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ABSTRACT OF THE DISSERTATION

Cross-Layer Optimization of Coded Wireless Networks

By

Hulya Seferoglu

Doctor of Philosophy in Electrical and Computer Engineering

University of California, Irvine, 2010

Professor Athina Markopoulou, Chair

The network coding paradigm advocates that intermediate nodes should not only forward,

but also process and combine packets, which has the potential to increase throughput and

facilitate distributed operation of networks. This dissertation focuses on wireless networks,

where network coding can be gracefully combined with and exploit the properties of the

wireless networks. The goal is to design and evaluate algorithms and protocols, on top

of given constructive network coding schemes, so as to fully exploit the network coding

capabilities. The contributions of this dissertation are the joint optimization of (i) video

streaming, (ii) rate control, and (iii) error correction, together with the underlying network

coding mechanisms.

We first study video streaming over coded wireless networks. Our key insight is that, when

the transmitted flows are video, network codes should be selected so as to maximize not only

the network throughput but also the video quality. We propose video-aware opportunistic

network coding schemes that take into account the importance and deadlines of video packets.

Second, we study rate control and scheduling. The key intuition is that network coding

introduces network coded flows and new conflicts between nodes, which should be taken into

account both in rate control and scheduling. We consider two types of traffic; video and

TCP. In the case of video, its time-varying nature affects the underlying network coding op-

xiv



portunities. We observe that by delaying some scenes and by optimizing the rate allocation,

we can create more network coding opportunities and thus improve video quality. In the

case of TCP traffic, TCP flows do not fully exploit the network coding opportunities due

to their bursty behavior and due to the fact that TCP is agnostic to network coding. In

order to improve the performance of TCP flows over coded wireless networks, we propose a

network-coding aware queue management scheme.

In the last part of this thesis, we combine inter- and intra-session network coding (I2NC).

Our scheme, I2NC provides resilience to loss thanks to the error-correcting capabilities of

intra-session network coding. Furthermore, it allows intermediate nodes to operate without

the knowledge of the decoding buffers at their neighbors.
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Chapter 1

Introduction

1.1 Motivation

Today’s networks are based on the fundamental principle that the network forwards data, but

the information itself is processed only at the end systems. Network coding is a research field

that emerged over the past decade and breaks this fundamental assumption: it advocates

that, in addition to forwarding packets, intermediate nodes should be allowed to also process

and recombine several incoming packets into one or more outgoing packets [1, 2, 3, 4]. This

showed that, in multicast networks where intermediate nodes do simple linear operations

on incoming packets, one can achieve the min-cut capacity of the network to each receiver.

The linearly combined packets can be utilized at the receivers to recover the original packets

by solving a set of linear equations over a finite field. This breakthrough idea has spawned

a significant effort [5, 6, 7, 8], initially in the information theory and computer science

communities and more recently in the networking communities.

From a theoretical point of view, researchers have been studying the design of coding schemes

and quantifying the benefits (in terms of throughput, delay, and robustness) as well as the
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cost of network coding, for various traffic scenarios and network topologies. From a prac-

tical point of view, researchers are exploring potential applications to practical networking

problems at various layers of the protocol stack. For example, in the context of wireless

mesh networks, one-hop opportunistic network coding has been shown to increase through-

put by mixing packets from different flows into a single packet and by broadcasting over

the wireless medium [9, 10, 11]. In the context of peer-to-peer content distribution, random

network coding has been shown to facilitate distributed scheduling, reduce the download

times and increase robustness to node failures [12, 13]. In the context of protocol design,

intra-session network coding combined with retransmissions has been shown to successfully

mask wireless losses from TCP congestion control [14]. There is also a growing body of work

within the multimedia community that studies network coding techniques for multimedia

and delay-sensitive traffic [15].

Despite the promise and significant amount of research activity generated over the last

decade, network coding has not yet realized its full potential, especially in practical networked

systems, because network coding introduces performance costs, novel security threats and it

also introduces changes to the protocol stack. As a result, there is currently a gap between

the theory of network coding and its practical applications. The goal of this thesis is to

design and evaluate algorithms and protocols, on top of given constructive network coding

schemes, so as to fully exploit the network coding capabilities and also address practical

issues in coded wireless networks. More specifically, we are interested in understanding

cross-layer issues such as video streaming, rate control, and error correction over coded

wireless networks. This understanding is crucial for the deployment of network coding in

practical networked systems.
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1.2 Thesis Contributions

The contributions of this dissertation are the joint optimization of (i) video streaming (ii)

rate control and (iii) error correction, together with the underlying wireless network coding

mechanisms. More specifically, we make the following contributions:

• We study video streaming over coded wireless networks and we develop video-aware

network coding algorithms [16], [17].

• We show the importance of network coding-awareness in rate control and scheduling

over coded wireless networks. We optimize rate control protocols for video streaming

and TCP [18], [19], [20], [21].

• We study the performance of network coding over lossy wireless networks and we

develop loss-aware network coding algorithms along with optimal rate control protocols

[22], [23].

In the next three subsections, we describe each contribution in more detail.

1.2.1 Video Streaming over Coded Wireless Networks

Developments in video compression and streaming, wireless networking, and cross-layer de-

sign, are continuously advancing the state-of-the art in wireless video [24]. Yet, providing

high quality video over wireless networks is still a challenging problem due to limited band-

width and time-varying nature of wireless links. Network coding has been shown to improve

throughput by mixing packets from different flows and broadcasting the coded packets over

the wireless medium [9, 10, 11]. With this advantage, network coding is a promising solution

for video streaming over wireless networks. However, media traffic has some characteristics
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and requirements that introduce unique challenges and opportunities for network coding. In

this study, we advocate the need for cross-layer design of video-aware network coding schemes

that specifically take these features into account. Combining techniques from network coding

and media streaming can make the best of both worlds.

We first consider the fact that different packets in the same multimedia stream may have

different contributions to video quality. One important challenge with network coding is

that it has been agnostic to the content of the packets that are coded together. In [17],

[16], we consider video traffic transmitted over wireless networks with opportunistic one-hop

network coding [10]. We design video-aware network coding schemes that take into account

both the decodability of network codes by several receivers and the unequal importance

of video packets, namely, distortion values and play-out deadlines. We demonstrate that

these schemes improve the video quality without compromising the MAC throughput. In a

sense, this work combines two orthogonal aspects of packet scheduling: (i) network coding to

mix packets from different flows and increase throughput and (ii) radio-distortion optimized

streaming of packets within the same stream to maximize video quality.

In addition to packet level difference, different multimedia streams may also have differ-

ent level of importance according their traffic characteristics, sensitivity, or pricing. The

challenge with network coding is the decision of determining which flows should be coded

together when there are multiple media and/or data flows in the network. In this work, we

assign importance to packets based, not only on their distortion value and playout deadline,

but also on their traffic type and priority [17].

Finally, we consider strict delay requirement of media streaming and real-time communica-

tions, which poses both a challenge and an opportunity when network coding is used. On

one hand, network coding increases delay due to additional encoding/decoding and possibly

due to waiting at intermediate nodes for enough packets to arrive and be coded together.

On the other hand, the increase in throughput can decrease the end-to-end delay. The de-
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sign of scheduling and coding algorithms can trade-off throughput for delay so as to meet

media requirements. In our work, [17], [16], we take the delay requirement into account, by

incorporating it into the importance of a packet.

1.2.2 Rate Control and Scheduling over Coded Wireless Networks

Network coding has been shown to improve throughput by mixing packets from different

flows and broadcasting the coded packets over the wireless medium [9, 10, 11]. However, it

has non-trivial interactions with mechanisms in other layers of the protocol stack, namely:

rate control, scheduling, and routing to fully exploit network coding benefit. Below, we

present some key observations on the interaction of network coding and protocol stack.

Rate Control: Traditionally, the fundamental goal of transport protocols, such as Transmis-

sion Control Protocol (TCP), is to achieve as much bandwidth as possible while achieving

some level of long-term rate fairness across competing flows. When network coding is em-

ployed in wireless networks, the achievable rate regions gets extended as compared to tradi-

tional routing. Interestingly, this has a non-trivial interaction with the rate requirements of

applications at higher layers. The key observation is that at each node in the network which

codes two flows, there should be packets from these two flows at each transmission instant to

fully exploit network coding benefit. At the same time, transport protocols or higher layer

flow control mechanisms should provide long term fairness. Therefore, transport protocols or

in general terms, rate control mechanisms should be designed to be aware of the underlying

network coding. In [18], through network utility optimization, we show that network coding

awareness is crucial in rate control mechanisms in transport and flow control protocols.

Rate requirements of video applications vary over time due to time varying content of video.

It is typical for video applications to have less motion - hence less rate requirements to satisfy

a quality of service (QoS) - in some scenes, and to have high motion in consecutive scenes.
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Thus, video streaming is an application that has their own, typically time-varying, rates that

need to be adapted to match the rate region offered by the underlying coded wireless network.

Conversely, the rates at the video/application layer affect the availability of network coding

opportunities at the underlying network coding layer and thus the achievable region. In this

work [19], we observe that by delaying some scenes and by optimizing the rate allocation

over longer time intervals, we can create more network coding opportunities and thus achieve

higher total utility.

TCP flows do not fully exploit the network coding opportunities due to their bursty behavior

and due to the fact that TCP is agnostic to the underlying network coding. We observe that

due bursty behavior of TCP, almost half of the time, there are no packets from the flows that

would be network coded in the buffers of network coding nodes over wireless networks when

buffer size is set to bandwidth-delay product. Due to this fact, TCP flows do not exploit

full potential of network coding. In [21], [20], we formulated the problem as network utility

maximization and we develop a distributed solution. Based on the structure of the optimal

solution, we propose minimal modifications to congestion control and queue management

mechanisms so as to make them network-coding aware. The results indicate that we are able

to double TCP throughput over coded wireless networks.

Scheduling: Scheduling has two aspects in wireless networks: (i) which node and (ii) which

flow should transmit at a given transmission instant. In current wireless networks, e.g., 802.11,

each nodes access medium according to CSMA/CA which basically provides fairness among

the nodes trying to access the medium. After accessing the medium, each node transmits

packets according to FIFO rule. However, when network coding is used, some flows are

network coded and some are not. In our work [18], we show that network coding flows

introduces more conflicts among the nodes trying to access the medium which should be

considered in access mechanism. Furthermore, a FIFO scheme is not sufficient to exploit

network coding benefits and provide fairness among the flows when network coding is used.
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1.2.3 Performance of Network Coding over Lossy Wireless Net-

works

Dealing with loss in wireless networks is a hard enough problem, even without network

coding. However, network coding among multiple flows amplifies the problem by exposing

flows to loss not only on their own path, but also on the paths of flows that are coded

together. Furthermore, side information to decode network codes is also prone to wireless

link losses.

Error Correction for Network Coding: There is a wide spectrum of well-studied options for

dealing with loss, e.g., using redundancy (forward error correction) and/or retransmissions,

locally (MAC) and/or end-to-end (transport layer). Local retransmissions increase end-

to-end delay and jitter, which, if excessive, may cause TCP timeouts or hurt real-time

multimedia. Furthermore, the best retransmission scheme for network coded packets varies

with the channel loss probability and is hard to switch among re-transmission policies when

the channel loss rate varies over time. Re-transmission also requires state synchronization

to perform inter-session network coding, which is not reliable at all loss rates.

Network Coding for Error Correction: Although network coding adds extra challenges to

error correction mechanism over lossy networks, network coding has some advantages: net-

work coding has error correction capabilities similar to rateless codes, applied not only at

the source but also at intermediate nodes. In the context of peer-to-peer content storage

and distribution, random network coding has been shown to be more robust than traditional

forward error correction against failures or departures of nodes [12], [13], [25]. The intuition

is that, in case of a block being lost, network coding produces unique innovative blocks,

while FEC-based schemes can replicate the same block (original or redundant). Similarly,

over wireless networks, intra-session random network coding provides resilience to packet

losses [14].
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In this part of the thesis [23], we use error correction capabilities of network coding to

improve network coding benefit over lossy wireless networks. Furthermore, our schemes are

strong in the sense that they keep end-to-end delay low as compared to local and end-to-end

re-transmissions, which improves TCP performance and is nice for multimedia applications.

Although one could use various coding techniques, such as Reed-Solomon or Fountain codes,

implementing error correction via intra-session network coding has several advantages. First,

it has lower computational complexity than other error schemes. Second, in systems that

already implement network coding among multiple flows, it is natural to incrementally add

network coding for error correction functionality.

1.3 Overview and Organization

The rest of the dissertation is organized as follows. In Chapter 2, we provide the background

necessary to understand basic network coding principles and the methodological tools used

in this work. We also describe related work. Chapters 3, 4, and 5 are the core of the thesis.

In Chapter 3, we present video-aware network coding. In Chapter 4, we first discuss the

necessity of rate control and scheduling over coded wireless networks. Second, we consider

video streaming and TCP over coded wireless networks, we study their rate requirements and

their interaction with network coding, and we propose updates in the cross layer design. In

Chapter 5, we study the performance of network coding over lossy wireless networks and we

propose the joint use of intra- and inter-session network coding to improve network coding

over such networks. Finally, we conclude in Chapter 6 with a summary of our contributions

along with our final remarks.
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Chapter 2

Background & Related Work

2.1 Network Coding

The network coding paradigm has emerged from the pioneering work in [1, 2], which showed

that, in multicast networks where intermediate nodes do simple linear operations on incoming

packets, one can achieve the min-cut throughput of the network to each receiver. The linearly

combined packets can be utilized at the receivers to recover the original packets by solving

a set of linear equations over a finite field. To better illustrate this point, let us discuss the

following example.

Example 1 The example shown in Fig. 2.1 illustrates multicasting with network coding

over wired butterfly topology. Each link capacity is equal to one packet per time slot. In

this topology, source S transmits a flow to receivers R1 and R2 over the nodes B, C, I1, and

I2. Source S transmits two packets a and b over links A − B and A − C. These packets

are forwarded to I1 over the links B − I1 and C − I1. The link I1 − I2 is a bottleneck in

this topology according to traditional routing in which packets a and b are transmitted in

two time slots. With network coding, packets a and b are linearly combined (over a finite
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Figure 2.1: Butterfly topology.

field) and transmitted. Also, packet a is transmitted over B−D and packet b is transmitted

over C − E. As a result, receivers R1 and R2 receive two packets at each time slot. This is

expected according to network coding theorem which shows that one can achieve the min-cut

capacity of the network (which is two in this example) when intermediate nodes do simple

linear operations on incoming packets. �

The breakthrough idea of network coding inspired significant effort in several directions

[26, 27, 28], including practical application of network coding, studying topologies beyond

multicast, such as unicast [29, 9, 30] and broadcast scenarios. The broadcast nature of the

wireless medium offers an opportunity for exploiting the throughput benefits of network

coding [31, 32]. These ideas are applied in the networking community in the context of

wireless mesh network [10, 11]. COPE [10] implemented a pseudo-broadcast mechanism for

802.11 together with opportunistic listening and a coding layer between IP and MAC that

is used to detect coding opportunities and pack packets from different flows into a single

transmission, thus increasing network throughput. To better illustrate the network coding

advantage over wireless networks with unicast flows (which we call inter-session network

coding), let us discuss the following example.
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Figure 2.2: Alice-and-Bob topology.

Example 2 The example shown in Fig. 2.2 illustrates Alice-and-Bob topology. We assume

that link capacities are one packets per time slot. In this topology, source S1 transmits a

flow to receiver R1 and source S2 transmits a flow to receiver R2, over the intermediate node

I. A and B transmit their packets a and b, in two time slots, and node I receives them.

Furthermore, B knows b and A knows a, because they already transmitted these packets.

In the next time slot, I broadcasts the network coded packet, a
⊕

b to A and B. Since

B and A knows b and a, they can decode their packets a and b, respectively. Since I can

transmit a
⊕

b in one time slot, instead of a, b in two time-slots, network coding reduces

four transmission to three, and improves throughput by 33.3%. �

The network coding benefit over wireless networks with unicast flows has generated a lot

of interest in the research community. One-hop network coding in [10] is extended to in-

clude new coded wireless systems such as BFLY [33], pairwise network coding [34], tiling

approaches [35], [36]. Network coding over wireless networks are modeled and analyzed by

[37], [38], [39]. The performance of one hop network coding is considered in [40] by looking

at the interaction of network coding with MAC fairness. [41] addressed the problem of under

utilization of one-hop network coding with TCP.

The advantages of network coding are extended from inter-session network coding to intra-

session network coding (in which packets in the same flow are coded and transmitted) over

wireless networks. In this context, random network coding has been shown to facilitate

routing, and increase robustness to node and link failures [42], [43]. The error-correcting

capabilities of intra-session network coding have recently been used in conjunction with the
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Figure 2.3: Error correction with network coding.

TCP sliding window in [44]. To better explain the error correction capabilities of network

coding, let us consider the following illustrative example.

Example 3 The example shown in Fig. 2.2 illustrates error correction capability of network

coding. In this topology, source S transmits a flow to receiver R over the node B. We assume

that link capacities of A − B and B − C are one packets per time slot and loss probability

over each link is 1/3. In this setting, two packets a1 and a2 are transmitted with intra-

session network coding, i.e., three packets; a1 + a2, a1+2a2, and a1 +3a2 are generated and

transmitted by source S considering 1/3 loss probability over link A− B. At node B, only

a1 + a2 and a1 +3a2 are received. Node B creates one more parity packet 2a1 +4a2 from its

received packets and transmits three packets to the receiver. The receiver R receives packets

a1 + 3a2 and 2a1 + 4a2 and decodes a1 and a2. �

To summarize, network coding is promising in several aspects; it improves throughput, fa-

cilitates scheduling and routing, and increases robustness to node and link failures. In this

work, our objective is to optimize and design algorithms to exploit the advantages of net-

work coding for specific applications such as video streaming, improve the network coding

benefit by optimizing cross layer interaction of network coding and protocols, and exploit

the network coding benefit in lossy wireless networks.
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2.2 Video Streaming

Developments in video compression and streaming, wireless networking, and cross-layer de-

sign, are continuously advancing the state-of-the art in wireless video [24]. Yet, providing

high quality video over wireless networks is still a challenging problem due to limited band-

width and time-varying nature of wireless links.

Several network-adaptive techniques have been proposed to support streaming media over

unreliable and/or time-varying networks [45]. Supporting video over wireless is particularly

challenging due to the limited, time-varying resources of the wireless channel [24]. There is

a large body of work on cross-layer design for video over wireless, such as [46, 47, 48, 49],

exploiting the fact that packets in a video stream have different importance and therefore

should be treated differently by network mechanisms. Packet scheduling is an important

control at the medium access control layer. The problem of rate-distortion optimized packet

scheduling has been studied in the RaDiO family of techniques [50, 51, 52, 53, 54, 55]: in

every transmission opportunity, media units are selected for transmission so as to maximize

the expected quality of received video subject to a constraint in the transmission rate, and

taking into account transmission errors, delays and decoding dependencies.

Network coding is a promising solution for video streaming over wireless networks due to its

throughput improvement which is crucial in video streaming. Combining techniques from

network coding and media streaming can make the best of both worlds. Below are some

fundamental properties of multimedia traffic and their implications for network coding [56].

Unequal Packet Importance: The fact that different packets, within the same media stream,

have different contributions to distortion (due to video content, encoding, or playout dead-

lines) is well understood in the multimedia community. This fact lies at the heart of multime-

dia streaming: the unequal importance of packets is used to guide prioritized transmission

over a network. Depending on the transmission scenario, available differentiation mecha-
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nisms are used to ensure that the most important packets of a particular stream are given

priority, thus providing a graceful degradation in the presence of adverse network conditions.

One challenge that arises from this fundamental property of multimedia, with respect to net-

work coding, is that network coding, so far, has been agnostic to the content of the packets

that are coded together. In inter-session network coding, the goal is to mix together several

packets from different flows, thus increasing the information per packet and eventually the

throughput. However, for media streaming it is not only the quantity of delivered packets

that matters but also their quality.

Different Flow Characteristics and Requirements: Moving from the granularity of packets

to the granularity of flows, we observe that entire flows may also have different importance,

e.g., due to their traffic characteristics, sensitivity or pricing. When there are multiple media

and/or data flows in a system, the question is which flows should be coded together? The

rate and delay requirements of media streams should be taken into account when deciding

which of them to code together and/or with data flows.

Delay Requirements: Another inherent characteristic of media streaming and real-time com-

munications is that they have strict delay requirements, which poses both a challenge and

an opportunity when network coding is used. On one hand, network coding increases delay

due to additional encoding/decoding and possibly due to waiting at intermediate nodes for

enough packets to arrive and be coded together. On the other hand, the increase in through-

put can decrease the end-to-end delay. The design of scheduling and coding algorithms can

trade-off throughput for delay so as to meet media requirements.

There is also a growing body of work within the multimedia community that studies network

coding techniques for multimedia and delay-sensitive traffic. [57] looked a downlink scenario

and formulated the scheduling and coding problem within a Markov decision process frame-

work, which can also incorporate delay through its contribution to distortion. In the context

of generation-based network coding, the throughput vs. delay tradeoff can be explicitly con-
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trolled by tuning the generation size [27]. A detailed review on the interaction of network

coding and multimedia streaming can be found in [15]. In this work, we consider specific

media traffic characteristics and requirements (such as the difference importance of packets,

the strict delay requirements and the time-varying video rate) that introduce unique chal-

lenges and opportunities for network coding, and we advocate the need for cross-layer design

of video-aware network coding schemes that specifically take these features into account.

2.3 Network Utility Maximization

Resource allocation problems in network utility maximization framework (NUM), including

rate control, scheduling, and routing, have been extensively studied in communication net-

works, [58], [59], [60]. Resource allocation problems have also been studied specifically in the

context of wireless networks, which are more challenging due to their dynamic, time-varying

and multi-access nature; an excellent review can be found in [61]. In [62], joint routing, rate

control and scheduling in wireless networks has been studied and two approaches have been

proposed for the problem: a node-centric and a link-centric approach. Both can decom-

pose the problem but the scheduling part remains hard; to overcome this problem a greedy

approach has been proposed in [63] and implemented in [64].

Resource allocation problems when network coding is used are gaining interest, especially

for multicast flows. In [65], schemes were proposed for minimum cost multicast over network

coded wireline and wireless networks. This work was extended for rate control in [66] for

wireline networks. Another extension was [67], on rate control, routing and scheduling for

intra-session network coded wireless networks, using the generation-based network coding

proposed in [26]. The rate region when network coding is used was studied in [68, 69]. Op-

timal scheduling and optimal routing for COPE are considered in [37] and [39], respectively.

Network utility maximization is used in [34] for end-to-end pairwise inter-session network
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coding. Energy efficient opportunistic inter-session network coding over wireless are proposed

in [70], following a node-based NUM formulation and its solution based on back-pressure. A

linear optimization framework for packing butterflies is proposed in [71]. Forward error cor-

rection over wireless for pairwise network coding in network utility maximization framework

is proposed in [72].

In this work, we focus on the NUM problem for multiple unicast flows over wireless with a

given inter-session network coding scheme. We first discuss the necessity of network coding-

aware NUM formulation. We consider video specific rate requirements jointly with network

coding in NUM formulation. We focus on the congestion control problem for TCP over coded

wireless networks. To the best of our knowledge, our work is the first, to take the step from

theory (optimization) to practice (protocol design), specifically for the problem of congestion

control over inter-session network coding. We propose implementation changes, which have

a number of desired features: they are justified and motivated by analysis, they perform well

(double the throughput in simulations), and they are minimal (only queue management is

affected, while TCP and MAC remain intact). Finally, we jointly consider intra- and inter-

session network coding NUM framework to improve network coding performance over lossy

wireless networks.

2.4 Summary

Network coding is a promising technique to improve throughput, facilitate scheduling and

routing, and increase robustness to node and link failures. It has generated significant

amount of research activity and it is obvious that in its interaction with applications such as

video streaming or protocols such as transport protocol (TCP), scheduling, and routing, joint

optimization and cross layer design are required. Network utility maximization framework

facilitates the understanding of cross layer design.
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Chapter 3

Video-Aware Opportunistic Network

Coding

Providing high quality video over wireless networks is a challenging problem, due to both the

erratic and time-varying nature of a wireless channel and the stringent delivery requirements

of media traffic. In this chapter, we propose a novel technique for video streaming in a

wireless environment inspired by network coding paradigm [28, 26, 27].

Our work builds on [11, 10] that used network coding to improve throughput in a wireless

mesh network. In particular, [11, 10] proposed that wireless routers mix packets from dif-

ferent flows, so as to increase the information content of each -broadcast- transmission and

therefore the throughput for data applications. In this work, we build on this idea, and

propose a network coding and scheduling scheme for transmitting several video streams over

a wireless mesh network.

Our key insight is that the transmission of video streams over coded wireless networks should

be optimized not only for network throughput but also, and more importantly, for video

quality. The fact that video packets have unequal importance is well understood and exten-
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sively studied in the video streaming community, e.g., for rate-distortion optimized streaming

[50, 52, 51, 53]. The fact that mixing different information flows can increase throughput

in multicast networks is well understood in the network coding community [28, 1, 2]. Our

work bridges the gap between the two approaches, and proposes a new video-aware scheme

for network coding and packet scheduling that improves both aspects, namely video quality

and throughput.

In this work, we consider a wireless mesh network, in which routers can mix different incoming

flows/streams, using simple network coding operations (XOR). The resulting network code

is broadcast to the neighborhood of the router. Nodes in the same neighborhood listen

to each other′s transmission and store overheard packets; these are used later to decode

received coded packets and also to construct new coded packets. The core question in this

architecture is how to select the best -according to an appropriate metric- network code for

transmission among all possible codes. In [10, 11], a transmitting node chooses a network

code that can be decoded by several neighbors at the same time slot; this policy increases the

information per packet transmission thus the throughput. However, when the transmitted

flows are video streams, this is not necessarily the best choice. Video quality can be improved

by intelligently selecting network codes that combine those video packets that are decodable

by several neighbors but also contribute the most to video quality. In other words, when

video streams are transmitted, it is not only the quantity but also the quality/content of

information transferred that should be taken into account in the selection of network codes.

In this chapter, we develop schemes for network code selection and packet scheduling that

take into account both (i) the importance and deadlines of video packets and (ii) the network

state and the received/overheard packets in the neighborhood.

In the rest of this chapter, we first give an overview of the system model in Section 3.1.

Section 3.2 presents the algorithms for network coding. Section 3.3 presents simulation

results that demonstrate the benefits of the proposed algorithms over baseline schemes, in
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Figure 3.1: A wireless mesh network. I is an intermediate node, A,B,C are receiving (and/or
sending) nodes.

terms of video quality and application-level throughput. Section 3.4 concludes the chapter.

3.1 System Model

We consider video streaming over wireless mesh networks where intermediate nodes (wire-

less mesh routers) are able to forward packets to other intermediate nodes and/or clients,

as shown in Fig. 3.1. In this chapter, we propose algorithms that can be used at the in-

termediate node to maximize video quality and throughput. We assume that intermediate

nodes can perform simple network coding operations (bit-wise XOR) and combine packets

from several incoming streams into a single outgoing packet. This packet is broadcast to

the entire neighborhood, thus reaching several nodes at the same time. We assume that

nodes can overhear all transmissions in their neighborhood, whether they are intended for

them or not; they can decode a network-coded packet using overheard packets. The idea of

combining network coding with broadcast to increase the information content per transmis-

sion, is well understood in the network coding community. This idea has been applied in

802.11-based multi-hop wireless networks and throughput benefits have been demonstrated

for data applications [10].
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Our key observation is that, when the transmitted flows are video streams, this is not nec-

essarily the best choice and video quality must also be considered. The importance and

deadlines of video packets must be taken into account to select those codes that contribute

the most to the quality of video streams. In this chapter, we develop schemes for network

coding across different flows, and packet selection within each flow, to improve both video

quality and throughput.

3.1.1 Code Selection at an Intermediate Node:

Let us consider an intermediate node that receives N packets from different video streams

and forwards them to N nodes in its neighborhood. The intermediate node maintains a

transmission (Tx) queue with incoming video packets. At a given time slot a packet is

selected from the Tx queue for transmission. The selected packet is called the primary packet

and its destination node is called the target node. The primary packet can be thought as the

main packet we try to transmit during a time slot. Depending on the network coding scheme,

the primary packet may be the first packet from the head of the queue, or any packet in

Tx queue that is marked as active (i.e., not transmitted within the last round-trip time, as

discussed later). In addition to the primary packet, all packets in the queue are considered

as candidate side packets, i.e., candidates for a transmission in the same time slot together

with the primary packet; they are useful to nodes other than the target node. The primary

and the side packets are all XOR-ed together into a single packet, called the network code.

The core question then is: which network code (i.e., XOR of the primary and side packets)

to select and transmit so as to maximize the total video quality and throughput. The

algorithms addressing this question are the main part of this chapter, and will be discussed

separately in the next section (3.2). In the rest of this section, we describe the remaining

components and functions of the system. The terminology is summarized in Table 3.1.
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Table 3.1: Terminology

Term Definition
Primary Packet The packet selected from the Tx queue before network

coding. It must be included in all network codes. It can
be thought as the main packet we try to transmit in a
given time-slot.

Side Packet Packet in the Tx queue, other than the primary, in-
cluded in the network code.

Network Code One primary and all side packets XOR-ed together into
a single packet.

Active Packet Packet in the Tx queue that can be considered as pri-
mary. (Not transmitted within the last RTT.)

Inactive packet Packet in the Tx queue that cannot be considered as
primary. (It has already been transmitted within the
last RTT, and the acknowledgement is still pending.)

Target Node The intended recipient of the primary packet.
Tx Queue The output queue of the transmitting node.
Rx Buffer The receive queue of the receiving node. It stores re-

ceived packets, destined to this node.
Virtual Buffer Also maintained at a receiving node. It stores overheard

packets, destined to other nodes.

3.1.2 Receiving, Overhearing and ACKing a Packet (at Receiving

Nodes)

Once the network code is chosen, it is broadcast to all nodes in the neighborhood. Depending

on the channel conditions, some nodes successfully receive it. When the target node receives

it, it decodes it (which is guaranteed by the construction of the network code in the next

section), stores the primary packet in its receive (Rx) buffer, and sends an acknowledgement

(ACK) back to the intermediate node. Nodes, other than the target node, overhear the

transmitted packet and try to decode it; if they overhear a new packet destined to them,

they store it in their Rx buffer and send an ACK back to the intermediate node; if they

obtain a packet destined for another node, they store it in their virtual buffer. An overheard

packet stays in the virtual buffer until an ACK from the target is overheard or until its
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deadline expires. We also assume that the asynchronous ACK mechanism, proposed in [10],

is used to combat ACK implosion.

The intermediate node waits for a mean round-trip time (RTT) from the time it transmits

the network code until it receives an ACK. During that period, all packets that were part

of the code stay in the Tx queue but are marked as inactive. Inactive packets are not

considered for primary transmission (in order to avoid unnecessary duplicate transmissions)

but are still considered as candidates for side packets (to increase coding opportunities).

When the transmitter receives an ACK, it removes the corresponding packet from the Tx

queue. If an RTT expires without receiving an ACK, the packet is marked as active again

and the process is repeated. A packet stays in the Tx queue until either it is successfully

transmitted or its deadline expires; when either of these occur, the packet is removed from

the transmission buffer.1

3.1.3 Requirements

Our system relies on the following capabilities. First, broadcast is needed to harvest the

benefits of network coding. Although wireless is inherently a broadcast medium, this may

be hidden by some communication protocols. We make use of the broadcast capability,

implemented as pseudo-broadcast on top of 802.11 unicast in [10, 11]. Second, nodes need

to learn the contents of the virtual buffers of all their neighbors, in order to select a code

that is decodable in their neighborhood. This can be achieved by explicitly exchanging

and/or implicitly learning this information as in [10, 11]. Third, nodes must be capable

of coding/decoding in real time, which is a realistic assumption for simple (bit-wise XOR)

operations. Network coding is implemented as a thin layer between IP and MAC, exactly as

1 Note that although a transmitted packet remains inactive for an RTT, it does not block the head of the
queue: the next active packets in the queue are coded and transmitted during this period. Also note that,
although the Tx queue is basically a FIFO, considering any active packet as primary may lead to reordering
in packet delivery. Although this may be a concern for TCP, as it was the case in [10], it is clearly better
for video that requires timely delivery and can reorder packets at the playout buffer.
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in [10]. Nodes are considered fixed (not mobile) and routing is considered given, i.e., decided

by a routing module orthogonal to the network coding algorithms considered in this chapter.

3.1.4 Importance of Packets

Nodes make network coding decisions taking into account the importance of video packets.

The distortion value (∆) of every packet can be determined by the source and communicated

to the intermediate nodes in order to enable them to take decisions about transmission of

video units in a rate-distortion optimized manner [50]. This information can be marked on

a special field of the packet header. This field can be at the application level (e.g., RTP

extended headers) or part of the network coding header; alternatively, the typically unused

TOS/DiffServ byte in the IP header can be overridden. In addition to the individual impor-

tance of packets (∆) within a flow, our formulation also considers the importance of flows

(γ). In general, the overall importance of a packet can be a function of the flow priority and

the packet distortion value; in this chapter, we use a simple product γ ·∆.

The main focus of this chapter is on network coding for video, and most of the discussion is

presented in terms of queues that contain only video packets. This could be implemented in

practice on top of 802.11e, using the differentiation mechanisms to separate real-time traffic

(in our case video) from data traffic. Our network coding algorithms could then be applied

only on the video queue. Independently, our framework could also handle a mixture of video

and data packets in the same queue by assigning them different flow priorities.

3.2 Video-Aware Network Coding Algorithms

The main questions we consider in this chapter have to do with the construction and selection

of network codes. The code construction problem is concerned with finding candidate codes
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that guarantee decodability by the target node. The code selection problem is concerned

with selecting the best among the candidate codes so as to optimize video quality. The first

proposed algorithm, NCV, achieves the same throughput gains as in [10] but also intelligently

chooses the network codes that maximize video quality. The second algorithm, NCVD, uses

NCV as a building block but considers more coding options thus further improving video

quality and throughput. The third algorithm, NC-RaDiO, generalizes these ideas: it extends

the rate-distortion optimized (RaDiO) packet scheduling framework [50], so as to find the

optimal network coding and transmission policy at every transmission opportunity.

3.2.1 NCV Algorithm: Network Coding for Video

Assume that there are several video streams coming to an intermediate node. Depending on

the content of the virtual buffers at the clients, there may be several combinations of these

streams, i.e., several network coding opportunities. The main idea behind the Network

Coding for Video (NCV) algorithm is to select the best network code to improve video

quality. The following example demonstrates this idea.

Example 4 Consider the example shown in Fig. 3.1 and let us focus on a single-hop shown

in more detail in Fig. 3.2. Node I receives three independent video streams, e.g., from the

Internet through the gateway, destined to its neighbors A,B,C. I maintains a FIFO Tx

queue that stores packets {A1, A2, ...} destined to node A, {B1, B2, ...} destined to node B,

and {C1, C2, ...} destined to node C. Fig. 3.2 also shows the contents of the virtual buffers at

each client: node A has overheard packets {B1, C1} and nodes B and C have both overheard

packet A1, from previous transmissions. A1 is the first active packet from head of the queue

and is selected as the primary packet. Any packet (active or inactive) in the output queue,

other than A1, can be chosen as a side packet, on the condition that the constructed network

code should be decoded at node A, i.e., A1 can be retrieved. To satisfy this condition, side
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Figure 3.2: Example of Network Coding for Video (NCV), for a one-hop downlink scenario
with three different streams.

packets that will be used in the network code should already be available at node A; in

other words, the decodability of a network code depends on the overheard packets at node

A. Network codes c1 = A1, c2 = A1 ⊕ B1, c3 = A1 ⊕ C1, and c4 = A1 ⊕ B1 ⊕ C1 can all be

decoded by A and thus are eligible network codes. �

The Code Construction Problem

More generally, consider that there are N nodes N = {n1, n2, ..., nN} in the wireless net-

work. Consider an intermediate node n ∈ N, which transmits to its neighbor nodes. Let

φn be the number of packets in the Tx queue of node n, and the packets themselves be

Φn = {p1, p2, ..., pφn}. Choose the first active packet, pi, from the head of the Tx FIFO

queue as the primary packet; pi has a target node t(pi) ∈ N. Node n will construct and

broadcast a network code, which consists of the primary packet pi XOR-ed together with

some side packets, so that the target node t(pi) can decode and obtain pi. For this to

be guaranteed, all side packets must be among the packets that are already overheard at

the target t(pi). Assume that ψt(pi) packets are overheard at node t(pi) and denoted by
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Algorithm 1 The NCV Algorithm

1: Initialization: Iimax = 0, cimax = ∅
2: Choose the first head-of-queue active packet as primary pi.
3: Let t(pi) be the target node of packet pi. Let {ν1, ..., νΨt(pi)} be the overheard packets at t(pi).

4: for k = 1...2ψt(pi) do
5: cik = {pi}

⋃

S
t(pi)
k

6: Calculate Iik with Eq. (3.5)
7: if Iik > Iimax then
8: Iimax = Iik, c

i
max = cik

9: end if
10: end for

11: Choose cimax as the network code. XOR all packets and transmit

Ψt(pi) = {ν1, ν2, ..., νΨt(pi)}. Therefore, the candidate network codes at node n are:

cik = {pi}
⋃

S
t(pi)
k , k = 1, 2, ..., 2ψt(pi) (3.1)

where S
t(pi)
k is the kth subset of Ψt(pi). Note that, since linear operations are limited to

bit-wise XOR, a network code p1 ⊕ p2 ⊕ ...⊕ pk is completely specified by the set of packets

{p1, p2, ..., pk} that are XOR-ed together. The next step is to select the best among all

candidate codes.

Example 4 Continued Node A can get packet A1 from all four possible network codes.

Codes c2 and c3 improve the video quality at node sets {A,B} and {A,C}, respectively. It

is clear that c2 and c3 are better codes than c1 and c4 both for throughput (they are useful

to two instead of one node) and video quality. Comparing c2 to c3, we observe that they

are equivalent in terms of throughput but they may contribute differently to video quality

depending on the content of video packets A1, B1, C1. Deciding which candidate code to

select between c2 = A1⊕B1 and c3 = A1⊕C1 should depend on the importance and urgency

of the original video packets B1 and C1. NCV exploits this observation. �
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The Code Selection Problem

After constructing all candidate codes at a node n, we need to choose the best code according

to an appropriate metric, which we define here so as to capture the contribution of each

candidate code to the video quality improvement. Recall that pi is the primary packet

targeted to node t(pi), and {cik}
k=2

ψt(pi)

k=1 are all the candidate codes. Let I ik(nη) be the

improvement in video quality at node nη for η = 1, 2, ..., N , when cik is received and decoded:

I ik(nη) =

Lk
∑

l=1

(1− P (l))∆(l)γ(l)gkl (nη)d
k
l (nη) (3.2)

where each factor in this formula is defined as follows:

• Lk is the number of original packets included in network code cik. Notice that at most

one out of these Lk packets can be useful to a particular node nη, but different packets

are useful to different nodes.

• dkl (nη) and gkl (nη) are indicator functions that express whether code k is useful for

node nη. We define dkl (nη) = 1 if cik is decodable at node nη, or 0 otherwise. We define

gkl (nη) = 1 if packet l is targeted to node nη, or 0 otherwise.

• ∆(l) is the improvement in video quality (PSNR) if packet l is received correctly and

on time at client nη. To compute ∆(l), we decode the entire video sequence with

this packet missing and we compute the resulting distortion.2 We assume that this

computation is performed at the source offline and that the distortion value is marked

on each packet.3

2This is an approximation as the actual distortion that may also depend on the delivery status of prior
and subsequent NALs. The distortion model can be extended to capture these loss correlations [73, 74,
75]. Furthermore, we assume that distortions caused by loss of multiple packets are additive, which is
reasonable for sparse losses. These approximations reduce the computational complexity by separating the
total distortion function into a set of individual packet distortion functions and optimizing for each one of
them.

3For real-time traffic, one can still estimate the distortion by performing online analysis with a delay of a
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• γ(l) is the importance/priority of the flow that packet l belongs to. All packets in

the same flow have the same (flow) importance, but different flows may have different

importance. If some flows are more important, then higher importance should be

assigned to them; otherwise they should all be assigned γ = 1. If the average quality

differs among encoded video sequences and we still want to treat flows equally, the

flow importance can be a normalization factor (the inverse of the average PSNR per

sequence); this is what we do in the simulations.

• P (l) is the probability that packet l is lost due to either channel errors or late arrival

for playout:

P (l) = P{FTT ′ > td(l)− tc} (3.3)

where td(l) is the deadline of packet l, tc is the current time and τ = td(l) − tc is

the remaining time until the playout deadline; FTT ′ is the forward trip time in the

presence of delay and loss. The complementary cumulative distribution function of

FTT ′ can be calculated as follows:

P{FTT ′ > τ} = εF + (1− εF )

∫ ∞

τ

pF (t)dt (3.4)

The first part in Eq.(3.4) describes the probability that a packet is lost in the forward

channel, due to noise, fading, and interference in the wireless. The second part in

Eq.(3.4) describes the probability that a packet, which is not lost, arrives late, i.e., after

its playout deadline; pF (t) is the distribution of the forward-trip time.

few frames. Most distortion occurs in the first few frames after a loss and breaks after the next I frame; the
error depends on the video content of subsequent frames and on the coding decisions. Another approach is to
assign distortion values based solely on the GOP structure, ignoring the video content and coding decisions,
or to use a model for dependencies [75].
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After defining the contribution of code cik to the video quality at a single node nη, I
i
k(nη),

we define the total video quality improvement of code cik as the sum of the video quality

improvements at all clients η = 1, ...N , due to code cik:

I ik =
N
∑

η=1

I ik(nη) (3.5)

The NCV algorithm is summarized in Alg. (1). At each time slot, the NCV algorithm chooses

the primary packet pi and constructs all candidate network codes {cik}
k=2

ψt(pi)

k=1 . Among all

candidate network codes, NCV chooses the code that maximizes the total video quality

improvement:

max
k

I ik (3.6)

Depending on the contents of the virtual buffers, it is possible that no side packets can be

used together with a given primary packet pi. In that case, the network code is simply

{pi} ∪ ∅ = {pi}.

3.2.2 NCVD Algorithm: Looking Into The Queue in Depth

As described, NCV selects the primary packet from the head of the queue but ignoring

packets marked as inactive, and then optimally chooses the side packets. However, the

fact that NCV does not optimize the primary packet has two implications: (i) the primary

packet itself is important for video quality and (ii) the candidate side codes are limited to

those that are decodable for this single primary packet. The second algorithm improves over

NCV by also optimizing the selection of the primary packet. NVCD looks into the entire

Tx queue in depth and considers all, not just the head-of-line, packet as candidates for the

primary packet, thus increasing the options for candidate codes. A different set of candidate

29



Figure 3.3: Example of NCVD in the scenario of one-hop downlink transmission of three
different receivers.

codes can be constructed for each primary packet. We explain NCVD through the following

example.

Example 5 Let us look at Fig. 3.3. The topology is the same as in Fig. 3.2, but the contents

of the Tx queue and of the virtual buffers are different. Assume that all packets are active

packets, i.e., they can all be considered as primary. One option is to select the head-of-line

packet A1 as the primary packet. As discussed in Example 1, the best codes for this primary

packet are c3 = A1⊕C1 or c4 = A1⊕B1⊕C1. A different choice is to select B1 as the primary

packet, which leads to a different set of candidate network codes (listed on the Fig. 3.3).

Code c′4 = B1 ⊕ C1 ⊕ A2 achieves the maximum throughput improvement, and potentially

the maximum video quality, depending on the importance and urgency of all packets. This

example demonstrates that increasing our options of primary packet, increases the set of

candidate codes, and thus can improve both throughput and video quality. �

More generally, NCVD constructs candidate codes cik, k = 1, 2, ..., 2ψt(pi) for each candidate

primary packet pi in the Tx queue. Among all constructed codes, NCVD selects the code
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Algorithm 2 The NCVD Algorithm
1: Initialization: cmax = ∅, Imax = 0
2: for every packet i = 1, ..., , φn from the head of Tx queue do
3: Consider this packet, pi, as candidate for primary
4: Construct all possible codes cik for pi
5: Determine the max improvement Iimax = maxk I

i
k

6: and the corresponding code cik: k = argmaxIik as in NCV
7: if Iimax > Imax then
8: Imax = Iimax, cmax = cik
9: end if
10: end for

11: Choose cmax as the network code. XOR all packets and transmit.

that maximizes the total improvement in video quality for all clients:

max
pi

max
k

(I ik) (3.7)

Algorithm 2 summarizes NCVD.

NCVD can be parameterized by the depth d of the Tx queue considered in the selection

of the primary packet. NCVD(d = 1) is simply NCV, while NCVD(d = ∞) considers all

packets in the Tx queue. The larger the value of d, the more coding options, the better the

performance of NCVD. Because queue sizes are small for real time applications, we can focus

on NCVD(d =∞), simply referred to as NCVD.

3.2.3 NC-RaDiO: Rate-Distortion Optimized Network Coding

The NCV and NCVD algorithms choose the network code for the next transmission oppor-

tunity, so as to maximize the video quality. Now, we formulate this problem within the rate-

distortion optimized (RaDiO) packet scheduling framework [50]. Starting from the RaDiO

formulation [50], especially for multiple streams sharing the same medium [51], we modify

and extend it to account for network coding, instead of just packet, transmission policies

(NC-RaDiO). We show how to find the optimal solution and that our previous algorithms
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(especially NCVD) are efficient heuristic solutions to the general NC-RaDiO optimization

problem under some mild assumptions.4

Formulation

Let us consider a single node n ∈ N in the wireless mesh network, with packets Φn =

{p1, p2, ..., pφn} in its queue, and let us focus on a single transmission opportunity. Without

network coding, in order to do classic RaDiO packet scheduling, the node would choose a

policy π for the next transmission opportunity. The policy would indicate for every packet

in the queue, pj ∈ Φn, whether this packet is transmitted π(j) = 1 or not π(j) = 0, so as to

minimize a weighted function of distortion and rate J(π) = D(π) + λR(π).

With network coding, the node n ∈ N chooses some network codes, consisting of packets

in the queue XOR-ed together, to transmit. All possible network codes at node n are

Cn = {cik}
i=1,...φn

k=1...2
ψt(pi)

. The code transmission policy at node n consists of a vector Πn that

indicates for every possible code cu ∈ Cn, u = 1, ..|Cn|, whether it is transmitted Πn(cu) = 1

or not Πn(cu) = 0, in the next transmission opportunity. To avoid transmitting two network

codes cu, cv ∈ Cn that have common packets from the set Φn, we restrict our attention to

valid network code policies Πvalid
n that do not allow that to happen; i.e., Πvalid

n ⊂ Πn s.t.

Πvalid
n (cu) = 1

∧

Πvalid
n (cv) = 1 if and only if cu

⋂

cv = ∅. Our goal is to find the optimal code

transmission policy on all nodes Πvalid = {Πvalid
n }∀n∈N, so as to minimize the total distortion

D(Πvalid), subject to the rate constraint R(Πvalid) ≤ Rav where Rav is the available bit rate.

With Lagrangian relaxation, our problem turns to finding the code transmission policy Πvalid

so as to minimize J(Πvalid) = D(Πvalid) + λR(Πvalid).

Instead of finding the optimal code transmission policy, we can map each code to the packets

4We note that our NC-RaDiO formulation assumes that the distortion of a flow is approximated by the
sum of the distortion incurred at each hop along its path. This allows for the centralized RaDiO framework
to be solved in a distributed way, i.e., to make decision at each node as examined in [76].
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it contains (i.e., XOR-ed together), and find the optimal packet transmission policy. The

reason for converting the problem from a code to a packet transmission policy selection is that

it is more natural to express distortion values per packet. Let π be the packet transmission

policy on all nodes, π = {πn(j)}∀n∈N,∀pj∈Φn. π depends on the code transmission policy

Πvalid as follows:

πn(j) =















1 if ∃ cu ∈ Cn s.t. pj ∈ cu and Πvalid
n (cu) = 1

0 otherwise

(3.8)

An equivalent problem is to choose a packet policy π, s.t.:

min
π,λ

J(π) = min
π,λ
{D(π) + λR(π)} (3.9)

In Eq.(3.9), D(π) is the total distortion over all nodes under policy π: D(π) =
∑N

n=1D(πn).

D(πn) is the approximate distortion of the flows transmitted from node n under the policy

πn. Following a similar definition as in [51], D(πn) =
∑

pj∈Φn
γ(j)∆(j)P (πn(j)), where:

γ(j) is the priority/importance of the flow to which packet pj belongs; ∆(j) is video quality

distortion when packet pj is lost as defined in section 3.2.1; and P (πn(j)) is the probability

that packet pj is lost under policy πn(j). In particular, P (πn(j)) = Pp(j)Pc(πn(j)) consists

of two parts: the probability Pp(j) that the packet is lost in previous transmissions; and the

probability Pc(πn(j)) that the packet is lost in its current transmission under policy πn(j).

Let also td(j) be the deadline of packet pj , tc the current time, and tm the time of mth

transmission assuming M transmissions so far. FTT ′ and RTT ′ are the random variables

corresponding to the forward and round trip times, respectively5. Then the loss probability

5FTT ′ is distributed as in Eq. (3.4) and RTT ′ has CCDF P{RTT ′ > τ} = εR + (1 − εR)
∫∞

τ
pR(t)dt,

where pR(t) is the distribution of round trip time, and εR is the loss probability, considering the forward
and backward channels together.
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can be further expressed as follows:

Pp(j) =
M
∏

m=1

P{FTT ′ > td(j)− tm|RTT
′ > tc − tm} (3.10)

Pc(πn(j)) =















P{FTT ′ > td(j)− tc} if πn(j) = 1,

1 if πn(j) = 0

(3.11)

In Eq. (3.9), R(π) is the total rate function over all node rates under policy π: R(π) =
∑N

n=1R(πn). R(πn) is the rate of the flows transmitted from node n under policy πn:

R(πn) =
∑

∀cu∈Cn
maxpj∈cu{B(j)ρ(πn(j))}, where B(j) is the size of packet pj in bytes,

and ρ(πn(j)) is the average cost of transmitting packet pj . Note that the maximization

maxpj∈cu{B(j)ρ(πn(j))} term comes from network coding: before getting XOR-ed together,

packets may need to be padded up to the length of the longest packet.

Note that
∑

∀cu∈Cn

∑

pj∈cu
and

∑

pj∈Φn
are equivalent. Also ρ(πn(j)) = Πvalid

n (cu) = 0 or 1

(s.t. pj ∈ cu) depending on whether code cu is transmitted or not. With these observations

and by replacing the distortion D(π) and rate R(π) terms with their detailed expressions

discussed above, the NC-RaDiO problem of Eq.(3.9) can be re-written as follows:

min
π,λ

N
∑

n=1

∑

∀cu∈Cn

(
∑

pj∈cu

γ(j)∆(j)P (πn(j)) + λΠvalid
n (cu) max

pj∈cu
{B(j)}) (3.12)

Optimal Solution

Since current systems typically transmit one packet (network code in our case) at each

transmission opportunity, we will focus on this case from now on; i.e., we will find the

optimal network code (instead of finding several network codes) so as to minimize the above

rate-distortion function. This was also the case in [10, 11] as well as in our NCV and NCVD
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algorithms. An approach, introduced in [50], was to increase the Lagrange multiplier λ so

that exactly one network code is selected as the optimal code for the total rate-distortion

function. However, this approach requires centralized knowledge.

A distributed approach is to solve the problem in Eq. (3.12) for every network code cu ∈

Cn, n = 1, ..., N , find a threshold value, λn(cu), used to make the decision whether to transmit

cu ∈ Cn and select the network code that maximizes that threshold maxn,cu{λn(cu)}. In

particular, let us define the per network code cost function as:

Jn(cu) =
∑

pj∈cu

γ(j)∆(j)Pp(j)Pc(πn(j)) + λΠvalid
n (cu) max

pj∈cu
{B(j)} (3.13)

for every code cu ∈ Cn and node n = 1, ..., N . When we decide to not transmit this network

code, i.e., Πvalid
n (cu) = 0, the cost becomes J0

n(cu) =
∑

pj∈cu
γ(j)∆(j)Pp(j). When we decide

to transmit the network code, i.e., Πvalid
n (cu) = 1, the cost is J1

n(cu) =
∑

pj∈cu
γ(j)∆(j)Pp(j)Pc(πn(j))+

λmaxpj∈cu{B(j)}. Depending on which of the two costs is smaller, we decide whether to

transmit cu or not. The maximum λ that satisfies the inequality J1
n(cu) ≤ J0

n(cu) is

λn(cu) =

∑

pj∈cu
γ(j)∆(j)Pp(j)(1− Pc(πn(j))

maxpj∈cu{B(j)}
(3.14)

The optimal policy decides, in a rate-distortion optimized manner, which node n should

transmit and what code cu should be transmitted, by choosing the maximum Lagrange

multiplier: max{n,cu}{λn(cu)}. This can be achieved in practice in two rounds: first, we

compare λn(cu) in the same node n and we can find λn = max{cu}{λn(cu)} for this node;

then all nodes n ∈ N need to exchange their λn values with all the neighbors; finally, the

node with λ = max{n}{λn} is the one transmitting. This is repeated at each transmission

opportunity.
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Relation to NCV and NCVD

The NC-RaDiO framework includes NCV and NCVD as special cases for a system that

makes the following implementation choices (consistently with COPE [10, 11] and the system

discussed here):

• All packets have the same size (possibly using padding): B(j) = B, ∀pj ∈ Φn, n =

1, ..., N .

• A deterministic rule is used to decide whether a previously transmitted packet is lost or

not: if average RTT time (RTTavg) has passed since its last transmission and no ACK

has been received, the packet is considered lost; otherwise, it is considered successfully

received. Let τ(j) be the time duration since the most recent transmission of packet pj ,

if pj has been transmitted before; or τ(j) = ∞ if pj has not been transmitted before.

Then, we can re-write the probability of loss in previous transmissions Pp(j), in the

NC-RaDiO formulation, as follows:

Pp(j) =















1 if τ(j) ≥ RTTavg

0 otherwise

Furthermore, we note the correspondence between the NCV/NCVD algorithms and the NC-

RaDiO formulations.

• Let d(πn(j)) be the indicator function, which equals 1 if packet pj is decodable at its

next hop node when transmitted with network code cu ∈ Cn; or 0 otherwise. This

corresponds to the decodability indicator function dkl (nη) in NCV/NCVD.

• The probability of loss in the current transmission, Pc(πn(j)), in the NC-RaDiO for-
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(a) One-hop Downlink Topology (b) Two-hop Cross Topology

(c) Multi-hop Grid Topology

Figure 3.4: Topologies and traffic scenarios used in simulations. (We also vary the number
of nodes in each topology.)

mulation, can be re-written as follows:

Pc(πn(j)) =















P{FTT ′ > td(j)− tc} if d(πn(j)) = 1

1 if d(πn(j)) = 0

Then 1−Pc(πn(j)) = (1−P{FTT ′ > td(j)−tc})d(πn(j)). Further considering Eq. (3.3),

it turns out that 1− Pc(πn(j)) = (1− P (j))d(πn(j)).
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Under the above assumptions and notations, the Lagrange multipliers in the NC-RaDiO

formulation can be re-written:

λ′n(cu) =
∑

pj∈cus.t.τ(j)≥RTTavg

γ(j)∆(j)(1− P (j))d(πn(j)) (3.15)

Note that the Lagrange multiplier λ′n(cu) in Eq. (3.15) is equivalent to the improvement

value I ik in Eq. (3.5).6 NCV and NCVD are suboptimal solutions to the NC-RaDiO opti-

mization problem due to: (i) the aforementioned assumptions, i.e. not taking into account

the exact packet size or the effect of previous transmissions and (ii) the fact that nodes in

a practical low-complexity system (such as COPE or NCV/NCVD) take local decisions and

do not exchange the improvement values (Lagrange multipliers) to decide which node should

transmit. However, the equivalence of Eq. (3.15) and Eq. (3.5) is the intuition why NCV

and especially NCVD are efficient heuristics to the NC-RaDiO problem. Next, we confirm

via simulation that the performance of our algorithms is near the optimal NC-RaDiO in a

wide range of scenarios.

3.3 Performance Evaluation

In this section, we evaluate the performance of the proposed schemes; NCV, NCVD, and NC-

RaDiO in terms of video quality and network throughput in a wide range of scenarios. We

compare them to four baseline schemes: no network coding; noNC, multimedia streaming;

MM, network coding optimized for throughput; NCT as in [10], and an improved version of

it; NCTD. Simulation results show that (i) NCV, NCVD, and NC-RaDiO can significantly

improve video quality and application-level throughput, without compromising MAC-level

6In Eq. (3.15), the gkl (nη) term does not exist, because its value is naturally 1 since we only consider
the improvements of packets at their next hop nodes, instead of considering the possible improvement at all
nodes in the neighborhood as in Eq. (3.5). However, this difference is only a matter of notation and it clear
that Eq. (3.15) and Eq. (3.5) are equivalent.
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throughput and (ii) NCVD is an efficient heuristic solution to NC-RaDiO. In 3.3.1 we describe

the simulation setup, in 3.3.2 we present the simulation results, and in 3.3.3 we discuss

complexity issues.

3.3.1 Simulation Setup

We used the GloMoSim simulation environment [77] to implement the proposed algorithms

and the baseline schemes. Below, we describe the simulation setup, which includes: the

topologies and traffic scenarios considered, the MAC model, the wireless channel model, the

video sequences, and the baseline algorithms used for comparison.

Simulation Topologies

The topology and traffic scenario can strongly affect the gain from using network coding.

We considered three practical scenarios shown in Fig. 3.4.

Single-Hop Downlink Topology: In this topology, we consider the single-hop downlink

scenario shown in Fig. 3.4(a). The intermediate node I receives different video streams,

which it forwards downstream towards their destinations. I can apply different schemes for

network coding and packet scheduling. We assume that receivers are placed on a circle with

radius 90m and the intermediate node I which is placed in the center of the circle. Receivers

are the only ones using the downlink, hence there is no congestion. However, packets may

still be lost due to errors on the wireless channel, and can also experience a random MAC

propagation delay, 2ms on average. The one-way delay budget for this single-hop is set to

100ms. We also performed simulations for different delay budgets (50−200ms), for different

number of nodes (N : 3 − 11) including the intermediate node and the receivers, and for

different channel conditions.
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Cross Topology: In this topology, we consider multiple crossing flows at an intermediate

node as shown in Fig. 3.4(b): pairs of nodes A,C and B,D communicate over an intermediate

node I, e.g., A transmits to C and C transmits to A via I. A single channel is used for

both uplink and downlink transmissions. MAC scheme will be explained later in the section.

In this scenario, each node buffers a packet it has just transmitted as well as all overheard

packets; an illustrative example is shown in Fig. 3.4(b). The intermediate node I makes

decisions on network coding and scheduling. We assume again that nodes are placed on a

circle with center I and radius 90m. The remaining settings are similar to the single-hop

downlink.

Grid Topology: In this topology, we consider the wireless mesh network (WMN) shown in

Fig. 3.4(c). Nodes are distributed over a 300m× 300m terrain according to a grid topology:

the area is divided into 9 cells of equal size, 20 nodes are divided into 2 or 3 node sets

randomly, and each set is assigned to a different cell. Nodes in a set are randomly placed

within their assigned grid. The WMN is connected to the Internet via a high speed lossless

link through a gateway I, placed in the upper leftmost grid shown in Fig. 3.4(c). Each

node receives a video stream from the Internet going through the gateway. Depending on

the location of the receiving node R, the stream is either transmitted directly (one-hop) or

routed (two hops). If both I and R are either in the same cell or in neighboring cells, there

will be a one-hop transmission; otherwise a node in the cell between I and R is selected as an

intermediate hop, indicated by ⊗ on Fig. 3.4(c); if there are more than one neighboring cells,

one is selected randomly. The remaining settings are similar to the single-hop downlink.

MAC Model

IEEE 802.11 is used in the MAC layer, with the following modifications needed for network

coding. First, to obtain the network coding benefit we need a broadcast medium, which is

hidden by the 802.11 protocol. Similarly to [10] we used the pseudo-broadcasting mechanism:
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packets are XORed in a single unicast packet, an XOR header is added for all nodes that

should receive that packet, and the MAC address is set to the address of one of the receivers.

A receiver knows whether a packet is destined to it from the MAC address or the XOR

header. Second, 802.11 waits for an ACK after a packet is transmitted, which reduces

the network coding opportunities and increases the overhead. Instead, we consider that

packets are transmitted one after the other without waiting for an ACK and the active-

inactive mechanism is used to reduce unnecessary re-transmissions. For the NC-RaDiO

scheme in particular, we assume that the Lagrange multipliers are exchanged through a

separate channel.

Wireless Channel Model

We consider the two-ray path loss model and Rayleigh fading channel model implemented in

GloMoSim. The two-ray path loss model is a propagation path loss model using free space

path loss for near sight and plane earth path loss for far sight. For the Rayleigh fading

model, we consider average channel SNR {3, 5, 7, 9} dB.

Video Sequences

As our test sequences, we used standard sequences: Carphone, Foreman,Mother & Daughter,

Claire, Coastguard, News, Grandma, and Salesman. These were QCIF sequences encoded

using the JM 8.6 version of the H.264/AVC codec [78], [79]. The group of pictures consisted of

one I and nine P frames. All encoded sequences had data rate 70kbps and frame rate 30fps.

Each frame consists of at least one slice. Each slice was packetized into an independent

NAL (network abstraction layer) unit of size 250B. NAL units are encapsulated using the

Real-time Transport Protocol (RTP) and User Datagram Protocol (UDP).

As metric for the video quality of an encoded sequence, we use the average PSNR, i.e., the
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peak-signal-to-noise ratio based on the luminance (Y) component of video sequences, mea-

sured in dB, and averaged over the entire duration of the video sequence. The PSNR of the

encoded sequences Carphone, Foreman and Mother & Daughter, before any transmission,

was 29.95dB, 28.70dB and 40.74dB respectively; these PSNR values are denoted as No Error

in Table 3.2. We repeated and concatenated the standard sequences to create longer test

sequences of duration 30sec each. At the receiver side, basic copy-concealment scheme is

used when an entire frame is lost.

Baseline Algorithms for Comparison

We compare our algorithms, NCV, NCVD, and NC-RaDiO, against four baselines for packet

scheduling: no Network Coding (noNC), Multimedia Streaming Algorithm (MM), Network

Coding for Throughput (NCT), and its improved version (NCTD).

Fig. 3.5 summarizes all algorithms and classifies them, in increased sophistication, across two

dimensions: packet scheduling and network coding. noNC takes no action in either dimension

- it is a simple FIFO. NCT and NCTD do network coding and combine several packets in one

transmission so as to maximize throughput; NCT optimizes only the side packet selection

while NCTD optimizes both primary and side packet selection. Both NCT and NCTD are

agnostic to the content of the packets. In contrast, MM does not use any network coding but

prioritizes packet transmission, considering packet distortion and deadlines. The proposed

algorithms, NCV and NCVD, combine both ideas and NC-RaDiO further extends these ideas

by prioritizing nodes. NCVD can be thought as a combination of network coding (NCTD)

and content awareness (MM). NCV can be thought as a combination of NCT and MM,

but unlike MM, it is restricted in its choice of primary packet. For a fair comparison, the

active-inactive mechanism described in section 3.1, is employed in all algorithms except for

NC-RaDiO (which relies on the success probabilities of previous transmissions).
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Figure 3.5: Summary of Algorithms under Comparison. NCV, NCVD, and NC-RaDiO are
the proposed algorithms that combine packet scheduling and network coding. The rest are
baselines that use at most one of the mechanisms: NoNC is simply FIFO, MM uses optimal
packet selection to minimize distortion, NCT and NCTD use network coding to maximize
throughput.

No Network Coding (noNC): This is a FIFO Tx queue without network coding. Consider

again Example 4 and Fig. 3.2: node I stores packets for all three streams destined to nodes

A,B,C. In every time slot, I transmits the first packet from the head of the queue.

Multimedia Streaming Algorithm (MM): This is a scheduling scheme that optimally

chooses the packet to be transmitted without network coding. We consider it in order to

see how much benefit comes from prioritized packet transmission alone, apart from network

coding. MM is essentially a reduced version of NCVD with network codes having one packet

at most (no network coding), i.e., for primary packet pi, and the only eligible network code

being ci0 = pi. The improvement at node nη is I i0(nη) = (1− P (i))∆(i)g0i (nη), where P (i) is

the loss probability of packet pi given in Eq. (3.3), ∆(i) is the improvement of video quality

if packet pi is received correctly and on time at client nη, and g
0
i (nη) is the indicator function

that shows whether packet pi is destined to node nη. Among all packets in the Tx queue,

MM selects the pi that maximizes the total video quality, considering the improvement to
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all nodes in its neighborhood:

pi = argmax
N
∑

η=1

I i0(nη) (3.16)

In other words, MM transmits the most important packet in the Tx queue, considering per

packet distortion and loss probability across all streams.

Network Coding for Throughput (NCT): This is an improved version of the algorithm

proposed in [10]. The packet transmission mechanism is the same as in the noNC scheme,

but network coding is used to maximize throughput, as follows. The first active packet in

the Tx queue is selected as primary; side packets are chosen to be XOR-ed together with

the primary packet so as to construct a network code that is decodable by the maximum

number of receivers possible.

There are two improvements in NCT compared to the coding algorithm in [10] that allow

NCT to achieve even higher throughput than [10]. First, NCT follows the same ACK and

retransmission mechanism described in section 3.1: packets with pending acknowledgments

are marked as inactive for one RTT, while the channel is used to transmit other packets as

primary. In [10] and in general MAC retransmissions, a packet stays at the head of the queue

blocking other packets, until it goes through successfully or it exceeds the maximum number

of retransmissions. Another difference is that NCT uses an improved version of the coding

procedure in [10]: NCT considers all possible subsets of the candidate side packets thus

maximizing the number of receivers that can decode; while [10] considers only the earliest

packet from each stream as candidate side packets, thus sacrificing some throughput for

reduced complexity and for maintaining the packet ordering. Therefore, we use NCT as our

baseline for the maximum achievable throughput per transmission using network coding.

NCT & looking into the queue in Depth (NCTD): NCT selects as primary packet

the first active packet in the Tx queue. Similarly to NCV, this limits the candidate codes to
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those that are decodable only for this single primary packet. Similarly to NCVD, we extend

NCT to NCTD, which looks into the entire Tx queue and considers all packets as candidate

for the primary packet. Thus, NCTD optimizes throughput by primary packet selection and

network code construction.

3.3.2 Simulation Results

In this section, we present simulation results that compare the proposed to baseline algo-

rithms and demonstrate that the former can improve video quality and application-level

throughput, without compromising MAC-level throughput.

Summary of Results

Some general observations across all simulation scenarios are summarized below:

The best and worst algorithms: The optimal solution to NC-RaDiO is clearly the best in

terms of PSNR and close to the best in terms of throughput. NCVD closely approximates

the optimal solution of NC-RaDiO in terms of both PSNR and throughput. As expected,

noNC is consistently the worst algorithm in all aspects.

Media awareness added on network coding: The proposed media-aware network coding al-

gorithms, NC-RaDiO, NCVD, and NCV consistently outperform the corresponding network

coding-only algorithms, NCTD and NCT, in terms of PSNR, while achieving similar through-

put.

Media awareness vs. network coding: The MM algorithm achieves higher PSNR than the

weaker (i.e. other than NCVD) network coding algorithms (NCT, NCTD, NCV) in harsh

channel conditions while the network coding algorithms (NCT, NCTD, NCV) perform better
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in mild channel conditions. In other words, in the former case the quality/importance of the

transmitted packets matters, while in the latter case the quantity has a greater effect. Note

that NC-RaDiO and NCVD achieves the highest PSNR in all conditions.

Throughput: In addition to achieving the highest PSNR, NCV, NCVD, and NC-RaDiO

achieve higher application throughput, since they consider playout deadlines. Furthermore,

all network coding schemes (NCT/NCTD, NCV/NCVD/NC-RaDiO) achieve similar MAC

throughput, much higher than the non-network coding schemes (noNC, MM).

Node selection: NC-RaDiO performs slightly better than NCVD, in terms of PSNR, thanks

to (i) explicit consideration of previous transmission probabilities and packet sizes and (ii)

exchanging Lagrange multipliers among nodes to select a node to transmit. However, the

performance improvement of NC-RaDiO over NCVD is negligible in a wide range of scenarios,

indicating that NCVD is an efficient heuristic for the NC-RaDiO optimization problem.

Primary packet selection: NC-RaDiO and NCVD achieve higher PSNR that NCV, thanks to

their node selection (NC-RaDiO) and primary packet optimization (NC-RaDiO and NCVD).

MM outperforms NCV (but never NC-RaDiO and NCVD) in some scenarios, for the same

reason, i.e., because NCV can only choose the side but not the primary packet. The op-

timization of primary packet selection is more important for the media-aware than for the

network coding schemes: the similar performance of NCT and NCTD indicates that the pri-

mary packet optimization does not significantly increase the number of packets in a network

code and thus the throughput.

Comparison of topologies: The one-hop downlink is a building block for other topologies

and can be used as a baseline for comparison; it does not incur any delay in accessing the

channel and all flows are network-coded. Furthermore, this is the only topology in which

there is no need to exchange Lagrange multipliers among nodes. In the cross topology, there

is more delay due to the two-hop transmission and in accessing the uplink channel; therefore
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Figure 3.6: PSNR per frame for part of the Carphone sequence and for an example channel
realization. One-hop downlink scenario with N = 4 (I and three receivers A,B,C), channel
SNR = 5dB, delay budget 100ms, and data rate 500kbps. Seven schemes (noError, noNC,
MM, NCT, NCTD, NCV, NVCD, NC-RaDiO) are compared. (The average PSNR values
over the entire sequence are summarized in Table 3.2.)

there are less network coding opportunities and the network coding schemes perform worse.

Similar arguments apply to the grid topology. We now discuss each simulation scenario in

detail.

Single-Hop Downlink Topology

We consider the single-hop downlink topology of Fig. 3.4(a), when node I streams sequences

Foreman, Mother & Daughter, and Carphone to clients A,B,C, respectively. When the

number of nodes (N) is greater than four the video sequences Coastguard, Salesman, News,

Grandma, and Claire are used sequentially. First we focus on the scenario with three receivers

in the system and evaluate the performance of the algorithms for different delay budgets and

channel SNR levels.

Video Quality Improvements: Fig. 3.6 shows the video quality experienced by one client

(PSNR over frame number for parts of the Carphone sequence) for the seven algorithms

under comparison, namely noNC, MM, NCT, NCTD, NCV, NCVD, and NC-RaDiO as well
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Table 3.2: Average PSNR for the scenario of Fig.3.6 (video: at 70kbps and 100ms playout
deadline; channel with SNR = 5dB and 500kbps data rate)

avg PSNR (dB) Carphone Foreman Mother&Daughter
No Error 29.95 28.70 40.74
NC-RaDiO 28.46 27.51 35.08
NCVD 27.98 26.87 35.36
NCV 25.40 25.14 28.66
NCTD 24.91 24.60 28.61
NCT 23.95 24.38 27.19
MM 25.17 24.61 32.12
noNC 22.32 22.64 23.84

as for the encoded sequences before transmission (noError). The simulation is performed for

channel SNR 5dB with 100ms delay budget and 500kbps channel data rate; for comparison,

the same wireless channel trace is used as input to all six algorithms. As expected, there

are time periods, during which the channel is bad, the quality degrades for all algorithms.

However, the degradation for NC-RaDiO, NCVD, and NCV is much less than for NCTD,

NCT, and noNC, because NC-RaDiO, NCVD, and NCV select network codes to protect and

deliver the most important packets on time, thus improving the video quality; in contrast,

NCTD, NCT, and noNC treat all packets similarly. The degradation of MM is less than

NCT, NCTD, and noNC for most of the region even when the channel goes bad, because it

transmits more important packets and is comparable to or worse than NCV, and worse than

NCVD and NC-RaDiO, because NCV and NCVD transmit more packets using network

coding as well as considering the importance of some (NCV) or all (NCVD, NC-RaDiO)

packets.

The average PSNR for each sequence and algorithm is summarized in Table 3.2. We see that,

as expected, the noNC scheme performs poorly. NCT improves over noNC because it delivers

more packets per time slot. NCV improves over NCT because it chooses important video

packets as side packets, NCTD improves over NCT, because it also optimizes the primary

packet selection. MM outperforms noNC, NCT, and NCTD. This result is quite interesting,
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because NCT and NCTD transmit more information than MM; however, not only the amount

but also the content of information transmitted is important. MM exhibits similar or better

performance than NCV. This is intuitive, because NCV optimizes side packets for video

quality improvement but not primary packets; since primary packets are the main packets

that are transmitted to all receivers, optimized packet scheduling is performed only in a

few of the transmitted packets. NCVD achieves higher video quality compared to NCV,

NCTD, NCT, MM, and noNC, since both primary and side packet selection is optimized.

NC-RaDiO is slightly better than NCVD thanks to considering different packet sizes and to

the exact calculation of previous packet transmission probability. However, since packet sizes

are almost the same in different packets, and the deterministic decision is a good estimator

of probabilistic decision, the improvement of NC-RaDiO over NCVD is very small. Actually,

both NC-RaDiO and NCVD achieve a PSNR close to that of the original encoded sequence

(noError), even for harsh channel conditions (e.g., 5dB channel SNR).

The same scenario as in Fig. 3.6 is considered, but with channel SNR varying in a range

from 3dB to 11dB. Fig. 3.7(a) shows the average PSNR achieved by each algorithm. Clearly,

NC-RaDiO, NCVD and NCV outperform NCT (by 1−4dB) and noNC (by 3−5 dB) for all

channel SNRs. NCT and NCTD exhibit similar performances. NC-RaDiO and NCVD always

outperforms to MM (by 3dB). MM outperforms NCT, NCV and NCTD for low channel SNR

levels, but does not for higher channel SNR levels. When the channel is good (11dB channel

SNR), all algorithms transmits almost all of their packets. For a worse channel (SNR 9dB),

the network coding algorithms NC-RaDiO, NCVD, NCV, NCTD, NCT are better than the

no network coding schemes (noNC and MM), because they transmit more packets. When the

channel is really bad (5dB channel) NC-RaDiO, NCVD and MM outperform NCTD, NCT,

NCV because some packets have to be dropped under these harsh conditions, even if network

coding is used, and the quality of selected packets has a dominant effect. Actually, as we will

show later, MM transmits less packet than NCTD, NCT and NCV but since it optimizes

packet scheduling, the video quality remains high even for bad channels. NC-RaDiO and
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(b) Application-level throughput
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(c) MAC-level throughput

Figure 3.7: One-hop downlink topology with three receivers (and one intermediate node I,
i.e. N = 4). Performance for different channel SNR levels in terms of: (a) PSNR (averaged
across each sequence and across all three sequences) (b) total application-level throughput
(added over all three streams) (c) total MAC-level throughput. (The delay budget is 100ms
and the data rate is 500kbps.)

NCVD outperforms MM for all channel SNR levels, because they have the advantages of

both network coding and multimedia streaming: they transmit more packets using network

coding and do packet scheduling considering packet importance and deadlines. NC-RaDiO

improves slightly over NCVD, especially for harsh channel conditions.

In the scenarios discussed so far, we have considered a delay budget of 100ms. In Fig. 3.8,

we show the average PSNR for a delay constraint ranging from 50 to 200ms. NC-RaDiO,

NCVD, and NCV improve video quality for the entire range of delay values as compared to
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Figure 3.8: PSNR values (averaged over each sequence and across sequences) for different
delay budgets in downlink topology, N = 4. Channel SNR is 5dB and data rate is 500kbps.

NCTD, NCT and noNC. MM is better than NCV since NCV lacks primary packet scheduling.

The network coding algorithms bring less improvement for a tight delay budget, which limits

the number of retransmissions and the lifetime of packets both at the Tx queue and in the

virtual buffers, thus decreasing network coding and selection opportunities. However, even

with tight delay constraints, there is significant video quality improvement from NC-RaDiO

and NCVD compared to all other algorithms.

Throughput Improvements: The video-aware schemes improve video quality because

they explicitly take it into account in the code selection. In this section, we show that,

our schemes also significantly improve application-level throughput while maintain the same

levels of MAC-level throughput. In other words, our algorithms deliver the same amount of

packets but choose to deliver more useful video packets.

Application Throughput. Fig. 3.7(b) shows the total throughput as seen by the application-

layer (i.e., NAL units per sec) added over all clients. The figure clearly shows that NC-

RaDiO, NCVD, and NCV achieve higher throughput as compared to NCT, NCTD, noNC and

MM. The main reason is that NC-RaDiO, NCVD, and NCV do not select codes consisting of

packets whose deadlines are within one transmission time, while NCT and NCTD transmit
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all packets. Late packets do not contribute to application-level throughput, because those

packets are discarded at the client even if they are received successfully. All the network

coding schemes (NC-RaDiO, NCVD, NCV, NCTD and NCT) are better than non-network

coding schemes (MM and noNC) because they transmit more packets. As expected, MM is

better than noNC, because it considers packet deadlines for packet scheduling.

MAC Throughput. For completeness, we also show the MAC-layer throughput in Fig. 3.7(c).

As expected, all network coding schemes (NC-RaDiO, NCVD, NCV, NCTD, NCT) achieve

higher MAC-level throughput than noNC and MM, because they convey more information

content per transmission. Interestingly, all network coding schemes achieve similar through-

put, although NCT/NCTD are the ones explicitly designed to maximize throughput.

Next, we consider the performance of the proposed algorithms, when varying the number of

nodes (N), for fixed delay budget 100ms, data rate 1Mbps, and channel SNR 5dB. Fig. 3.9(a)

shows the average PSNR (averaged over three video sequences; Foreman, Carphone, Mother

& Daughter when N = 4 or higher; or averaged over two video sequences, namely Carphone

and Mother & Daughter, when N = 3 in the system. Fig. 3.9(b) and (c) are the application

and MAC level throughput seen at all receivers, respectively.

Fig. 3.9(a) shows that PSNR values of all algorithms are almost the same when N = 3. The

reason is that the data rate is sufficiently large (1Mbps) to transmit and re-transmit almost

all packets. When N increases, the PSNR of all algorithms decreases. When N = 5, NC-

RaDiO, NCVD, NCV, NCTD, and NCT have almost the same PSNR while noNC and MM

start deteriorating. The reason is that the network coding algorithms transmit effectively

more packets than the non-network coding algorithms (noNC and MM). For N = 6, the

network coding algorithms are still better than noNC and MM; we also note that NC-

RaDiO, NCVD, NCV, and NCTD are better than NCT because NC-RaDiO, NCVD and

NCTD transmit more packets due to primary packet optimization, and NCV transmits

more important packets. When N increases further, the PSNR performance becomes more
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(c) MAC-Level Throughput

Figure 3.9: One-hop downlink topology for different number of nodes in the system. Per-
formance of all algorithms in terms of (a) video quality (PSNR) (b) application-level and
(c) MAC-level throughput. (Channel SNR is 5dB, delay budget is 100ms, and channel data
rate is 1Mbps).

interesting: noNC is the clearly the worst; NCT and NCTD are similar to each other and

better than noNC; NCV is better than NCT and NCTD, because it optimizes side packet

selection, hence transmits more important packets. The most interesting part is that while

the PSNR of noNC, NCT, NCTD, and NCV decreases sharply, the decrease in MM’s PSNR

is roughly linear. The reason is that MM utilizes limited resources to transmit important

packets. On the other hand, NCT and NCTD combines packets to transmit effectively more

packets; however, since they do not consider the deadlines of the packets, they transmit

obsolete packets. NCV is also worse than MM, because it does not optimize the primary
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packets for video quality. However, when the resources get scarce (larger N), the optimal

selection of each packet becomes more important than the amount of data transmitted.

NC-RaDiO and NCVD outperform all algorithms by 2dB-5dB.

The application- and MAC-level throughput are shown in Fig. 3.9(b) and Fig. 3.9(c). For

up to N = 5, all algorithms deliver the same amount of packets. For N = 5, ...8, the net-

work coding algorithms deliver more data (both application and MAC level) as compared

to noNC and MM. For N > 8, the MAC throughput of NCV, NCT, and NCTD decreases,

for two reasons: (i) having more streams sharing the same Tx queue decreases the lifetime

of packets, hence the network coding opportunities (ii) NCT and NCTD transmit obsolete

packets. NCV and MM have similar application throughput, since there are less network

coding opportunities for NCV with increasing N . NC-RaDiO and NCVD achieve the highest

application and MAC level throughput, because they create more network coding opportu-

nities.

Cross Topology

We consider the cross topology shown in Fig. 3.4(b) when A,C transmit Foreman andMother

& Daughter to each other and B,C transmit Carphone and Coastguard to each other over

the intermediate node I. When the number of nodes (N) gets larger Salesman, News, and

Grandma, Claire pairs are used sequentially. First, we focus on the scenario with four nodes

actively transmitting and receiving video (N = 5 including I) and evaluate the performance

of the algorithms for different delay budgets and channel SNR. We fix the delay budget to

100ms, the data rate to 1.3Mbps and vary the channel SNR from 3 to 5dB.

Fig. 3.10 shows the performance of all algorithms in this topology and for channel SNR in

the range 3-11dB. Fig. 3.10(a) shows the PSNR: The ranking of the algorithms in decreasing

PSNR is similar to the downlink scenario shown in Fig. 3.7(a). However, there are some
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(c) MAC Level Throughput

Figure 3.10: Cross topology, with N = 5 nodes including I, for different channel SNR levels.
Performance in terms of (a) PSNR (b) application throughput and (c) MAC throughput.
(Delay budget is 100ms, channel SNR is 5dB, and data rate is 1.3Mbps.)

differences. First, the performance gap between NC-RaDiO and NCVD is larger in the cross

topology, because the exchange of Lagrange multipliers among nodes, to decide which node

should transmit, becomes more important since all nodes transmit. NCVD is again very

close to the optimal NC-RaDiO, which confirms that it is a good heuristic. Second, in the

downlink scenario, all algorithms have the same PSNR at channel SNR 11dB, while this is

not the case in the cross topology. Even with a good channel (11dB), there are still packet

lost in the channel. In the cross topology, more packets are lost, on the uplink and the

downlink channels. Third, in the downlink topology, the network coding algorithms improve

PSNR more than MM, for channel SNR greater than 7dB. However, in the cross topology
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MM’s improvement is higher than that of NCV, NCT, and NCTD for all channel SNR levels

since MM optimizes packet transmission in both uplink and downlink.

Fig. 3.10(b) and Fig. 3.10(c) depict the application and MAC throughput, respectively,

for the same setting as in Fig. 3.10(a). noNC and MM have the same MAC throughput

while all network coding algorithms have similar MAC throughput. MM achieves slightly

higher application-level throughput than noNC. NC-RaDiO, NCVD, NCV, NCTD, and NCT

achieve decreasing order of application level throughput. As compared to the downlink

scenario and the throughput values shown in Fig. 3.7, the throughput difference between

network coding and no network coding algorithms is less in the cross topology compared to

other topologies; the reason is that there are more independent flows and thus less network

coded packets.

Fig. 3.11 shows the PSNR achieved by all algorithms when we vary the number of nodes in

the cross topology. We fix the channel SNR to 5dB, the delay budget to 100ms, and the data

rate to 2Mbps. NC-RaDiO and NCVD perform best, MM is second for the interesting part

of the N range; NCV is better than NCT and NCTD which exhibits similar performance;

and noNC is the worst as expected. If we compare this graph with the corresponding graph

shown in Fig. 3.9(a), we see again that the benefit of network coding is less in the cross

topology. One reason is that there are more independent than network coded flows in the

system. Another reason is the increased delay in the two-hop transmission, while the deadline

remains the same. However, NC-RaDiO and NCVD still improve over all other algorithms

by 2.5− 5dB.

Grid Topology

We consider the grid topology shown in Fig. 3.4(c). I receives sequences over a high-speed

error-free link and transmits a different sequence to each receiver over the grid topology,
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Figure 3.11: Cross Topology. PSNR performance for a different number of nodes (N).
(Channel SNR is 5dB, delay budget is 100ms, and data rate is 2Mbps.)
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Figure 3.12: Grid topology. PSNR values achieved by all algorithms, for a different number
of streams in the system. (Channel SNR is 5dB, delay budget is 100ms, and data rate is
1Mbps.)
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using one-hop or two-hops. In particular, node I goes sequentially through the list of the

8 available videos (Foreman, Mother & Daughter, Carphone, Coastguard, Salesman, News,

Grandma, and Claire) and sends one to each receiver. When there are more than 8 nodes,

the 8th, 9th, etc. sequence is chosen from the beginning of the list (Foreman, Mother &

Daughter, etc).

In Fig. 3.12, we show the PSNR achieved by all algorithms for a varying number of streams

in this topology. E.g., N = 5 means there is one transmitter I and 4 receivers over either

one- or two-hops. The delay budget is 100ms, the channel SNR 5dB and the channel data

rate 1Mbps. The figure shows a similar trend with the corresponding graph for the downlink

topology in Fig. 3.9(a). This is because the traffic scenarios in the downlink and the grid

topologies are similar: the grid scenario consists of one and two hop downlink transmissions.

However, there are two differences. First, the decrease in PSNR is sharper in the grid

topology: when the number of nodes increases, more nodes are involved in one- and two-

hop transmissions, as compared to the downlink topology. Second, the difference between

network coding and non network coding schemes is smaller, because after the first hop there

are not many network coding opportunities.

3.3.3 Complexity

The main complexity of NCV comes from considering all possible candidate codes. However,

this is no worse than the complexity of NCT: they both consider all possible codes but

they evaluate them using a different metric. An important observation is that real-time

delay requirements significantly reduce the number of packets in the virtual buffers and

therefore the complexity, making the brute-force approach feasible. For a larger delay budget,

approximation algorithms for NCV and NCT can be developed by formulating them as a

maximum weight independent set problem. Although this problem is NP-complete, it is also
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well-studied and approximation algorithms can be found in the literature [80].

NCVD runs NCV for each packet (considered as primary) in the Tx queue and selects the

best overall code. The NCVD complexity is linear in the number of packets in the Tx queue,

which is also small for real-time applications. The main complexity is still due to the NCV

part.

Finally, the optimal solution to NC-RaDiO can be thought of as employing NCVD at all

nodes with the additional ability to compare improvement values (Lagrange multipliers)

among nodes in a neighborhood, in order to decide which node should transmit. This brings

a small increase in complexity (on the order of log(N) where N is the number of nodes) but

can be costly in terms of network resources. In this work, we consider NC-RaDiO mainly as

a baseline for comparison with the simpler and near optimal NVC/NCVD algorithms.

3.4 Summary

In this chapter, we proposed a novel approach to opportunistic video coding for video stream-

ing over wireless networks that take into account the importance of video packets in network

code selection. Essentially, our approach combines for the first time together ideas from

(i) network coding for increasing throughput and (ii) prioritized transmission for improving

video quality, taking into account distortion and deadlines. Simulation results show that the

proposed schemes improve video quality up to 5dB compared to baseline schemes. Further-

more, they significantly improve the application-level throughput while achieving the same

or similar levels of MAC throughput.
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Chapter 4

Rate Control and Scheduling over

Coded Wireless Networks

In this chapter, we study rate control over coded wireless networks, and optimize rate control

for video applications and TCP flows over such networks. First, we argue the importance of

cross-layer optimization, i.e., making end-to-end rate control and local scheduling aware of

the underlying network coding operations. Our key intuition is as follows. When network

coding is used, the achievable rate region gets extended by coding some flows together and

broadcasting them. However, this introduces constraints on transmission rates of applica-

tions, i.e., they affect the throughput over coded networks. Furthermore, additional conflicts

exist due to network coded flows. In this chapter, we argue that these constraints and con-

flicts should be explicitly taken into account in terms of cross-layer control, in order to fully

exploit network coding benefit.

Second, we consider video streaming over coded wireless networks and the effect of its rate

requirements to network coding benefit. We show that the rates at the video/application

layer affect the availability of network coding opportunities at the underlying network coding
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layer and thus the achievable region. In this chapter, we propose schemes that exploit

network coding opportunities better by delaying some video scenes, and optimizing the rate

allocation over long time intervals.

Third, we consider TCP flows over coded wireless networks. TCP flows do not fully exploit

the network coding opportunities due to their bursty behavior and due to the fact that

TCP is agnostic to the underlying network coding. In this chapter, we formulate the the

problem as network utility maximization and we develop a distributed solution. Based on

the structure of the optimal solution, we propose minimal modifications to congestion control

and queue management mechanisms so as to make them network-coding aware. The results

indicate that we are able to double TCP throughput over wireless coded networks.

In the rest of this chapter, we first present the system model that we consider in this chap-

ter. In Section 4.2, we discuss the importance of network coding awareness by comparing

our network coding aware (NC-aware) and unaware (NC-unaware) rate control and schedul-

ing schemes over coded wireless networks. In Sections 4.3 and 4.4, we present cross layer

optimization of video and TCP flows over coded wireless networks based on our useful in-

sights from NC-aware and NC-unaware schemes. Finally, in Section 4.5, we summarize our

contributions and conclude the chapter.

4.1 System Model

Sources/Flows: Let S be the set of unicast flows between some source-destination pairs.

Each flow s ∈ S is associated with a rate xs and a utility function Us(xs), which we assume

to be a strictly concave function of xs. The goal is to maximize the total utility function

Ut =
∑

s∈S Us(xs).

Wireless Network: A hyperarc (i,J ) is a collection of links from node i ∈ N to a non-

61



empty set of next-hop nodes J ⊆ N that are interested in receiving the same network code

through a broadcast transmission from i. A hypergraph H = (N ,A) represents a wireless

mesh network, where N is the set of nodes and A is the set of hyperarcs. For simplicity,

h = (i,J ) denotes a hyperarc, h(i) denotes node i and h(J ) denotes node J , i.e., h(i) = i

and h(J ) = J . We use these terms interchangeably in the rest of the chapter.

Due to the shared nature of the wireless media, transmission over different hyperarcs may

interfere with each other. We consider the protocol model of interference [81], according

to which, each node can either transmit or receive at the same time and all transmissions

in the range of the receiver are considered as interfering. Given a hypergraph H, we can

construct the conflict graph C = (A, I), whose vertices are the hyperarcs of H and edges

indicate interference between hyperarcs. A clique Cq ⊆ A consists of several hyperarcs, at

most one of which can transmit at the same time without interference.

Network Coding: We assume that intermediate nodes use COPE [10] for one-hop oppor-

tunistic network coding1. Each node i listens all transmissions in its neighborhood, stores

the overheard packets in its decoding buffer, and periodically advertises the content of its

decoding buffer to its neighbors. Then, when a node i wants to transmit a packet, it checks

or estimates the contents of the decoding buffer of its neighbors. If there is a network coding

opportunity, the node combines the relevant packets using simple coding operations (XOR)

and broadcasts the combination to J . Note that it is possible to construct more than one

network code over a hyperarc (i,J ). Let Ki,J be the set of network codes over a hyperarc

(i,J ). Let Sk ⊆ S be the set of flows, whose packets are coded together using code k ∈ Ki,J

and broadcast over (i,J ).

Routing: We consider that each flow s ∈ S follows a single path Ps ⊆ N from the source to

the destination. This path is pre-determined by a routing protocol, e.g., OLSR or AODV,

and given as input to our problem. However, note that several different hyperarcs may

1Note that we present the multi-hop extension in Section 4.4.4.
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connect two consecutive nodes along the path. We set an indicator function Hs,k
i,J = 1 if

flow s is transmitted through hyperarc (i,J ) using network code k ∈ Ki,J . Otherwise,

Hs,k
i,J = 0. Similarly, we consider an indicator function Hs

i,J = 1 if flow s is transmitted

through hyperarc (i,J ). Otherwise, Hs
i,J = 0.

4.2 The Importance of Network Coding-Aware Rate

Control and Scheduling

In this section, we discuss the importance of network coding-aware rate control and schedul-

ing. Our key intuition is as follows. When network coding is used, the achievable rate region

gets extended by coding some flows together and broadcasting them. However, this intro-

duces additional scheduling conflicts. For example, when two flows transmitted in reverse

directions are coded together at an intermediate node, there is a new network coded flow

created, which may conflict with other flows transmitted in the neighborhood.

Example 6 The example shown in Fig. 4.1 demonstrates the key intuition why we need

network coding awareness in such scenarios. There are two flows in reverse directions: node

A transmits the first flow with rate x1 to node D via nodes B and C; node C transmits the

second flow with rate x2 to node A via node B. All nodes transmit in the same channel and

at the same power level. The link capacities (C1, C2, C3 for links A − B, B − C, C − D)

inversely depend on the distance between the node pairs.

Let x1A,B, x
1
B,C , and x1C,D be the uncoded parts of the first flow, while x2C,B and x2B,A are

the uncoded parts of the second flow. x1B,{A,C} and x2B,{A,C} are the network coded part of

both flows: node B combines parts of x1 and x2 and broadcasts to both A and C. From

the flow conservation we have that: x1 = x1A,B = x1B,C + x1,2
B,{A,C} = x1C,D and x2 = x2C,B =

x2B,A + x1,2
B,{A,C}. If the scheme is NC-aware, it will take into account that there is a new
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Figure 4.1: Motivating example. A sends the first flow with rate x1 to D through nodes A
and B. C sends the second flow with rate x2 to A through B.

network coded flow, transmitted with rate max(x1B,{A,C}, x
2
B,{A,C}) and interfering with all

other transmissions in the system. Therefore, no simultaneous transmissions will take place.

However, if the scheme is NC-unaware, it does not know that there is a transmission for the

network coded flow from B to A and C. Therefore, when link B−A is used for transmission

of the second flow and network coding is possible with packets of the first flow, then packets

are combined and transmitted. However, since transmissions from B to A and C to D are

considered as interference-free, in the NC-unaware scheme, they will be scheduled at the

same time. Thus, network coding at B may lead to a collision at C. As a result, network

coding opportunities can be wasted and the total achieved flow rate in the worst case reduces

to the scenario where no network coding is applied. �

4.2.1 Optimal Rate Control and Scheduling

Optimal NC-Aware Scheme: We follow the link-based approach in [62, 61] for cross-layer

optimization of wireless networks and extend it to include network coding. Our goal is to

optimize the total utility Ut.
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max
x,τ

∑

s∈S

Us(xs)

s.t Hs
hx

s
h ≤ Rhτ

k
h ξ

s
h, ∀k ∈ Kh, ∀s ∈ Sk, ∀h ∈ A

xs =
∑

{h(J )|h∈A,i∈Ps}

xsh, ∀s ∈ S, i ∈ Ps

∑

h∈Cq

∑

k∈Kh

τkh ≤ γ, ∀Cq ⊆ A (4.1)

The rate control aims at selecting the rate xs ≥ 0 at each source s ∈ S, and the parts of

it (xsh ≥ 0) that are transmitted over each hyperarc h on the path Ps using predetermined

network codes k ∈ Kh, where Kh is the set of network codes over h. The first constraint

refers to flows s ∈ Sk coded together in the same network code k and transmitted over h if

flow s is transmitted over h (i.e., Hs
h = 1). These flows coexist and do not compete for the

total rate Rhτ
k
h ξ

s
h allocated to code k, where Rh is the maximum achievable rate over h, τkh

is the percentage of time that h is used for network code k ∈ Kh, and ξsh is the probability

of successful transmission from node i to its destination node j ∈ J . Thus, Rhτ
k
h ξ

s
h is the

effective rate used by code k after excluding packet losses. The maximum rate of these

network coded flows (s ∈ Sk) should be up to the effective rate of the code k, which means

that the rate of each one of them (Hs
hx

s
h) should be up to Rhτ

k
h ξ

s
h. The second constraint is

the flow conservation of flow xs at each hop on its path Ps towards the destination. Note

that a flow may be transmitted over different hyperarcs with different network codes and

rates xsh which are summed up to xs with this constraint. The third constraint captures

the conflicts due to interference, similarly to [39]: different network codes over the same

hyperarcs and nodes in the same clique cannot transmit at the same time. They share the

available transmission time, γ.
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Distributed Solution: The set of constraints in Eq. (4.1) couples together the rate control

and scheduling problems. Using Lagrangian relaxation for the first set of constraints in

Eq. (4.1) with multiplier qk,sh and by appropriately re-arranging the terms and constraints,

the problem is decomposed into the following parts.

Rate Control: The rate control problem is decoupled from scheduling and can also be fur-

ther decomposed into a number of rate-control subproblems, each of which can be solved

independently at each source using only feedback from the network (about the Lagrange

multipliers qk,sh which are interpreted as queue sizes).

max
xs

[Us(xs)− (
∑

i∈Ps

∑

{h(J )|h∈A,i∈Ps}

qk,sh Hs
hx

s
h)]

s.t. xs =
∑

{h(J )|h∈A,i∈Ps}

xsh (4.2)

This problem can be solved by constrained convex optimization. However, the objective

function in Eq. (4.2) is concave but not strictly concave. Therefore, the variables xsh’s

oscillate when we solve this optimization problem directly. To address this problem we

consider proximal method which solves the equivalent problems of Eq. (4.2) and eliminates

the oscillations, [82]. In particular, the proximal method considers the following problem,

which is equivalent to the original one in Eq. (4.2):

max
xs

[Us(xs)− (
∑

i∈Ps

∑

{h(J )|h∈A,i∈Ps}

qk,sh Hs
hx

s
h)]

−c((xs − ys)
2 +

∑

i∈Ps

∑

{h(J )|h∈A,i∈Ps}

(xsh − y
s
h)

2)

s.t. xs =
∑

{h(J )|h∈A,i∈Ps}

xsh (4.3)
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where c is a small positive constant, and {ys : ∀s ∈ S} and {y
s
h : ∀s ∈ S, h ∈ A} are auxiliary

variables introduced by the proximal method to eliminate oscillations. Periodically, ys is set

to xs and y
s
h is set to x

s
h and the iteration continues using the new values of auxiliary variables.

Scheduling:

max
τ

∑

h∈A

∑

k∈Kh

Rhτ
k
hQ

k
h

s.t.
∑

h∈Cq

∑

k∈Kh

τkh ≤ γ, ∀Cq ⊆ A (4.4)

where Qk
h =

∑

s∈S q
k,s
h ξsh. This problem must be solved for all the hyperarcs in the network

considering the interference model, so as to determine the percentage of time τkh that hyperarc

h should be used for network code k. This problem is known to be NP-hard and can be

converted to a maximum weighted matching problem as explained in [62], for which heuristics

have been developed in other contexts [83, 84], and specifically in the context of scheduling

for ad-hoc networks [63, 64]. Since the focus of this section is on rate control and not on

scheduling, we assume perfect scheduling but we note that (i) such heuristics should be

employed in practice and (ii) the effect of imperfect scheduling on rate control must be

investigated.

Parameter Update: We use a subgradient method to iteratively calculate the solution to

problems (4.3) and (4.4):

qk,sh (t+ 1) = {qk,sh (t) + βt[H
s
hx

s
h − Rhτ

k
h ξ

s
h]}

+, (4.5)

where βt is a small constant that determines the convergence rate of our algorithm. qk,sh (t) is

the Lagrange multiplier at iteration t and can also be interpreted as the queue size at node

i for the part of flow s transmitted over hyperarc h with code k.
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Numerical Results for Convergence: We now show results for the rate allocation prob-

lem for the example of Fig. 4.2, using the proximal method in Eq. (4.3) and assuming perfect

scheduling. In particular, we show the convergence of rates (x1, x11, x12, x13 and x2, x21,

x22, x23) and of the queue sizes qk,sh . For brevity of notation in this discussion as well as

in Fig. 4.3 and Fig. 4.4, we renamed the flow rates mentioned in the example in Fig. 4.2.

2 There are also six Lagrange multipliers (queue sizes), one associated with each of these

flow rates.3 Although any concave function can be used as utility function, we choose to use

logarithms, i.e., the form U(xs) = ws log(xs), which are typically used to provide weighted

proportional fairness where ws is the weight term. We consider two scenarios: (i) sources

with the same utility functions; U(x1) = log(x1), U(x2) = log(x2) and (ii) sources with

different utility functions; U(x1) = 4 log(x1), U(x2) = log(x2).

Fig. 4.3 shows the numerical results for the first scenario. The main observation is that both

rates and queue sizes converge. Furthermore, x1 and x2 converge to the same value because

they have the same utility function. A closer look also reveals that the crossing flows x1

and x2 are always coded at the intermediate node: the network-coded flows (x13 and x23)

converge to the values of the total flows x1, x2, while the non-network coded flows (x12 and

x22) converge to 0.

Fig. 4.4 shows the numerical results for the second scenario. Both rates and queue sizes

converge again. However, because the utility of the first user is now weighted more (w1 = 4)

than the second (w2 = 1), this user ends up transmitting at higher rate. In this case, some

part of the flows is network coded (x13, x23) while the rest is transmitted without any coding

(e.g., x12 > 0).

2The renaming is as follows. x11 = x1
A,{Relay} and x21 = x2

B,{Relay} are still the original flows sent on

the uplink. x12, x13 are the non-coded and coded parts of x1 sent on the downlink: x12 = x1
Relay,{B} and

x13 = x1
Relay,{A,B}. x22, x23 are the non-coded and coded parts of x1 send on the downlink: x22 = x2

Relay,{A}

and x23 = x2
Relay,{A,B}. The flow conservation dictates that x1 = x11 = x12 + x13 and x2 = x21 = x22 + x23.

3q1 and q2 are associated with x1 and x2; q3 and q4 are associated with x12 and x13; q5 and q6 are
associated with x23 and x22.
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Figure 4.2: A and B send flows x1 and x2 to each other through an intermediate node I.
Nodes use the same frequency and share the channel capacity (assuming all hyperarcs have
the same channel capacity C) using time sharing. The relay node can transmit (broadcast)
parts of these flows uncoded (x1A,I , x

1
I,B, x

2
B,I , x

2
I,A) or coded (x1I,{A,B}, x

2
I,{A,B}). Packets in the

coded flows are constructed by XOR-ing packets from the two flows. The flow conservation
for the first flow requires that x1 = x1A,I = x1I,B + x1I,{A,B} and similarly for the second flow.

There are five hyperarcs: (A, I), (I, B), (B, I), (I, A) and (I, {A,B}).

Optimal NC-Unaware Scheme: To quantify the benefit of network coding awareness, we

compare the optimal NC-aware scheme to its NC-unaware counterpart. The latter scheme

takes decisions based on (i) the total queue length at each link of every node and (ii) the

conflict graph; however, it does not know the more detailed information about the queue size

per coded or uncoded flow. In the example of Fig. 4.1, there are actually four queues at node

B (two for uncoded flows; x1B,C , x
2
B,A, and two for the coded flows; x2B,{A,C} and x2B,{A,C} ),

which are known to the NC-aware scheme. However, the NC-unaware scheme only knows

the existence of two output queues: one for link B −A and one for link B −C. Apart from

being agnostic to the existence of network coding, the optimal NC-unaware scheme is similar
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(a) Convergence of rate x1 (where x11 = x1:
uplink rate, x12: downlink non-coded rate,
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x23: downlink coded rate).
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(c) Convergence of queue sizes associated with
the rates (q1 with x11, q2 with x22, q3 with x12,
q4 with x13, q5 with x23, q6 with x22.

Figure 4.3: Convergence of variables for the example in Fig. 4.2 and similar utilities: U(x1) =
log(x1), U(x2) = log(x2).

to the NC-aware one as formulated in the following;

max
x,τ

∑

s∈S

Us(xs)

s.t
∑

s∈S

Hs
i,jxs ≤ Ri,jτi,jξi,j, ∀(i, j) ∈ A

∑

(i,j)∈Cq

τi,j ≤ γ, ∀Cq ⊆ A (4.6)
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Figure 4.4: Convergence of variables for the example in Fig. 4.2 and different utilities:
U(x1) = 4 log(x1), U(x2) = log(x2).

Eq. (4.6) can also be solved using Lagrangian decomposition. In the rate control part,

each source simply determines its rate xs. The scheduling problem is solved considering

all conflicting links in the system. Each queue is updated when packets are transmitted or

received, without distinguishing whether they are delivered with or without network coding.

Optimal NC-Aware versus Optimal NC-Unaware Scheme: In Table 4.1, we present

numerical results of the achieved rates for the example of Fig. 4.1 for four different scenarios,
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Table 4.1: Optimal Schemes. Achievable rates for the example of Fig. 4.1. Scenario 1:
C1 = C2 = C3 = 1; Scenario 2: C1 = C3 = 1, C2 = 2; Scenario 3: C1 = 1, C2 = C3 = 2;
Scenario 4: C1 = C3 = 1, C2 = 4.

Optimal NC-aware Optimal NC-unaware

Scenarios x1 x2 x1 + x2 x1 x2 x1 + x2

1 0.21 0.39 0.60 0.20 0.40 0.60

2 0.25 0.50 0.75 0.33 0.32 0.65

3 0.31 0.46 0.77 0.32 0.30 0.62

4 0.33 0.50 0.83 0.38 0.37 0.75

which correspond to different values of link rates C1, C2, C3 for links A−B, B −C, C −D,

respectively. The results are generated with 500 iterations. The utility function is assumed

to be Us(xs) = log(xs). We can see that, in all scenarios, the NC-aware scheme achieves the

same or higher total rate (x1+x2) compared to the NC-unaware scheme. In some scenarios,

the NC awareness brings significant improvement: this usually happens in scenarios where

(i) the underlying conflicts of network coded flows reduce the network coding opportunities

and (ii) there are no network opportunities over different links.

4.2.2 Practical Rate Control and Scheduling

We now propose a practical implementation of the optimal NC-aware and NC-unaware rate

control and scheduling schemes. We use simulations to show that they are good approx-

imations of the optimal schemes and we also compare them to quantify the benefit from

NC-awareness in practice.

To create a practical scheme we need to make the following modifications: (i) implement

a packet-based rate control that approximates the optimal flow-based rate control, (ii) im-

plement a low-complexity yet efficient heuristic that approximates the optimal scheduling,

(iii) signal information about queue size and conflicts, and (iv) construct and update queues.

These modifications apply similarly to both the NC-aware and NC-unaware schemes with
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some minor differences, as described below.

Rate Control: The optimal NC-aware rate control determines the flow rate of each network

coded flow according to the queue length of each network code on every node on the flow’s

path. Instead, similar to [64], each source maintains an average rate value for each of its

network coded rates. At each transmission opportunity the optimal rates are compared to

the average rates. If the average rate of a network coded part of a flow is less than its optimal

value, a packet is inserted to the transmission buffer and labeled with the network coding

policies for each node on its path; a packet is coded according to its label at each node on its

path to the destination. The NC-unaware rate control employs exactly the same scheme but

maintains the average rate at each source instead of the average rates for all coded flows.

Scheduling: Scheduling determines the nodes and flows that will transmit and the percent-

age of time a node will transmit. This problem is NP-hard [61] and we use a heuristic similar

to [64]. Each node maintains information about the queue size of its own flows and of its

neighbors’ flows and exchanges this information with its neighbors at the end of each packet

transmission. This way, every node learns the queue sizes of its one- and two-hop neighbors,

and compares its own queue sizes with the queue sizes of these neighbors. If a node has the

largest queue, it tries to transmit a packet from this queue, by selecting a small initial value

for the contention window in 802.11. The practical NC-unaware scheduling uses the same

mechanism.

Signaling: Queue size information is exchanged after transmitting a packet. In practice,

when 802.11 is used as an underlying MAC mechanism, the queue size information can be

exchanged via RTS/CTS control packets, as in [64]. In addition to the queue sizes, we

consider that queue destination information is also appended to the control packets, in order

for each node to determine its exposed terminals. Note that we consider that two nodes whose

destination nodes are in different interference regions can transmit at the same time even

if they are interfering to each other (exposed terminal problem) by figuring out conflicts
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considering destination nodes. We consider a synchronization among nodes to eliminate

collisions of ACKs and control packets. In summary, at each RTS/CTS transmission, nodes

exchange their queue sizes, destination nodes and their neighbors’ queue sizes and destination

nodes. In addition, queue size information at each node over the path of a source is passed

to the source via feedback. The signaling mechanism of the practical NC-unaware scheme is

exactly the same.

Parameter Update: In the NC-aware case, each node maintains a queue for each source

and network code, which gets updated when a packet is transmitted or received. In the NC-

unaware case, information is maintained for each output queue (link) at each node. However,

even when two or more packets are transmitted from/to a queue or more than one queue

transmits due to network coding, the queues are updated accordingly.

Simulation Results: We now present simulation results for the practical NC-aware and

NC-unaware schemes for the example of Fig. 4.1. Table 4.2 shows the rates achieved by

the practical schemes in the same four scenarios discussed in section 4.2.1. There are two

observations to make from this table. First, the NC-aware scheme achieves higher total rate

than the NC-unaware one, in this practical case as well and for all four scenarios. Second,

comparing the practical schemes to the corresponding optimal schemes, we see that the

rates achieved are lower. This is expected as the practical schemes are suboptimal: e.g., the

control packets (RTS/CTS) use 10% of transmission time and reduce the total rate. Third,

the rates achieved by the practical schemes are close to the optimal rates, which indicates

that they are efficient heuristics.
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Table 4.2: Practical Schemes. Achievable rates for the example of Fig. 4.1. Scenario 1:
C1 = C2 = C3 = 1; Scenario 2: C1 = C3 = 1, C2 = 2; Scenario 3: C1 = 1, C2 = C3 = 2;
Scenario 4: C1 = C3 = 1, C2 = 4.

Practical NC-aware Practical NC-unaware

Scenarios x1 x2 x1 + x2 x1 x2 x1 + x2

1 0.19 0.36 0.55 0.19 0.35 0.54

2 0.24 0.46 0.70 0.29 0.30 0.59

3 0.28 0.44 0.72 0.29 0.30 0.59

4 0.28 0.46 0.74 0.35 0.37 0.72

4.3 Network Coding-Aware Rate Control for Video

In this section, we study network coding-aware rate control for video streaming over coded

wireless networks. Motivated by the analysis we made in the previous section, we have

observed that the time-varying nature of video content implies time-varying utilities and

affects the underlying network coding opportunities. Our key motivation in this section is

that by delaying some scenes and by optimizing the rate allocation over longer time intervals,

we can create more network coding opportunities and thus achieve higher total utility.

Let us revisit the basic topology presented in Fig. 4.2. Without network coding, A and B

transmit at rates x1, x2 such that 2x1 + 2x2 ≤ C, leading to the triangle rate region A1

shown in Fig. 4.5(a). The total achievable rate is constant: x1 + x2 = C/2. When network

coding is used, and A and B transmit at rates x1, x2, then, on the downlink, the network

coded flow has rate min(x1, x2) and the total flow has rate max(x1, x2). The achievable rate

region is extended to the kite region; A2 = {(x1, x2) : x1 + x2 +max(x1, x2) ≤ C}, shown in

Fig. 4.5(a). The maximum total achievable rate is now higher, 2C/3, and is achieved when

both flows transmit at the same rate x1 = x2 = C/3. If x1 6= x2 the total throughput is less

than this maximum achievable value. Fig. 4.5(b) shows that the total rate x1 + x2 decreases

from the maximum 2C/3 (when x1 = x2) to C/2 (the value without network coding) for

increasing discrepancy between the two rates (x2/x1). In summary, the more similar the
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(a) Achievable rate region (x1, x2) with and without
network coding.

(b) With network coding the rate region is A2 =
{(x1, x2) : x1+x2+max{x1, x2} ≤ C}. Let x2

x1

= α ≥

1. The total achievable rate (x1 + x2 = α+1
2α+1C) de-

creases as the ratio between individual rates increases.

Figure 4.5: Achievable rates for the example in Fig. 4.2, with and without network coding.
C is the channel capacity of each hyperarc which is time shared among all flows.

rates of the cross flows, the more coding opportunities and the higher the total throughput.

This key observation must be taken into account in rate allocation and is exploited in this

section.

In the video community, video specific rate control and playout optimization have been

extensively studied in the past, albeit not for networks with network coding. Works close
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to ours include, but are not limited to, the following: [85], which controls the playout to

make the video rate smoother by adapting to varying wireless channel capacity; [86], which

studied joint scheduling and playout considering the video content; [87], which developed

congestion-distortion optimized distributed rate allocation for streaming over wireless with

heterogeneous links. The time-varying video content was also taken into account in [88]:

scenes with different rates were transmitted over a channel with fixed and limited data

rate; by delaying some scenes when the rate of a scene was higher than the channel rate,

delay-distortion optimized streaming was achieved. Different from these works, we consider

network coding over wireless networks; in this case, the maximum achievable channel data

rate is no longer fixed but depends on the transmitted data rate. Our focus is on the

interaction between flow rates and achievable rate region so as to maximize the total video

utility.

In the rest of this section, we first consider utility optimal video streaming, which fits natu-

rally within the rate control framework presented in the previous section. However, specific

to video, the utility functions must reflect the characteristics of video sequences, including

their rate-distortion characteristics and the importance of different scenes to the users. A key

observation is that the video quality varies over time depending on the video content; as a

result, two or more video streams can have different rates over a short-time scale even though

they may have similar rates over longer time scales. We propose to introduce additional de-

lay in some scenes and to optimize the rate allocation over longer time intervals, so as to

increase the network coding opportunities and eventually the total utility. Furthermore, this

time interval should be selected so as to optimize the delay vs. utility tradeoff. We formulate

the problem, develop a distributed solution and evaluate its performance, compared to the

general rate control scheme, via numerical simulations in some illustrative scenarios.
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4.3.1 Rate Control for Video Streaming over Coded Wireless Net-

works

Intuition: We are particularly interested in rate allocation for video streaming over coded

wireless networks. Rate allocation for video is rate-based and fits naturally within the rate

control framework presented in the previous section. Furthermore, the following aspects are

specific to video. First, the utility functions should reflect the PSNR-rate curves for realistic

video sequences and/or the importance of different scenes based on video content. The first

key observation is that the video utility function varies over time, based on the video content.

Therefore a natural question arises: what is the right time interval for computing the rate

and utility and for optimizing the rate allocation? Clearly, short term variations in rate and

utility will be smoothed out if we consider longer time intervals. Second, video streaming

can tolerate some small delay. The second key observation is that by delaying some scenes

and by considering a longer time interval we can create more network coding opportunities,

which can eventually lead to higher total throughput and utility. As discussed at the end of

the previous section, more network coding opportunities are created when the rates of cross

flows are similar.

Combining these two observations, one should consider an appropriate time interval T , over

which to compute the utility and perform optimal rate allocation, so as to smooth out short-

term rate variations, thus create more network coding opportunities and increase the total

rate and utility. The choice of the T involves a delay vs. utility tradeoff and depends on the

video content and the delay constraints.

Example 7 Let us revisit the example in Fig. 4.2 to further clarify the above ideas. If A

and B has the same utility function, so they will transmit at the same constant rate until the

end of the communication and operate at the rate optimal corner (C/3, C/3) in Fig.4.5(a).

However, if A and B send video, their utility functions change in time (e.g., for every scene)
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and are different from each other. As each source optimizes its own rate according to its

scene utility function, the utility-optimal rates are not on the rate-optimal corner (C/3, C/3)

anymore, but on the border of the feasible region A2 in Fig.4.5(a), and thus the network is

not fully used. The key idea is that if users transmit at roughly similar and smooth rates,

they will operate at a utility-optimal point which will be close to or on the rate-optimal

point, thus resulting to higher operating rates and eventually higher total utility. In order

to achieve this goal, instead of just optimizing the current scene’s rate requirements, sources

should optimize over a longer time period as described next. �

Formulation: We now formulate the problem of optimal rate allocation for time-varying

video over a fixed time-interval T . Every video stream s is partitioned into temporal seg-

ments, which we call scenes. Every scene f of flow s is characterized by its duration ∆(f),

rate xs(f) and utility function Us(xs(f)); the rate and utility change over time according to

the video content. The optimization period T contains multiple scenes (the set Fs) of stream

s: T =
∑

f∈Fs
∆(f). The fact that we want to do optimal rate allocation for all Fs scenes

in the period T means that the scenes can be transmitted in parallel instead of sequentially

within T ; thus, they can be thought of as separate flows sharing the channel capacity during

T . The optimization problem is in the following:

max
x,τ

∑

s∈S

∑

f∈Fs

Us(xs(f))δ(f)

s.t xs(f) =
∑

{h(J )|h∈A,i∈Ps}

xsh(f), ∀s ∈ S, f ∈ Fs

∑

f∈Fs

Hs
hx

s
h ≤ Rhτ

k
h ξ

s
h, ∀k ∈ Kh, s ∈ Sk, h ∈ A

xs(f) ≥ xmins (f), ∀s ∈ S, f ∈ Fs
∑

h∈Cq

∑

k∈Kh

τkh ≤ γ, ∀Cq ⊆ Ac (4.7)
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This problem is similar to the general problem in Eq.(4.1), but has the following differences.

First, the optimization is performed over the time interval T . Although T is not explicitly

mentioned, it implicitly affects the number of consecutive scenes considered for transmission:

T =
∑

f∈Fs
∆(f). We assume that T is large enough to guarantee convergence of the solution

within this interval. Second, we define the utility U(xs) of a stream s during the time period

T as the weighted average of the utilities of individual scenes
∑

f∈Fs
Us(xs(f))δ(f). The

weight δ(f) = ∆(f)/T indicates the length of a scene as a fraction of T ; it ensures that,

for the same utility, longer scenes will transmit more. Another difference is in the second

constraint: compared to the first constraint in the general problem in Eq.(4.1), there is now a

summation over all the scenes considered. The reason is that each scene can be considered as

a separate flow, which should share the total capacity with other scenes transmitted during

T . Finally, we introduce the third constraint, which is new in this formulation: it guarantees

that some minimum short-term rate requirement xmins (f) will be met for each scene f ∈ Fs,

in order to guarantee that video quality does not drop below an acceptable level even in the

short term. The parameter xmins (f) can be pre-computed based on the content of the video

and/or the user requirements and is an input to our problem. As a concrete example, in this

section, we consider as minimum requirement that each scene f should achieve at least the

average optimal rate x∗s(f) that would achieve if we optimized over a single scene duration,

T = ∆(f), instead of multiple scenes: xmins (f) = 1
T

∫

∆(f)
x∗s(f)dt.

Distributed Solution: By a Lagrangian relaxation of the fourth constraint, the problem

decomposes into the following parts.

Rate Control: By re-arranging the terms and constraints and by using the proximal method,

similarly to what we did in Eq.(4.3), we obtain the following rate control sub-problems that
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can be solved independently at each source:

max
xs

∑

f∈Fs

[Us(xs(f))− (
∑

i∈Ps

∑

{h(J )|h∈A,i∈Ps}

qk,sh Hs
hx

s
h(f))

−c((xs(f)− ys(f))
2 +

∑

i∈Ps

∑

{h(J )|h∈A,i∈Ps}

(xsh(f)− y
s
h(f))

2)]

s.t. xs(f) =
∑

{h(J )|h∈A,i∈Ps}

xsh(f)

xs(f) ≥ xmins (f), ∀f ∈ Fs (4.8)

Scheduling: By rearranging the terms in the Lagrangian:

max
τ

∑

h∈A

∑

k∈Kh

Rhτ
k
hQ

k
h

s.t.
∑

h∈Cq

∑

k∈Kh

τkh ≤ γ, ∀Cq ⊆ A (4.9)

where Qk
h =

∑

s∈Sk
qs,kh ξsh.

Parameter Update:

qk,sh (t+ 1) = {qk,sh (t) + βt[
∑

f∈Fs

Hs
hx

s
h(f)−Rhτ

k
h ξ

s
h]}

+ (4.10)

Discussion: Although the previous model has been presented in terms of a single fixed

value of T , there is flexibility in choosing this value. Different sources s can use different Ts

(so as to smooth out their own short-term variations in their video content) independently

from each other (without synchronizing with each other or coordinating to choose the same

T ). In addition, it is possible and beneficial to solve the problem not just for one but for
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several different values of T . Intuitively, the longer the optimization interval, the higher

the achieved utility at the cost of higher delay. Therefore, each source s should tune the

value of Ts taking into account its content so as to meet a desired delay-utility tradeoff;

an example will be discussed in the numerical results below. Furthermore, the model can

naturally include user arrivals and departures, by simply optimizing over the scenes that are

active in each optimization interval.

The partitioning of a video stream into scenes was essential for us to deal with time-varying

video content: we treated a scene as the minimum time slot, within which there is no time

variation. However, the definition and analysis of scenes in a video stream is a research

topic on its own and out of the scope of this work. E.g., series of commercials, music clips,

newscasting can be considered as different scenes in the same video stream; or scenes may

refer to one or a few GOPs; in [88], scenes from a soccer game have been extracted and

different importance has been assigned to them based on the pitch of the commentator’s

voice; in [86], we have assigned different importance to 2-3 second scenes, based on their

motion intensity. In the context of this section, we consider a scene to consist of a number

of consecutive frames with similar content and importance; we also consider the partitioning

of a stream into scenes and their utility functions to be determined by a separate process

and provided as input to our problem. Our goal is to optimize the rate allocation given this

input.

4.3.2 Performance Evaluation

In the rest of the section, we perform simulations to evaluate the performance improvement

from video rate allocation (Eq. (4.7)) compared to the general rate allocation (Eq. (4.1)),

which did not take into account the variation of video utility over time. We consider again

the illustrative example in Fig. 4.2 and two traffic scenarios: the first with logarithmic time-
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Table 4.3: Scenario 1. Average rate of scenes for stream 1.

Scene Number 1 2 3 4 5 6
General Rate Control 4.53 2.01 4.23 2.00 4.23 2.00

Video Rate Control 4.98 2.04 4.66 2.00 4.66 2.00

varying utilities; and the second considering PSNR-rate curves and the importance of video

content.

Scenario 1: We consider two video sequences, each consisting of six scenes. All scenes have

the same fixed duration, 250 packets. (We note that we chose the scene durations long enough

to allow for convergence. The optimization algorithm proceeds in iterations, each iteration

corresponds to sending one packet.) The utility of each scene f of video sequence s is of

the form σf log(xs(f)) where the weight σf changes across scenes. In particular, the utility

of the first video for each scene is: ~U1 =[4 log(x1(1)), log(x1(2)), 4 log(x1(3)), log(x1(4),

4 log(x1(5)), log(x1(6)]; the utility of the second video is: ~U2 =[log(x2(1), 4 log(x2(2)),

log(x2(3), 4 log(x2(4)), log(x2(5)], 4 log(x2(6)). These utilities have been chosen on purpose

to illustrate the value of considering a longer time period so as to smooth out short-term time

variations. The channel capacity of each link is considered 10. (We note that we purposely

omit units for the rates, in this example only, as the results will only scale with the unit for

channel and video rate.) For this scenario, we compare the general rate control (which does

not consider an optimization interval but continuously computes the rate at each single iter-

ation) and the video rate allocation (with the interval T = 500 iterations, i.e., the duration

of two scenes).

Fig. 4.6 shows the total rate transmitted by the two video streams together, plotted over

iteration number for both rate control schemes. The general rate control computes the

optimal rate at every iteration. E.g., we can see than at every scene change (around 250,

500,... iterations) it reacts to the change of utility and eventually converges to an optimal
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Figure 4.6: Scenario 1 (logarithmic utility functions). Total rate achieved by general and
video (for T = 500) rate control.

value before the end of the scene. In contrast, the video rate control performs optimization

over the duration T (500 iterations); thus, it achieves higher total rate (on average) and

increases the total utility. In addition, it achieves smooth rate because, over the period of T ,

the utilities are optimal at similar rates. A natural question at this point is what happens

to individual streams and scenes: does this increase in total rate happen at the expense of

some less important streams or scenes suffering? The third constraint in Eq.(4.7) guarantees

that this does not happen. In Table 4.3, we show that the average rate of individual scenes

(calculated as the total amount of data transmitted during T divided by the scene duration)

with video rate control is at least as high as with general rate control. In summary, the

video rate control over a longer time interval T increases the total rate and utility, without

hurting individual scenes. The magnitude of improvement depends on the video content and

the choice of T .

Scenario 2: We now consider the same basic topology but now the nodes transmit two real

video sequences, whose content is different and varies over time. We created two test video

sequences by cropping and concatenating frames from standard video sequences as follows.

First, we considered some standard video sequences, namely Carphone, Foreman, Grandma,
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Table 4.4: Video Scenes (a concatenation of which is used to construct the test video se-
quences in Scenario 2).

Scene Original Frame Importance

Number Video Sequence Number (MI)

1 Carphone 171-230 4.45

2 Carphone 281-340 3.57

3 Foreman 144-203 2.56

4 Grandma 1-60 0.14

5 Mother & Daughter 101-160 0.19

6 Mother & Daughter 391-450 0.18

and Mother & Daughter. These were QCIF, encoded at 30 fps, using the JM 8.6 version of

the H.264/AVC codec [78], [79]. The group of pictures consists of one I frame followed by

9 P frames. Each frame consists of at least one slice, packetized into an independent NAL

unit of size 1000 B.

From these standard sequences, we selected six scenes summarized in Table 4.4: some of

the scenes correspond to high motion and some to low motion parts of these sequences.

Clearly, the six selected scenes have different video content and therefore different PSNR-

rate characteristics. We encoded each scene with 50 different quantization parameters and

obtained the corresponding distortion-rate (DR) curve. Then, we fitted this curve to the

DR model developed in [89]: De =
θ

Re−R0
+ D0, where De is the distortion of the encoded

sequence, Re is the output rate of video encoder and θ, R0, D0 are parameters of the model.

Then, we constructed our two test sequences by concatenating some of these six scenes.

The first test sequence consists of the concatenation of (scene 5, scene 1, scene 6, scene 2);

the second test sequence consists of (scene 3, scene 5, scene 3, scene 4). One option for

assigning a utility U(x) to each scene would be to simply use the PSNR value as a function

of the rate from the aforementioned DR model. To further amplify the difference in the

utilities of different scenes, we also multiplied the PSNR with a weight factor that indicates

the importance of each scene, based on the content. As discussed earlier, there are many
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Figure 4.7: Scenario 2 (real sequences). Total rate achieved by the general (unslotted) and
video (for two values of T ) rate control schemes.

ways to assign importance to scenes. As a concrete example, we used the average motion

intensity (MI) of each scene, as defined and computed in our prior work [86]: this way, the

importance weights assigned to the scenes of the two test sequences are (0.19, 4.45, 0.18, 3.57)

and (2.56, 0.19, 2.56, 0.14).

Finally, we simulated the transmission of these two test video sequences over the example

topology, using the two rate allocation schemes developed in this section. The results are

shown in Fig.4.7. The general rate control achieves the lower and variable total rate (shown

in solid blue): the variations are triggered by the variation in content of the test sequences.

The video rate control over an interval of T = 500 achieves rate that is higher and less

variable (shown in dotted magenta). If we are willing to tolerate more delay and consider

more scenes over the longer time interval T = 1000, we can achieve even higher and less

variable total rate (shown in dash-dotted red line).

As expected, increasing T improves the total rate and thus the total utility. Fig.4.8 shows

the increase in average PSNR for a range of values of T . For T = 0, the video rate control

is essentially the general rate control, continuously computing the optimal rate at every
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Figure 4.8: Scenario 2 (real sequences). Average PSNR vs. optimization interval T .

iteration. The exact shape of the utility vs. T curve depends on the content of the video,

e.g., how its importance/utility varies over time. The curve in Fig.4.8 is specific to the test

sequences and the A-B topology considered. In general, for a specific scenario, we can use

this curve to select the right value of T so as to meet certain delay and utility requirements.

To summarize, we formulated rate allocation problem for video streaming over coded wireless

networks and presented a distributed solution. Our key intuition was that time varying video

rate and utility affect the network coding opportunities and the total achieved rate. To deal

with time variability, we proposed video rate control over an appropriate time interval so as

to optimize the utility vs. delay tradeoff. In the next section, we consider TCP flows over

coded wireless networks. Similarly to video transmission, the time varying nature of TCP

flows affect the achieved throughput over coded wireless networks and TCP should be aware

of network coding to fully exploit network coding benefit.
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4.4 Network Coding-Aware Queue Management

Over coded wireless networks, TCP flows flows do not fully exploit the network coding

opportunities due to their bursty behavior and due to the fact that TCP is agnostic to the

underlying network coding. Rate mismatch between flows can significantly reduce the coding

opportunities, as there may not be enough packets from different flows at intermediate nodes

to code together.

Example 8 The example shown in Fig. 4.9 illustrates the problem we consider. Since I

can transmit a ⊕ b in one time slot, instead of a, b in two time-slots, network coding has

the potential to improve throughput. However, if there is mismatch between the rates

x1, x2 of the two flows, I may not have packets from the two flows to code together at all

times, and thus does not exploit the full potential of network coding. We confirmed this

intuition through simulations in this example topology. When the buffer size was set to

10 packets at each node and the bandwidth was 1Mbps for each link, we observed that

50% of the time, there were no packets from the two flows at the same time at node I to

code together. For smaller queue sizes and larger transmission rates, there were even fewer

coding opportunities. This means that there is potential for improvement by updating the

protocols so as to mitigate the rate mismatch between TCP flows. This is the observation

that motivates this paper. �

One possible solution to this problem is to artificially delay packets at intermediate nodes [41],

until more packets arrive and can be coded together. However, the throughput increases with

small delay (due to more coding opportunities), but decreases with large delay (which reduces

the TCP rate); the optimal delay depends on the network topology and the background traffic

and also may change over time. Thus, in many practical networking scenarios, introducing

delay at intermediate nodes is not practical.
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Figure 4.9: X topology. Source S1 transmits a flow with rate x1 to receiver R1 and source
S2 transmits a flow with rate x2 to receiver R2, over the intermediate node I. A1 and B1

transmit their packets a and b, in two time slots, and node I receives them. Furthermore, A2

overhears b and B2 overhears a, because A1 −B2 and B1 −A2 are in the same transmission
range and they can overhear each other. In the next time slot, I broadcasts the network
coded packet, a ⊕ b over hyperarc (I, {A2, B2}). Since A2 and B2 have overheard b and a,
they can decode their packets a and b, respectively.

We consider the same problem but we propose a different approach. Our main observation is

that the mismatch between flow rates is due to the dynamic/bursty nature of TCP. Therefore,

the problem can be eliminated by making modifications to congestion control mechanisms (at

the end-points) and/or to queue management schemes (at intermediate nodes) to make them

network coding-aware (in the sense that they can match the rates of flows coded together).

Based on this observation, we take the following steps.

First, we formulate congestion control for unicast flows over wireless networks with inter-

session network coding within the network utility maximization (NUM) framework similar

to the previous sections. We consider the same system model presented in Section 4.1 and

we assume that a known constructive network coding scheme is deployed in a wireless mesh

network; examples include COPE [10] for one-hop network coding and BFLY [33] for two-hop

network coding. The optimal solution of the NUM problem decomposes into several parts,

each of which has an intuitive interpretation, such as rate control, queue management, and

scheduling.
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Second, motivated by the analysis, we propose modifications to congestion control mecha-

nisms, so as to mimic the optimal solution of the NUM problem and to fully exploit the

potential of network coding. It turns out that the optimal solution dictates minimal and

intuitive implementation changes. We propose a network coding-aware queue management

scheme at intermediate nodes (NCAQM), which stores coded packets and drops packets

based on both congestion state and network coding. We note that the queues at intermedi-

ate nodes, which are already used for network coding, are a natural place to implement such

changes with minimal implementation cost. In contrast, we do not propose any practical

modifications to TCP or MAC (802.11) protocols, which significantly simplifies practical de-

ployment of our proposal. Finally, we evaluate our proposal via simulation in GloMoSim [77]

and we show that TCP over NCAQM significantly outperforms TCP over baseline schemes

(e.g., doubles the throughput improvement in some scenarios), and achieves near-optimal

performance.

In the rest of this section, we first present the optimization problem and solutions in sub-

section 4.4.1. Sub-section 4.4.3 presents simulation results. Sub-section 4.4.4 extends our

framework to multi-hop network coding. Sub-section 4.4.5 presents numerical results for the

convergence of the optimal solution.

4.4.1 Network Utility Maximization Formulation

Problem Formulation

The objective is to maximize the total utility function, by appropriately selecting: the flow

rates xs at sources s ∈ S; their traffic splitting parameter αs,kh (following the terminology of

[66]) into network codes k ∈ Kh over hyperarc h at intermediate nodes; and the percentage

of time τh each hyperarc is used:
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max
x,α,τ

∑

s∈S

Us(xs)

s.t.
∑

k∈Kh

max
s∈Sk
{Hs,k

h αs,kh xs} ≤ Rhτh, ∀h ∈ A

∑

h(J )|h∈A

∑

k∈Kh|s∈Sk

αs,kh = 1, ∀s ∈ S, i ∈ Ps

∑

h∈Cq

τh ≤ τ, ∀Cq ⊆ A (4.11)

The first constraint is the capacity constraint. Hs,k
h αs,kh xs indicates the part of flow rate xs

allocated to the k-th network code over hyperarc h. The rate of the k-th network code is the

maximum rate among flows s ∈ Sk coded together in code k: maxs∈Sk{H
s,k
h αs,kh xs} [65]. Dif-

ferent network codes k ∈ Kh over h share the available capacity Rhτh, where Rh is the trans-

mission capacity of h; since h is a set of links, Rh is the minimum: Rh = minj∈h(J ){Ri,jξi,j}

where Ri,j is the capacity of link (i, j), and ξi,j is the probability of successful transmission

over link (i, j). The second constraint is the flow conservation constraint: at every node i

on the path Ps of source s, the sum of αs,kh over all network codes and hyperarcs should be

equal to 1. Indeed, when a flow enters a particular node i, it can be transmitted to its next

hop j as part of different network coded and uncoded flows. The third constraint is due to

interference. As mentioned, τh is the percentage of time h is used. Its sum over all hyperarcs

in a clique should be less than an over-provisioning factor, γ ≤ 1, because all hypearcs in a

clique interferes, and should time share the medium.

91



Solution

By relaxing the capacity constraint in Eq. (4.11), we get the Lagrangian:

L(x,α, τ , q) =
∑

s∈S

Us(xs)−
∑

h∈A

qh

(

∑

k∈Kh

max
s∈Sk
{Hs,k

h αs,kh xs} − Rhτh

)

(4.12)

where qh is the Lagrange multiplier, which can be interpreted as the queue size at hyperarc

h, as discussed later. To decompose the Lagrange function, we rewrite maxs∈Sk{H
s,k
h αs,kh xs}

as max
m
s,k
h

∑

s∈Sk
Hs,k
h αs,kh xsm

s,k
h s.t.

∑

s∈Sk
ms,k
h = 1, where ms,k

h is a new variable, which we

call the the dominance indicator. It indicates whether the source s has the maximum rate

among all flows coded together in the k-th network code, or not. In the next section, we will

see that only the dominant flow in a network code needs to back-off during congestion.

The Lagrange function in Eq. (4.12) is not strictly concave in ms,k
h and this causes oscillation

in its solution. We use the proximal method [82] to eliminate oscillations;

max
m

∑

s∈Sk

(Hs,k
h αs,kh xsm

s,k
h − c(m

s,k
h − µ

s,k
h )2)

s.t.
∑

s∈Sk

ms,k
h = 1, (4.13)

where c is a constant and µs,kh is an artificial variable of the proximal method [82]. Its value

is set to ms,k
h periodically. Let (ms,k

h )∗ be the solution to this problem.

By rewriting the summation
∑

k∈Kh

∑

s∈Sk
as
∑

s∈S

∑

k∈Kh|s∈Sk
, the Lagrange function in

Eq. (4.12) can be expressed as:

L(x,α, τ , q) =
∑

h∈A

qhRhτh +
∑

s∈S



Us(xs)− xs
∑

h∈A

∑

k∈Kh|s∈Sk

qhH
s,k
h αs,kh (ms,k

h )∗



 . (4.14)

Now, we can decompose the Lagrangian into the following intuitive problems: rate control,
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traffic splitting, scheduling, and parameter update (queue management).

Rate Control. First, we solve the Lagrangian w.r.t xs:

xs = (U ′
s)

−1





∑

h∈A

∑

k∈Kh|s∈Sk

qhH
s,k
h αs,kh (ms,k

h )∗



 , (4.15)

where (U ′
s)

−1 is the inverse function of the derivative of Us. If we define wsh =
∑

k∈Kh|s∈Sk

Hs,k
h αs,kh (ms,k

h )∗ and qsh(i) =
∑

h(J )|h∈A qhw
s
h, the rate xs can be expressed as xs = (U ′

s)
−1

(
∑

i∈Ps
qsi ), noting that i = h(i).

In the special case where proportional fairness is desired, Us(xs) = log(xs), ∀s ∈ S, leading

to xs =
(
∑

i∈Ps
qsi
)−1

, i.e., xs is inversely proportional to the total network coded queue sizes

over the path of flows s, which we will be explained later.

Traffic Splitting. Second, we solve the Lagrangian for αs,kh : at each node i along the path

(i.e., i ∈ Ps), the traffic splitting problem can be expressed as

min
α

∑

h(J)|h∈A

∑

k∈Kh|s∈Sk

qhH
s,k
h (ms,k

h )∗αs,kh

s.t.
∑

h(J)|h∈A

∑

k∈Kh|s∈Sk

αs,kh = 1, ∀i ∈ Ps (4.16)

Similarly to Eq. (4.13), we also use the proximal method [82] to solve the optimization

problem in Eq. (4.16).

Scheduling. Third, we solve the Lagrangian for τh. This problem is solved for every

hyperarc and every clique in the conflict graph in the hypergraph.

max
τ

∑

h∈A

qhRhτh

s.t.
∑

h∈Cq

τh ≤ τ, ∀Cq ⊆ A. (4.17)
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Parameter (Queue Size) Update. We find qh, using a gradient descent algorithm: qh(t+

1) = {qh(t) + ct[
∑

k∈Kh

∑

s∈Sk
Hs,k
h αs,kh (ms,k

h )∗xs −Rhτh]}+. Equivalently;

qh(t+ 1) = {qh(t) + ct[
∑

k∈Kh

max
s∈Sk
{Hs,k

h αs,kh xs} −Rhτh]}
+ (4.18)

where t is the iteration number, ct is a small constant, and the + operator makes the Lagrange

multipliers positive. qh can be interpreted as the queue size at hyperarc ∀h ∈ A. Indeed, in

Eq. (4.18), qh is updated with the difference between the incoming
∑

k∈Kh
maxs∈Sk{H

s,k
h αs,kh xs}

and outgoing Rhτh traffic at h. Therefore, we call qh the hyperarc-queue, or h-queue for

brevity. We confirmed the convergence of qh’s via numerical calculations as seen in sub-

section 4.4.5.

4.4.2 Network Coding-Aware Implementation (NCAQM)

In the previous sub-section, we saw that the NUM problem decomposed into Eq. (4.15),

Eq. (4.16), Eq. (4.17), Eq. (4.18), each of which has an intuitive interpretation. Now, we

mimic the properties of the optimal solutions to these problems and propose modifications

to the corresponding protocols to make them network coding-aware. It turns out that only

changes to queue management at intermediate nodes are crucial, while TCP and scheduling

can remain intact. This makes our work amenable to practical deployment.

Summary of Proposed Scheme:

We refer to our Network Coding-Aware Queue Management scheme as NCAQM. NCAQM

builds on and extends COPE [10]. Its goal is to interact with TCP congestion control

in such a way that it matches the rates of TCP flows coded together and thus increases

network coding opportunities. It achieves this goal through the following minimal changes at

intermediate nodes. First, NCAQM stores coded packets in the output queue Qi, as opposed

94



to COPE that stores uncoded packets. Second, NCAQM maintains state per hyperarc queue

qh and per network code transmitted over each hyperarc k ∈ Kh; this is feasible in the setting

of wireless mesh with limited number of flows. Third, during congestion, packets are dropped

from the flow that has the largest number of packets, where this number is computed only

over h-queues where the flow is dominant. Consider several flows coded together in the same

code: the rate of the dominant flow is the rate of the code; and dropping from the dominant

flow matches the rates, as desired. We note that intermediate nodes do already network

coding operations and can be naturally extended to implement these changes.

Detailed Description of Proposed Scheme:

Maintaining Queues: In [10], a wireless node i stores all packets uncoded in a single output

queue Qi and takes decisions at every transmission opportunity about whether to code

some of these packets together or not. In contrast, we propose to network code packets,

if an opportunity exists, at the time we store them in the queue. Motivated by the fact

that Lagrange multiplier (h-queue) qh in Eq. (4.18) can be interpreted as the queue size at

hyperarc h, we maintain h-queue virtually4 for each hyperarc at every node, which keeps

track of packets that are network coded and broadcast over h. The size of an h-queue is Qh

and how it is determined in practice will be explained later. Each node i maintains a single

physical output queue, Qi, which stores all packets (coded and uncoded depending on the

opportunities) passing through it.

Network Coding (Alg. 1): Motivated by the fact that the incoming traffic in Eq. (4.18) is the

sum of the network coded flows over h, we code packets when they are inserted to output

queues. If a network coding opportunity does not exist when the packet arrives at node i,

we just store it in Qi in a FIFO way. Periodically, Alg. 3 runs to check all packets in the

4We maintain a virtual, not a physical, h-queue, because the latter would be difficult in practice: (i)
the total buffer size is limited and allocating it to h-queues is another control parameter; (ii) h-queues may
change over time depending on changes in the topology and traffic scenario; (iii) storing packets in h-queues
may reduce network coding opportunities in a packet-based system (although it is optimal in a flow-based
system) due to opportunistic network coding.
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Algorithm 3 Network coding in output queue Qi at node i
1: for m = 1...L do
2: if ∃pm ∈ Qi then
3: for n = (m+ 1)...L do
4: if pm ⊕ pn is eligible then
5: pm ← pm ⊕ pn
6: end if
7: end for
8: end if
9: Update Qi

10: end for

queue for network coding.

Let Qi = {p1, p2, ..., pl} where p1 is the first and pl is the last packet in the queue; l ≤ L,

where L is the buffer size, i.e., the maximum number of packets that can be stored in Qi.

First, p1 is picked for network coding. Since Qi stores network coded packets, p1 may be

already coded. Independently of whether p1 is network coded or not, it can be further

coded with other packets in the queue beginning from p2, if the following two conditions are

satisfied; (i) the packets constructing p1 and p2 should be from different flows, and (ii) p1⊕p2

should be decodable at the next hop of all packets that construct the network code. If these

conditions are satisfied, we say that the network code is an eligible network code, and p1 is

replaced by p1 ⊕ p2. Then p1 ⊕ p3 is checked for network coding, etc. After all packets are

checked for network coding, the output queue Qi is updated: (i) the final packet p1 is stored

in the first slot of the output queue, and (ii) the memory allocated to other packets are freed.

Then, the same algorithm is run for packet p2, etc. When a transmission opportunity arises,

the first packet from the output queue is checked for network coding again and broadcast

over the hyperarc.

Let the number of packets from flow s in node i be Qs
i . Q

s
i captures the difference between the

incoming and outgoing traffic for flow s at node i. Since an h-queue captures the difference

between the incoming and outgoing traffic over a hyperarc, we calculate its size using the

following heuristic: Qh =
∑

k∈Kh
maxs∈Sk{H

s,k
h α̌s,kh Qs

i}, where α̌
s,k
h is the approximate traffic
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Algorithm 4 Packet dropping at node i during congestion

1: Initialization: Φsi = 0, ∀s ∈ S, S
′

i = ∅
2: if l > L then
3: for ∀s ∈ S do
4: Calculate Φsi =

∑

h(J )|h∈AQhw̌
s
h

5: end for
6: S

′

i = argmaxs∈S{Φsi}

7: Choose a flow s′ ∈ S
′

i randomly
8: if ∃pn ∈ Qi, n = 1..l, from flow s′ then
9: Drop pn
10: else
11: Drop pl
12: end if

13: end if

splitting, explained next.

The traffic splitting parameters αs,kh are found through the optimization problem in Eq. (4.16).

Through numerical calculations, we made the following observation: each αs,kh converges to

the percentage of time that packets from flow s are transmitted with the k-th network code

over h at node i. At each packet transmission, we calculate the probability that a network

code k over hyperarc h can be used for flow s, over a time window. The average calculated

over this window gives a heuristic estimate of the traffic splitting parameter, α̌s,kh .

Packet Dropping (Alg. 2): When a node is congested, it decides which packet to drop. In

order to eliminate the potential of rate mismatch between flows coded together, we propose

that the node compares the number of all (coded and uncoded) packets of each flow, in

queues where the flow is dominant (ms,k
h = 1). This is motivated by the optimal rate control

in Eq. (4.15). More specifically, for each flow s, we calculate Φsi =
∑

h(J )|h∈AQhw̌
s
h, where

w̌sh =
∑

k∈Kh|s∈Sk
and Hs,k

h α̌s,kh m̌s,k
h . Upon congestion, the Φsi ’s are compared and a packet

from the flow with the largest Φsi is dropped, preferably the last uncoded packet. The choice

of the last packet is to make it similar to DropTail. The choice of uncoded packet is so as

to hurt only one flow, as opposed to several. If there is a tie in the Φ’s between flows, one

flow is randomly picked to drop a packet. If all packets from the selected flow are coded, a

new coming packet(s) is dropped instead.
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To estimate the dominance indicator m̌s,k
h needed in Alg. 4, we compute heuristically an

estimate m̌s,k
h as follows. If Hs,k

h α̌s,kh Qs
i < Hs′,k

h α̌s
′,k
h Qs′

i s.t. ∃s′ ∈ Sk − {s}, then m̌s,k
h = 0.

Otherwise, m̌s,k
h = (|Smaxk |)−1 where Smaxk = {s|s ∈ Sk ∧ H

s,k
h α̌s,kh Qs

i = max{Hs′,k
h α̌s

′,k
h Qs

i |

s′ ∈ Sk}}.

Rate Control at the Sources

For logarithmic utility, we saw that the optimal rate control in Eq. (4.15) is xs = (
∑

i∈Ps
qsi )

−1.

qsi corresponds to the length of the network coded queue size of flow s at node i. The optimal

rate xs is inversely proportional to the sum of these queue sizes qsi across all nodes i on its

path Ps. This is essentially a generalization of standard optimal rate control [59], to account

for network coding in the calculation of queue sizes.

When rate control is implemented, it is impractical to feed back to the source the full

information
∑

i∈Ps
qsi , as required by the optimal control. Instead, when a queue is congested,

a packet is dropped or marked [59]. The source uses this binary information as a signal

to reduce its rate, mimicking the inverse relationship in the optimal control. The exact

adaptation of the flow rate depends on the TCP version used. In the simulations, we used

TCP-SACK without any modification. The only change we propose is the packet dropping

scheme at the queue (Alg. 2), to take into account not only congestion but also network

coding. Essentially, TCP still reacts to drops but these drops are caused when the flow is

dominant in at least one network coded queue along the path.

Example 9 Let us re-visit the example in Fig. 4.9. There is only one network coded flow

over h = (I, {A2, B2}) and assume that link transmission rates are the same. Then the two

flows are always coded together and their traffic splitting parameters approach to 1. The

network coded queue sizes are Φ1
I = Qhm̌

1
h and Φ2

I = Qhm̌
2
h, where Qh is the size of the h-

queue for h = (I, {A2, B2}), and m̌1
h and m̌2

h are the dominance indicators for the two flows.
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Since Qh is constant, Φ1
I ,Φ

2
I depend on m̌1

h and m̌2
h, i.e., on which flow has more packets

in the output queue. Upon congestion, a packet from the first is dropped if it has more

packets in the queue. Then, S1 will reduce its rate by transmitting less packets, while flow

S2 keeps increasing its rate, thus decreasing the probability that there is no packet from the

second flow for coding at node I. More generally, the interaction of our queue management

(NCAQM) mechanism and TCP tends to eliminate the rate mismatch of the flows coded

together. �

Scheduling

The scheduling part in Eq. (4.17) has two parts: intra- and inter-scheduling that determine

which packet to transmit from a node and which node should transmit, respectively. Both

have difficulties in practice. Intra-scheduling causes packet reordering at TCP receivers.

Inter-scheduling requires centralized knowledge and it is NP hard and hard to approximate

[60]. Given these difficulties and our original goal to make minimal changes to protocols

related to congestion control, we limit our proposed modifications to the queue management.

We do not propose new scheduling and we use FIFO scheme for packet transmission and

standard 802.11 as wireless MAC.

4.4.3 Performance Evaluation

In this sub-section, we evaluate the throughput of TCP over our proposed scheme (NCAQM)

in various topologies and traffic scenarios. We compare it to TCP over the following baseline

schemes: no network coding (noNC), which uses FIFO without network coding; COPE [10],

which stores native packets in a FIFO and decides which packets to code together at each

transmission opportunity; and the optimal control.
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(a) Alice-and-Bob Topology (b) Cross Topology

(c) Wheel Topology

Figure 4.10: (a) Alice-and-Bob Topology. Two unicast flows, S1−R1, and S2−R2, meeting
at intermediate node I. (b) Cross topology. Four unicast flows, S1 − R1, S2 − R2, S3 − R3,
and S4 − R4, meeting at intermediate node I. (c) Wheel topology. Multiple unicast flows
S1 − R1, S2 − R2, etc., meeting at intermediate node I. I opportunistically combine the
packets and broadcast.

Simulation Setup

We used the GloMoSim simulator [77], which is well suited for wireless. We implemented

from scratch the modules for one-hop network coding over wireless mesh networks (COPE)

as well as for our proposed scheme (NCAQM).

Topologies We simulated four illustrative topologies shown in Fig. 4.9, Fig. 4.10, and

Fig. 4.11. In X and Alice-and-Bob topologies, shown in Fig. 4.9 and Fig. 4.10(a), two
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Figure 4.11: Grid topology. Multiple unicast flows S1−R1, S2−R2, etc., meeting at different
intermediate points.

unicast flows S1−R1 and S2−R2 meet at intermediate node I. In the cross topology, shown

in Fig. 4.10(b), four unicast flows S1 − R1, S2 − R2, S3 − R3, and S4 − R4 are transmitted

via the relay I. In the wheel topology, shown in Fig. 4.10(c), multiple unicast flows such

as S1 − R1, S2 − R2, S3 − R3, S4 − R4, and etc. are combined at the intermediate node

I. Note that the wheel topology is the generalized version of the cross topology shown in

Fig. 4.10(b). In all these topologies node I; (i) performs network coding, and (ii) is placed

in the center of a circle with 90m radius over 200m× 200m terrain and all other nodes are

placed around the circle. Finally, we considered the grid topology shown in Fig. 4.11, in

which nodes are distributed over a 300m×300m terrain, divided into 9 cells of equal size. 15

nodes are divided into sets consisting of 1 or 2 nodes and each set is assigned to a different

cell. Nodes in a set are randomly placed within their cell. If both the transmitter and the

receiver are in the same cell or in neighboring cells, there is a direct transmission; otherwise,

a node in a neighboring cell acts as a relay. If there are more than one neighboring cells, one

is chosen at random. In all topologies, a single channel is used for both uplink and downlink

transmissions.

MAC: In the MAC layer, we simulated IEEE 802.11 with RTS/CTS enabled and with the

following modifications for network coding. First, we need a broadcast medium, which is

hidden by the 802.11 protocol. We used the pseudo-broadcasting mechanism of [10]: packets
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are XOR-ed in a single unicast packet, an XOR header is added for all nodes that should

receive that packet, and the MAC address is set to the address of one of the receivers. A

receiver knows whether a packet is targeted to it from the MAC address or the XOR header.

Wireless Channel: We used the two-ray path loss model and Rayleigh fading in Glomosim.

We set the average loss rate to 15%. In our simulations 15% loss rate is medium loss rate,

and residual loss rate after MAC re-transmissions is less than 1%.5

TCP Traffic We consider FTP/TCP traffic on top of the wireless network. In the Alice-

and-Bob, X, cross, and wheel topologies, TCP flows, between the pairs of nodes described

above, start at random times within the first 5sec and live until the end of the simulation.

In the grid topology, TCP flows arrive according to a Poisson distribution with average 6

flows per 30sec. The sender and the receiver of a TCP flow are chosen randomly. If the

same node is chosen, the random selection is repeated.

Simulation Results

In this section, we present simulation results for the Alice-and-Bob, X, cross, wheel, and grid

topologies. We compare to: (i) TCP over NCAQM (TCP+NCAQM), (ii) TCP over COPE

(TCP+COPE), (iii) the optimal solution (optimal rate control in Eq. (4.15) working together

with the optimal queue management in Eq. (4.18)). We report the average throughput of

each scheme as % improvement over the throughput of the baseline TCP+noNC. In addition,

we report transport level throughput. All throughput results reported in this section are

averaged over 1min simulation duration first, then over 10 simulations with different seeds.

Table 4.5 presents the results for the following parameters: the buffer size at each interme-

5When channel loss rate increases, there are two problems. First, the residual loss rate after MAC
re-transmissions increases. Therefore, TCP is not able to utilize the medium effectively and benefit of
network coding reduces. Second, network coding decision at intermediate nodes becomes erroneous, because
intermediate nodes do not know which packets are overheard correctly. These issues are out of scope of this
chapter, and we have analyzed them separately in the next chapter.
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diate node is 10 packets6; the packet size is 500B; the channel capacity is 1Mbps. In this

scenario, TCP+NCAQM has two advantages: (i) it stores network coded packets instead

of the uncoded ones, thus uses the buffer more effectively, and (ii) it drops packets so that

network coding opportunities increase. Thus, our scheme (TCP+NCAQM) significantly im-

proves throughput as compared to TCP+COPE in all four topologies. It is also seen from

the table that there is still a gap between our scheme and the optimal improvement due to

the very limited buffer size for multiple flows at the relay. Yet, even in this challenging sce-

nario, TCP+NCAQM significantly improves over TCP+COPE: it doubles the throughput

improvement of TCP+COPE.

In Table 4.5, the improvement of TCP+NCAQM and TCP+COPE in Alice-and-Bob topol-

ogy is slightly smaller as compared to X topology, although Alice-and-Bob and X topologies

have the same optimal improvement (33%). In Alice-and-Bob topology, source nodes are also

receiver nodes, i.e., S1−R2 and S2−R1 pairs are the same nodes; A1, A2, respectively. There-

fore, transport level data and ACK packets share the same buffers at these source/receiver

nodes. Due to the limited buffer size, some packets are dropped at the source/receiver nodes,

and this reduces TCP throughput. It is also seen that the improvement in cross and grid

topologies is larger as compared to Alice-and-Bob and X topologies, for the following rea-

sons: (i) in cross topology, four flows (i.e., four packets) are combined at the intermediate

node (I) instead of two flows, and (ii) in grid topology, we have observed that, during a part

of 1min simulation duration, four or more flows are combined at intermediate nodes.

Fig. 4.12 presents the cumulative distributed function (CDF) of throughput improvement for

the Alice-and-Bob, X, cross, and grid topologies and the same setup. The CDFs are calcu-

lated over 30 seeds. One can see that the CDF of TCP+NCAQM is shifted to significantly

higher throughput levels compared to TCP+COPE in all four topologies. For example,

TCP+NCAQM improves the throughput more than 20% and 40% in more than 60% of the

6Note that 10 packet buffer size corresponds to bandwidth-delay product (BDP) in our simulation sce-
nario. We also present simulation results for larger buffer sizes later in this section.

103



Table 4.5: Average throughput improvement compared to noNC.

Optimal TCP+NCAQM TCP+COPE

Alice-and-Bob Topology 33% 18% 8%

X Topology 33% 19% 9%

Cross Topology 60% 39% 21%

Grid Topology - 35% 18%

realizations in Alice-and Bob and cross topologies, respectively. In contrast to Alice-and-Bob

and cross topologies, we also observe that the CDF of TCP+NCAQM is shifted to higher

throughput levels compared to the CDF of TCP+COPE in the cross and grid topologies. In

the cross and grid topologies, it is possible to code more than two flows together, and when

the number of flows coded together increases, the way that TCP+NCAQM uses buffers and

balances the rates becomes more important. Thus, we see larger improvement in the cross

and grid topologies.

Fig. 4.13 shows the average transport-level throughput versus the buffer size, for the Alice-

and-Bob, X, cross, and grid topologies. Packet size is 500B, and channel capacity is 1Mbps.

Our observations from Fig. 4.13 are in the following.

The throughput improvement of TCP+noNC for different buffer sizes is negligible in all

topologies. The reason is that 10 packet buffer size is already matched to bandwidth-

delay product (BDP) and TCP utilizes wireless medium effectively for almost all buffer

sizes when network coding is not used (TCP+noNC). However, for network coding schemes

(TCP+NCAQM and TCP+COPE), the throughput increases significantly with increasing

buffer size. This shows the importance of active queue management in coded networks.

When buffer sizes are small, the improvement of TCP+NCAQM over TCP+noNC is sig-

nificantly larger than that of TCP+COPE. This is for the same reason explained earlier:

TCP+NCAQM stores network coded, instead of uncoded packets, thus using buffer more

effectively, and it drops packets so that network coding opportunities increase. Thus, our
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(a) Alice-and-Bob topology
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(b) X topology
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(c) Cross topology

0 10 20 30 40 50 60 70
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Throughput Improvement(%)

C
u

m
u

la
ti
v
e

 F
ra

c
ti
o

n

TCP+NCAQM
TCP+COPE

(d) Grid topology

Figure 4.12: Cumulative distribution function (CDF) of throughput improvement for Alice-
and-Bob (shown in Fig. 4.10(a)), X (shown in Fig. 4.9), cross (shown in Fig. 4.10(b)), and
grid (shown in Fig. 4.11) topologies. Buffer size is 10 packets, packet sizes are 500B, and
the channel capacity is 1Mbps. The distributions are generated over 30 seeds.

scheme (TCP+NCAQM) significantly improves throughput as compared to TCP+COPE in

all four topologies.

The throughput of TCP+COPE increases when buffer sizes increase, which is intuitively ex-

pected. The problem addressed in this section was the mismatch between rates of flows

coded together, due to the bursty nature of TCP, which reduces coding opportunities.

However, when buffer sizes increase, there are more packets available in queues for cod-
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ing. Thus, TCP+COPE exploits coding opportunities at larger buffers and its throughput

increases. However, even at the large buffer sizes, TCP+NCAQM improves throughput

more than TCP+COPE. For example, TCP+NCAQM improves throughput 7% more than

TCP+COPE in X topology when buffer size is 50 packets. Fig. 4.13 demonstrates that our

scheme is particularly beneficial in harsh buffer size conditions.

The improvement of TCP+NCAQM over TCP+noNC exceeds the optimal throughput at

some buffer sizes. E.g., the improvement of TCP+NCAQM over TCP+noNC is around 40%

in the X topology when the buffer size is set to 30 packets (although the optimum improve-

ment is 33%). The reason is that since TCP+NCAQM uses the buffer more effectively by

storing network coded packets instead of uncoded packets, TCP can utilize the medium more

effectively, thus the TCP rate increases beyond the network coding benefit.

Fig. 4.14 shows the average transport-level throughput versus the number of flows in the

wheel topology shown in Fig. 4.10(c). The buffer size is 30 packets, the packet size is

500B, and channel capacity is 1Mbps. One can see from the figure that the throughput

of TCP+noNC reduces with increasing number of flows. This is expected, because when

the number of flows increases, all flows share the same queue at the intermediate node I.

As a result, the round trip time of each flow increases, and thus the TCP rate decreases.

On the other hand, the throughput of TCP+NCAQM and TCP+COPE increases with

the number of flows, because when the number of flows increases, there are more network

coding opportunities and more packets can be combined together (i.e., it is possible to

combine 8 packets when the number of flows is 8). TCP+NCAQM significantly improves

over TCP+COPE for all number of flows, especially when the number of flows is large.

This is intuitive, because when the number of flows increases, network coding opportunities

increases, and TCP+NCAQM exploits these opportunities effectively.

Fig. 4.15 presents the average transport-level throughput versus channel capacity for the

Alice-and-Bob, X, cross, and grid topologies. The buffer size is 30 packets, and the packet
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(a) Alice-and-Bob topology
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(b) X topology
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(c) Cross topology
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(d) Grid topology

Figure 4.13: Average throughput (averaged in 1min simulation first, then over 10 seeds)
versus buffer size for Alice-and-Bob (shown in Fig. 4.10(a)), X (shown in Fig. 4.9), cross
(shown in Fig. 4.10(b)), and grid (shown in Fig. 4.11) topologies. Packet size is 500B, and
channel capacity is 1Mbps.

size is 500B. One can see from the figure that when the channel capacity increases, the

gap between TCP+NCAQM and TCP+COPE increases. Therefore, while the improvement

of TCP+NCAQM over TCP+noNC increases with increasing channel capacity, it decreases

for TCP+COPE. Namely, the improvement of TCP+NCAQM increases from 40% to 42%,

while the improvement of TCP+COPE decreases from 27% to 16% in X the topology. The

improvement of TCP+NCAQM is quite significant; more than double the improvement of

TCP+COPE at 11Mbps channel capacity. The reason is that when the channel capacity
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Figure 4.14: Average throughput (averaged in 1min simulation first, then over 10 seeds)
versus the number of flows in wheel topology shown in Fig. 4.10(c). Buffer size is 30 packets,
packet size is 500B, and the channel capacity is 1Mbps.

increases, more packets share buffer at intermediate node. TCP+NCAQM can improve the

throughput by using the shared buffers more effectively, and by dropping packets so as to

increase network coding opportunities.

4.4.4 Multi-Hop Network Coding

In this sub-section, we extend our framework from one-hop to multi-hop network coding.

We note that our framework can accommodate any given multi-hop network coding scheme,

but we use BFLY [33] in our simulations, as an example.

System Model

We consider the same system model as in Section 4.1, with the difference of multi-hop, as

opposed to one-hop, network coding. A flow s can be network coded and decoded several

times over its path Ps. The network coded flow may be transmitted over multiple (M) hops,

which we call M-hop network coding. M-hop network coding is implemented by COPE [10]
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(a) Alice-and-Bob topology
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(b) X topology
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(c) Cross topology
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(d) Grid topology

Figure 4.15: Average throughput (averaged in 1min simulation first, then over 10 seeds)
versus channel capacity for Alice-and-Bob (shown in Fig. 4.10(a)), X (shown in Fig. 4.9),
cross (shown in Fig. 4.10(b)), and grid (shown in Fig. 4.11) topologies. Buffer size is 30
packets, and packet size is 500B.

for M = 1, BFLY [33] for M = 2, or other network coding schemes for M > 2. We assume

that a flow s cannot be network coded if it (or a part of it) is already coded. This assumption

allows us to divide the path Ps to Fs intermediate paths which we call network coding paths.

Over its f -th network coding path, where f ∈ {1, . . . , Fs}, flow s can be network coded with

Γsf ∈ {0, 1, . . . , |S − {s}|} other flows. Without loss of generality, we can assume that a flow

may be transmitted over the f -th network coding path without network coding; i.e., Γsf = 0.

A flow s can be divided into network coded and non-network coded parts over a network
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Figure 4.16: Butterfly topology. Source S1 transmits a flow with rate x1 to receiver R1

and source S2 transmits a flow with rate x2 to receiver R2, over the intermediate nodes I1
and I2. Nodes A1 and B1 transmit their packets a and b, in two time slots, and node I1
receives them. Node B2 overhears a and A2 overhears b, because A1 − B2 and B1 − A2 are
in the same transmission range and they can overhear each other. In the next time slot,
I1 transmits the network coded packet a ⊕ b to node I2. Finally, I2 broadcast a ⊕ b over
hyperarc (I2, {A2, B2}). Since A2 and B2 have overheard b and a, they can decode their
packets a and b, respectively.

coding path f , where Zfs is the set of partitions of flow s over its f -th network coding path.

Each partition z ∈ Zfs transmitted over hyperarc h has one-to-one mapping with the k-th

network code over h such that k ∈ Kh, i.e., z = η(k) over h where η is an injective function.

Example 10 The example shown in Fig. 4.16 illustrates the problem with 2-hop network

coding. The flow from source S1 is transmitted over the link A1−I1 without network coding

and it is network coded over the links I1 − I2 and I2 − A2. Over the network coding path,

including the set of nodes I1, I2, A2, the flow rate x1 is partitioned into a network coded and

a non-network coded part. The network coded part is combined with the corresponding part

of the flow from source S2, transmitted over I1 − I2, and broadcast over (I2, {A2, B2}). The

other part is transmitted over I1 − I2 and I2 − A2 without network coding. Similar to the

one-hop network coding in Example 8, if there is a mismatch between the rates x1, x2 of the

two flows, network coding benefit is not fully exploited. The goal is to solve this problem,

assuming a given multi-hop network coding scheme. �
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Problem Formulation

We consider the following NUM problem;

max
x,α,τ

∑

s∈S

Us(xs)

s.t.
∑

k∈Kh

max
s∈Sk
{Hs,k

h αs,kh xs} ≤ Rhτh, ∀ h ∈ A

∑

z∈Zfs

βs,zf = 1, ∀ s ∈ S, f = 1, ..., Fs

αs,kh =















βs,zf , ∃ z = η(k), z ∈ Zfs , f = 1, ..., Fs

0, otherwise.

∑

h∈Cq

τh ≤ τ, ∀ Cq ⊆ A (4.19)

The NUM problem in Eq. (4.19) is similar to the one in Eq. (4.11), in terms of the ob-

jective functions, capacity and interference constraints. We only need to update the flow

conservation constraint (the second constraint) and add the third constraint, as explained

below.

We introduce a new traffic splitting parameter βs,zf which represents the percentage of the

flow rate xs allocated to the z-th partition of flow s over its f -th network coding path. The

traffic splitting parameters should sum up to 1 according to the flow conservation constraint

over each network coding path (the second constraint). Since there is a one-to-one mapping

between the z-th partition and the k-th network code over h, the traffic splitting parameters,

αs,kh and βs,zf should be equal (the third constraint). This also implies the following equalities;

Hs,k
h = Hs,z

h , ms,k
h = ms,z

h .
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Solution

We use Lagrangian relaxation to solve the optimization problem in Eq. (4.19) by relaxing the

capacity constraint with Lagrange multipliers qh. We obtain the same Lagrange function in

Eq. (4.12). The Lagrange function is decomposed into the same subproblems as in Eq. (4.13),

Eq. (4.15), Eq. (4.17) and Eq. (4.18). The only different subproblem is the traffic splitting

problem, which can be expressed as

min
α

∑

h∈A

∑

k∈Kh|s∈Sk

qhH
s,k
h αs,kh (ms,k

h )∗

s.t.
∑

z∈Zfs

βs,zf = 1, ∀ s ∈ S, f = 1, ..., Fs

αs,kh =















βs,zf , ∃ z = η(k), z ∈ Zfs , f = 1, ..., Fs

0, otherwise.

(4.20)

The objective function in Eq. (4.20) can be expanded to be

Fs
∑

f=1

∑

h∈Af

∑

k∈Kh|s∈Sk

qhH
s,k
h αs,kh (ms,k

h )∗,

where Af is the set of hyperarcs that originate from the nodes in the f -th network coding

path of flow s. The two objective functions are equivalent considering the fact that the

objective function in Eq. (4.20) is equal to zero for hyperarcs which are not originated from

the nodes over the flow’s network coding paths, because the indicator functions (Hs,k
h ) are

zero for those hyperarcs.

Now, let Zf,hs represent the set of partitions of the flow s over h in its f -th network coding

path. Then,
∑

k∈Kh|s∈Sk
and

∑

z∈Zf,hs
are equivalent, due to the one-to-one mapping between

the z-th partition and k-the network code over h. Usage of
∑

z∈Zf,hs
instead of

∑

k∈Kh|s∈Sk
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implies the following changes; αs,kh = βs,zf , Hs,k
h = Hs,z

h , and ms,k
h = ms,z

h . Then, the problem

reduces to

min
β

Fs
∑

f=1

∑

h∈Af

∑

z∈Zf,hs

qhH
s,z
h βs,zf (ms,z

h )∗

s.t.
∑

z∈Zfs

βs,zf = 1, ∀ s ∈ S, f = 1, ..., Fs (4.21)

The objective in Eq. (4.21) is expressed as
∑Fs

f=1

∑

z∈Zfs

∑

h∈Af,zqhH
s,z
h βs,zf (ms,z

h )∗ where Af,z

which is the subset of Af contains the hyperarcs over which the z-th partition of the f -th

network coding path of flow s is transmitted. The two objective functions are equivalent,

because the indicator functions (Hs,k
h ) are zero for h 6∈ Af,z. Finally, the traffic splitting

problem for s ∈ S, f = 1, ..., Fs is expressed as

min
β

∑

z∈Zfs

βs,zf

(

∑

h∈Af,z

qhH
s,z
h (ms,z

h )∗

)

s.t.
∑

z∈Zfs

βs,zf = 1, ∀ s ∈ S, f = 1, ..., Fs (4.22)

Similar to what we have done to solve Eq. (4.16), we use the proximal method [82] to solve

this problem.

Simulation Results

We evaluate the throughput of TCP over NCAQM compared to TCP over the following

baseline schemes: no network coding (noNC), which uses FIFO without network coding;

BFLY [33], which utilizes knowledge of the local topologies by exchanging periodic messages

that includes neighbors of nodes and source route information in the packet headers to

exploit butterfly structures in wireless mesh networks. Similarly to COPE, BFLY stores

113



native packets in a FIFO and decides which packets to code together at each transmission

opportunity. We used the GloMoSim simulator [77] to implement the modules for two-hop

network coding over wireless mesh networks (BFLY) as well as for our proposed scheme

(NCAQM).

We simulate the butterfly topology shown in Fig. 4.16 in which two unicast flows S1, R1 and

S2, R2 meet at intermediate node I1. In this topology, nodes are placed over 300m×300m in

butterfly like structure and a single channel is used for both uplink and downlink transmis-

sions. We consider the same MAC update and wireless channel model as in Section 4.4.3.

We consider FTP/TCP traffic over the wireless network. TCP flows, between the pairs of

nodes described above, start at random times within the first 5sec and live until the end of

the simulation.

Fig. 4.17(a) presents the average transport-level throughput vs. buffer size. Similarly to the

simulation results in Section 4.4.3, TCP+NCAQM improves throughput much more than

TCP+BFLY. Specifically, when buffer size is 10 packets, the improvement of TCP+BFLY

over TCP+noNC is 13%, the improvement of TCP+NCAQM over TCP+noNC is 30%, while

the optimum improvement is 50%. When buffer size increases, we see that TCP+NCAQM

approaches and exceeds the optimum; e.g., the improvement of TCP+NCAQM is 65% when

buffer size is 30 packets, while it is 45% for TCP+BFLY. This shows that the advantages of

TCP+NCAQM also apply to two-hop network coded wireless mesh networks.

Fig. 4.17(a) presents the average transport-level throughput vs. channel capacity. We can see

that the improvement of TCP+NCAQM is larger than TCP+BFLY for all channel capacities

and it is especially significant for large channel capacities, since TCP+NCAQM uses buffer

more effectively and drops packets so that network coding opportunities increase.
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Figure 4.17: Average throughput (averaged in 1min simulation first, then over 10 seeds) in
butterfly topology shown in Fig. 4.16. (a) Buffer size: packet size is 500B, and the channel
capacity is 1Mbps. (b) Channel capacity: buffer size is 30 packets, and packet size 500B.

4.4.5 Numerical Results: Convergence

In this sub-section, we present numerical results that demonstrate the convergence of the

solutions of NUM problems for one-hop and multi-hop network coding.

One-hop Network Coding

First, we consider the Alice-and-Bob topology presented in Fig. 4.10(a). We consider two

cases for wireless channel capacities: (i) C1 = C2 = 1 units/transmission7, and (ii) C1 =

1, C2 = 4. For the first case, the convergence of rates x1, x2, and x1 + x2 is presented

in Fig. 4.18(a). One can see that the total rate x1 + x2 converges to 0.66 which is the

optimal achievable rate when network coding is used for this scenario. Note that total

achieved throughput is 0.50 for this scenario when network coding is not used. For the

second case, it is seen in seen in Fig. 4.19(a) that the total throughput approaches to the

7We omit the units in the rest of the section for brevity.
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(b) Lagrange multipliers

Figure 4.18: Convergence results for the Alice-and-Bob topology presented in Fig. 4.10(a).
The total achieved rate approaches the optimum throughput 0.66. The optimum throughput
is 0.50 when there is no network coding. C1 = C2 = 1.

optimal achievable rate of 0.88 when network coding is used. Note that the total achievable

throughput is 0.80 when network coding is not used. We also present the convergence of

Lagrange multipliers; qA1,I , qA2,I , qI,A2, qI,A1 , and qI,{A1,A2} for both cases in Fig. 4.18(b) and

Fig. 4.19(b), respectively.

Second, we consider the X topology presented in Fig. 4.9. We consider two cases for wireless

channel capacities: (i) C1 = C2 = C3 = C4 = 1, and (ii) C1 = C4 = 1, C2 = C3 = 4. In both

cases the total rate x1+x2 approaches to the optimum achievable rates; 0.66 and 1.3 as seen

in Fig. 4.20(a) and Fig. 4.21(a). We also show results for the convergence of the Lagrange

multipliers for both cases in Fig. 4.20(b) and Fig. 4.21(b).

Multi-Hop Network Coding

We consider the butterfly topology presented in Fig. 4.16. We consider two scenarios for the

wireless channel capacities; (i) C1 = C2 = C3 = C4 = C5 = 1 and (ii) C1 = C2 = C4 = C5 =
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(b) Lagrange multipliers

Figure 4.19: Convergence results for the Alice-and-Bob topology presented in Fig. 4.10(a).
The total achieved rate approaches the optimum throughput 0.88. The optimum throughput
is 0.80 when there is no network coding. C1 = 1, C2 = 4.
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(b) Lagrange multipliers

Figure 4.20: Convergence results for the X topology presented in Fig. 4.9. The total achieved
rate approaches to the optimum throughput 0.66. The optimum throughput is 0.50 when
there is no network coding. C1 = C2 = C3 = C4 = 1.

4, C3 = 1. The total rate approaches the optimal achievable rate in both scenarios: 0.5 for

the first case as shown in Fig. 4.22(a), and 1.14 for the second case as shown in Fig. 4.23(a).

We also show the convergence of the Lagrange multipliers, Fig. 4.22(b) and Fig. 4.23(b).
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(b) Lagrange multipliers

Figure 4.21: Convergence results for the X topology presented in Fig. 4.9. The total achieved
rate approaches the optimum throughput 1.3. The optimum throughput is 0.80 when there
is no network coding. C1 = C4 = 1, C2 = C3 = 4.
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(b) Lagrange multipliers

Figure 4.22: Convergence results for the butterfly topology presented in Fig. 4.16. The total
achieved rate approaches the optimum throughput 0.50. The optimum throughput is 0.33
when there is no network coding. C1 = C2 = C3 = C4 = C5 = 1.

4.5 Summary

In this chapter, we first argued in favor of making rate control and scheduling network-coding

aware over coded wireless networks. We gave the main intuition and also compared NC-aware

118



0 500 1000 1500 2000
0

0.5

1

1.5

2

2.5

3

3.5

4

Iteration Number

R
a

te

x
1
        

x
2
        

x
1
 + x

2

(a) Rate

0 500 1000 1500 2000
0

0.5

1

1.5

2

2.5

Iteration Number

q
 V

a
lu

e

q
A

1
,I

1

        

q
B

1
,I

1

        

q
I
1
,I

2

        

q
I
2
,B

2

        

q
I
2
,A

2

        

q
I
2
,{A

2
,B

2
}

(b) Lagrange multipliers

Figure 4.23: Convergence results for the butterfly topology presented in Fig. 4.16. The total
achieved rate approaches the optimum throughput 1.14. The optimum throughput is 0.66
when there is no network coding. C1 = C2 = C4 = C5 = 4, C3 = 1.

vs. NC-unaware, both optimal and practical, schemes. In addition to the formulations, we

presented simulation results for an illustrative example with two cross flows, which captures

the main intuition and should be a building block of any large scenario with cross-flows

and network coding. In general, the benefit from NC awareness depends on (i) the network

coding opportunities (ii) the conflicts of network coded flows with other flows and (iii) the

link rates where (i) and (ii) depend on the topology and traffic scenario.

Second, we showed that video rate control naturally fits in network utility maximization

framework, with the additional complication that the time varying video rate and utility

affect the network coding opportunities and the total achieved utility; to deal with time

variability, we proposed video rate control over an appropriate time interval so as to opti-

mize the utility vs. delay tradeoff. We formulated the problem, and showed that it has a

distributed solution, and we provided insights into the interaction of rate control and network

coding for video streaming.

Third, we showed how to improve the performance of TCP over coded wireless networks.
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The key intuition was to eliminate the rate mismatch between flows that are coded together

through a synergy of rate control and queue management. First, we formulated congestion

control as a NUM problem and derived a distributed solution. Motivated by the structure of

the solution, we proposed minimal modifications to queue management to make it network

coding-aware, while TCP and MAC protocols remained intact. Simulation results show that

the proposed NCAQM scheme doubles TCP performance compared to baseline schemes

and achieves near-optimal performance. We have also extended the NUM formulation and

solution to multi-hop network coding and we have confirmed convergence through numerical

calculations.
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Chapter 5

I2NC: Intra- and Inter-Session

Network Coding

The focus of this chapter is on the performance of network coding in the presence of non-

negligible loss rates. Loss in wireless networks is a challenging problem: recent studies of

IEEE 802.11b based wireless mesh networks [90], [91], have reported packet loss rates as

high as 50% which typically translates to low application level goodput and high delay [92].

Furthermore, network coding over wireless networks amplifies this problem. The reasons

are that (i) when a network coded packet is lost more than one packet is lost which should

be considered separately, (ii) intermediate nodes in opportunistic network coding scheme

(COPE, [10]) requires the knowledge of what their neighbors have overheard, in order to

perform one-hop inter-session network coding. However, in the presence to medium-high loss

rate, this information is limited, possibly corrupted, and/or delayed over wireless channels.

The approach taken by [10] is to turn off network coding if loss rate exceeds a threshold

with default value 20% [10]. However, this does not take full advantage of all the available

network coding opportunities. To better illustrate this key point, let us discuss the following

example.
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Figure 5.1: Example of a unicast flow (from S1 to R1) traversing multiple wireless hops.
Each intermediate node performs one-hop (intra-session and inter-session) network coding.
The neighborhood of one intermediate node I is shown here in detail. (Two unicast flows,
S1 − R1 and S2 − R2, meeting at intermediate node I. I receives packets a, b from nodes
A1, B1, respectively. It can choose to broadcast a, b or a+ b in a single transmission to both
receivers. The next hops A2, B2 can decode a + b because they overhear packets b and a
transmitted from B1, A1, respectively.)

Example 11 Let us consider Fig. 5.1. For the moment, let us focus only on the neighbor-

hood of intermediate node I, i.e., only the packets transmitted via I, from A1 to A2 and from

B1 to B2. This forms an X topology and is a well-known, canonical example of one-hop op-

portunistic network coding [9, 10]. In the absence of loss, throughput is improved by 33.3%,

because I delivers two packets in three transmissions (with network coding), instead of four

(without network coding). Let us consider this example when there is packet loss. Assume

that there is loss only on the overhearing link A1−B2, w.p. ρ{A1,B2} = 0.3, and all other links

have no loss. In this case, 70% of the packets can still be coded together, and throughput

can be improved by 26%, which is still a significant improvement. Even at higher loss rate,

e.g., ρ{A1,B2} = 0.5, inter-session coding still improves throughput by 16.6%. This is under

the assumption that I knows the exact state of A2, B2, i.e., what packets were overheard,

and thus I is able to decide what packets to code together so as to guarantee decodability
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at the receivers. However, at high loss rates, coordination among nodes becomes difficult.

This is why [10] turns off the coding functionality when loss rate is higher than a threshold

with default value 20%, thus not taking full advantage of all coding opportunities. �

In this chapter, we propose a solution to this problem by introducing redundancy at inter-

mediate nodes. As compared to previous work in [93], [72] which explore network coding

benefit using redundancy and additional transmissions, we consider intra-session network

coding to combine packets within the same flow and introduce parity packets to protect

against loss. Then, we use inter-session network coding to combine packets from different

(already intra-session coded) flows, as in [9, 10], and thus increase throughput. Our ap-

proach for combining intra- with inter-session network coding, which we refer to as I2NC,

has two key benefits. First, it can correct packet loss and still perform inter-session network

coding, even in the presence of medium-high loss rates, thus improving throughput. Second,

the use of intra-session network coding makes all packets in the session equally beneficial

for the receiver. Thus, I2NC eliminates the need to know the exact packets that have been

overheard by the neighbors of intermediate node I.

We note that adding redundancy in the this setting is non-trivial, since a flow is affected not

only by loss on its direct path, but also by loss on overhearing links that affect the decodability

of coded packets. Therefore, we need to carefully determine how much redundancy to add

and on which node.

Example 11 - continued Consider again the neighborhood of I in Fig. 5.1. Flow 2 is

affected not only by loss on its own path B1−I−B2, but also by loss on the overhearing link

A1−B2, which affects the decodability of coded packet a+ b at B2. In order to protect flow

2 from high loss rate on the overhearing link A1 − B2, the intermediate node I may decide

either to add redundancy on flow 2, or to not perform coding (as in [10]), or a combination

of the two. On the other hand, I may also decide to add redundancy on flow 1, to correct
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loss on the overhearing link A1 − B2, thus helping B2 to receive a and be able to decode

a+ b. �

Therefore, a number of questions need to be addressed in the design of a system that combines

both intra- and inter-session network coding. In particular:

Q1: How to gracefully combine intra- and inter-session network coding at intermediate

nodes? We propose a generation-based design and specify the order in which we per-

form the two types of coding.

Q2: How much redundancy to add in each flow? We show how to adjust the amount of

redundancy after taking into account the loss on the direct and overhearing links. We

implement the intra-session network coding functionality as a thin layer between IP

and transport layer.

Q3: What percentage of flows should be coded together and what parts should remain un-

coded? We design algorithms that make this decision taking into account the loss

characteristics on the direct and overhearing links. We implement this and other

functionality (e.g., queue management) performed with or after inter-session network

coding as a layer between MAC and IP (similarly to [10]).

Q4: What information do we need to know in order to make these decisions? We propose

two schemes: I2NC-state, which needs to know the state (i.e., overheard packets) of

the neighbors; and I2NC-stateless, which only needs to know the loss rate of links in

the neighborhood.

Our approach is grounded on a network utility maximization (NUM) framework [60]. We

formulate two variants of the problem, depending on what type of information is available

(as in question Q4 above). The solution of each problem decomposes into several parts with

an intuitive interpretation, such as rate control, network coding rate, redundancy rate, queue
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management, and scheduling. The structure of the optimal solution provides insight into

the design of our two schemes, I2NC-state and I2NC-stateless.

We evaluate our schemes in a multi-hop setting and we consider their interaction with the

transport layer, including TCP and UDP. We propose a thin adaptation layer at the interface

between TCP and the underlying coding, to best match the interaction of the two. We

perform simulations in GloMoSim [77] and we show that our schemes significantly improve

throughput compared to the scheme proposed in [10].

The structure of the rest of the chapter is as follows. Section 5.1 gives an overview of the

system model. Section 5.2 presents the NUM formulation and solution. Section 5.3 presents

the design of the I2NC schemes in detail. Section 5.4 presents simulation results. Section 5.6

summarizes the chapter.

5.1 System Model

We consider multi-hop wireless networks, where intermediate nodes perform intra- and inter-

session network coding (I2NC), as exemplified in Fig. 5.1. In what follows, we provide an

overview of the system and highlight some of its key characteristics.

5.1.1 Notation and Setup

Sources and Flows

Let S be the set of unicast flows between source-destination pairs in the network. Each flow

s ∈ S is associated with a rate xs and a utility function Us(xs), which we assume to be a

strictly concave function of xs.
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Wireless Transmission

Packet transmissions from a source (e.g., S1 in Fig. 5.1) traverses potentially multiple wireless

hops before being received by the receiver (e.g., R1). We consider the model for interference

in wireless networks described in [81]: each node can either transmit or receive at the same

time and all transmissions in the range of the receiver are considered as interfering.

We use the following terminology for the links involved in one-hop transmission. A hyperarc

(i,J ) is a collection of links from node i ∈ N to a non-empty set of next-hop nodes J ⊆ N .

A hypergraph H = (N ,A) represents a wireless mesh network, where N is the set of nodes

and A is the set of hyperarcs. For simplicity, h = (i,J ) denotes a hyperarc, h(i) denotes

node i and h(J ) denotes node J , i.e., h(i) = i and h(J ) = J . We use these representations

interchangeably. Each hyperarc h is associated with a channel capacity Rh. Since h is a set

of links, Rh is the minimum link capacity of the links in the hyperarc: Rh = minj∈h(J){Ri,j}

s.t. i ∈ N . In the example of node I in Fig. 5.1, h = (I, {B2, A2}) is one of the hyperarcs,

it consists of links I −B2 and I − A2 and has capacity min{R{I,B2}, R{I,A2}}.

Note that with both intra-session and inter-session network coding, it is possible to construct

more than one code over a hyperarc (i,J ). Let Ki,J be the set network codes over a hyperarc

(i,J ). Sk ⊆ S be the set of flows coded together using code k ∈ Ki,J and broadcast over

(i,J )1.

Given a hypergraph H, we can construct the conflict graph C = (A, I), whose vertices are the

hyperarcs of H and edges indicate interference between hyperarcs. A clique Cq ⊆ A consists

of several hyperarcs, at most one of which can transmit simultaneously without interference.

1Note that we consider constructive inter-session network coding, i.e., network codes k ∈ Ki,J as well as
h = (i,J ) is determined at each node with periodic control packet exchanges or estimated through routing
table.
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Loss Model

Consider one-hop transmission. A flow s may experience loss in two forms: loss ρsh over the

direct transmission links; or loss ρs,s
′

h,k of antidotes2 on overhearing links. These two types of

losses have different impacts on network coded flows.

First, let us discuss loss on the direct links. A flow s transmitted over hyperarc h experiences

loss w.p. ρsh. This probability is different per flow s, even if several flows are coded and

transmitted over the same hyperarc h, because different flows are transmitted to different

next hops, thus see different channels. For example, in Fig. 5.1, ρS1

(I,{B2,A2})
is equal to the

loss probability over link I − A2 and ρS2

(I,{B2,A2})
is equal to the loss probability over link

I − B2.

Second, let us discuss the effect of lost antidotes on the overhearing link. Consider that

flow s is combined with flow s′ s.t. s 6= s′, and that some packets of flow s′ are lost on the

overhearing link to the next hop of s. Then, coded packets cannot be decoded at the next

hop and flow s loses packets, with probability ρs,s
′

h,k . For example, in Fig. 5.1, packets from

flow S1 cannot be decoded (hence are lost) at node A2 due to loss of antidotes from flow S2

on the overhearing link B1 −A2.

In our formulation and analysis, we assume that ρsh and ρ
s,s′

h,k are i.i.d. according to a uniform

distribution. However, in our simulations, we also consider a Rayleigh fading channel model.

The loss probabilities are calculated at each intermediate node as one minus the ratio of

correctly received packets over all the packets in a time window. These loss probabilities are

obtained by the upstream node (e.g., I in Fig. 5.1) periodically via control packets from the

downstream node on the link (e.g., B2, A2 in Fig. 5.1).

2Following the poison-antidote terminology of [71], we call antidotes the packets of flows s′ that are coded
together with s, and thus are needed for the next hop of s to be able to decode. E.g., in Fig.5.1, a is the
antidote that B2 needs to overhear over link A1 −B2, to decode a+ b and obtain b.
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Routing

We assume that each flow s ∈ S follows a single path Ps ⊆ N from the source to the

destination, which is pre-determined by a routing protocol, e.g., OLSR or AODV, and given

as input to our problem. Note that several different hyperarcs may connect two consecutive

nodes along the path. We define Hs,k
i,J = 1 if s is transmitted through hyperarc (i,J ) using

network code k ∈ Ki,J ; and H
s,k
i,J =0, otherwise.

5.1.2 Intra- and Inter-session Network Coding

Next, we give an overview of how an intermediate node performs first intra-session net-

work coding (to increase loss tolerance) and then inter-session network coding (to improve

throughput). The implementation details are provided in Section 5.3.

Intra-session Network Coding (for Error Correction)

Consider the commonly used generation-based network coding [27]: packets from flow s ∈ S

are divided into generations (note that we use generation and block terms interchangeably),

with size Gs. At the source s, packets within the same generation are linearly combined

(assuming large enough field size) to generate Gs network coded packets. Each intermediate

node along the path of flow s adds P s parity packets, depending on the loss rates of the

links involved in this hop. At the next hop, it is sufficient to receive Gs out of Gs + P s

packets. The same process is repeated at every intermediate node until the receiver receives

Gs error-free packets, which can then be decoded and be passed on to the application.

There are many ways to generate those P s parities in practice. In this work, we use intra-

session network coding [94] for this purpose. Each intermediate node stores Gs packets of

the same flow and generates P s random linear combinations; w.h.p. any Gs out of Gs +
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P s are linearly independent, thus can be used to reconstruct Gs packets. Note that an

intermediate node does not need to decode; it just combines packets in a generation and

updates their global coefficients [27]. Although one could use various coding techniques,

such as Reed-Solomon or Fountain codes, implementing error correction via intra-session

network coding has several advantages. First, it has lower computational complexity than

other error schemes. Second, in systems that already implement inter-session network coding,

it is natural to incrementally add intra-session network coding functionality. Intra-session

network coding can be implemented as a thin layer between IP and transport, as shown in

Fig. 5.2.

Inter-session Network Coding (for Throughput)

After an intermediate node has added redundancy (P s ) to flow s, it treats all (Gs + P s)

packets as indistinguishable parts of the same flow. Inter-session network coding is applied

on top of the already intra-coded flows, as a thin layer between MAC and IP, shown in

Fig. 5.2. We design two schemes, I2NC-state and I2NC-stateless, depending on the type of

information they need about their neighbors. We define as state of a node the information

about which exact packets have been overheard at that node; overheard packets always

belong to flows that are of not interest to the node.

I2NC-state: First, we assume that intermediate nodes uses one-hop opportunistic network

coding proposed in [10]. Each node i listens all transmissions in its neighborhood, stores

the overheard packets in its decoding buffer, and periodically advertises the content of this

buffer to its neighbors. When a node i wants to transmit a packet, it checks or estimates

the contents of the decoding buffer of its neighbors. If there is a coding opportunity, the

node combines the relevant packets using simple coding operations (XOR) and broadcasts

the combination to J . The content of the decoding buffers needs to be exchanged, in order

to make network coding decisions, via some protocol for state synchronization.
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I2NC-stateless: Second, we design an improved version, which no longer requires state

synchronization. The key idea is to exploit the fact that the redundancy already introduced

by intra-session coding makes all Gs + P s packets in a generation equally important3. In

this improved scheme, each node i still listens to all transmissions in its neighborhood and

stores the overheard packets4. The node periodically advertises the loss probability for each

overheard flow, which is then provided as input to the intra-session network coding module

in order to determine the amount of redundancy needed5.

In summary, there is a nice synergy between intra- and inter-session network coding. Intra-

session network coding makes the process sequence agnostic, which allows inter-session net-

work coding to operate using only information about the loss rates, not about the identity

of received packets. Conversely, the loss rates can be used as input for tuning the amount

of redundancy in intra-session network coding. In terms of implementation, the two mod-

ules are separable: an intermediate node first performs intra-session network coding, then

inter-session network coding.

3It no longer matters which exact packets a node has. As long as a node has any Gs out of Gs + P s, it
can decode. As long it knows the percentage of overheard received packets it can make coding decisions.

4As in [10], only original overheard packets are stored in the decoding buffer. Coded overheard packets
are discarded.

5The loss rate over direct transmission links is calculated as a ratio of the number of lost packets at each
hop vs. the total number of packets. The loss rate over overhearing links is calculated as effective loss rate.
E.g., in Fig. 5.1, the loss rate at node A2 is calculated as follows. If GS1 +P S1 packets are sent by B1 and
at least GS1 packets are received at A2, then the loss rate is set to 0. If GS1 − 1 packets are received by A2,
then the loss rate is set to 1/Gs1 .
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5.2 Network Utility Maximization Formulation

5.2.1 I2NC-state

Formulation

Our objective is to maximize the total utility function by optimally choosing the flow rates

xs at sources s ∈ S, as well as the following variables at the intermediate nodes: the fraction

αsh,k (or traffic splitting parameters, following the terminology of [66]) of flows inter-session

coded using code k ∈ Kh over hyperarc h; and the percentage of time τh,k each hyperarc is

used.

max
x,α,τ

∑

s∈S

Us(xs)

s.t.
Hs
h,kα

s
h,kxs

1− ρsh
+

∑

s′∈Sk−{s}

Hs′

h,kα
s′

h,kxs′ρ
s,s′

h,k ≤ Rhτh,k, ∀h ∈ A, k ∈ Kh, s ∈ Sk

∑

h(J )|h∈A

∑

k∈Kh|s∈Sk

αsh,k = 1, ∀s ∈ S, i ∈ Ps

∑

h∈Cq

∑

k∈Kh

τh,k ≤ γ, ∀Cq ⊆ A (5.1)

The first constraint is the capacity constraint for each flow s ∈ Sk. It is well-known, [65],

that network coding allows flows that are coded together in code k ∈ Kh, to coexist, i.e.,

each have rate up to the rate allocated to that code k. The right hand side, Rhτh,k, is the

capacity of hyperarc h; τh,k is the percentage of time hyperarc h can be used for transmitting

the k-th network code. τh,k is determined by scheduling in the third constraint, taking into

account interference: all hypearcs in a clique interfere and should time-share the medium.

Therefore, the sum of the time allocated to all hyperarcs in a clique should be less than an

over-provisioning factor, γ ≤ 1. The second constraint is the flow conservation: at every

node i on the path Ps of source s, the sum of αs,kh over all network codes and hyperarcs
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should be equal to 1. Indeed, when a flow enters a particular node i, it can be transmitted

to its next hop j as part of different network coded and uncoded flows.

Intra-session Network Coding. The first constraint is key to our work because it deter-

mines how to deal with loss on the direct (ρsh) and overhearing (ρs,s
′

h,k ) links and how large a

fraction (αs,kh ) of flow rate (xs) to code in the k-th code over hyperarc h. Let us discuss the

left hand side in more detail6.

The first term refers to the direct link of flow s. Hs
h,kα

s
h,kxs is the fraction of flow rate xs

allocated to code k and hyperarc h. It is scaled by 1−ρsh to indicate that we use intra-session

redundancy to protect against loss that flow s experiences w.p. ρsh. (H
s
h,kα

s
h,kxs)/(1− ρ

s
h) is

the total rate of flow s, including data and redundancy.

The second term refers to loss on the overhearing links.
∑

s′∈Sk−{s}H
s′

h,kα
s′

h,kxs′ρ
s,s′

h,k is the

amount of redundancy (via intra-session coding) added by the intermediate node on flow(s)

s′ to protect flow s against loss of antidote packets. These antidotes come from other flows

(s′ ∈ Kh) that are coded together with flow s, reach the next hop for flow s through the

overhearing links, and are needed to decode inter-session coded packets.

Example 11 - continued. In Fig. 5.1, let us consider flow 2 from B1 to B2, as the flow

of interest. The intermediate node I adds redundancy to S2 to protect against loss rate

ρS2

(I,{B2,A2})
on the direct link I−B2. It also adds redundancy to flow 1 to protect against loss

rate ρS2,S1

(I,{B2,A2})
of antidotes coming to B2 from flow 1 over the overhearing link A1−B2

7. �

6Note that our formulation of has two novel aspects, compared to prior work, which allow us to better
handle loss and parities. First, we allow for flows coded together to have different rates (e.g., in the first
constraint in Eq. (5.1)). Second, we allow for loss rates of each link to be specified separately, even for links
in the same hyperarc.

7An alternative way to protect flow 2 from loss on the overhearing link A1 − B2 would be to have node
A1 itself to altruistically add redundancy. We choose not to implement this option, because realistically I is
the node receiving the feedback from B2.
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Optimal Solution

By relaxing the capacity constraint in Eq. (5.1), we have:

L(x,α, τ , q) =

∑

s∈S

Us(xs)−
∑

h∈A

∑

k∈Kh

∑

s∈Sk

qsh,k

(Hs
h,kα

s
h,kxs

1− ρsh
+

∑

s′∈Sk−{s}

Hs′

h,kα
s′

h,kxs′ρ
s,s′

h,k − Rhτh,k

)

, (5.2)

where qsh,k is the Lagrange multiplier, which can be interpreted as the queue size for k-

th network code at hyperarc h for flow s. We define ρs,s
′

h = 0 if s = s′, ∀s, s′ ∈ S and

we rewrite
∑

k∈Kh

∑

s∈Sk
as
∑

s∈S

∑

k∈Kh|s∈Sk
. The Lagrange function is L(x,α, τ , q) =

∑

s∈S(Us(xs)− xs
∑

h∈A

∑

k∈Kh|s∈Sk
Hs
h,kα

s
h,k

(

(qsh,k)/(1− ρ
s
h) +

∑

s′∈Sk
qs

′

h,kρ
s′,s
h,k

)

) +
∑

h∈A

∑

k∈Kh

∑

s∈Sk
qsh,kRhτh,k. It can be decomposed into several intuitive problems (rate

control, traffic splitting, scheduling, and queue update), each of which solves the optimization

problem for one variable.

Rate Control. First, we solve the Lagrangian w.r.t xs:

xs = (U ′
s)

−1

(

∑

i∈Ps

Qs
i

)

, (5.3)

where (U ′
s)

−1 is the inverse function of the derivative of Us, and Q
s
i is the occupancy of flow

s at node i and expressed as

Qs
i =

∑

h(J)|h∈A

∑

k∈Kh

Hs
h,kα

s
h,kQ

s
h,k, (5.4)

where Qs
h,k is the queue size of flow s associated with hyperarc and network code pair {h, k}:

Qs
h,k =

qsh,k
1− ρsh

+
∑

s′∈Sk−{s}

qs
′

h,kρ
s′,s
h,k (5.5)
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Traffic Splitting. Second, we solve the Lagrangian for αs,kh . At each node i along the path

(i.e., i ∈ Ps), the traffic splitting problem can be expressed as follows:

min
α

∑

h(J)|h∈A

∑

k∈Kh|s∈Sk

αsh,kH
s
h,kQ

s
h,k

s.t.
∑

h(J)|h∈A

∑

k∈Kh|s∈Sk

αs,kh = 1, ∀i ∈ Ps. (5.6)

The structure of the optimal solution of Eq. (5.6) has the following interpretation: the

higher the loss rate of antidotes on overhearing links ρs
′,s
h,k , the higher Qs

h,k in Eq. (5.5), and

the smaller αsh,k in the minimization in Eq. (5.6). This means that flow s should code fewer

packets with packets from flow(s) s′ in code k, when antidotes from s′ are likely to be lost,

thus making it impossible for the next hop of flow s to decode.

Example 11 - continued: In Fig. 5.1, this means that I should combine fewer packets

from the two flows if there is loss on the overhearing link A1−B2. In the extreme case where

loss rate is 1 over the link A1 − B2, inter-session coding should be turned off. At the other

extreme, where there is no loss, the two flows should always be combined. �

Scheduling. Third, we solve the Lagrangian for τh,k. This problem is solved for every

hyperarc and every clique for the conflict graphs in the hypergraph. In our implementation,

we solve this problem for every hypeararc originated from a node to determine which packets

should be inter-session network coded and transmitted.

max
τ

∑

h∈A

∑

k∈Kh

∑

s∈Sk

qsh,kRhτh,k

s.t.
∑

h∈Cq

τh,k ≤ τ, ∀Cq ⊆ A (5.7)
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Queue Update. We find the Lagrange multipliers (queue sizes) qsh,k, using gradient descent:

qsh,k(t+ 1) ={qsh,k(t) + ct{
Hs
h,kα

s
h,kxs

1− ρsh
+

∑

s′∈Sk−{s}

Hs′

h,kα
s′

h,kxs′ρ
s,s′

h,k − Rhτh,k}}
+ (5.8)

where t is the iteration number, ct is a small constant, and the + operator makes the Lagrange

multipliers positive. qsh,k is interpreted as the queue for flow s allocated for the k-th network

code over hyperarc ∀h ∈ A. Indeed, in Eq. (5.8), qsh,k is updated with the difference between

the incoming (Hs
h,kα

s
h,kxs)/(1 − ρ

s
h) +

∑

s′∈Sk−{s}H
s′

h,kα
s′

h,kxs′ρ
s,s′

h,k and outgoing Rhτh,k traffic

rates at h.

5.2.2 I2NC-stateless

The second term in Eq. (5.1) describes the redundancy added by node i to protect s from

loss of antidotes on the overhearing link. An implicit assumption was that node i knows

what antidotes are available at the next hop and uses only those packets for inter-session

coding. However, this knowledge can be imperfect, especially in the presence of loss. Here,

we formulate a variation of the problem, where such knowledge is not necessary. Instead,

node i needs to know only the loss rate on all the links to the next hop for flow s (e.g., in

Fig. 5.1 for flow 2 (S2), these are links I − B2 and A1 − B2).

We replace the capacity constraint in Eq. (5.1) with:

Hs
h,kα

s
h,kxs

1− ρsh
+
∑

s′∈Sk

Hs′

h,kα
s′

h,kxs′ρ
s,s′

h,k

1− ρsh
≤ Rhτh,k (5.9)

and this is ∀h ∈ A, k ∈ Kh, s ∈ Sk. The other constraints remain the same as in Eq. (5.1).

The difference from Eq. (5.1) is in the second term, related to the overheard packets at the

next hop. Any fraction of flow s′ added as redundancy to flow s, as well as overheard packets

from s′ in the next hop, help to decode inter-session coded packets of s with flow s′. To
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protect transmissions of these “helping” fractions (Hs′

h,kα
s′

h,kxs′ρ
s,s′

h,k ) from being lost on the

direct link to the next hop of flow s (e.g., from I to B2), we add redundancy to match the

loss rate of that direct link (ρsh in general, ρS2

{I,B2}
in the example). This is why the term

Hs′

h,kα
s′

h,kxs′ρ
s,s′

h,k is divided by 1− ρsh.

The solution of this optimization problem also decomposes into rate control, traffic splitting,

and scheduling problems, which correspond to Eq. (5.3), (5.6), and (5.7), respectively. Qs
h,k

needs to be updated:

Qs
h,k =

qsh,k
1− ρsh

+
∑

s′∈Sk−{s}

qs
′

h,kρ
s′,s
h,k

1− ρs
′

h

. (5.10)

The Lagrange multiplier is also updated as follows;

qsh,k(t+ 1) ={qsh,k(t) + ct{
Hs
h,kα

s
h,kxs

1− ρsh
+

∑

s′∈Sk−{s}

Hs′

h,kα
s′

h,kxs′ρ
s,s′

h,k

1− ρsh
− Rhτh,k}}

+ (5.11)

We have verified, through numerical calculations, the convergence of the optimal solutions

which is presented in Section 5.5.

5.3 System Implementation

We propose practical implementations of the I2NC-state and I2NC-stateless schemes (Fig. 5.2),

following the NUM formulation structure.

5.3.1 Operation of End-Nodes

There is an adaptation layer between transport and intra-session network coding (Fig. 5.2)

at end nodes. This has two tasks: (i) to interface between application and intra-session
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Figure 5.2: Operations taking place at end-points and intermediate nodes.

coded packets; and (ii) optimize the reliability mechanism at the transport layer.

Task (i): At the source, the adaptation layer sets the generation (block) size to Gs. Gs

is set according to application (e.g., media transmission) requirements (for UDP), or set

equal to TCP congestion window (for TCP) and changes over time as proposed in [95]. The

adaptation layer receives Gs original packets a1, a2, ..., aGs from the transport layer of flow

s and generates Gs intra-session coded packets; p1 = a1, p2 = a1 + a2, ..., pGs = a1 + ...aGs .

We chose this iterative coding to avoid introducing coding delays. The intra-session header

includes the block id, packet id, block size, and coding coefficients. At the receiver side, the

reverse operations are performed.

Task (ii): To further optimize the interaction between I2NC and transport, particularly

TCP, we keep track and acknowledge the number of received packets in a generation, rather

than their sequence numbers. This idea is similar to the use of end-to-end FEC that makes

TCP sequence agnostic [96, 95]; and to intra-session network coding over TCP’s window

and acknowledging degrees of freedom in [44]. E.g., if a receiver receives the first packet

labeled with block id gs = 1, then it generates an ACK with block id gs = 1 and packet
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id ηs = 1. The uncoded packets, a1, a2, ..., aGs, must be stored in a buffer at the source

for TCP ACK adaptation. E.g., if an ACK for block id gs = 1 and packet id ηs = 1 is

received by the source, then the TCP adapter matches this ACK to packet a1 and informs

TCP that packet a1 is ACK-ed. As long as TCP receiver transmits ACKs, the TCP clock

moves, thus improving TCP goodput. After ACK with block and packet id is transmitted

by TCP receiver, the packet is stored at the receiving buffer. When the last packet from a

generation is received, then packets are decoded and passed to the application.

Note on the interaction of I2NC and TCP. Although I2NC can improve the performance of

any traffic type transmitted over a wireless mesh, it has several characteristics that are par-

ticularly well suited for TCP. First, I2NC masks wireless loss, which is well known to reduce

TCP performance. It achieves this goal using local redundancy, which reduces the delay

and thus TCP timeouts. Second, our queue management scheme is specifically tuned for

TCP by balancing the rates of TCP flows coded together thus creating more network coding

opportunities. Finally, the use of redundancy at intermediate node lends itself naturally to

integration with end-to-end redundancy.

5.3.2 Operation of Intermediate Nodes

An intermediate node needs to take a number of actions when it receives (Alg. 5) or transmits

(Alg. 6) a packet.

Receiving a packet and intra-session network coding

Buffer packets. A node i may receive a packet from higher layers or from previous hops.

In the latter case, if the the received packet is inter-coded, it is decoded and the packet with

destination this node is stored (or is passed to transport if it is the last hop). If it is not
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Algorithm 5 Node i processes packet pl from flow s.
1: Read the information: packet pl, from flow s, gen.size Gs

2: Insert pl into the physical output queue Qi.
3: Determine {h∗, k∗} and label pl with {h∗, k∗} pair and s

4: Update virtual queue parameters: qs
h∗,k∗

(t+ 1) and qs
′

h∗,k∗
(t + 1)

5: Calculate Qs
h∗,k∗

and Qsi
6: Gs

h∗,k∗
= Gs

h∗,k∗
+ 1

7: if Gs packets from flow s are received at node i then

8: Calculate the number of parities P s,s
h,k

, P s
′,s
h,k

9: Create P s,s
h,k

parities from s and P s
′,s
h,k

parities from s′

10: Label all generated parities with {h, k} pair and s

11: end if

the last hop, a packet pl ∈ {p1, p2, ..., pGs} is stored in the output queue Qi. In addition

to the physical output queue Qi, the node i keeps track of several virtual queues Qs
h,k per

(flow, hyperarc, code). The packet pl is labeled with (h∗, k∗, s), which essentially indicates

whether and how to code this packet according to the traffic splitting in Eq. (5.6): we pick

{h∗, k∗} = argminh,k{Hs
h,kQ

s
h,k}, randomly breaking ties. Note that this labeling is local at

the node, and does not introduce any transmission overhead.

Update Virtual Queue Sizes. Since packet pl is selected to be transmitted with k∗-th

network code over hyperarc h∗, the virtual buffers; Qs
h∗,k∗ and qsh∗,k∗ should be updated.

qsh∗,k∗ is updated according to Eqs. (5.8) and (5.11). Specifically, for I2NC-state: qsh∗,k∗(t+1) =

qsh∗,k∗(t)+ 1/(1− ρsh∗) and q
s′

h∗,k∗(t+1) = qs
′

h∗,k∗(t)+ ρs
′,s
h∗,k∗ . For I

2NC-stateless: qsh∗,k∗(t+1) =

qsh∗,k∗(t) + 1/(1 − ρsh∗) and qs
′

h∗,k∗(t + 1) = qs
′

h∗,k∗(t) + ρs
′,s
h∗,k∗/(1 − ρs

′

h∗). Moreover, Qs
h∗,k∗

is calculated according to Eq. (5.5) for I2NC-state and Eq. (5.10) for I2NC-stateless. Qs
i

is calculated according to Eq. (5.4). Then, the number of packets Gs
h∗,k∗ from the same

generation that are allocated to h∗, k∗ pair is incremented: Gs
h∗,k∗ = Gs

h∗,k∗ + 1. Gs
h,k is set

to 0 for each new generation.

Generate Parities. After Gs packets from a generation of flow s are received at node i, P s

parity packets are generated via intra-session network coding and labeled with information

(s, h, k). There are two types of parities.
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Algorithm 6 Node i transmits a packet.
1: Select {h†, k†} pair that maximizes Rh(

∑
s∈Sk

qh,k)

2: Initialize: ξ = ∅
3: for pl ∈ Qi do
4: if pl is labeled with {h†, k†} AND flow id label of pl is different from ∀pl′ ∈ ξ then

5: if I2NC-state AND ξ ∪ pl is decodable OR I2NC-stateless then

6: Insert packet to ξ
7: end if

8: end if

9: end for

10: Network code (XOR) all packets in ξ
11: Broadcast the network coded packet over hyperarc h†

12: Update qs
h†,k†

(t + 1) = {qs
h†,k†

(t) − 1}+, ∀s ∈ Sk

13: Re-calculate Qh,k and Qsi

• P s,s
h,k = ⌈G

s
h,kρ

s
h/(1− ρ

s
h)⌉ parities are added on flow s’s virtual queue to correct for loss

during direct transmission to the next hop over hyperarc h.

• P s′,s
h,k = ⌈Gs

h,kρ
s′,s
h,k , ∀s

′ ∈ Sk⌉ parities are added on the virtual queues of other flows s′

that are inter-session coded together with s. This is to to help the next hop for s′ to

decode despite losses on the overhearing link.

These numbers of parity packets are for I2NC-state. For I2NC-stateless P s,s
h,k is the same,

but P s′,s
h,k = ⌈Gs

h,kρ
s′,s
h,k/(1− ρ

s
h)⌉, i.e., additional redundancy is used to protect parity packets

from loss on the direct link.

Transmitting a packet and inter-session network coding

We consider the 802.11 MAC. When a node i accesses a channel, {h†, k†} is chosen to

maximize Rh(
∑

s∈Sk
qh,k) according to Eq. (5.7), randomly breaking ties. Although the

pair {h†, k†} determines the hyperarc, code and flows to be coded together in the next

transmission, the specific packets from those flows still need to be selected and coded. We

call these packets the set ξ, and select them using the procedure specified in Alg. 68.

To achieve this, we first initialize the set of network coded packets ξ = ∅. For each packet

8The inter-session network coding header includes the number of coded packets together, next hop address,
and the packet id’s. Note that this header as well as the IP header of each packet is not coded, but included
to the network coded packet as headers.
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pl ∈ Qi, check whether pl is labeled with {h†, k†}. If it is, then we check whether its flow

id label already exists in one of the packets in ξ, i.e., another packet from the same flow

has already been put in ξ. If not, there is one more check for I2NC-state for decodability at

the next hops of all packets in the network code, based on reports or estimates of overheard

packets in the next hops, similarly to [10]. If the packet is decodable with some probability

larger than a threshold (default value is 0.20) then, pl is inserted to ξ. In I2NC-stateless, the

packet pl is inserted to ξ without checking the decodability, which is ensured through the

additional redundancy packets. This is the strength of I2NC-stateless: it eliminates the need

to exchange detailed state, which is costly and unreliable at high loss rates. After all packets

in Qi are checked, the labels (h, k, s) of the packets in ξ, inter-session network coding header

is added, and coded (XORed) and broadcast over h.

After a coded packet is transmitted, the virtual queues are updated as; qs
h†,k†

(t + 1) =

{qs
h†,k†

(t) − 1}+, ∀s ∈ Sk. The queues Qh†,k† and Qs
i are calculated according to Eqs. (5.5),

(5.10), (5.4)9.

Keeping Track and Exchanging State Information

For I2NC-state, intermediate nodes need also to keep track and exchange information with

each other, so as to enable the intra- and inter-session network coding modules to make their

redundancy and coding decisions. An approach similar to COPE is used: ACKs are sent

after the reception and successful decoding of a packet. Information about overheard packets

is piggy-backed on the ACKs. With I2NC-stateless, we only need neighbors to exchange

information about the loss rates (through infrequent control packets) at the neighboring

nodes.

9Note that I2NC may cause reordering at the receiver, but since we already implemented intra-session
network coding, and made TCP receiver sequence agnostic in this term, out of packet delivery is not a
problem for TCP.
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Congestion Control and Queue Management.

Upon congestion at node i, the per-flow queue sizes Qs
i are compared and the last packet

from flow s having the largest Qs
i is dropped from the queue; in case of tie, an incoming

packet is dropped. This eventually balances the rates of flows coded together, increases

inter-session network coding opportunities, and improves TCP performance. For details on

this network coding-aware queue management scheme, the reader is referred to [20].

Example 12 Let us re-visit the X-topology from Fig. 5.1, shown again for convenience in

Fig. 5.3, and illustrate how we perform intra- and inter-session network coding under scheme

I2NC-stateless. The loss probabilities over the direct (I − B2) and overhearing (A1 − B2)

links are assumed 0.5 and 0.25.

In Fig. 5.3(a), we describe intra-session network coding. Let us assume the generation size

of S1 is GS1 = 4 and S2 is GS2 = 1. The packets transmitted by A1, B1 are p1, p2, p3, p4

and π1 for flows S1 and S2, respectively. Note that there is only one option for inter-session

network coding, i.e., to XOR packets from the 2 flows, thus only one possible network code

k = 1 over hyperarc h = (I, {B2, A2}). All packets are labeled with this information and

their flow ids. The labeled packets are ps11 , p
s1
2 , p

s1
3 , p

s1
4 and πs21 . Parities are generated as

follows. Since GS1

I,{B2,A2}
= 4 and GS2

I,{B2,A2}
= 1, the number of parities is P S1,S1

I,{B2,A2}
= 0,

P S2,S1

I,{B2,A2}
= 0, P S2,S2

I,{B2,A2}
= 1 (thus generating one parity from flow S2 and labeling it with

s2, i.e., π
S2
2 ), and P S1,S2

I,{B2,A2}
= 2 (thus generating two parities from flow S1 and labeling them

with S2, i.e., p
S2
5 , p

S2
6 ).

In Fig. 5.3(b), we describe inter-session network coding. Node I performs inter-session

network coding and transmits packets according to Alg. 6: it XORs packets from the two

queues, for S1, S2, and broadcasts over the hyperarc (I, {B2, A2}). In particular, it transmits

the following packets: ps11 ⊕ π
s2
1 , ps12 ⊕ π

s2
2 , ps13 ⊕ p

s2
5 , and ps14 ⊕ p

s2
6 . Node A2 receives and

decodes all the packets. Node B2 receives 3 packets on the average over overhearing link
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(a) Intra-session coding

(b) Inter-session coding

Figure 5.3: Example of coding (under scheme I2NC-stateless) at intermediate node I in the
X-topology. There is loss only on two links: the direct link I − B2 (w.p. 0.5) and the
overhearing link A1 − B2 (w.p. 0.25).
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A1 − B2 and receives 2 packets over direct link I − B2. Five received packets allows B2 to

decode all five packets p1, p2, p3, p4, π1, so π1 is successfully decoded. �

5.4 Performance Evaluation

5.4.1 Simulation Setup

We used the GloMoSim simulator [77], which is well suited for simulating wireless environ-

ments. We considered various topologies: the classic X topology, shown in part of Fig. 5.1 and

repeated in Fig. 5.4(a); the classic cross-topology with 4 end-nodes generating bi-directional

traffic, with one relay shown in Fig. 5.4(b); the wheel topology shown in Fig. 5.4(c); and the

multi-hop topology shown in Fig. 5.1. In X, cross, and wheel topologies, the intermediate

node I is placed in a center of of circle with radius 90m over 200m× 200m terrain and all

other nodes A1, B1 and etc. are placed around the circle. In the multi-hop topology of

Fig. 5.1, two X topologies are cascaded and the distance between consecutive nodes is set to

90m. The topology is over a 800m× 300m terrain.

We also considered various traffic scenarios: FTP/TCP and CBR/UDP10. IEEE 802.11b

is used in the MAC layer, with the addition of the pseudo-broadcasting mechanism, as in

COPE [10]. In terms of wireless channel, we simulated the two-ray path loss model and a

Rayleigh fading channel with average channel loss rates 0, 20, 30, 40, 50 %. We have repeated

each 60sec simulation for 10 seeds. Channel capacity is 1Mbps, the buffer size at each node

is set to 100 packets, packet sizes are set to 500B, and the block size for UDP flows is set to

15 packets.

We compare our schemes (I2NC-state and I2NC-stateless) to no network coding (noNC), and

10TCP and CBR flows start at random times within the first 5sec and are on until the end of the simulation
which is 60sec.
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(a) X topology (b) Cross topology

(c) Wheel topology

Figure 5.4: Topologies under consideration. (a) X topology. Two unicast flows, S1, R1, and
S2, R2, meeting at intermediate node I. (b) Cross topology. Four unicast flows, S1, R1,
S2, R2, S3, R3, and S4, R4, meeting at intermediate node I. I receives packets A1, A2, B1, B2.
(c) Wheel topology. Multiple unicast flows S1, R1, S2, R2, etc., meeting at intermediate node
I. I opportunistically combine the packets and broadcast.

COPE [10], in terms of total transport-level throughput (added over all flows).

5.4.2 Simulation Results

X topology - loss on some links. In Fig. 5.5, we present results for 2 TCP flows over Exam-

ple 11, in order to illustrate the key intuition of our approach. Consider, for the moment,

that loss occurs only on one link, either (a) the overhearing link A1 − B2 or (b) the direct
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(a) Loss only on overhearing link
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(b) Loss only on direct link

Figure 5.5: X topology in Fig. 5.4(a). We show the total TCP throughput (added over two
flows) vs. link loss rate, for two specific loss patterns. Loss happens only on one link, either:
(a) the overhearing link A1 − B2 or (b) the direct link I −B2. All other links are lossless.

link I − B2.

The first case is depicted in Fig. 5.5(a). Loss on the overhearing link does not affect the

uncoded streams, thus TCP+noNC. TCP+I2NC-state and TCP+COPE are identical: I2NC-

state introduces redundancy for loss on the direct link and does inter-session network coding

as with COPE. TCP+I2NC-stateless outperforms other schemes over the entire loss range.

For example, if there is no loss, I2NC-stateless still brings the benefit of eliminating ACK

packets, thus using the medium more efficiently. When the loss rate increases, the improve-

ment of I2NC-stateless becomes significant, reaching up to 30%. The reason is that at high

loss rates, I2NC-state and COPE do not have reliable knowledge of the decoding buffers of

their neighbors and cannot do network coding efficiently. In contrast, I2NC-stateless does

not rely on this information, but on the loss rate of the overhearing link to code together

part of the flows. In the discussion of Example 11, we mentioned that even at 50% loss

rate, 16.6% improvement can be achieved via network coding. Here we see this improvement

(around 13%) as well as the the additional benefit of eliminating ACK packets (around 12%).

Note that the total improvement is around 25%.

The second case is depicted in Fig. 5.5(b). TCP+I2NC-stateless significantly outperforms
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(a) X topology (shown in Fig. 5.4(a))
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(b) Cross topology (shown in Fig. 5.4(b))
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(c) Multi-hop topology (shown in Fig.5.1)

Figure 5.6: Total TCP throughput vs. average loss rate (for ease of presentation, the same
loss rate is assumed on all links) in three different topologies.

all alternatives again. TCP+I2NC-state outperforms TCP+COPE in this case, because it

corrects errors on the direct link, reduces the number of re-transmissions and uses the channel

more efficiently.

Various topologies - loss on all links. Fig. 5.6 presents simulation results for TCP traffic over

various topologies (X, cross, and the multi-hop topology), considering the more general case

where loss happens on all links. For ease of presentation, here we report only the results

when all links have the same loss probability.
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Figure 5.7: Wheel topology shown in Fig. 5.4(c) with increasing number of flows. Loss rate
on all links is set to 10%.

Fig. 5.6(a) shows the results for the X topology. At low-medium loss rates (10%-30%), there

is only a moderate gain from I2NC-stateless. The reason is that I2NC-state and COPE are

still able to do some network coding, in conjunction with link level ARQ. At higher loss

rates, network coding opportunities reduce. I2NC-stateless brings significant benefit thanks

to both network coding and eliminating the ACKs.

Fig. 5.6(b) shows the results for the cross topology. The improvement of TCP+I2NC-

stateless is higher compared to the X topology. This is because, here, there are more network

coding opportunities for I2NC-stateless to exploit.

Fig. 5.6(c) presents the results for the multi-hop topology in Fig. 5.1. The improvement of

TCP+I2NC-state is higher than in the X and cross topologies, especially at higher loss rates.

This is because intra-session coding, employed by I2NC-state, reduces the dependency on link

level ARQ. Especially in this multi-hop topology, the end-to-end residual loss rate increases

with the number of hops. Intra-session network coding overcomes this, thus increasing TCP

throughput. The improvement of I2NC-stateless is even more significant for this topology,

because the benefit of eliminating ACKs is more pronounced with larger number of hops.

We also performed simulations with increasing number of flows, i.e., nodes in wheel topology

in Fig. 5.4(c). It is seen in Fig. 5.7 that the total throughput achieved by network coding
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(a) X topology (shown in Fig. 5.4(a))
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(b) Cross topology (shown in Fig. 5.4(b))
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(c) Multi-hop topology (shown in Fig.5.1)

Figure 5.8: Total UDP throughput vs. average loss rate (the same loss rate is assumed on
all links) in three different topologies.
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Figure 5.9: Cross topology shown in Fig. 5.4(b). Loss rate on all links is set to 10%.
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schemes increases with the increasing number of flows. When the number of flows increases,

the probability of network coding at the intermediate node I increases. More network coding

opportunities leads to higher throughput.

UDP traffic. We repeated the simulations for the three topologies for the case that there is

loss over all links. The results are presented in Fig. 5.8.

Fig. 5.8(a) presents the results for the X topology. The improvement of UDP+I2NC-

stateless is up to 60% as compared to UDP+noNC. This is significantly higher than the

improvement of TCP+I2NC-stateless and the optimal scheme (in which the improvement is

33.3%). The reason is the MAC gain as explained in [10]. We present the results for the

load at which the system saturates. At this load, UDP+noNC is already saturated, several

packets are dropped from the buffers, and they do not arrive to their receivers. This reduces

the throughput of noNC, while network coding schemes still handle the traffic created by the

load. Notice that even at 50% loss rate, UDP+I2NC-stateless improves over UDP+noNC

by 40%, which is significant.

Fig. 5.8(b) presents the results for the cross topology. In this topology, the improvement of

network coding is very large. When there is no loss, the improvement is around 250%. The

effectiveness of UDP+I2NC-stateless is also significant in this topology: at 50% loss rate the

improvement of UDP+I2NC-stateless over UDP+noNC is 70%.

Fig. 5.8(c) presents the results for multi-hop topology, and shows similar results.

Fig. 5.9 presents the throughput vs. the offered load in cross topology shown in Fig. 5.4(b).

At low loads, all schemes perform equally, because even if network coding is possible, offered

load is limited and the transmission medium stays idle at some instants, and network coding

benefit is not seen. When the offered load increases, noNC saturates earlier than network

coding schemes which handle higher loads better. Specifically, network coding schemes

reduce queue sizes as compared to noNC by increasing throughput (hence drain rate seen
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by each queue). After the saturation point, the throughput decreases with increasing load,

because many packets are dropped from buffers, especially from I, and the time slots that are

used to transmit packets which are dropped by I are wasted. It is seen that I2NC-state and

I2NC-stateless arrive to their saturation points at higher loads than COPE, because our

algorithms handle load better than COPE with their error correction mechanisms.

5.4.3 Numerical Results

We consider the X and cross topologies shown in Figs. 5.4(a) and 5.4(b). In the X topology,

A1 transmits packets to A2 via I with rate x1, and B1 transmits packets to B2 via I with

rate x2. In the cross topology, A1 transmits packets to A2 with rate x1, A2 transmits packets

to A1 with rate x2, B1 transmits packets to B2 with rate x3, and B2 transmits packets to B1

with rate x4. All transmissions are via I. In both topologies, the data rate of each link is

set to 1 packet/transmission. We compare our schemes I2NC-state and I2NC-stateless with

noNC which is also formulated in a NUM framework without any network coding constraints.

Fig. 5.10 shows the total throughput; x1 + x2 for I2NC-state, I2NC-stateless and noNC for

X topology. Fig. 5.10(a) shows the results when there is loss only on the overhearing link

A1−B2. It is seen that the throughput of noNC is flat with increasing loss rate, because it is

not affected by the loss rate on the overhearing link. I2NC-state and I2NC-stateless improve

over noNC, because they exploit network coding benefit. When the loss rate increases, the

improvement reduces, because B2 overhears only part of the data transmitted by A1. Al-

though the improvement decreases with increasing loss rate, it is still significant, e.g., 16.6%

at 50% loss rate. Note that Fig. 5.10(a) is the counterpart of the simulation results presented

in Fig. 5.5(a). It is seen that TCP+I2NC-stateless in Fig. 5.5(a) shows similar performance

as I2NC-stateless in Fig. 5.10(a). This shows the effectiveness of I2NC-stateless in a realistic

simulation environment. On the other hand, the throughput of TCP+I2NC-stateless and
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TCP+COPE decreases with increasing loss rate in Fig. 5.5(a), while I2NC-state improves

throughput significantly even at higher loss rates Fig. 5.10(a). I2NC-state and COPE need

to know the state of neighbors which gets corrupted and/or delayed at high loss rates in

simulations. Therefore, the throughput improvement of I2NC-state and COPE is limited at

high loss rates in Fig. 5.5(a).

Fig. 5.10(b) shows the results when there is loss only on the direct link I − B2. It is seen

that I2NC-state and I2NC-stateless improve over noNC significantly at all loss rates. It is

also interesting to note that at 50% loss rate, I2NC-state and I2NC-stateless improve over

noNC by 44% which is even higher than in the no loss case (33%). In the optimal solution,

the throughput values are x1 = 0.4 and x2 = 0.2. In this case, in the downlink I − B2,

data part of x2 with rate 0.2 and the parity part with rate 0.2 (considering loss rate 50%)

are combined with x1. This means that our schemes combine both parity and data parts of

a flow with other flows and this improves the throughput significantly. This is one of the

important contributions of our NUM formulations.

Fig. 5.10(c) shows the results when there is loss on links A1−B2 and I −B2. It is seen that

I2NC-state improves the throughput significantly while the improvement of I2NC-stateless re-

duces to 0 with increasing loss rate. The reason is that, I2NC-stateless is a more conservative

scheme as compared to I2NC-state in the sense that it eliminates the perfect knowledge on

antidotes. Yet, it still improves the throughput significantly, e.g., it improves over noNC by

22% at 30% loss rate.

Fig. 5.10(d) shows the results when there is loss on all links. It is seen that I2NC-state and

I2NC-stateless improve over noNC significantly at all loss rates. Note that throughput of

I2NC-stateless reduces to that of noNC at 50% loss rate in Fig. 5.10(c). The reader might

wonder why we do not see such behavior in Fig. 5.10(d). The reason is that since there is

loss over link A1− I as well as A1−B2, the number of parities added by A1 to correct losses

over link A1 − I also increases the number of overheard packets at B2. Therefore, I2NC-
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(a) Loss only on overhearing link A1 −B2
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(b) Loss only on direct link I −B2
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(c) Loss on links A1 −B2 and I −B2
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(d) Loss on all links

Figure 5.10: X topology. Throughput vs. loss rate (the same loss rate is assumed on A1−B2

and I −B2 in (c), and the same loss rate is assumed on all links in (d)).

stateless does not add redundancy at node I for both A1−B2 and I −B2 as in Fig. 5.10(c),

but adds redundancy only for loss on link I − B2. This improves the performance of I2NC-

stateless . Note that the counterpart of these results are presented in Fig. 5.6(a). It is seen

that the throughput improvement of I2NC-stateless over noNC at 50% loss rate is around

30% in Fig. 5.10(d). As compared to this, the improvement of TCP+I2NC-stateless over

noNC is limited in Fig. 5.6(a), because, in simulations, the block size is limited and fixed, and

the scheduling is not perfect (we consider IEEE 802.11). Yet, the throughput improvement

of TCP+I2NC-stateless over noNC is around 20% in Fig. 5.6(a), which is significant.
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(a) Loss only on overhearing link A1 −B2
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(b) Loss only on direct link I −B2
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(c) Loss on links A1 −B2 and I −B2
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(d) Loss on all links

Figure 5.11: Cross topology. Throughput vs. loss rate (the same loss rate is assumed on
A1 −B2 and I − B2 in (c), and the same loss rate is assumed on all links in (d)).

Fig. 5.11 shows the total throughput; x1 + x2 + x3 + x4 for I2NC-state, I2NC-stateless and

noNC for the cross topology shown in Fig. 5.4(b) for different loss patterns. It is seen

that the results are similar to the ones in Fig. 5.10. One difference is that the throughput

improvement of network coding schemes is higher, i.e., up to 80%, because there are more

network coding opportunities in the cross topology.
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5.5 Numerical Results: Convergence

We consider again the X and cross topologies shown in Figs. 5.4(a) and 5.4(b). In the X

topology, A1 transmits packets to A2 via I with rate x1, and B1 transmits packets to B2 via

I with rate x2. In the cross topology, A1 transmits packets to A2 with rate x1, A2 transmits

packets to A1 with rate x2, B1 transmits packets to B2 with rate x3, and B2 transmits packets

to B1 with rate x4. All transmissions are via I. In both topologies, the data rate of each

link is set to 1 packet/transmission and the loss rate is set to 30%.

In Figs. 5.12 and 5.13, we present the throughput vs. the iteration number for the X topology

at different loss patterns for I2NC-state and I2NC-stateless, respectively. Each figure shows

the convergence of x1, x2, and x1 + x2 to their optimum values. E.g., x1 + x2 converges to

0.59 in Fig. 5.12(c) and x1 + x2 converges to value 0.55 in Fig. 5.13(c).

Fig. 5.14 and 5.15 present the throughput vs. the iteration number for the cross topology

at different loss patterns for I2NC-state and I2NC-stateless, respectively. We see similar

convergence results. Specifically, each flow rate, x1, x2, x3, x4, and the total throughput,

x1 + x2 + x3 + x4 converge to their optimum values.

5.6 Summary

In this chapter, we proposed I2NC: a one-hop intra- and inter-session network coding ap-

proach for wireless networks. I2NC is built to improve network coding performance over

lossy wireless networks. I2NC has two critical improvements: it is resilient to loss and it

does not need to rely on exact the knowledge of the state of the neighbors. Our design is

grounded on a NUM formulation and its solution. Simulations in GloMoSim demonstrate

significant throughput gain of our approach compared to baselines.
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(a) Loss only on overhearing link A1 −B2
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(b) Loss only on direct link I −B2
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(c) Loss on links A1 −B2 and I −B2
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(d) Loss on all links

Figure 5.12: X topology. Convergence of x1, x2, and x1 + x2 for I2NC-state. Loss rate is
30%.
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(a) Loss only on overhearing link A1 −B2
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(b) Loss only on direct link I −B2
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(c) Loss on links A1 −B2 and I −B2

0 500 1000 1500 2000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Iteration number

T
h
ro

u
g
h
p
u
t

x
1

x
2

x
1
 + x

2

(d) Loss on all links

Figure 5.13: X topology. Convergence of x1, x2, and x1 + x2 for I2NC-stateless. Loss rate is
30%.
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(a) Loss only on overhearing link A1 −B2
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(b) Loss only on direct link I −B2
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(c) Loss on links A1 −B2 and I −B2
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(d) Loss on all links

Figure 5.14: Cross topology. Convergence of x1, x2, x3, x4, and x1 + x2 + x3 + x4 for
I2NC-state. Loss rate is 30%.
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(a) Loss only on overhearing link A1 −B2
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(b) Loss only on direct link I −B2
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(c) Loss on links A1 −B2 and I −B2
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(d) Loss on all links

Figure 5.15: Cross topology. Convergence of x1, x2, x3, x4, and x1 + x2 + x3 + x4 for
I2NC-stateless. Loss rate is 30%.
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Chapter 6

Conclusions

In this chapter, we conclude the dissertation by summarizing our contributions and present-

ing our final remarks.

6.1 Contributions

Below, we highlight the contributions of the thesis.

6.1.1 Video Streaming over Coded Wireless Networks

Network Coding-Aware Video Streaming Algorithms: We designed video-aware network cod-

ing schemes that take into account both the decodability of network codes by several receivers

and the unequal importance of video packets. We formulated the problem in a rate-distortion

optimization framework and proposed distributed solution (NC-RaDiO). We also proposed

video-aware network coding algorithms (NCVD and NCV) which have near optimal perfor-

mance and have less computational complexity.
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In our design, we first considered the fact that different packets in the same multimedia

stream may have different contributions to video quality. One important challenge with

network coding is that it has been agnostic to the content of the packets that are coded

together. Our network coding-aware video streaming algorithms (NC-RaDiO, NCVD, and

NCV) take into account importance of video packets, importance of video flows, and strict

delay requirements of video streaming. In a sense, our schemes combine two orthogonal

aspects of packet scheduling: (i) network coding to mix packets from different flows and

increase throughput and (ii) radio-distortion optimized streaming of packets within the same

stream to maximize video quality.

Performance Evaluation: We evaluated the performance of the proposed schemes (NC-

RaDiO, NCVD, and NCV) in terms of video quality and network throughput in a wide

range of scenarios. Simulation results showed that the proposed schemes improve video

quality up to 5dB compared to baseline schemes. Furthermore, they significantly improve

the application-level throughput while achieving the same or similar levels of MAC through-

put.

6.1.2 Rate Control and Scheduling over Coded Wireless Networks

Necessity of Network Coding-Aware Rate Control and Scheduling over Coded Wireless Net-

works: We argued the necessity of making rate control and scheduling network-coding aware

over coded wireless networks. We gave the main intuition and also compared NC-aware

vs. NC-unaware, both optimal and practical schemes. In addition to the formulations, we

presented simulation results for an illustrative example with two cross flows, which captures

the main intuition and should be a building block of any large scenario with cross-flows and

network coding. In general, the benefit from the network coding awareness depends on (i)

the network coding opportunities (ii) the conflicts of network coded flows with other flows
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and (iii) the link rates where (i) and (ii) depend on the topology and traffic scenario.

Video: We showed that video rate control naturally fits in network utility maximization

framework, with the additional complication that time varying video rate and utility affect

the network coding opportunities and the total achieved utility; to deal with time variability,

we proposed video rate control over an appropriate time interval so as to optimize the

utility vs. delay tradeoff. We formulated the problem, and showed that it has a distributed

solution and provided insights on the interaction of rate control and network coding for video

streaming.

TCP: We showed that network coding performance of TCP over coded wireless networks

is improved with cross-layer design. The key intuition was to eliminate the rate mismatch

between flows that are coded together through a synergy of rate control and queue man-

agement. We formulated congestion control as a NUM problem and derived a distributed

solution.

Protocol Design: Motivated by the structure of the NUM solution, we proposed minimal

modifications to queue management to make it network coding-aware, while TCP and MAC

protocols remained intact. To the best of our knowledge, our work is the first, to take the

step from theory (optimization) to practice (protocol design), specifically for the problem of

congestion control over inter-session network coding. We proposed implementation changes,

which have a number of desired features: they are justified and motivated by analysis, they

perform well (double the throughput in simulations), and they are minimal (only queue

management is affected, while TCP and MAC remain intact).

Performance Evaluation: Simulation results showed that the proposed NCAQM scheme dou-

bles TCP performance compared to baseline schemes and achieves near-optimal performance.

We also extended the NUM formulation and solution to multi-hop network coding and we

confirmed convergence through numerical calculations.
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6.1.3 Performance of Network Coding over Lossy Wireless Net-

works

I2NC: Combining inter- and intra-session network coding: We proposed I2NC: a one-hop

inter- and intra-session network coding scheme for wireless networks. I2NC builds on one-

hop opportunistic network coding [10] and improves it in two aspects: it is resilient to loss

and it does not need to rely on exact the knowledge of the state of the neighbors. Our design

is grounded on a NUM formulation and its solution. In this scheme, we considered how to

gracefully combine intra- and inter-session network coding at intermediate nodes.

Adding redundancy: We showed how to adjust the amount of redundancy after taking into

account the loss on the direct and overhearing links. We implemented the intra-session

network coding functionality.

Inter-session network coding: We designed algorithms that make the decision of what per-

centage of of flows should be coded together by taking into account the loss characteristics

on the direct and overhearing links. We implemented this and other functionalities (e.g.,

queue management) performed with or after inter-session network coding.

Synchronization: We proposed two schemes: I2NC-state, which needs to know the state (i.e.,

overheard packets) of the neighbors; and I2NC-stateless, which only needs to know the loss

rate of links in the neighborhood.

Performance Evaluation: Simulations in GloMoSim and numerical results demonstrated

significant throughput gain of our proposed schemes; I2NC-state and I2NC-stateless as com-

pared to baselines schemes.
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6.2 Final Remarks

In this thesis, we studied the design and optimization of algorithms and network protocols to

solve some practical problems in coded wireless networks. We first studied video streaming

over coded wireless networks and developed video-aware network coding algorithms. Second,

we showed the importance of network coding-awareness in rate control and scheduling over

coded wireless networks, and we optimized rate control protocols for video streaming and

TCP. Finally, we studied the performance of network coding over lossy wireless networks and

developed loss-aware network coding algorithms along with optimal rate control protocols.

We believe that our algorithms and protocol designs are viable and practical to fully exploit

network coding benefit and and they also take into account the application and protocol

requirements thanks to the cross-layer design. We believe that the main ideas of our work

can be extended to further optimize algorithms and protocols and eventually bridge the gap

between the theory of network coding and its practical applications. This understanding and

cross-optimization is essential for making the case for deploying network coding in practical

networked systems.
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