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Abstract—This paper describes an approach to optimize elec- concepts are commonly known as vehicle-to-grid (V2G) con-
tric ve_hicle battery char_ging be_havior with the goal of minimizing cepts. By using controlled charging, and possibly corebll
charging costs, achieving satisfactory state-of-energy leveland discharging, of a large number of EV accumulators, it is liope

optimal power balancing. Two methods for charging schedule that K dt hs of electrical fi b
optimization are compared. The first formulation uses a linear al peaks and troughs of electrical power generation can be

approximation of the battery behavior, whereas the second uses conveniently absorbed by providing balancing power. Toehav
a quadratic approximation. A non-linear and state-dependent an EV fleet enter the balancing power market, a large number
battery model is used to evaluate the solutions of the two methods of such loads has to be aggregated and managed [8].
Our results indicate that the linear approximation is sufficient — prqyiging balancing power is especially important for elec
when considering the electric vehicle charging plan optimization. trical grids with a high percentage of intermittent energy
Index Terms—Electric Vehicles, Balancing Power, Electricity resources, such as photo-voltaic or wind. Fleets of EVs may
Grid, Intermittent Energy Sources, Smart Charging, Distribution  be used to supply short-term balancing power to equilibrate
Networks, Demand Management power generation and consumption - thus becoming beneficial
to the grid’s operation.
. I INTROI_DUCTION . o _ The potential economic impact of such a large-scale V2G
The automotive industry is heavily investing in plug-iNptegration has been analyzed by Kempton et al. in [9]. The
hybrid elecrical vehicles (PHEV) as well as fully electriGaconomics presented there become even more relevant & grid
vehicles (EV) mainly to address the gGemissions and \yith Jarge amounts of wind energy as described in [10], [11],
oil dependency of current automotive technology. The ﬁrﬁiking into account the economics of balancing power reguir
commercial models are expected to appear on the markﬁ;,shigmy intermittent energy sources.
soon; predictions regarding their commercial success ¥@we The overall problem can be seen as a suitable planning
vary [1]. o _ and execution of power generation and consumption schedule
One aspect to consider is that with large PHEV an(_f EMo satisfy high-volume balancing as well as low-volume, car
fleets the electrical grids may have to cope with additiong}arging power requirements. The goals for the variousgsart
loads that exhibit different characteristics than hou&Bhoy ¢ are involved are as follows: reduced requirements for
appliances [2]. The impact of EV fleets was studied in th@ostly balancing power, avoidance of transport and distion
literature as early as 1983 with a study on the timing of EYjq hottlenecks, and satisfaction of end-user needs, a.e.
recharging and its effect on utilities [3]. Rahman et al. [4]iicient charging level in the EV must be reached. These
ha_ve anticipate_d the impliqations of EVs on power distiitut goals can be addressed by establishingharging plan for
grids. They point to the importance of the effects of larggsch Ev in the system. Such plans are akin to the traditipnall
EV fleets on.the distribution grid, new load peaks in timgnqwn power generation schedules used in the power gener-
slots of previously weak demand, and the effects of longion community, but with a much smaller energy volume.
charging cycles of batteries; see also [2]. Koyanagi etSl. [These charging plans should be determined using predsction
propose time-shifted fast charge at lunch and night time 3 {he trip characteristics for the next planning period.
avoid peak loads in the time intervals that already expeeen |n establishing such a charging plan, the vehicle’s battery
heav_y loads. A summary energy usage model for EVs is US%‘i’ayS an important role. Its charging and discharging be-
The impact of a fleet of EVs on the Vermont power grid hasayior has to be accounted for in the planning by deriving
been studied in [6]. Assuming a dual-tariff, nightly cha@i eynected energy consumpution values. Non-linearitieshén t
scheme, the authors conclude that sufficient transport tionship between applied, external, charging powet an
distribution capacities are available in the power grid.rt10 ihe rate of change of the battery’s state-of-energy, ite, t
details on potential low-voltage distribution grid imp&@re jnternal power have to be considered. This paper presents a
giveninf7]. comparisons of the resulting charging plans when using two
Several investigations are also under way that study the Yigerent approximations of the non-linear battery bebavi
of a fleet of EVs to provide services to the electrical gricclbu s is done in order to quantify the level of detail necegsar

1We shall use, from now on, the term EV to denote either PHEVutir f in the optlml.zanon for ?Stabl'Shmg the C.hargmg plan.
EV, unless such distinction is relevant. The remainder of this paper is organized as follows. Sec-



tion Il contains the modelling of EV battery. Section Il dis 4
cusses the methods used to optimize the EV battery charging -
The comparison of different battery types and optimization = sl - #‘;\~ S
methods is given in Section IV. Finally, Section V summasize & / \Alzggystems
our findings and gives an outlook of further work in the area.
2 1 1 1 1
Il. ELECTRIC VEHICLE MODEL 0 0.1 0.2 0.3 0.4 0.5
From the charging planning perspective the EVs are con- 20 <o

sidered to be battery packs in this study, that have non- = =TT T
linear behavior. Each battery is modeled as an equivalent g 1ol PRRS *Q\Alzgsystems N
electric circuit containing a voltage source in series wath E ;7
resistor. Both the voltage source and the internal resistare = //\—\4/\/Eﬁ,,/—\
dependent on the state-of-energpf the battery. The battery 00 0‘ 1 62 63 64 05
parameters also depend on the specific cell charateristits a ' : 0 ' : '

the size of the battery pack. This type of battery model is
commonly used when considering the supervisory control Bfyjure 1. The open circuit voltage and internal resistarfcthe Saft VL
hybrid electric vehicles [12]. The model therefore suite th*SE cell and of the A123Systems 26650 cell.

purpose of supervisory control of the charging of EVs well.
Based on the equivalent circuit the battery current is @ekriv
as a function of the state-of-energy and the input, or output

Table |
PARAMETERS OF THEVL 45E CELL AND OF THE 26650CELL.

" ; ; Variable VL 45E 26650 Unit Scaling
power P, (positive during charging) to the battery Yo 5904 365 K Finrg -1y 0
45.0 23 Ah .
L(C,P) = Voe(€) = V/Voe(€)? + 4Rint(O) Py 1) \%ax 4.0 36 V ‘Q/;?La:?ns
B\% &b ZRZ’I’Lt (C) ’ Vinin 2.7 2.1 \ Vinin - ns
) ) Imaz 100 70 A Lmaz - 1p
The output voltage is a function of the state-of-charge éed t Voe(¢)  seeFig.1 seeFig. 1 V  Voe(C) - ns
input or output power Rint(¢) seeFig.1 seeFig. 1 Q Rine(Q) - 2=
9 -167.2 126 s u

dc dc

Vo (€, Py) = Voe(C) — 1n(C, Po) Rine (€)- (2)

Because of battery limitations, the output voltage must beh fici i o f , f th
within the given voltage limitations The efficiency is a function of the battery current

‘/I)(Caph) € [‘/mina ‘/max]- % ' |Ib(é-270‘Pb)|
ere% is a constant reflecting the decrease in efficiency
with increasing current. In [13], it was concluded that erie
deviations in the battery state-of-charge are correlated t
the ageing of the battery. Typically, the battery operati®n
therefore limited to a given state-of-charge operatinggean
pfence, in this paper the state-of-energy is limited to

¢ €02, 0.9

®) n=1+ 9)

However, the voltage limitations can be seen as state-gfr
energy-dependent current limitations

‘/oc(C) - Vmam Voc(g) - szn
Rint(Q) Rint(C)

The battery current must also be within the static curre
limitations given by the manufacturer
(10)

Ib(c» Pb) S [_Imazv Imar]~ (5)
. ) ) ) ) To investigate the impact of the optimization methods on the
The only dynamic state variable for a single vehicle is theea| energy level in the battery, two different batteryisce
state-of-energy, € [0, 1]. The change in state-of-energy isyre ysed. Figure 1 and Table | show the datasheet parameters
the internal battery power over the maximum stored energy#y the Saft VL 45E [14] and the A123Systems 26650 cell
the battery Pos(C. Py) [15]. The parameter®;,.:o0, Vo (C), Rint (), and% have been
int\Sy4b

)

I,(¢, Py) € 4)

)

(= f(¢, Py) = , (6) identified using the model in (1)—(10) and using information
Einto on the datasheets [14], [15].
where the maximum stored energy in the battery is The battery pack for each vehicle is scaled according to the
1 scaling equations in Table I. Note that the scaling varghle
Eino = / Voe($)Qo dC (7) andn, are not necessarily integers. Consequently, the resulting
0 battery pack after scaling may not be implementable in a
and the internal power of the battery is vehicle. It is however assumed that the behavior of the pack
reflects the real behavior sufficiently well.
Pii(C,Py) = *?Ib(C’Pb)VOC(Q Py =0 ®) The EV fleet comprises two types of vehicles, namely,
= Ib(C P)Voc(€) Py <. commuter vehicles and taxi vehicles. In this paper, the EV
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Figure 2. The time each vehicle is available for smart chardimgite)

and the time each vehicle is unplugged (gray). The values ige® dor the  Figure 3. The top graph shows the assumed price curve on trsideoed
day considered. Vehicles 1-25 are commuter vehicles, an¢lest26-50 are day. The bottom graph shows the assumed wind power potential.
taxis.

known for the next planning period. The optimization obiject

flegt IS gssumed to contain equal shargs of commuter 30%0 minimize the overall cost of charging the EV fleet.
taxi vehicles. The usable energy capacity of the battery rl‘(i;gure 3 shows the assumed price of electricityand the

the energy between the state-of-energy limits in (10). T'.];R/ailable nominal wind poweg,. The available wind power

taxi vehicles have an energy capacity of 36.8 kWh, and the led f fl ; ; ;
. . t wit hicl fact
commuter vehicles have an energy capacity of 18.4 kWh, bolt scaled for a fieet withn vehicles using a factor

with a nominal voltage of 400 V. 0., =K -m-0p, (11)

As the actual energy requirement the next day is unknowr}1 . th ind labl
at the time of planning, the behavior of the EVs has to pg"eres 1S a measure on the excess wind power avaliable.
In this section, two approximations are used to simplify

predicted. The focus of this paper is not on driving pattelrlﬂ] timizati bl to eith i
prediction. However, it is assumed that the driving patte € opumization problem 1o either a linear program or a

prediction has already been done and that the foIIowiﬁ]d""ldraItlcally constrained quadratic program.
information is available for the predicted stop-overfor A Linear Approximation

VEh'C_IeZ: _ Using a linear approximation, the internal power is assumed
« time of connectiort.. x to be equal to the external powé,; = P,. In this case all
« time of disconnectiortq; x internal losses in the battery are neglected. The objedive
« energy required for the next trify; ;. as mentioned, to minimize the overall cost of charging given

In addition to the information above, a predicted energye charging constraints and available power constraBys.
contentE, in the battery at midnight, when the day beginsjsing the linear approximation for the battery, this prable
is assumed to be known. can be formulated as a linear program:

Note that the energy goals and times of connection and

disconnection can either be set explicitly by the end-user o Tt t:c'p, (122)

as assumed in this paper, predicted using historical data. F subject to

example, the energy level to be reached can reflect an average A > b 12b

or weighted average level as well as an extréemergy goal. sPo = Bs (12b)
Figure 2 shows the time of connection and time of dis- Agp, < by (12c)

connection for each stop-over (white area) for a fleet of 50 App, < by (12d)

vehicles. The gray areas in Fig. 2 represent the trip duratio by < p, < b, (12¢)

It clearly shows the differences between the taxi and the
commuter vehicles. The latter have a low number of trip&ith the cost vectorc, the charging power vectop,, the
at relatively fixed times, whereas the former have a moféop-over inequality constraints\(, b;), the generation in-
irregular pattern. equality constraintsA,, b,), the battery inequality constraints
(Ay, by), and the upper and lower bounds,( b;). Assume
[1l. OPTIMIZATION METHODS i = 1,2...,m is the index of the vehiclej = 1,2,...,n the

Throughout this paper it is assumed that both the price ¥dex for the time slot contained in one plan duration. The

electricity and the available wind power are predicted arficision variablg, then hasn-n elements. Note that all those
slots in which no vehicle is connected can be eliminatedrprio

2| this case maximal. to solving the optimization problem. However, for a reasina



large fleet, it can be assumed that at least one vehicle is by = [bi,, bl .-, b'lfm]T, (24)
connected in each slot. Therefore, the cost vectoomprises ’
of the cost associated for each vehicle in each timeslpt WhereA, ; andby ; are
The charging power vectqy, comprises the charging power

T
for each vehicle and time slgk, ; ;. Api = [dig, dig, -, dig] (25)
C=l[c1,1, €12, -+ Cliny -oos by = [Eb(z', 1), Ey(i,2), ..., Eb(Ln)]T. (26)
T
Cm,1, Cm,2, ---, Cm,n] (13)

Because of battery, charging spot, or electric grid linoias

Py = [Po11s Pb12s vy Doty «- s let the charging power be limited @ ; ;. The charging power
o o o T is then limited top, € [0, p,].
Pbm,1, Pbom,2, -+, pb,m,n] . (14)
Let the connected duration for a given vehig¢leat a given B. Quadratic Approximation
time slotj, and a given stopovek be As the battery in the EV has a non-linear behavior, the next
dijx €0, t] (15) step after using the linear approximation in Section Ilis&d

. o . _approximate the battery using a quadratic function. Theact
The connection vector, descrlblng the connection of vehicl external power is a non-linear function of the internal powe

until stopoverr, is

) ) ) T Py = f(Pint). 27)
dir = Zd“vk’ Zdiﬂ»k’ A Zdiv”’k - (18 Approximating this non-linear function using a secondesrd
k=1 k=1 k=1 Taylor series expansion gives
The minimum amount of energy that needs to be charged in
vehiclei before the end of stop-overis Py = Pint + aPp,, (28)
. - here the termnP?, can be seen as the power loss when
E.(i,r) = —E Eir, 17) Wwhere the int Seeh d
(07 ot ; bk (7 charging with P, W. The coefficienty is
where Ej is the initial energy in the battery at the start of the , —0n
day TheO stop-over inequa?ii/y constraints );re a(¢) = Qoltinele) BCQVOC(O' (29)
! QOVOC(C)
As=[di1, dig, ooy digy, oy Assuming a nominal state-of-energy, = 0.5 gives an ap-
.1, A2, - .o, dm,qm]T (18) proximation for the coefficieni = «(¢,,). The corresponding
coefficient vector for the decision vectpy,,, is
bGZ[E€(171)7 Es(132)7 ey E‘9(17Q1)7 R - [~ - -
T a =011, 12, ..., Al p, ...,
Es(ma 1)7 Es(m7 2)7 R} Es(ma C]m)] 7(19) - - - T
. . Um, 1, Om,25 -, am,n] 3 (30)
whereg; is the number of stop-overs for vehicle
Let the diagonal matrix with the elements @f,, on the with &;; = &;,41 ¥V j = 1,...,n — 1 because the state-of-
diagonal beD(d; ,,). The generation constraints come fronenergy dependency in the model during the optimization is
the limited available wind power for each slot neglected.
1 The optimization problem using the quadratic approxima-
Ay = I [D(dl#h) D(d2,q,) --- D(dm,qm)] (20)  tion (28) is
bg = [gn,la gm27 R gﬁ,n]T . (21) Ipnll’l tSCTpint + tspzj;ztD(d)D(C)pznt (313.)
Let the maximum amount charged energy for vehictefore subject to
slot j be A.p;,; < b, (31b)
Eb(l,]) = (09 - 02) . EintO - EO + Z Ei,k- (22) A!Jinnt + pz;LtD(d)D(Aqu)pznt S gJ .7 = 17 s (31C)
tag<tsj ApPins < by (31d)
Let T;(M) be the lower triangular matrix of the matrik. The Pine = i (31e)
limited capacity in the batteries results in the batterytints 9,P;; + pL,D(&)D(Q, )P, < buyr=1,...,mn
Ti(Ap,1) (31f)
Ti(As2) hereq, is th ithnn el here elemeni
A, = _ (23) Whereq, is the vector withm-n elements, where elements

one and the remaining elements are zeros. Finally, theralter
Ti(Apm) power schedulg, is calculated using (28).
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Figure 4. The top graph shows the charging plans when usiediear _. . . S
formulation (black curve), the quadratic formulation (redva), and the Figure 6. The s?Iverlty offthe_batttfar% consftram]E %"Oﬁd‘!flthe
available wind power (gray curve). The bottom graph showsdéisulting state- A123Systems 2665.0 eet, as a function of the portion of the violates
of-energy trajectory when applying both the linear (blaak}l the quadratic the Pattery constraint.

approximation (red). The time the vehicle is unplugged isdatiid by gray

shadowing. approximation (solid black curve) and the charging schedul
_ determined using the quadratic approximation (red dashed
= 1 curve). The difference between the two charging schedsles i
S - minor and indicates that the linear approximation is sufiti
& 05l — A\ y ; The bottom graph of Fig. 4 shows the resulting state-ofgner
k= faﬁfifﬁ\‘m‘fy ~t AR trajectories when applying the two charging schedules én th
fgf B\v==EZ s top graph. There is a small, but noticable difference betwee
0 0 é 1‘2 ‘18 4 the state-of-energy trajectories. This effect comes frowm t

fact that the linear approximation neglects all energy dess
in the battery, whereas the quadratic approximation iredud
Figure 5. Resulting state-of-energy trajectories of 10ai0 vehicles after a quadratic approximation of the losses. The resultingestat
applying the charging schedule. Critical points are inidaby red circles, Of_energy trajectory after applylng the schedule basedhen t
where the state-of-energy might violate the boundaries efttery. . . . .
linear approximation is therefore lower than the one usimgy t
IV. EVALUATION AND COMPARISON schedule based on the quadratic approximation.

The solutions of the two optimization problems in Sec- Figure 5 shows Fhe state-of-energy trajectories.for afleet o
tion Il are found using the IBM ILOG CPLEX library 50 EVs after applying the schedule based on the linear approx
: 'gnation. The potential issues with the linear approxinratan

and to quantify the drawbacks of using the simpler linedloW be observed. Even though the optimization problem is set
to handle the upper and lower state-of-energy boundaries

approximation. This is done in order to assess the necesl

of using higher-order approximations for supervised cinarg ;/r'] Iatl)(()ns ?If tnhes%etkc]:onstrhalr;tsl ma_llé/hoccu: (rle(\j/ic;rct:ilei) dl’;”?hg
of electric vehicles. The evaluation process in this secis € execution of the schedule. The actual violations of the

as follows: state-of-energy boundaries during the execution of thedch

1) Calculate the charai hedule (based the i ules are therefore further analyzed and quantified.
) Calculate the charging schedule (based on the linear ©'As the losses in the battery, which are the underlying causes

the quadratic approximation in Section Ill). of the constraint violations, increase with increasingrghmy
2) Apply the charging shedule in an ODE solver of the ’ gg

detailed EV model in Section II power, it is important to investigate different chargingmeo

3) Observe the resulting state-of-energy trajectory and |em|tat|on3pb’i,j as well as variations in available wind power,

: o I.e., changings. The charging power limitation is assumed to
] tect state-of-energy bou'ndary V|olat|onls. be 3.5 kW (for a normal household connection), 8 kW, or
Figure 4 shows the solutions to the linear and quadrae . |n fact, there are no significant constraint violasion

optimization problems with the price and wind power profileg, the Jowest charging power limitation of 3.5 kW. The resul

in Fig. 3 for vehicle no. 1 in Fig. 2. The top graph ofye therefore only shown for the higher limitations, i.e.a8d

Fig. 4 shows the generated powgr with x = 1. It also 25 kw. The constraint violations are given as a share of the

shows the charging schedule determined using the linggfy range of the EV, which in fact are equal to the share of
3 _ , the usable state-of-energy range. Figures 6 and 7 show the
IBM, ILOG and CPLEX are trademarks of International Businé4s- . . . . .

chines Corporation in the United States, other countriesoth. Other product CONStraint violations assuming the entire flget has the A123

and service names might be trademarks of other companies. Systems battery or the Saft battery, respectively. Thezenar

time of day [h]
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V. CONCLUSION AND FUTURE WORK

In this paper the impact of using a linear versus a quadratic
approximation of the EV batteries to plan the charging has
been shown. The observation is made that the resulting-viola
tions of the battery boundaries when applying the charging
schedule based on the linear approximation are relatively
small, i.e., less than 2% of the usable capacity. The berfefit o
using the quadratic formulation does not justify the insgea
in computation time.

All our optimizations have been based on deterministic
optimizations; however most of the inputs to the analyzed
system are of random nature. More work is to be done
to address the stochastic nature of these phenomena and to
validate our estimation and optimzation schemes agaias$t re
data sets. Another area of interest is to take into account

Figure 7. The severity of the battery constraint violatifam,the Saft VL45 E
fleet, as a function of the portion of the fleet that violateshhttery constraint.

Table Il
THE INCREASE IN CALCULATION. [l]
EV fleet size 10 20 30 40 50 2]
tcalc,quadratic/tcalc,linear 238 338 441 760 819
(3]

significant violations when using the quadratic approxiorgt
thus Figs. 6 and 7 only show the results when using the lineg;
approximation. The share of the fleet experiencing viofetio

of the boundaries and the severity of the violations intﬂreas[s]
with increasing availability of wind power. The reason for
this is that the resulting charging schedules, using thealin
approximation, are able to utilize higher charging power alf]
times when the price is low. The same effect can be observed
when increasing the charging power limitation. Note thate¢h [7]
is a difference between the two battery types. The fleet with
the Saft battery has a higher share of constraint violatioms
also experiences larger violations.

Note that in this study the future trip information is assdme
to be completely known during planning. This assumption is
made to isolate the effects of using a linear approximatayn f [9]
charging schedule optimization. However, the severityhef t
violations of the battery boundaries when using the scleedyio)
based on the the linear approximation is less than 2% of the
vehicle range. Even when considering variations in chargin
power limitation and variations in available wind powere th[11]
violations are less that 2%. In reality, the trip informatis not
known in advance and only predicted trip information will be
available. The errors of inperfect trip information areelik [12]
to have a significantly larger effect on the violations of the
battery boundaries than 2%. [

Finally, Table Il shows the increase in calculation time whe
using the quadratic instead of the linear assumption. As the
number of constraints is higher and increases faster With[lg]
growing fleet in the quadratic formulation than in the linear
formulation, the difference in calculation time increagéth  [15]
increasing fleet size. In fact, for a fleet of 50 vehicles, the
calculation time using the quadratic formulation is 819€#m [16]
the calculation time using the linear formulation.

(8]

power grid transport and distribution constraints as thécad
charging solution may violate grid constraints.
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