Neural Networks 67 (2015) 140-150

Contents lists available at ScienceDirect

Neural Networks

journal homepage: www.elsevier.com/locate/neunet

Incremental learning for v-Support Vector Regression

@ CrossMark

Bin Gu®>“%* Victor S. Sheng®, Zhijie Wang', Derek Ho#, Said Osman", Shuo Li "

2 Jiangsu Engineering Center of Network Monitoring, Nanjing University of Information Science & Technology, Nanjing, PR China
b Jiangsu Collaborative Innovation Center on Atmospheric Environment and Equipment Technology, PR China

¢ School of Computer & Software, Nanjing University of Information Science & Technology, Nanjing, PR China

4 Department of Medical Biophysics, University of Western Ontario, London, Ontario, Canada

€ Department of Computer Science, University of Central Arkansas, Conway, AR, USA

f GE Health Care, London, Ontario, Canada

& Victoria Hospital, London Health Science Center, London, Ontario, Canada

h St. Joseph’s Health Care, London, Ontario, Canada

ARTICLE INFO ABSTRACT

Article history:

Received 19 May 2014

Received in revised form 28 December 2014
Accepted 20 March 2015

Available online 6 April 2015

The v-Support Vector Regression (v-SVR) is an effective regression learning algorithm, which has the
advantage of using a parameter v on controlling the number of support vectors and adjusting the width
of the tube automatically. However, compared to v-Support Vector Classification (v-SVC) (Schélkopfet al.,
2000), v-SVR introduces an additional linear term into its objective function. Thus, directly applying the
accurate on-line v-SVC algorithm (AONSVM) to v-SVR will not generate an effective initial solution. It is
the main challenge to design an incremental v-SVR learning algorithm. To overcome this challenge, we
propose a special procedure called initial adjustments in this paper. This procedure adjusts the weights
of v-SVC based on the Karush-Kuhn-Tucker (KKT) conditions to prepare an initial solution for the
incremental learning. Combining the initial adjustments with the two steps of AONSVM produces an exact
and effective incremental v-SVR learning algorithm (INSVR). Theoretical analysis has proven the existence
of the three key inverse matrices, which are the cornerstones of the three steps of INSVR (including the
initial adjustments), respectively. The experiments on benchmark datasets demonstrate that INSVR can
avoid the infeasible updating paths as far as possible, and successfully converges to the optimal solution.
The results also show that INSVR is faster than batch v-SVR algorithms with both cold and warm starts.
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1. Introduction pable in this case, because the advantage of the incremental learn-

ing algorithms is that they incorporate additional training data
without re-training the learning model from scratch (Laskov et al.,
2006).

v-Support Vector Regression (v-SVR) (Schélkopf, Smola,
Williamson, & Bartlett, 2000) is an interesting Support Vector
Regression (SVR) algorithm, which can automatically adjust the
parameter € of the e-insensitive loss function.! Given a training
sample set T = {(x1,¥1),..., (x;,y)} withx; € R andy; € R,

In real-world regression tasks, such as time-series prediction
(e.g. Cao and Tay (2003); Lu, Lee, and Chiu (2009)), training data
is usually provided sequentially, in the extreme case, one example
at a time, which is an online scenario (Murata, 1998). Batch algo-
rithms seems computationally wasteful as they retrain a learning
model from scratch. Incremental learning algorithms are more ca-
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1 The e-insensitive loss function used in SVR is defined as y — f®]e =
max{0, [y — f(x)| — €} for a predicted value f(x) and a true output y, which does
not penalize errors below some € > 0, chose a priori. Thus, the region of all (x, y)
with [{y — f(x)| < €} is called e-tube (see Fig. 1).



B. Gu et al. / Neural Networks 67 (2015) 140-150 141

Scholkopf et al. (2000) considered the following primal problem:
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The corresponding dual is:
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where, following Schélkopf et al. (2000), training samples x; are
mapped into a high dimensional reproducing kernel Hilbert space
(RKHS) (Scholkopf & Smola, 2001) by the transformation function
@. K(xi, x) = (¢(x;), d(x)), (-, -) denotes inner product in RKHS.
) js a shorthand implying both the variables with and without as-
terisks. C is the regularization constant, and v is the introduced
proportion parameter with 0 < v < 1, which lets one control
the number of support vectors and errors. To be more precise, they
proved that v is an upper bound on the fraction of margin errors,
and a lower bound on the fraction of support vectors. In addition,
with probability 1, asymptotically, v equals both fractions.

Compared with e-Support Vector Regression (€-SVR) (Smola &
Scholkopf, 2003), v-SVR introduces two complications: the first
one is that the box constraints are related to the size of the training
sample set, and the second one is that one more inequality con-
straint is introduced in the formulation. Compared with v-Support
Vector Classification (v-SVC) (Scholkopf et al., 2000), v-SVR intro-
duces an additional linear term into the objective function of (2).
To sum up, the formulation of v-SVR is more complicated than the
formulations of e-SVR and v-SVC.

Early studies about SVR mostly focus on solving large-scale
problems. For example, Chang and Lin (2001, 2002) gave SMO
algorithm and implementation for training €-SVR. Tsang, Kwok,
and Zurada (2006) proposed core vector regression for training
very large regression problems. Shalev-Shwartz, Singer, Srebro,
and Cotter (2011) proposed stochastic sub-gradient descent algo-
rithm with explicit feature mapping for training e-SVR. Ho and Lin
(2012) and Wang and Lin (2014) proposed coordinate descent al-
gorithm for linear L1 and L2 SVR. Due to the complications in the
formulation of v-SVR as mentioned above, there are still no effec-
tive methods proposed for solving incremental v-SVR learning.

Let us pay our attention to the exact incremental and decremen-
tal SVM algorithm (Cauwenberghs & Poggio, 2001) (hereinafter
referred to as the C&P algorithm). Since the C&P algorithm was
proposed by Cauwenberghs and Poggio in 2001, further studies
mainly focus on two aspects. One is focusing on the C&P algorithm
itself. For example, Gu, Wang, and Chen (2008) and Laskov et al.
(2006) provided more detailed theoretical analysis for it. Gilmeanu
and Andonie (2008) addressed some implementation issues. Kara-
suyama and Takeuchi (2010) proposed an extension version which
can update multiple samples simultaneously. The other applies the
C&P algorithm to solve other problems. For example, Gretton and
Desobry (2003) and Laskov et al. (2006) applied it to implement-
ing an incremental one-class SVM algorithm. Martin (2002) and
Ma, Theiler, and Perkins (2003) introduced it to €-SVR (Vapnik,
1998) and developed an accurate on-line support vector regression

(AOSVR).Recently, Guetal.(2012) introduced the C&P algorithm to
v-SVC and proposed an effective accurate on-line v-SVC algorithm
(AONSVM), which includes the relaxed adiabatic incremental adjust-
ments and the strict restoration adjustments. Further, Gu and Sheng
(2013) proved the feasibility and finite convergence of AONSVM.
Because great resemblance exists in v-SVR and v-SVC, in this pa-
per, we wish to design an exact and effective incremental v-SVR
algorithm based on AONSVM.

As v-SVR has an additional linear term in the objective func-
tion compared with v-SVC, directly applying AONSVM to v-SVR
will not generate an effective initial solution for the incremen-
tal v-SVR learning. To address this issue, we propose a new in-
cremental v-SVR algorithm (collectively called INSVR) based on
AONSVM. In addition to the basic steps of AONSVM (i.e., the relaxed
adiabatic incremental adjustments and the strict restoration ad-
justments), INSVR has an especial adjusting process (i.e. initial
adjustments), which is used to address the complications of the
v-SVR formulation and to prepare the initial solution before the
incremental learning. Through theoretical analysis, we can show
the existence of the three key inverse matrices, which are the cor-
nerstone of the initial adjustments, the relaxed adiabatic incremen-
tal adjustments, and the strict restoration adjustments, respectively.
The experiments on benchmark datasets demonstrate that INSVR
can avoid the infeasible updating path as far as possible, and suc-
cessfully converge to the optimal solution. The results also show
that INSVR is faster than batch v-SVR algorithms with both cold
and warm starts.

The rest of this paper is organized as follows. In Section 2, we
modify the formulation of v-SVR and give its KKT conditions. The
INSVR algorithm is presented in Section 3. The experimental setup,
results and discussions are presented in Section 4. The last section
gives some concluding remarks.

Notation: To make the notations easier to follow, we give a
summary of the notations in the following list.

o, 8 The ith element of the vector @ and g.

o, Ye,Zc The weight, output, and label of the candidate
extended sample (X, Y., zc).

A The amount of the change of each variable.

Ellael  If |3 s zil = ISs|,le] and[A€]l stands for €’ and
A€, respectively. Otherwise, they will be ignored.

Qs;sq The submatrix of Q with the rows and columns

_ indexed by Ss. ~

Q72 The submatrix of Q with deleting the rows and
columns indexed by M.

Ivzt*, Iv?*t The row and the column of a matrix R corresponding

to the sample (x;, y;, z;), respectively.
0,1 The vectors having all the elements equal to 0 and 1,
respectively, with proper dimension.

Zs;, Us, A |Ss|-dimensional column vector with all equal to
z;, and z;y; respectively.

det(-) The determinant of a square matrix.

cols(-) The number of columns of a matrix.

rank(-)  The rank of a matrix.

2. Modified formulation of v-SVR

Obviously, the correlation between the box constraints and
the size of the training sample set makes it difficult to design an
incremental v-SVR learning algorithm. To obtain an equivalent
formulation, whose box constraints are independent to the size of
the training sample set, we multiply the objective function of (1) by
the size of the training sample set. Thus, we consider the following
primal problem:
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It is easy to verify that the primal problem (3) is equivalent to the
primal problem (1), and v is also an upper bound on the fraction of
margin errors and a lower bound of the fraction of support vectors.
The dual problem of (3) is:

) 1 1 . 1
min ;wr — ) (e — oK (xi, X)) — ;(a,-* —a)yi  (4)

s.t.

-

(O(;k — ai) =0,
i=1 i
0<a®<Ci=1,...,1L
Furthermore, we introduce Theorem 1, which concludes that for
any given v in (4), there are always optimal solutions which happen

at the equality ZE:l (oe;k + ai) = Cvl. The original version of this
theorem is proved in Chang and Lin (2002).

(a,-* —l—ot,-) < Cvl,

1
=1

IA

Theorem 1 (Chang & Lin, 2002). For dual problem (4),0 < v < 1,
there are always optimal solutions which happen at Zfﬂ ((x,.* + oz,-)
= Cvl

According to Theorem 1, the inequality constraint Y \_, (o

+a;) < Cvlin(4) can be treated as the equality S (of +ai) =
Cvl, which means that we can consider the following minimization
problem instead of the dual (4):

l 1
min % D (e —a) (e — @)K (xi, x) — ;(a;“ —a)yi  (5)

.
o ij=1

I
s.t. Z (of —e;) =0,
=1

0<a®<cC i=1,...,L

Furthermore, to present the minimization problem in a more
compact form, we introduce the extended training sample set S,
which is defined as S = S~ U ST, where S = {(x;,yi,z =
—DM_,, ST = {(&x,yi,zz = +1)}_,, and z is the label of the
training sample (x;, y;). Thus, the minimization problem (5) can be
further rewritten as:

1 2
min o 2:1 a;ajQ; — Xl:zi)’iai (6)
ij= i=

21 21
S.t. ZZjOl,’ =0, ZO{,’ = Cvl,
i=1 i=1

0<o;<C,i=1,...,2l
1

where Q is a positive semidefinite matrix with Q; = ;ziz;K (x;, x;).

According to convex optimization theory (Boyd & Vanden-
berghe, 2004), the solution of the minimization problem (6) can
also be obtained by minimizing the following convex quadratic ob-
jective function under constraints:
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Fig. 1. The partition of the training samples S into three independent sets by KKT-
conditions. (a) Ss. (b) Sg. (¢) Sg.

Table 1
Two cases of conflicts between ) ;¢ Aat; + Aae = 0and ) ¢ zi Aa; + 2. Acre = 0

when ‘Ziess z;| = |Ss| with a small increment Ac,.

Label of margin support vectors  Label of the candidate sample Conflict
+1 -1 +1 -1 Yes/no
v v No
v J Yes

N Vv Yes

Vv Vv No

where b’ and €’ are Lagrangian multipliers.
Then by the KKT theorem (Karush, 1939), the first-order
derivative of W leads to the following KKT conditions:

w &
=) ziai=0 (8)
ob’ P
w &
; = Oli = CUl (9)
de ;
‘ w &
VieS:g = oo, = jZZ]O[jQ,‘j —zyi +zb + €
>0 fora;=0
=0 forO0<a; <C (10)
<0 foro; =C.

According to the value of the function g;, the extended training
sample set S is partitioned into three independent sets (see Fig. 1):
(i)Ss ={i: g =0, 0 < o;j < C}, the set Sg includes margin
support vectors strictly on the e-tube;
(i) Se = {i: g < 0, a; = C}, the set Sg includes error support
vectors exceeding the e-tube;
(iii) Sg = {i : g& > 0, o; = 0}, the set Sy includes the remaining
vectors covered by the e-tube.

3. Incremental v-SVR algorithm

In this section, we focus on the incremental v-SVR learning al-
gorithm especially for the minimization problem (6). If a new sam-
ple (Xnew, Ynew) is added into the training sample set T, there will
exist an increment in the extended training sample set S, which can
be defined as Spewy = {(Xnew, Ynews +1), Knew, Ynew, — 1D} Initially,
the weights of the samples in S, are set zero. If this assignment
violates the KKT conditions, the adjustments to the weights will
become necessary. As stated in Gu et al. (2012), the incremental
v-SVR algorithm is actually to find an effective method for updat-
ing the weights without re-training from scratch, when any con-
straint of the KKT conditions is not held.

The classical C&P algorithm is gradually increasing the weight
o of the added sample (x., y.), while rigorously ensuring all the
samples satisfying the KKT conditions. As proved in Gu and Sheng
(2013) and Gu et al. (2008), there exists a feasible updating path
achieving the optimal solution for the enlarged training sample set.
Unfortunately, Gu et al. (2012) pointed out that this idea cannot
hold for v-SVC and v-SVR. In this paper, we provide an in-depth
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analysis for v-SVR. As listed in Table 1, if ‘ZiESS zi‘ = |Ss|, and the

label of the candidate sample (x., y., z¢) is different from those of
the margin support vectors in Sg, there exists a conflict (referred
to as Conflict-1) between Egs. (8) and (9) with a small increment
of .. To address this issue, AONSVM introduced two special steps
(i.e., the relaxed adiabatic incremental adjustments and the strict
restoration adjustments). However, directly applying AONSVM
to v-SVR will not generate an efficient initial solution for the
incremental v-SVR learning. Specifically, the objective of the initial
solution is to retrieve the optimal solution of the minimization

problem (6) when Q <« HLIQ. It is obvious that the initial strategy

of AONSVM (i.e., setting g < Hilg, b« Hi]b/, € « Hi]e/)does

not apply to the incremental v-SVR learning due to an additional
linear term in the objective function (2). Thus, a new procedure
should be designed especially for tackling this issue.

Algorithm 1 Incremental v-SVR algorithm INSVR

1: Read a new sample (Xpew,Ynew), and
{(Xnew: Ynew +1)s (Xnewv Ynew, _1)}'

: Update g < 78, b < b, € < 1-%15/’ n <« 1-%1

: while 1 # 1do

Compute /é and y according to (16)-(17).

Compute the maximal increment An™* according to (19).

Update n, a, g, b, €, Ss, Sg and Sg.

Update the inverse matrix R according to (20)-(22).

: end while 5

: Compute the inverse matrix R based on R.

: Update S < S U Sepp-

: Initial the weights of the samples in S, as 0, and compute
their values of the function g;.

12: if I(xc, V¢, 2c) € Spew such that g, < 0 then

13:  Using the relaxed adiabatic incremental adjustments.

14: end if

15: Using the strict restoration adjustments.

16: Compute the inverse matrix Rbased on R. {See Section 3.1.3.}

let Suew =

—_ =
—_ O W N U A WN

To address this issue, we propose the initial adjustments. The
objective of this step is to initial the solution of the minimization
problem (6) before adding a new sample (Xpew, Ynew) into T,
i.e. retrieving the optimal solution of the minimization problem
(6) when Q <« H%Q. Our idea is first setting g < Hilg, b o«

!

L p,e <« ¢, next imposing a shrinkage n = ™

[ I+1 on

¥i, 1 < i < 2I, then gradually increasing 1 under the condition of
rigorously keeping all samples satisfying the KKT conditions. This
is repeated until = 1. This procedure is described with pseudo
code in lines 2-8 of Algorithm 1, and the details are expounded in
Section 3.1.

Before presenting the whole incremental v-SVR algorithm, we
first introduce Theorem 2, which tells us € > 0 after the initial
adjustments.

Theorem 2. After the initial adjustments, it can be concluded that the
Lagrangian multiplier €' must be greater than or equal to 0.

The detailed proof to Theorem 2 is proved in Appendix A.1.
Initially, we set the weights of two samples in S, to be zero.
According to Theorem 2, it can be concluded that there exists at
most one sample (X¢, Y, z¢) from S,,, violating the KKT conditions
(i.e., g < 0) after the initial adjustments. If existing a sample
(X, Ye, zc) in Syey, with g < 0, the relaxed adiabatic incremental
adjustments will be used to make all samples satisfying the KKT
condition except the equality restriction (9). Finally, the strict
restoration adjustments is used to restore the equality restriction

(9). The three steps constitute the incremental v-SVR algorithm
INSVR (see Algorithm 1), which can find the optimal solution for
the enlarged training sample set without re-training from scratch.
To make this paper self-contained, we give a brief review of the
strict restoration adjustments and the strict restoration adjustments
in Sections 3.2 and 3.3, respectively. Their details can be found in
Gu et al. (2012). Section 3.4 proves the existence of the three key
inverse matrices in INSVR.

3.1. Initial adjustments

To prepare the initial solution of the minimization problem (6)
before adding a new sample (Xpey , Ynew) into T, our strategy is first

setting g < 5 b/, € <« €, next imposing a

i1
shrinkage n = ﬁ ony;, 1 < i < 2l then gradually increasing
n under the condition of rigorously keeping all samples satisfying
the KKT conditions, until n = 1.

During the initial adjustments, in order to keep all the samples
satisfying the KKT conditions, we can have the following linear
system:

g, b <«

> zAa;=0 (11)

JeSs

> Ae=0 (12)

Jj€Ss

Agi =Y AcjQj+zAb + Ac' — Anzy; =0, VieSs (13)
J€Ss

where An, Aqj, Ab, Ae’ and Ag; denote the corresponding
variations.

If we define e, = [1, ..., 1] as the |Sg|-dimensional column
vector withall ones, and letzs, = [z, .. .,z|55|]T, us, = [z1y1, ...,
z‘gs|y|ss‘]T, then the linear system (11)-(13) can be further
rewritten as:

0 0 z Ab' 0
o o 17 |:A6/:| = |:0:|Ar]. (14)
Zs 1 QSSSS B AO{SS Us

Y

Supposing a has the inverse matrix R (the detailed discussion
about the reversibility of Q is provided in Section 3.1.1), the linear
relationship between Ah and An can be easily solved as follows:

Ab o et /?b’
Ah=| A€ |=R| 0 [AnE | B | An. (15)
AO{SS U, Bss

Substituting (15) into (13), we can get the linear relationship
between Ag; and An as follows:

Ag = (Z BiQj + 2By + B — ZiYi) An
JESs

def +
= %A,

And obviously, Vi € Sg, we have y = 0.

Vies. (16)

3.1.1. Special cases in initial adjustments

Under the condition that Q has the inverse matrix k, the initial
adjustments can easily obtain the linear relationships between Ah
and An, and between Ag and An according to (15)-(16). In this
section, we will discuss how to determine the linear relationships
between Ah and An, and between Ag and An, when Q becomes
singular.
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We will show that a becomes a singular matrix in the following
two situations?:

(i) The first one is that ’Ziess
have one kind of labels. For example:

(a) WhenVi € Ss, z; = +1, we have es; — 25, = 0.
(b) When Vi € Sg, zi = —1, we have e5; + z5; = 0.
In these two cases, Q is clearly a singular matrix.

(ii) The second oneisthat |[M™| > 1,where Mt isdefinedasM™* =
{(xi,yi,—1) € Ss : (x;,yi, +1) € Ss}, which implies that
e-tube becomes 0-tube. Specifically, there exist four samples
indexed by iy, iy, k; and k,, respectively, where (x;,,yi,) =
(Xiz ’ yiz)’ Zi] = _Zizv and (xk1 s .qu) = (sz ) ykz)a Z’(] = _Zkz'
Then according to (13), we have Ag;, + Agi, = Agk, + Agk,»
which means @1* + @2* = alq* + akz*. In this case, it is easy
to verify that a is a singular matrix.

And if M =£ @, we define M as the contracted set which is
obtained by deleting any one sample from M*; if M™ = @, we
define M as an empty set. Finally we let S; = Sg — M. Then if
M # @, Q is clearly a singular matrix.

If | Ziess zi| # ISs|,M = M U {i~}, and otherwise M = M.
Thus, we have the contracted matrix a\Mz. Theorem 4 shows that

zi‘ = |Ss|, i.e., the samples of Sg just

6\1\7,2 has the inverse matrix R under Assumption 1 (the details of
Theorem 4 will be discussed in Section 3.4). Furthermore, we let

= 0, Aay = 0, then the linear relationship between Ah,
and Ac, can be obtained similarly as follows:

" Ab To
Ahy = Ae’i| :R|:0i| An
_AO[SS \]\7, llsS \1\71
i
= |B| An (17)
B i

Finally, letting = 0, and BM = 0, substituting (17) into (13),
we can get the linear relationship between Ag; and An as (16).

3.1.2. Computing maximal increment An™

The principles of initial adjustments cannot be used directly to
obtain the new state, such that all the samples satisfy the KKT
conditions. To handle this problem, the main strategy is to compute
the maximal increment An™* for each adjustment, such that a
certain sample migrates among the sets Sg, Sg and Sg. Three cases
must be considered to account for such structural changes:

(i) Acertain ¢; in Sg reaches a bound (an upper or a lower bound).
Compute the sets: Lsf ={ieS : B > 0} s = {i €
Ss ¢ Bi < 0}, where the samples with ,Bi = 0 are ignored

due to their insensitivity to An. Thus the maximum possible
weight updates are

max __
Aa; " =

{C—a,-, ifi eI (18)

—ay,  ifiel®
and the maximal possible An’s, before a certain sample in Sg

moves to Sg or S, is: An®S = min i
R OT O, 15 A = iersurs T

2 In this paper, we do not consider the training sample set T having duplicate
training samples. A more general assumption of the dataset is that the margin
support vectors are all linearly independent in RKHS (collectively called Assumption
1). The more detailed explanation of Assumption 1 can be found in Gu and Sheng
(2013).

(ii) A certain g; corresponding to a sample in Sk or S reaches zero.
Compute the sets: Iff ={ieS: % >0LI%=1{c¢€
Sk © ¥ < 0}, where samples with y; = 0 are again ignored
because of their insensitivity to Azn. Thus the maximal possible
An??’zf , before a certain sample in Si or Sg migrates to Sg, is:
At = mmielff ur’R %

(iii) n reaches the upper bound. The maximal possible An”, before
reaching the upper bound 1,is: Ap" =1 —n.

Finally, the three smallest values constitute the maximal incre-
ment of Az. That is

An™ = min {An*s, A’ A"} (19)

After the critical adjustment quantity An™®* is determined, we
can update n, «, g, Ss, Sg and Sg, similarly to the approaches in
Diehl and Cauwenberghs (2003).

3.1.3. Updating the inverse matrix R
Once the components of the set Sg are changed, the set S¢ and

the state of ’Z z;| may also change. That is a sample is either

ieSs
added to or removed from the set Sg, and the state of ‘Zies Z," is

S
transformed from ‘Ziess z,-‘ = |Ss| to ‘Ziess zi‘ # |Ss|.> Accord-
ingly, there exist changes in a_\Mz and R. In this section, we describe
the following rules for updating the inverse matrix R

(i) If a sample (x¢, y¢, z;) is added into S;, then the inverse matrix
R can be expanded as follows:

~ ~ LT
0 é,i/ é,i,
. R 1|8, L
Re| B 4z Pl | Pe (20)
. )/ /3[ /3[
0 0 t Ss Ss
1 \ft 1 \Rt
EJ;’ “ Zt ~ ~
where ff/ = —R- [ 1 :| | BL =0 B, =0 and
Pss 1\ Qsse ]\

Vi = Yjess B Qi + 2By + By + Q.
If the state of ‘Ziess z,-‘ transforms into ‘Ziess z,-‘ # |Ss| from

‘ZiESS Zi

as follows:

. b T T
k< |:R +agc c a‘cl } 1)

(ii

=

= |Ss|, then the inverse matrix R can be expanded

-1
cRe

S
(iii) If a sarrzple (X¢, Yt z¢) is removed from S, then the inverse
matrix R can be contracted as follows:

~ def _—
wherec = — Oeg, -R= —C¢-Randa =

v v 1 /v
R« Ry — — (R*th*) . (22)
Ryt \tt
In summary, during the initial adjustments, the inverse matrix

R can be updated as described above. In addition, after the strict
restoration adjustments, we need to recompute the inverse matrix

3 When the set of margin support vectors with the label z, becomes Sé” =
{(x¢, ¢, 20)}, after removing a sample with the label z, from the set S5, we can have
that Et = 0 according to the definition of inverse matrix. This means that removing
a sample from S; will not lead to the transformation from | Ziess zi| # |Ss| to

|2 ies, Zil = IS5
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R for the next round of initial adjustments, which can be obtained
from R by the following steps:

(i) Compute the inverse matrix of Qs,s, based on R using the
contracted rule, similar to (22).

(ii) Update the inverse matrix of H%Qgsgs by the rule R < H'T]R.

(iii) Calculate the inverse matrix R for the next round of the initial
adjustments by the expanded rule, similar to (21).

3.2. Relaxed adiabatic incremental adjustments

Because there may exist Conflict-1 between Egs. (8) and (9)
during the adjustments for o, the limitation imposed by Eq. (9) is
removed in this step. Thus, during the incremental adjustment for
o, in order to keep all the samples satisfying the KKT conditions
except the restriction (9), we have the following linear system
under the condition that Ae’ = 0:

Y zAdj+z.Ace =0 (23)

Jj€Ss

Agi =) AajQj+zAb + AacQc =0, VieSs. (24)
Jj€Ss

The linear system (23)-(24) can be written as:

0 Zg Ab I
|:ZSS Q95555i| |:A0l55:| - |:Q95C] Ad. (25)

Like the initial adjustments, we define M=MU {ic’}. Thus,
we have the contracted matrix Q,gz2. Corollary 5 shows that Q52
has an inverse (the details of the corollary will be discussed in
Section 3.4). Let R = Q\_Mlz the linear relationship between

Ab/, Aasg, and A« can be solved as follows:

Ab Z def [ By
Zlflw il w

Let By, = 0, and substitute (26) into (23), we can get the linear
relationship between Ag; and Ac, as follows:

Ag = (Z ﬂ]-Cij + 21,35/ + ch) A,
J€Ss

def

= y{Aa,, VieSs. (27)

Obviously, Vi € S5, we have y£ = 0.

3.3. Strict restoration adjustments

After the relaxed adiabatic incremental adjustments, we need to
adjust ) ;s o; to restore the equality ) ;¢ & = Cv(I+1). For each
adjustment of ) ;¢ «;, in order to keep all the samples satisfying
the KKT conditions and to prevent the reoccurrence of the conflict
(referred to as Conflict-2) between Eqs. (8) and (9) efficiently, we
have the following linear system:

ZZJ'AO(]‘ =0 (28)
Jj€Ss
Z Acj+eAe' + AL =0 (29)
Jj€Ss

Jj€Ss

where A is the introduced variable for adjusting ) ", s ;. € is any
negative number. ¢ A¢’ is incorporated in (29) as an extra term.
Gu et al. (2012) wish to prevent the reoccurrence of Conflict-2
between Eqs. (8) and (9) efficiently using this extra term.

The linear system (30)-(29) can be further rewritten as:

0 0 z{ Ab 0
o ¢ 17 [Ae/} :—[l:| AL. (31)
ZSS 1 QSSSS AaSS 0

—\/—/6

Let a\Mz be the contracted matrix of a Theorem 6 shows that
Qw2 has an inverse (the details of Theorem 6 will be discussed
in Section 3.4). Let R = Q\7w12 the linear relationship between
Ab', A€’ Aasg and A¢ can be obtained as follows:

Ab _fo et Eb’
A | =—R|1|AC S | B | AL (32)
Aasé 0 '85§

From (32), we have Zies Aa; = —(1 + S'BG/)AL which implies

that the control of the adjustment of ) _,_; «; is achieved by A¢.
Finally, letting Sy = 0, and substituting (32) into (30), we get
the linear relationship between Ag; and A¢ as follows:

Agi = (Z B + ziBy + Ey) A¢
J€Ss
def

= VAL, VieS. (33)

Obviously, Vi € S, we also have 3; = 0.

3.4. Do the three key inverse matrices exist?

As stated above, the inverses of a\,r/,z,a\g,z, and a\Mz are
the cornerstone of the initial adjustments, the relaxed adiabatic
incremental adjustments, and the strict restoration adjustments,
respectively. In this section, we prove their existence under
Assumption 1 through Theorem 4, Corollary 5, and Theorem 6.

Lemma 3. If Aisak x n matrix with a rank k, Bis an n x n positive
definite matrix, then ABAT will also be a positive definite matrix.

Lemma 3 can be easily proved by Cholesky decomposition
(Householder, 1974) and Sylvester’s rank inequality (Householder,
1974).

= |Ss|, the

determinant of a\w is always less than 0; otherwise, it is always
greater than 0.

Theorem 4. During the initial adjustments, if ‘ZieSs zi

We prove Theorem 4 detailedly in Appendix A.2.

Corollary 5. During the relaxed adiabatic incremental adjustments,
the determinant of Q, g2 is always less than 0.

Corollary 5 can be obtained easily according to Theorem 4.

Theorem 6. During the strict restoration adjustments, if ¢ < 0, then
the determinant of Q, 2 is always more than 0.

We prove Theorem 6 detailedly in Appendix A.3.

In addition, it is not difficult to find that the time complexities of
updating/downdating R, R, and R are all O(|Ss|?), based on the rules
in Section 3.1.3 and the inverse updating/downdating rules in Gu
etal.(2012). Alot of references (Gunter & Zhu, 2007; Hastie, Rosset,
Tibshirani, & Zhu, 2004; Wang, Yeung, & Lochovsky, 2008) reported
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that the average size of Sg does not increase with the size of training
set. Our experimental results also verified this point, which means
that INSVR can efficiently handle large scale problems.

4. Experiments

4.1. Design of experiments

In order to demonstrate the effectiveness of INSVR, and to show
the advantage of INSVR in terms of computation efficiency, we
conduct a detailed experimental study.

To demonstrate the effectiveness of INSVR (i.e., to show that
INSVR is a workable and meaningful algorithm under Assumption
1), we investigate the existence of the two kinds of conflicts, the
singularity of Q, and the convergence of INSVR, respectively. To
validate the existence of the two kinds of conflicts, we count the
two kinds of conflicts (i.e., Conflict-1 and Conflict-2, the details
can be found in Gu et al. (2012)) during the relaxed adiabatic
incremental adjustments and the strict restoration adjustments,
respectively, over 500 trials. To investigate the singularity of Q,
we count the two special cases (c.f. Section 3.1.1, denoted as
SC-1 and SC-2) during the initial adjustments, and all the three
steps of INSVR, respectively, over 500 trials. To illustrate the fast
convergence of INSVR empirically, we investigate the average
numbers of iterations of the initial adjustments (IA), the relaxed
adiabatic incremental adjustments (RAIA), and the strict restoration
adjustments (SRA), respectively, over 20 trials.

To show that INSVR has the computational superiority over the
batch learning algorithm (i.e., the Sequential Minimal Optimiza-
tion (SMO) algorithm of v-SVR) with both cold start and warm
start, we provide the empirical analysis of them in terms of scaling
of run-time efficiency. It should be noted that INSVR and the SMO
algorithm have the same generalization performance, because our
INSVR obtains the exact solution of v-SVR, and the SMO algorithm
also does.

4.2. Implementation

We implement our proposed INSVR in MATLAB. Chang and
Lin (2002) proposed a recognized SMO-type algorithm specially
designed for batch v-SVR training, which is implemented in C++
as a part of the LIBSVM software package (Chang & Lin, 2001). To
compare the run-time in the same platform, we implement the
v-SVR part of the LIBSVM with both cold start and warm start in
MATLAB (Chen, Lin, & Schélkopf, 2005).

All experiments were performed on a 2.5 GHz Intel Core i5
machine with 8GB RAM and MATLAB 7.10 platform. For kernels,
the linear kernel K (x1, X») = X1 - X2, polynomial kernel K (x1, x,) =
(%1 - x + D¢ with d = 2, and Gaussian kernel K(xq,x;) =
exp(—|lx; — x2]|?/20?) with ¢ = 0.707 are used in all the
experiments. The parameter, ¢ of the strict restoration adjustments
is fixed at —1, because any negative value of ¢ does not change
the updating path.* The values of v and C are fixed at 0.3 and 100,
respectively, in all the experiments.

4.3. Datasets

Table 2 presents the nine benchmark datasets used in our
experiments. These datasets are divided into two parts: the first
five are small datasets, and the last four are larger datasets.

4 Like AONSVM, it is easy to verify that & can determine A¢*, but is independent
with the structural changes of the sets Sg, Sg and Sg.

Table 2
Benchmark datasets used in the experiments.

Dataset Max #training set #attributes
Housing 506 13
Forest Fires 517 12
Auto MPG 392 7
Triazines 186 60
Concrete Compressive Strength 1,030 8
Friedman 15,000 10
Cpusmall 8,192 12
Cadata 20,640 8
YearPredictionMSD 51,630 90

The first five in Table 2 are Housing, Forest Fires, Auto MPG,
Triazines, and Concrete Compressive Strength. They are from the
UCI machine learning repository (Frank & Asuncion, 2010). Their
sizes vary from 186 to 1030.

The sizes of the last four datasets vary from 8192 to
51,630. Cpusmall, Cadata, and YearPredictionMSD are avail-
able at  http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
regression.html. Friedman is an artificial dataset (Friedman, 1991).
The input attributes (xq, ..., X10) are generated independently,
each of which uniformly distributed over [0, 1]. The target is de-
fined by

y = 10sin(wx1x2) + 20(x3 — 0.5)2 4 10x4 + 5%5 + ¢ (0, 1) (34)

where o (0, 1) is the noise term which is normally distributed with
mean 0 and variance 1. Note that x4, .. ., X5 only are used in (34),
while xg, . . ., X109 are noisy irrelevant input attributes.

4.4. Experimental results and discussion

When the training data sizes of the first six benchmark dataset
are 10, 15, 20, 25, and 30, respectively, Table 3 presents the
corresponding numbers of occurrences of Conflict-1 and Conflict-
2. From this table, we find that the two kinds of conflicts happen
with a high probability, especially Conflict-1. Thus, it is essential
to handle the conflicts within the incremental v-SVR learning
algorithm. Our INSVR can avoid these conflicts successfully.

Table 3 also presents the numbers of occurrences of SC-1
and SC-2 on the first six benchmark datasets, where the training
data size of each dataset is also set as 10, 15, 20, 25, and 30,
respectively. From this table, we find that SC-1 happens with a
higher probability than SC-2 does. Although SC-2 happens with a
low probability, the possibility of the occurrences still cannot be
excluded. Thus, it is very significant that INSVR handles these two
special cases.

Fig. 2 presents the average numbers of iterations of IA, RAIA,
and SRA, respectively, on the different benchmark datasets and
different kernels. It is obvious that these three steps exhibit quick
convergence for all benchmark datasets and kernels, especially
IA. Combined with the results in Table 3, we can conclude that
INSVR avoids the infeasible updating paths as far as possible,
and successfully converges to the optimal solution with a faster
convergence speed.

Fig. 3 compares the run-time of our INSVR and LibSVM with
both cold start and warm start, on the different benchmark
datasets and different kernels. The results demonstrate that our
INSVR is generally much faster than the batch implementations
using both cold start and warm start.

5. Concluding remarks

To design an exact incremental v-SVR algorithm based on
AONSVM, we propose a special procedure called initial adjustments
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The number of occurrences of Conflict-1, Conflict-2, SC-1 and SC-2 on the six benchmark datasets over 500 trials. Note that L, P, and G are the abbreviations of linear,
polynomial and Gaussian kernels, respectively.

Dataset Size Conflict-1 Conflict-2 SC-1 SC-2 Dataset Size Conflict-1 Conflict-2 SC-1 SC-2
L P G L P G L P G L P G L P G L P G L P G L P G
10 0 0 1 0 0 0 0 0 02 0 1 10 3 0 00 O o 1 o0 00 0 27
15 0 1 4 0 1 1 0 0 00 0O 15 0 8 00 1 0o 0 2 00 0 O
Housing 20 0 2 186 0 2 55 0 5 125 0 0 O Triazines 20 6 29 00 6 0 1 20 00 0 O
25 0 0 8 0 0 4 0 0 3000 25 1 0 00 O 0 0 O 00 0 O
30 0 0 1 0 0 1 0 0 10 0 0 30 0 2 00 1 0o 0 O 00 0 O
10 5 3 0 2 3 0 0 0 O00O0 11 10 13 27 14 4 4 4 0 O 00 0 2
Forest 15 1 12 0 1 4 0 3 0 00 0 O Concrete 15 20 24 66 5 4 17 2 12 00 0 1
fires 20 164 289 250 29 91 178 46 123 218 0 0 O compressive 20 57 120 284 9 22 63 25 96 219 0 0 O
25 60 22 0 12 8 0 12 3 00 0 O strength 25 32 31 73 6 11 41 0 13 24 0 0 O
30 62 10 0 8 2 0 5 0 00 0 O 30 38 27 16 6 6 12 3 0 8 0 0 O
10 21 21 0 3 6 0 1 0 00 0 2 10 0 0 156 0 O 61 0 O 0 0 45 4
Auto 15 38 8 2 4 1 0 2 1 00 0 1 15 0 0279 0 O 64 0 2 50 3 0
MPG 20 95 49 14 7 6 3 28 26 11 0 0 O Friedman 20 2 0 537 0 0 125 1 0 368 0 0 O
25 34 9 0 4 0 0 6 1 00 0 O 25 0 0 213 0 O 98 2 4 240 0 O
30 18 8 0 2 1 0 2 0 00 0 O 30 1 0 210 2 0 0 8 0 20 0 O
a b C
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Fig. 2. Average numbers of iterations of IA, RAIA, and SRA on the different benchmark datasets. (a) Housing. (b) Forest Fires. (c) Auto MPG. (d) Triazines. (e) Concrete
Compressive Strength. (f) Friedman. (g) Cpusmall. (h) Cadata. (i) YearPredictionMSD.

for preparing the initial solution before the incremental learning.
The initial adjustments and the two steps of AONSVM constitute
INSVR. We also prove the existence of the three key inverse

matrices, which are the cornerstone of INSVR. The experimental
results demonstrate that INSVR can successfully converge to the
exact optimal solution in a finite number of steps by avoiding
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Fig. 3. Run-time of LibSVM(Cold Start), LibSVM(Warm Start) and INSVR (in seconds) on the different benchmark datasets. (a) Housing. (b) Forest Fires. (c) Auto MPG. (d)
Triazines. (e) Concrete Compressive Strength. (f) Friedman. (g) Cpusmall. (h) Cadata. (i) YearPredictionMSD.

Conflict-1 and Conflict-2, and is faster than batch v-SVR algorithms
with both cold and warm start.

Theoretically, the decremental v-SVR learning can also be de-
signed in a similar manner. Based on the incremental and decre-
mental v-SVR algorithms, we can implement leave-one-out cross
validation (Weston, 1999) and the learning with limited memory
(Laskov et al., 2006) efficiently. In the future, we also plan to imple-
ment approximate on-line v-SVR learning based on the large-scale
SVR training algorithms, such as stochastic sub-gradient descent
algorithm (Shalev-Shwartz et al., 2011), and coordinate descent al-
gorithm (Ho & Lin, 2012; Wang & Lin, 2014), and use the method
to analyze the images of synthetic aperture radar (Zhang, Wu,
Nguyen, & Sun, 2014) and vehicle (Wen, Shao, Fang, & Xue, 2015).
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Appendix. Proofs to theoretical works

A.1. Proofto Theorem 2

The initial adjustments is to retrieve the optimal solution of the
following problem:

1 21 21
min ———— oioiziziK (x5, i) — ZiVitt;
o 2(l+1)w2=:11]1](1]) ;z}’zl

(35)

21 21
s.t. ZZ,‘O(,‘ = 0, Zai = Cl)l,
i=1 i=1

0<o;<C, i=1,...,2L
It is easy to verify that (35) is the dual of the following problem.

1+ ’ i
min - ——(w, w) +C- vel + ) (& +&)

w,e,b,&i(*> i=1

s.t. (w, ¢p(xi)) +b) —y; < e+ &,
yi— ((w, ¢(x;)) +b) < e+ &,
£¥ >0 i=1,...,

As stated in (7), b’ and €’ are Lagrangian multipliers of (35).
Furthermore, according to the KKT conditions, we have the

AIA

—_—
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relationships between the optimal solution of (36) and the one of

(35)astw = 121 L@izip(x;)), b’ = b,and €' = e. According
to the strong duallty theorem (Boyd & Vandenberghe, 2004) the
duality gap between (36) and (35) is equal to zero. Assume €’ < 0
after the initial adjustments, we can find a smaller value for the
objective function in (36) by setting ¢ = 0, which implies a
contradiction. This completes the proof.

A.2. Proof to Theorem 4

To prove this theorem, the special case M* = f is considered
first.
According to (17) and the definition of an inverse matrix, if

Ss = {(xe.yi. 20} we have By = Ree [021]" = gi— (=0 0]
[0zy,]" = 0, which implies that Ss is always nonempty during
the initial adjustments. Because M™ = {, it is easy to verify that:
Vi,j € Ss,if i # j, then x; # =+x;. According to Assumption 1, Qss,
is a positive definite matrix, so there must exist the inverse matrix
Qg5 and Qg ¢ is also a positive definite matrix.

If] X s, zil # ISsl, let P = [ngv 155], and otherwise P = zg.
It is easy to verify that rank(P) = 2,if | )
P = zg and rank(P) =
(2013), we have
det (Q12) = det(Qs;s;)det(0 — PTQg { P)

= (=)™ P det(Qs,s;)det(P" Qg 4 P).

Because Qsgs, is a positive definite matrix, det(Qs,s;) > 0. From
Lemma 3, we can also show that PTngslsP is a positive definite

ies; Zil 7 ISs|, otherwise
1. Then from Lemma 3 in Gu and Sheng

matrix, so det(PTQS;;SP) > 0. This completes the proof under the

condition M = . _ -
Next, we consider the case M™ # {. First, let Qi = Q". We

can construct the elementary transformation matrix Q" as follows:

I
" " "
zsfS L QL — QL
0 O 155 e et
ZSS 155 QS_gSS \MZ
6//
0 0 z 1z,
0 0 e,fl 15 def ~,
’ / S =Q
z, e 0 0
Zy g 00 Qs |Gy
where M' = M* — M, S/ = S — M*,M~ = M — M, and Q' is

obtained from (5” by adding the i;th row and column to the i;-th
row and column foralli; € M, among them (x;,, yi,, zi,) € S¢ with
Xiy, Yiy) = (x,z,y,z) and z;, = ,. Obviously, a’ has the same
determinant as Q” Then we can compute the determinant of Q”
from Q. Vi, j € S¢,ifi # j, we have x; # =£x;. So from Assumption
1, Qs;’sg’ is a positive definite matrix. If | Ziess zi| # |Ss|, let P’ =

[zsg/, lsé/] P’ = [ i 11] otherwise P’ = zg/, P’ =

to verify that rank(P”) = 1.
If rank(P") = cols(P’), from Lemma 3 in Gu and Sheng (2013),
we have

F o
z; . Itis easy

P

d N\ d d 0 PUT 'TA—1 p’

et (Q ) - et(Qgg/Sé/) . et P// 0 - P QS;’Sé/P
0

0

0

= _l)rank(P/)det o ) det 5 det - P”TFI;f]P// ]
( QSSSS

Both P and P'TP~'P” are positive definite, because rank(P’)
cols(P’) and rank(P”) = 1. This completes the proof under the
condition that M™ = ¢ and rank(P’") = cols(P").

If rank(P’) # cols(P’), i.e., g = :I:lsg, we can construct

another elementary transformation matrix an”me based on 5_’ as
follows:

0o 0 =z 7

i 'S¢
’ ’ ’
0 0 e; 15, sts/ + ka’ - sts/
, , 1 S >
z, e 0 0
1 I
z 1 0
Sg/ sV Q%’%’
a/
/ T
0 0 gz zg
0 0 ¢ O def 5

zi el 0 0
1 1]
ng/sgl

Zsé/ 0 0
where Q" is obtained from Q’ by adding (deleting) the row and
column indexed by b’ to the row and column indexed by €. It is
easy to verlfy that e” # 0. Obviously, Q" has the same determi-

nant as Q .We can compute the determinant of Q” from Q”/. Then
from Lemma 3 in Gu and Sheng (2013), we have

0 0 z
S 7
det (Q ) = det (QS§’5§’> det 9 (,)/ €
z, g 0
5/
T -1
ZSgQSgS//ZS” 0 0
0 0 0
0 0 0
0 Nel{;
= —det (Q?”S”) det ( ) det e:; Z{]P 7121'/1
—_——

pr
= det (QS”S”> det( ) det //) det (el{gﬁﬁfle;;)

P’ P” and e”P -1 :; are positive definite because rank(zsg/)

#0, and e;; # 0.This completes the proof.

1, ,1
A.3. Proofto Theorem 6

According to the Laplace expansion of the determinant of a
(Householder, 1974), we can have

det (a\Mz) = det (a_\Mz) + edet (a\,gz) .

Based on the conclusions of Theorem 4 and Corollary 5, and the
premise of & < 0, we have that det (Qy2) > 0. This completes the
proof.
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