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Abstract—This paper describes an approach to optimize elec-
tric vehicle battery charging behavior with the goal of minimizing
charging costs, achieving satisfactory state-of-energy levels,and
optimal power balancing. Two methods for charging schedule
optimization are compared. The first formulation uses a linear
approximation of the battery behavior, whereas the second uses
a quadratic approximation. A non-linear and state-dependent
battery model is used to evaluate the solutions of the two methods.
Our results indicate that the linear approximation is sufficient
when considering the electric vehicle charging plan optimization.

Index Terms—Electric Vehicles, Balancing Power, Electricity
Grid, Intermittent Energy Sources, Smart Charging, Distribution
Networks, Demand Management

I. I NTRODUCTION

The automotive industry is heavily investing in plug-in
hybrid elecrical vehicles (PHEV) as well as fully electric
vehicles (EV) mainly to address the CO2 emissions and
oil dependency of current automotive technology. The first
commercial models are expected to appear on the markets
soon; predictions regarding their commercial success however
vary [1].

One aspect to consider is that with large PHEV and EV1

fleets the electrical grids may have to cope with additional
loads that exhibit different characteristics than household
appliances [2]. The impact of EV fleets was studied in the
literature as early as 1983 with a study on the timing of EV
recharging and its effect on utilities [3]. Rahman et al. [4]
have anticipated the implications of EVs on power distribution
grids. They point to the importance of the effects of large
EV fleets on the distribution grid, new load peaks in time
slots of previously weak demand, and the effects of long
charging cycles of batteries; see also [2]. Koyanagi et al. [5]
propose time-shifted fast charge at lunch and night time to
avoid peak loads in the time intervals that already experience
heavy loads. A summary energy usage model for EVs is used.
The impact of a fleet of EVs on the Vermont power grid has
been studied in [6]. Assuming a dual-tariff, nightly charging
scheme, the authors conclude that sufficient transport and
distribution capacities are available in the power grid. More
details on potential low-voltage distribution grid impacts are
given in [7].

Several investigations are also under way that study the use
of a fleet of EVs to provide services to the electrical grid. Such

1We shall use, from now on, the term EV to denote either PHEV or full
EV, unless such distinction is relevant.

concepts are commonly known as vehicle-to-grid (V2G) con-
cepts. By using controlled charging, and possibly controlled
discharging, of a large number of EV accumulators, it is hoped
that peaks and troughs of electrical power generation can be
conveniently absorbed by providing balancing power. To have
an EV fleet enter the balancing power market, a large number
of such loads has to be aggregated and managed [8].

Providing balancing power is especially important for elec-
trical grids with a high percentage of intermittent energy
resources, such as photo-voltaic or wind. Fleets of EVs may
be used to supply short-term balancing power to equilibrate
power generation and consumption - thus becoming beneficial
to the grid’s operation.

The potential economic impact of such a large-scale V2G
integration has been analyzed by Kempton et al. in [9]. The
economics presented there become even more relevant in grids
with large amounts of wind energy as described in [10], [11],
taking into account the economics of balancing power required
for highly intermittent energy sources.

The overall problem can be seen as a suitable planning
and execution of power generation and consumption schedules
to satisfy high-volume balancing as well as low-volume, car
charging power requirements. The goals for the various parties
that are involved are as follows: reduced requirements for
costly balancing power, avoidance of transport and distribution
grid bottlenecks, and satisfaction of end-user needs, i.e., a
sufficient charging level in the EV must be reached. These
goals can be addressed by establishing acharging plan for
each EV in the system. Such plans are akin to the traditionally
known power generation schedules used in the power gener-
ation community, but with a much smaller energy volume.
These charging plans should be determined using predictions
of the trip characteristics for the next planning period.

In establishing such a charging plan, the vehicle’s battery
plays an important role. Its charging and discharging be-
havior has to be accounted for in the planning by deriving
expected energy consumpution values. Non-linearities in the
relationship between applied, external, charging power and
the rate of change of the battery’s state-of-energy, i.e., the
internal power have to be considered. This paper presents a
comparisons of the resulting charging plans when using two
different approximations of the non-linear battery behavior.
This is done in order to quantify the level of detail necessary
in the optimization for establishing the charging plan.

The remainder of this paper is organized as follows. Sec-



tion II contains the modelling of EV battery. Section III dis-
cusses the methods used to optimize the EV battery charging.
The comparison of different battery types and optimization
methods is given in Section IV. Finally, Section V summarizes
our findings and gives an outlook of further work in the area.

II. ELECTRIC VEHICLE MODEL

From the charging planning perspective the EVs are con-
sidered to be battery packs in this study, that have non-
linear behavior. Each battery is modeled as an equivalent
electric circuit containing a voltage source in series witha
resistor. Both the voltage source and the internal resistance are
dependent on the state-of-energyζ of the battery. The battery
parameters also depend on the specific cell charateristics and
the size of the battery pack. This type of battery model is
commonly used when considering the supervisory control of
hybrid electric vehicles [12]. The model therefore suits the
purpose of supervisory control of the charging of EVs well.
Based on the equivalent circuit the battery current is derived
as a function of the state-of-energy and the input, or output,
powerPb (positive during charging) to the battery

Ib(ζ, Pb) =
Voc(ζ) −

√

Voc(ζ)2 + 4Rint(ζ)Pb

2Rint(ζ)
. (1)

The output voltage is a function of the state-of-charge and the
input or output power

Vb(ζ, Pb) = Voc(ζ) − Ib(ζ, Pb)Rint(ζ). (2)

Because of battery limitations, the output voltage must be
within the given voltage limitations

Vb(ζ, Pb) ∈ [Vmin, Vmax]. (3)

However, the voltage limitations can be seen as state-of-
energy-dependent current limitations

Ib(ζ, Pb) ∈

[

Voc(ζ) − Vmax

Rint(ζ)
,

Voc(ζ) − Vmin

Rint(ζ)

]

. (4)

The battery current must also be within the static current
limitations given by the manufacturer

Ib(ζ, Pb) ∈ [−Imax, Imax]. (5)

The only dynamic state variable for a single vehicle is the
state-of-energyζ ∈ [0, 1]. The change in state-of-energy is
the internal battery power over the maximum stored energy in
the battery

ζ̇ = f(ζ, Pb) =
Pint(ζ, Pb)

Eint0

, (6)

where the maximum stored energy in the battery is

Eint0 =

∫ 1

0

Voc(ζ)Q0 dζ (7)

and the internal power of the battery is

Pint(ζ, Pb) =

{

−ηIb(ζ, Pb)Voc(ζ) Pb ≥ 0

− 1

η
Ib(ζ, Pb)Voc(ζ) Pb < 0.

(8)
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Figure 1. The open circuit voltage and internal resistance of the Saft VL
45E cell and of the A123Systems 26650 cell.

Table I
PARAMETERS OF THEVL 45E CELL AND OF THE 26650CELL.

Variable VL 45E 26650 Unit Scaling
Eint0 590.4 26.5 kJ Eint0 · np · ns

Q0 45.0 2.3 Ah Q0 · np

Vmax 4.0 3.6 V Vmax · ns

Vmin 2.7 2.1 V Vmin · ns

Imax 100 70 A Imax · np

Voc(ζ) see Fig. 1 see Fig. 1 V Voc(ζ) · ns

Rint(ζ) see Fig. 1 see Fig. 1 Ω Rint(ζ) · ns

np
∂η
∂c

-167.2 -12.6 s ∂η
∂c

The efficiency is a function of the battery current

η = 1 +
∂η

∂c
·
|Ib(ζ, Pb)|

Q0

, (9)

where ∂η
∂c

is a constant reflecting the decrease in efficiency
with increasing current. In [13], it was concluded that extreme
deviations in the battery state-of-charge are correlated to
the ageing of the battery. Typically, the battery operationis
therefore limited to a given state-of-charge operating range.
Hence, in this paper the state-of-energy is limited to

ζ ∈ [0.2, 0.9]. (10)

To investigate the impact of the optimization methods on the
actual energy level in the battery, two different battery cells
are used. Figure 1 and Table I show the datasheet parameters
for the Saft VL 45E [14] and the A123Systems 26650 cell
[15]. The parametersEint0, Voc(ζ), Rint(ζ), and∂η

∂c
have been

identified using the model in (1)–(10) and using information
on the datasheets [14], [15].

The battery pack for each vehicle is scaled according to the
scaling equations in Table I. Note that the scaling variables ns

andnp are not necessarily integers. Consequently, the resulting
battery pack after scaling may not be implementable in a
vehicle. It is however assumed that the behavior of the pack
reflects the real behavior sufficiently well.

The EV fleet comprises two types of vehicles, namely,
commuter vehicles and taxi vehicles. In this paper, the EV
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Figure 2. The time each vehicle is available for smart charging(white)
and the time each vehicle is unplugged (gray). The values are given for the
day considered. Vehicles 1-25 are commuter vehicles, and vehicles 26-50 are
taxis.

fleet is assumed to contain equal shares of commuter and
taxi vehicles. The usable energy capacity of the battery is
the energy between the state-of-energy limits in (10). The
taxi vehicles have an energy capacity of 36.8 kWh, and the
commuter vehicles have an energy capacity of 18.4 kWh, both
with a nominal voltage of 400 V.

As the actual energy requirement the next day is unknown
at the time of planning, the behavior of the EVs has to be
predicted. The focus of this paper is not on driving pattern
prediction. However, it is assumed that the driving pattern
prediction has already been done and that the following
information is available for the predicted stop-overk for
vehicle i:

• time of connectiontc,i,k

• time of disconnectiontd,i,k

• energy required for the next tripEi,k.

In addition to the information above, a predicted energy
contentE0 in the battery at midnight, when the day begins,
is assumed to be known.

Note that the energy goals and times of connection and
disconnection can either be set explicitly by the end-user or,
as assumed in this paper, predicted using historical data. For
example, the energy level to be reached can reflect an average
or weighted average level as well as an extreme2 energy goal.

Figure 2 shows the time of connection and time of dis-
connection for each stop-over (white area) for a fleet of 50
vehicles. The gray areas in Fig. 2 represent the trip durations.
It clearly shows the differences between the taxi and the
commuter vehicles. The latter have a low number of trips
at relatively fixed times, whereas the former have a more
irregular pattern.

III. O PTIMIZATION METHODS

Throughout this paper it is assumed that both the price of
electricity and the available wind power are predicted and

2In this case maximal.
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Figure 3. The top graph shows the assumed price curve on the considered
day. The bottom graph shows the assumed wind power potential.

known for the next planning period. The optimization objective
is to minimize the overall cost of charging the EV fleet.
Figure 3 shows the assumed price of electricity,c, and the
available nominal wind power,g0. The available wind power
is scaled for a fleet withm vehicles using a factor

gκ = κ · m · g0, (11)

whereκ is a measure on the excess wind power available.
In this section, two approximations are used to simplify

the optimization problem to either a linear program or a
quadratically constrained quadratic program.

A. Linear Approximation

Using a linear approximation, the internal power is assumed
to be equal to the external powerPint = Pb. In this case all
internal losses in the battery are neglected. The objectiveis,
as mentioned, to minimize the overall cost of charging given
the charging constraints and available power constraints.By
using the linear approximation for the battery, this problem
can be formulated as a linear program:

min
pb

tscT pb (12a)

subject to

Aspb ≥ bs (12b)

Agpb ≤ bg (12c)

Abpb ≤ bb (12d)

bl ≤ pb ≤ bu, (12e)

with the cost vectorc, the charging power vectorpb, the
stop-over inequality constraints (As, bs), the generation in-
equality constraints (Ag, bg), the battery inequality constraints
(Ab, bb), and the upper and lower bounds (bu, bl). Assume
i = 1, 2...,m is the index of the vehicle,j = 1, 2, ..., n the
index for the time slot contained in one plan duration. The
decision variablepb then hasm·n elements. Note that all those
slots in which no vehicle is connected can be eliminated prior
to solving the optimization problem. However, for a reasonably



large fleet, it can be assumed that at least one vehicle is
connected in each slot. Therefore, the cost vectorc comprises
of the cost associated for each vehicle in each time slotci,j .
The charging power vectorpb comprises the charging power
for each vehicle and time slotpb,i,j .

c = [c1,1, c1,2, . . . , c1,n, . . . ,

cm,1, cm,2, . . . , cm,n]
T (13)

pb = [pb,1,1, pb,1,2, . . . , pb,1,n, . . . ,

pb,m,1, pb,m,2, . . . , pb,m,n]
T

. (14)

Let the connected duration for a given vehiclei, at a given
time slot j, and a given stopoverk be

di,j,k ∈ [0, ts] (15)

The connection vector, describing the connection of vehicle i

until stopoverr, is

di,r =

[

r
∑

k=1

di,1,k,

r
∑

k=1

di,2,k, . . . ,

r
∑

k=1

di,n,k

]T

. (16)

The minimum amount of energy that needs to be charged in
vehicle i before the end of stop-overr is

Es(i, r) = −E0 +

r
∑

k=1

Ei,k, (17)

whereE0 is the initial energy in the battery at the start of the
day. The stop-over inequality constraints are

As = [d1,1, d1,2, . . . , d1,q1
, . . . ,

dm,1, dm,2, . . . , dm,qm
]
T (18)

bs = [Es(1, 1), Es(1, 2), . . . , Es(1, q1), . . . ,

Es(m, 1), Es(m, 2), . . . , Es(m, qm)]
T

,(19)

whereqi is the number of stop-overs for vehiclei.
Let the diagonal matrix with the elements ofdi,qi

on the
diagonal beD(di,qi

). The generation constraints come from
the limited available wind power for each slot

Ag =
1

ts

[

D(d1,q1
) D(d2,q2

) · · · D(dm,qm
)
]

(20)

bg =
[

gκ,1, gκ,2, . . . , gκ,n

]T
. (21)

Let the maximum amount charged energy for vehiclei before
slot j be

Eb(i, j) = (0.9 − 0.2) · Eint0 − E0 +
∑

td,j<ts·j

Ei,k. (22)

Let Tl(M) be the lower triangular matrix of the matrixM . The
limited capacity in the batteries results in the battery contraints

Ab =











Tl(Ab,1)
Tl(Ab,2)

. . .
Tl(Ab,m)











(23)

bb =
[

bT
b,1, bT

b,2, . . . , bT
b,m

]T
, (24)

whereAb,i andbb,i are

Ab,i =
[

di,qi
, di,qi

, . . . , di,qi

]T
(25)

bb,i =
[

Eb(i, 1), Eb(i, 2), . . . , Eb(i, n)
]T

. (26)

Because of battery, charging spot, or electric grid limitations
let the charging power be limited tōpb,i,j . The charging power
is then limited topb ∈ [0, p̄b].

B. Quadratic Approximation

As the battery in the EV has a non-linear behavior, the next
step after using the linear approximation in Section III-A is to
approximate the battery using a quadratic function. The actual
external power is a non-linear function of the internal power:

Pb = f(Pint). (27)

Approximating this non-linear function using a second-order
Taylor series expansion gives

Pb = Pint + αP 2
int, (28)

where the termαP 2
int can be seen as the power loss when

charging withPb W. The coefficientα is

α(ζ) =
Q0Rint(ζ) − ∂η

∂c
Voc(ζ)

Q0Voc(ζ)2
. (29)

Assuming a nominal state-of-energyζn = 0.5 gives an ap-
proximation for the coefficient̃α = α(ζn). The corresponding
coefficient vector for the decision vectorpint is

α̃ = [α̃1,1, α̃1,2, . . . , α̃1,n, . . . ,

α̃m,1, α̃m,2, . . . , α̃m,n]
T

, (30)

with α̃i,j = α̃i,j+1 ∀ j = 1, . . . , n − 1 because the state-of-
energy dependency in the model during the optimization is
neglected.

The optimization problem using the quadratic approxima-
tion (28) is

min
pint

tscT pint + tspT
intD(α̃)D(c)pint (31a)

subject to

Aspint ≤ bs (31b)

Ag,jpint + pT
intD(α̃)D(Ag,j)pint ≤ gj j = 1, . . . , n (31c)

Abpint ≤ bb (31d)

pint ≥ bl (31e)

qrpint + pT
intD(α̃)D(qr)pint ≤ bu,r r = 1, . . . ,mn

(31f)

whereqr is the vector withm ·n elements, where elementr is
one and the remaining elements are zeros. Finally, the external
power schedulepb is calculated using (28).
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Figure 4. The top graph shows the charging plans when using the linear
formulation (black curve), the quadratic formulation (red curve), and the
available wind power (gray curve). The bottom graph shows the resulting state-
of-energy trajectory when applying both the linear (black)and the quadratic
approximation (red). The time the vehicle is unplugged is indicated by gray
shadowing.

time of day [h]

st
at

e-
of

-e
ne

rg
y

[-
]

0 6 12 18 24
0

0.5

1

Figure 5. Resulting state-of-energy trajectories of 10 outof 50 vehicles after
applying the charging schedule. Critical points are indicated by red circles,
where the state-of-energy might violate the boundaries of the battery.

IV. EVALUATION AND COMPARISON

The solutions of the two optimization problems in Sec-
tion III are found using the IBM ILOG CPLEX3 library
[16]. The focus of this section is to show the solutions
and to quantify the drawbacks of using the simpler linear
approximation. This is done in order to assess the necessity
of using higher-order approximations for supervised charging
of electric vehicles. The evaluation process in this section is
as follows:

1) Calculate the charging schedule (based on the linear or
the quadratic approximation in Section III).

2) Apply the charging shedule in an ODE solver of the
detailed EV model in Section II.

3) Observe the resulting state-of-energy trajectory and de-
tect state-of-energy boundary violations.

Figure 4 shows the solutions to the linear and quadratic
optimization problems with the price and wind power profiles
in Fig. 3 for vehicle no. 1 in Fig. 2. The top graph of
Fig. 4 shows the generated powergκ with κ = 1. It also
shows the charging schedule determined using the linear

3IBM, ILOG and CPLEX are trademarks of International BusinessMa-
chines Corporation in the United States, other countries, or both. Other product
and service names might be trademarks of other companies.
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Figure 6. The severity of the battery constraint violation,for the
A123Systems 26650 fleet, as a function of the portion of the fleet that violates
the battery constraint.

approximation (solid black curve) and the charging schedule
determined using the quadratic approximation (red dashed
curve). The difference between the two charging schedules is
minor and indicates that the linear approximation is sufficient.
The bottom graph of Fig. 4 shows the resulting state-of-energy
trajectories when applying the two charging schedules in the
top graph. There is a small, but noticable difference between
the state-of-energy trajectories. This effect comes from the
fact that the linear approximation neglects all energy losses
in the battery, whereas the quadratic approximation includes
a quadratic approximation of the losses. The resulting state-
of-energy trajectory after applying the schedule based on the
linear approximation is therefore lower than the one using the
schedule based on the quadratic approximation.

Figure 5 shows the state-of-energy trajectories for a fleet of
50 EVs after applying the schedule based on the linear approx-
imation. The potential issues with the linear approximation can
now be observed. Even though the optimization problem is set
up to handle the upper and lower state-of-energy boundaries,
violations of these constraints may occur (red circles) during
the execution of the schedule. The actual violations of the
state-of-energy boundaries during the execution of the sched-
ules are therefore further analyzed and quantified.

As the losses in the battery, which are the underlying causes
of the constraint violations, increase with increasing charging
power, it is important to investigate different charging power
limitations p̄b,i,j as well as variations in available wind power,
i.e., changingκ. The charging power limitation is assumed to
be 3.5 kW (for a normal household connection), 8 kW, or
22 kW. In fact, there are no significant constraint violations
for the lowest charging power limitation of 3.5 kW. The results
are therefore only shown for the higher limitations, i.e., 8, and
22 kW. The constraint violations are given as a share of the
total range of the EV, which in fact are equal to the share of
the usable state-of-energy range. Figures 6 and 7 show the
constraint violations assuming the entire fleet has the A123
Systems battery or the Saft battery, respectively. There are no
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Figure 7. The severity of the battery constraint violation,for the Saft VL45 E
fleet, as a function of the portion of the fleet that violates the battery constraint.

Table II
THE INCREASE IN CALCULATION.

EV fleet size 10 20 30 40 50
tcalc,quadratic/tcalc,linear 238 338 441 760 819

significant violations when using the quadratic approximation,
thus Figs. 6 and 7 only show the results when using the linear
approximation. The share of the fleet experiencing violations
of the boundaries and the severity of the violations increase
with increasing availability of wind power. The reason for
this is that the resulting charging schedules, using the linear
approximation, are able to utilize higher charging power at
times when the price is low. The same effect can be observed
when increasing the charging power limitation. Note that there
is a difference between the two battery types. The fleet with
the Saft battery has a higher share of constraint violationsand
also experiences larger violations.

Note that in this study the future trip information is assumed
to be completely known during planning. This assumption is
made to isolate the effects of using a linear approximation for
charging schedule optimization. However, the severity of the
violations of the battery boundaries when using the schedule
based on the the linear approximation is less than 2% of the
vehicle range. Even when considering variations in charging
power limitation and variations in available wind power, the
violations are less that 2%. In reality, the trip information is not
known in advance and only predicted trip information will be
available. The errors of inperfect trip information are likely
to have a significantly larger effect on the violations of the
battery boundaries than 2%.

Finally, Table II shows the increase in calculation time when
using the quadratic instead of the linear assumption. As the
number of constraints is higher and increases faster with a
growing fleet in the quadratic formulation than in the linear
formulation, the difference in calculation time increaseswith
increasing fleet size. In fact, for a fleet of 50 vehicles, the
calculation time using the quadratic formulation is 819 times
the calculation time using the linear formulation.

V. CONCLUSION AND FUTURE WORK

In this paper the impact of using a linear versus a quadratic
approximation of the EV batteries to plan the charging has
been shown. The observation is made that the resulting viola-
tions of the battery boundaries when applying the charging
schedule based on the linear approximation are relatively
small, i.e., less than 2% of the usable capacity. The benefit of
using the quadratic formulation does not justify the increase
in computation time.

All our optimizations have been based on deterministic
optimizations; however most of the inputs to the analyzed
system are of random nature. More work is to be done
to address the stochastic nature of these phenomena and to
validate our estimation and optimzation schemes against real
data sets. Another area of interest is to take into account
power grid transport and distribution constraints as the optimal
charging solution may violate grid constraints.
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