2 and,L̄m = L3 for n1 + n2 + 1 ≤ m ≤ η, using the form ofΣυ as given in Sec. V, and

using (50), it is not difficult to see thatE [Ln1
1 Ln2

2 Ln3
3 ] ∝ |Ξη|υη/2 for all even values ofη, and

zero for all odd values ofη. Then, we have

Ψ(υ) =
∑

n1,n2,n3 : η is even

|Ξη|υη/2

n1!n2!n3!
hn1,n2,n3(υ)

Ψ′(υ) =
∑

n1,n2,n3 : η is even

|Ξη|
∂hn1,n2,n3 (υ)

∂υ
υη/2 + η

2
υη/2−1hn1,n2,n3(υ)

n1!n2!n3!

Forυ = 0, the above summations includes the triplets(n1, n2, n3) with sumη = n1+n2+n3 = 2.

These are(200), (020), (002), (110), (011), and (101). For any(n1, n2, n3) in this set, we have
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E[Ln1
1 L

n2
2 L

n3
3 ]

n1!n2!n3!
= υ, since the diagonal elements ofΣυ are equal to2υ and the off-diagonal elements

are equal toυ. Then, we obtain

Ψ′(0) =
∑

η=2

hn1,n2,n3(0)

= h2,0,0(0) + h0,2,0(0) + h0,0,2(0) + h1,1,0(0) + h0,1,1(0) + h1,0,1(0)

= −60/16,

where, using (49), we haveh2,0,0(0) = h0,0,2(0) = −2, h1,1,0 = 0, h1,0,1 = 1/8, h0,1,1(0) =

−1/16 andh0,2,0(0) = 3/16.
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