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We discuss several outstanding theoretical problems in optical diffusion in random media. Specifically,
we discuss which of several diffusion theories most closely approximates exact solutions of the equation
of transfer. We consider a plane wave impinging upon a plane-parallel slab of a random medium as a
model problem to compare the diffusion theories with a numerical solution of the equation of transfer for
continuous-wave, pulsed, and photon density waves. In addition, we discuss the validity of the diffusion
approximation for a variety of parameter settings to ascertain the diffusion approximation’s applicability
to imaging biological media. © 1998 Optical Society of America
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1. Introduction

Transport theory’s equation of transfer is a well-
accepted model for wave scattering in a random me-
dium.1 However, exact solutions are available for
only a small class of special cases ~isotropic scattering
in infinite and semi-infinite domains!, and thus ana-
lytical solutions for a wide variety of geometries and
range of parameters that correspond to more physi-
cally relevant situations still remain to be deter-
mined. Many researchers have derived diffusion
approximations by use of asymptotic analysis.1–8

These approximate equations have the advantage of
easily obtainable, closed-form solutions. In addi-
tion, there are significant amounts of experimental
data that agree well with the solution of the diffusion
equation.9 However, the applicability of the diffu-
sion approximation to many other physically relevant
settings remains questionable. Experimental evi-
dence shows that biological media are highly aniso-
tropic10 ~asymmetry parameter values greater than
0.9!, and thus a careful investigation is necessary to
determine the diffusion approximation’s applicability
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to highly anisotropic media. Furthermore, a ques-
tion remains as to which of the several diffusion equa-
tions most closely approximates the solution given by
the equation of transfer.

In this paper we address questions that pertain to
the diffusion approximation of the equation of transfer
for applications in biomedical imaging. We numeri-
cally solve the equation of transfer for the plane-
parallel problem and compare the existing diffusion
theories to determine which of several theories most
closely approximates the equation of transfer. In do-
ing this we determine the validity of the diffusion ap-
proximation for optically imaging biological media.
Some numerical results have been obtained for the
case when the refractive index of the background me-
dium differs from that of the surrounding medium.11

To evaluate the diffusion approximation’s validity sim-
ply and effectively, we consider only the idealized case
of index-matched boundary conditions. We perform
these comparisons for continuous-wave, pulsed, and
photon density waves.

2. Transport Theory

Transport theory models wave scattering by describ-
ing the transport of power through the medium. The
fundamental quantity in transport theory is the
specific intensity, I~r, ŝ!, which has units of
Wm22sr21Hz21. In general the specific intensity is a
unction of the position vector in 3-space, r 5 ~x, y, z!,

and the unit direction vector, ŝ 5 ~u, f!, where u is the
polar angle and f is the azimuthal angle. If we con-
sider the plane-parallel problem ~Fig. 1! with an inci-
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dent wave directed normally to the slab, the governing
equation for the specific intensity, the two-frequency
equation of transfer or radiative transfer equation, can
be reduced to having only three variables1: the fre-
quency difference of the two frequencies, vd 5 v1 2 v2,
the cosine of the polar angle, m 5 cos u, and the optical
depth,

t 5 rst z, (1)

where r is the number density of particles in the
edium and st is the total scattering cross section.

Therefore the resultant nondimensional two-
frequency equation of transfer for the diffuse compo-
nent of the specific intensity from the narrow-band
approximation takes the form

m
dI~t, m!

dt
1 S1 2 i

vn

t0
DI~t, m! 5

W0

2 *
21

1

p0~m, m9!

3 I~t, m9!dm9 1 εri~t, m!, (2)

where t0 is the maximum optical depth, W0 is the
single-scattering albedo, and

vn 5 vd t0, t0 5 dyc (3)

is the nondimensionalized frequency difference
scaled by the characteristic time t0, where d is the
thickness of the slab and c is the group speed of the
wave.

The kernel of the integral operator is defined as

p0~m, m9! 5
1

2p *
0

2p 1
2p *

0

2p

p~m, f, m9, f9!dfdf9, (4)

where

p~m, f, m9, f9! 5
1 2 g2

~1 1 g2 2 2g cos j!3y2 (5)

is the Henyey–Greenstein phase function,

cos j 5 mm9 1 Î1 2 m2 Î1 2 m92 cos~f 2 f9! (6)

Fig. 1. Diagram of the plane-parallel problem.
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is the cosine of the angle between the incident and the
scattered wave vectors, and

g 5 F*
4p

p~m, f, m9, f9!cos jdm9df9GY
F*

4p

p~m, f, m9, f9!dm9df9G (7)

is the mean cosine of the phase function or the asym-
metry parameter.

The source term, εri, comes from the incident plane
wave of unit flux directed normally to the slab:

εri~t, m! 5
1

4p
p0~m, 1!exp~2ht!, (8)

where

h 5 1 2 i ~vnyt0!. (9)

To solve Eq. ~2! we need to prescribe boundary
conditions. For the plane-parallel problem we as-
sume that no incoherent light enters into the slab.
Thus the only source of light is from the incident
intensity. Therefore

I~t 5 0, m! 5 0, 0 , m # 1,

I~t 5 t0, m! 5 0, 21 # m , 0. (10)

ith these boundary conditions we now have a well-
osed mathematical problem.

3. Diffusion Approximation

As light propagates through a random medium, we
assume that the specific intensity develops a nearly
isotropic angular distribution because of the pro-
found multiple scattering effects. This is the basic
assumption of the diffusion approximation, and it
allows us to consider the specific intensity as an as-
ymptotic expansion of Legendre functions2:

I~r, ŝ! 5 Ud~r! 1
3

4p
Fd~r! z ŝ 1 . . . , (11)

where

Ud~r! 5 1y2 *
4p

I~r, ŝ!dV (12)

is the averaged intensity ~dV is the elementary solid
angle in direction ŝ! and

Fd~r! 5 *
4p

I~r, ŝ!ŝdV (13)

is the flux vector. Furthermore, we assume that

uFd~t!u ,, Ud, (14)

which corresponds to the angular distribution’s being
nearly isotropic.

These assumptions yield a diffusion equation for
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Table 1. Parameter Values for the Various Diffusion Theories
the plane-parallel problem that takes the nondimen-
sional form

d2Ud~t!

dt2 1 k2Ud~t! 5 Q0~t!, (15)

where

k2 5 3Ha
vn

2

t0
2 1 i

vn

t0
@W0~1 2 g! 1 b~1 2 W0!#

2 ~1 2 W0!@W0~1 2 g! 1 g~1 2 W0!#J (16)

and a, b, and g are parameters that correspond to the
various diffusion theories.6 These diffusion theories
are summarized in Table 1.

The contribution from coherent sources is defined as

Q0~t! 5
3

4p
W0@gW0 2 h~1 1 g!#exp~2ht!. (17)

Fig. 2. Continuous wave: transmitted and backscattered fluxes
for W0 5 0.99 and d 5 3.0 cm. Here and in subsequent figures,

ad. Tr. means radiative transfer.
On solving Eq. ~15!, we can determine the flux vector
from the relation

¹Ud 5
3

4p
~gW0 2 h!Fd 1

3
4p

gW0 exp~2ht! ẑ. (18)

To solve Eq. ~15! we need to prescribe boundary
onditions that correspond to those defined in Eqs.
10!. However, only approximate conditions exist,

Fig. 3. Continuous wave: transmitted and backscattered fluxes
for W0 5 0.85 and d 5 3.0 cm.

Author of Theory
Abbreviation

for Theory

Parameter

a b g

Ishimarua D1 1 2 1
Furutsu and Furutsu

and Yamadab
D2 0 0 0

Polishchuk et al.c D3 1y5 2y5 1y5
Durian and Rudnickd D4 1y3 2y3 1y3
Patterson et al.e D5 0 1 1

aRefs. 2 and 3.
bRefs. 4 and 5.
cRef. 6.
dRef. 7.
eRef. 8.
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which state that the total flux directed in toward the
medium is zero and yields the Robin conditions2

Ud 2 h
dUd

dt
1

1
2p

Q1 5 0, t 5 0,

Ud 1 h
dUd

dt
2

1
2p

Q1 5 0, t 5 t0, (19)

where

h 5 2y3~gW0 2 h!21, (20)

Q1~t! 5
gW0

~gW0 2 h!
exp~2ht!. (21)

Now, with Eqs. ~15! and ~19!, we have a complete
mathematical description of the diffusion equation for
the plane-parallel problem. Closed-form solutions to
the diffusion equation are easy to obtain, which makes
the diffusion approximation an attractive alternative
to solving Eq. ~2!. However, the diffusion approxima-
tion may not be appropriate for many situations that
are physically relevant to imaging biological media.
Therefore we compare the solutions of Eq. ~15! with the

Fig. 4. 10-ps pulse: amplitude of transmitted and backscattered
fluxes for W0 5 0.99, d 5 3.0 cm, and t0 5 100 ps.
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numerical solution of Eq. ~2! to test the validity of the
diffusion approximation.

4. Numerical Results

To solve Eq. ~2! we use the finite-element Galerkin
method,12 which handles highly anisotropic media
with relatively low computational cost. The trans-
mitted and backscattered fluxes,

FT 5 2p *
0

1

I~t0, m!mdm, (22)

FB 5 2p *
21

0

I~0, m!mdm, (23)

are calculated by quadrature.
Inasmuch as the diffusion approximation can be

thought of as a limiting process toward an isotropic
angular distribution, we suspect that the diffusion
approximation works best for nearly isotropic media
with an albedo near unity at large optical depths:

g3 0, W03 1, t0 .. 1. (24)

Fig. 5. 10-ps pulse: amplitude of transmitted and backscattered
fluxes for W0 5 0.85, d 5 3.0 cm, and t0 5 100 ps.
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The diffusion approximation should not be accurate
for highly anisotropic ~g3 1! and absorbing ~W03 0!
media. Anisotropy and absorption impede the mul-
tiple scattering that is necessary for averaging out
the angular distribution as the wave travels through
the medium, especially at low optical depths. Fur-
thermore, because the boundary conditions for the
diffusion equation do not directly correspond to the
boundary conditions for the radiative transfer equa-
tion, we expect deviations for lower optical depths
where boundary effects are significant. Our numer-
ical results are consistent with these ideas.

A. Continuous Waves

To calculate the solution for continuous waves we
solve Eq. ~2! for vn 5 0 and d 5 3.0 cm. In Fig. 2 we
onsider W0 5 0.99. For the transmitted flux, if the

albedo is close to unity, then all the diffusion approx-
imations are good for all asymmetry factors. Theory
D4 ~Table 1!, which corresponds to g 5 1y3, appears
to be closest to the radiative transfer solution for
most values of g with a 0.1-dB deviation. Theory D2,
which corresponds to g 5 0, agrees best for g 5 0.98.
All the other approximations are within a 0.5–1.0 dB
deviation from the radiative transfer solution. For

Fig. 6. Density wave: amplitude and phase of transmitted
fluxes for W0 5 0.99 and d 5 3.0 cm.
the backscattered flux we observe that for g 5 0 and
5 0.5 all diffusion approximations are good within
dB of the radiative transfer solution. However, for
5 0.85, all approximations deviate by 0.8 dB for

arge optical depths. For g 5 0.98, all the approxi-
ations deviate by at least 2 dB for large optical

epths.
In Fig. 3 we consider W0 5 0.85. When we con-

sider an absorbing medium, we observe that theory
D4 is still the closest to the radiative transfer for the
transmitted flux. The deviation from radiative
transfer varies from less than 0.1 dB for isotropic
media ~g 5 0! to 0.3 dB for g 5 0.9 at t0 5 50. Other
diffusion approximations are within a few decibels,
but the deviation increases to 12 dB for g 5 0.9 at
t0 5 50. For the backscattered flux, all approxima-
tions are within 0.5–1.0 dB for g 5 0 and g 5 0.5.

hen g $ 0.85, all the diffusion approximations are
negative and thus give unphysical results and poor
approximations to the radiative transfer solution.

B. Pulsed Waves

For our pulse calculations we consider a pulse width
of 10 ps and slab thickness of 3 cm ~t0 5 dyc 5 100 ps!
t t0 5 20. To obtain the solution in the time domain

Fig. 7. Density wave: amplitude and phase of backscattered
fluxes for W0 5 0.99 and d 5 3.0 cm.
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we calculate the spectrum by solving Eq. ~2! over a
range of frequencies and convolving the spectrum
with a Gaussian function of width T 5 10 ps, using
fast Fourier transforms. The 10-ps Gaussian pulse
measured at 270 dB starts at approximately 20.4t0.
Both the width of the spectrum and the number of
Fourier modes must be carefully considered when one
is performing the fast Fourier transforms so the spec-
trum will be properly resolved.

In Fig. 4 we consider W0 5 0.99. For the transmit-
ted pulse in isotropic media ~g 5 0!, all the diffusion
approximations are close to the radiative transfer.
However, for short times, some differences can be ob-
served. For short times, theories D2 and D5 start
early to indicate true diffusion or the absence of a
second derivative in time. For long times, all approx-
imations are within 3 dB of radiative transfer. For
g 5 0.85 there are considerable departures from radi-
ative transfer in the short and long times. For the
backscattered pulse in isotropic media, all the diffusion
approximations are good. Again, some noticeable
variations occur in short and long times for g 5 0.85.
Overall, theory D4 is closest to radiative transfer.

In Fig. 5 we consider an absorbing medium with W0
5 0.85. For the transmitted pulse in isotropic media,

Fig. 8. Density wave: amplitude and phase of transmitted
fluxes for W0 5 0.85 and d 5 3.0 cm.
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theory D4 is closest. Other diffusion theories show
some departures from radiative transfer for short
times. For g 5 0.85, the departures are evident for
short times; again, theories D2 and D5 start early.
For the backscattered pulse in isotropic media, all the
diffusion approximations are good. For anisotropic
media, considerable variations exist in the short time.
Recall from the continuous-wave observations above
that all the diffusion approximations are negative for
this case. Analogously, the spectra of the diffusion
approximations differ significantly, both qualitatively
and quantitatively, from the spectrum given by the
solution of the two-frequency equation of transfer.
This difference can be seen through the presence of
local minima just after the peak of the pulse. Because
the spectra differ so greatly, we consider the presence
of the local minima in the diffusion theories to be un-
physical. Thus the diffusion approximation is inap-
propriate for this situation.

C. Photon Density Waves

For our photon density wave calculations we consider
a modulating frequency of 200 MHz ~vn 5 0.125! in a
medium of thickness d 5 3.0 cm. In Figs. 6 ~trans-

Fig. 9. Density wave: amplitude and phase of backscattered
fluxes for W0 5 0.85 and d 5 3.0 cm.



F
i
a
o
c
s
c

c
t
t

a
p
t

t
g
m
v

I
d
s
a
d

r
t

mitted! and 7 ~backscattered!, we consider W0 5 0.99.
or the transmitted and backscattered density waves

n isotropic media, all the diffusion approximations
re good. For g 5 0.85 we observe phase deviations
f 2° for the transmitted density waves and signifi-
ant deviations at small optical depths for the back-
cattered density waves. In Figs. 8 and Fig. 9 we
onsider W0 5 0.85. For transmitted density waves

~Fig. 8! in isotropic media, theory D4 is the best ap-
proximation because the other diffusion approxima-
tions have some departures in phase. For g 5 0.85,
the departure increases, but theory D4 remains the
best. For backscattered density waves ~Fig. 9! in
isotropic media, the amplitudes of various approxi-
mations are within 0.5 dB, whereas the phases are
within 0.5°. For g 5 0.85, theories D3 and D4 are
lose to radiative transfer in amplitude; in phase,
heories D1 and D5 are quite different from radiative
ransfer.

5. Conclusions

We have reviewed the theory of the diffusion approx-
imation and compared the results from several exist-
ing diffusion equations with the numerical solution of
the equation of transfer for continuous-wave, pulsed,
and photon density waves under index-matched
boundary conditions. The diffusion approximations
work well for large optical depths, albedo values near
unity, and asymmetry parameter values near zero.
However, it is not necessarily appropriate to apply
the diffusion approximation to highly anisotropic me-
dia ~biological media! because the nearly isotropic
ngular distribution limiting process is greatly im-
eded by highly anisotropic scattering and absorp-
ion. Our examples above demonstrate these ideas.

For continuous-waves in a nearly lossless and iso-
ropic medium, diffusion approximations are good for

# 0.85. We conclude that the diffusion approxi-
ation is no longer valid for asymmetry parameter

alues greater than g 5 0.85. For pulses in a nearly
lossless and isotropic medium, all diffusion approxi-
mations are good, but the departure of the diffusion
approximations from the radiative transfer solution
increases as g increases, especially for long times.
n addition, for short times, the absence of the second
erivative in theories D2 and D5 is noted. For den-
ity waves in a nearly lossless and isotropic medium,
ll the diffusion approximations are good. Again,
epartures are noticeable for anisotropic scattering.
Through the examples we have chosen, which cor-
espond to parameters of interest for medical optics,
heory D4 demonstrated the best performance over-

all. However, no conclusive statement can be made
as to which of the several diffusion theories offers the
best approximation to the equation of transfer, in
general, because the individual performance of each
of the diffusion theories changes with the parameter
setting.

This research was supported by the National Sci-
ence Foundation, the U.S. Office of Naval Research,
and the U.S. Army Research Office.
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