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Smart Antennas in Wireless Systems:
Uplink Multiuser Blind Channel
and Sequence Detection

Hui Liu, Member, IEEE and Guanghan Xuyember, |IEEE

Abstract— Recently, space-division multiple-access (SDMA) 1S-54, with frequency-selective channels. More specifically,
schemes [1], [2] have been proposed to increase the capacity olye address the multiuser source recovery problem for array

wireless communication systems by simultaneously transmitting o 1nts suffering from both intersymbol interference (ISI) and
and receiving multiple co-channel signals through different -
co-channel interference (CCI).

spatial channels. In this paper, we address the uplink (remote - ) L .
users to the base station antenna array) blind channel and Optimum detection and equalization, as an effective means

sequence identification problem for an SDMA system. We show for recovering multiple signals and overcoming the adverse
that multiuser blind identification can be accomplished by effects of dispersion, has been extensively studied by various
exploiting the spatial and temporal diversities of an antenna researchers [5]-[10]. To perform such operations, the spa-

array system. In particular, a recursive estimation algorithm . . ) .
is developed to recover multiple signals from intersymbol tial channel associated with each user needs to be reliably

interference (ISI) and co-channel interference (CCI) by taking €stimated. Since in many current systems the same training
advantage of a special structure of the array output and sequence is assigned to different users, without changing
the finite-alphabet property of digital communication signals. the existing system protocols, channel estimation approaches
The implementation of the proposed approach in practical ot rely on training sequences are inherently prohibited.

applications is discussed, and fleld_experlments have beenF th th f traini leads t .
conducted to demonstrate the effectiveness of the proposed _u_r ermore, the _use 0 ralnlng squgnces ea S_O a. Sig
algorithm. nificant decrease in the bandwidth efficiency, especially in a
fast changing mobile environment. Moreover, the occasional
breakdown in communication links requires the system to

have certain self-starting abilities. All these factors make it

I. INTRODUCTION particularly desirable for &lind estimation algorithm which is

ART ANTENNA systems (SAS) [1]-[5], i.e., wireless c_apable of identifying multiple channels or separate co-channel

ystems that exploit the spatial dimension in signal pr§ignals based solely on the array outputs. o
cessing by employing multiple antennas, have shown theirs'nc‘? the ante.nna_outputs are composed of upcoming signals
prominence in overcoming some of the major difficulties iffom different directions, Anderssoet al. [3] proposed to
current wireless systems, e.g., capacity limitation, co-chanf§e directional beam forming to separate multiple co-channel
interference, multipath fading, etc. Among the many utiliza39nals. Their model approximates all coherent multipath sig-
tions of a smart antenna system, the most compelling appl!S With apoint source thus allows the direct use of many
cation is probably the space-division multiple-access (SDMA}PSpace-based direction of arrival (DOA) estimation algo-
system, in which multiple co-channel users communicate wifiims, €.9., MUSIC [11] and ESPRIT [12]. The problem
the base station simultaneously without mutual interference. it this model, however, is its applicability to real commu-
principle, one can integrate SDMA with any existing multipl&ication scenarios. Talwaet al. [13] attacked this problem
access standard and gain significantly in channel capaéﬁ?m a dlffere_nt dlre_ctlon and introduced a blind estimation
with limited increase in system complexity. For example, b§PProach which estimates the users’ array response vectors
applying smart antennas to a time-division multiple-acceb&ften referred to as their spatial signatures) by exploiting the
(TDMA) system, two or more users are allowed to Occupt)ymte—.alphe_\bet propgrty ofgd|g|tal commu_nlcatlon signal. The
the same time slots, leading to two or more times increaselgorithm is theoretically simple and efficient. Unfortunately,
total capacity. In this paper, we consider the uplink SDMA cannot be applied to a long-delay multipath environment.

operation for linearly modulated digital wireless systems, e_%g&des, the algorithm requires that signals from all users to
e perfectly synchronized at the bit-level, which is impractical
Paper approved by J. H. Winters, the Editor for Equalization of the IEE@Ue to the different delays from remote users to the base-
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—3,(n) WhereT is the symbol period. Temporally oversamplg) by

Multinser L sy(n) a factor of P, and delnote b}A = T/ P the sampling period,.a
Blind — set of sequences with peridd can be constructed according
Estimation to y*(n) = y(to +iA +nT),1 < ¢ < P. Assume that the
saln) channel response is limited 04 1 symbol periods, we have
—54(n
L
Fig. 1. Multiuser blind identification. yz(n) — Z h(to LA+ lT)s(n _ 1)7 i=1,---,P

=0
to the recent development (o_)‘ver§ampllngtechn|qges that Denoting hi(l) = h(to + i + IT) yields
are potentially of great practical importance. Various newly

developed approaches have shown great promise in studies I
and simulations performed to date [2], [15]-[22]. However, yi(n) = Zhi(l)s(n -0, i=1,---,P. (1)
all these methods can only handle a single source with an =0

exception of [23]. .

In this paper, we first establish a general framework for In an antenna array system, the system output is also
an antenna array system with co-channel signals, eachspftially oversampled. An\/-element array can produce!
which suffers from ISI, so that a systematic approach féet of sequences given in (1)

SDMA blind estimation can be developed. We assume that the

channel characteristics remain constant over many information i=1.--.P
iti : i gy =Y I Ws(n-1),

symbols—a condition which clearly depends on the fading rate j=1,---,M

of a specific application [24]. The prime objective of this paper =0

is to _introduce a new .blind channel_and sequence estimat'wﬂerej denotes the antenna index.

algorithm for the multiuser system illustrated in Fig. 1. Our pefine

approach combines and subsequently extends the techniques

L

of [25] _and [13] t_o d_e_convolve the input sequences and then y(n) = [yll(n),y12(n), . _7y1]\4(n)’ .
determine each individual symbol and channel. The method L P s T

we propose is parametric, and therefore can accomplish blind y (n)y “(n),y (”)] ;
estimation using a small number of data samples. In addition, h(n) = [R*(n), R (n), -, B (n), -,

we derive the identifiability condition of the new method hpl(n)7hp2(n)7”'7hp]\4(n):|T' @)

and discuss its implementations. Field experiments have been

conducted at the J. J. Pickle Research C_ampus using a Srﬁ\arsttandard single-input and multiple-output (SIMO) system
Antenna Testbed developed at the University of Texas ah. : .
ich accounts for both temporal and spatial oversampling

Austin. The results show that in an outdoor nearly Stationa\r&sults

environment, the new approach is effective in both flat fading
and frequency-selective fading (artificially created) scenarios. L
y(n) =Y h()s(n—1). ©)

[I. DATA FORMULATION =0

Let us first list some notational conventions to be used in tHidearly, the effective oversampling rate, e.g., the number of
paper AT, A# AT denote the transpose, conjugate transpodements in the output or channel vector, is nB\W/.
and the pseudo-inverse o, respectively./R{A} represents In the presence of(d > 1) co-channel users, (3) becomes
the row span ofA and A+ is its orthogonal complement (null
space). denotes the convolution operator. 4

Next, we introduce some basic assumptions on our problem. y(n) = Z h; @ si(n) (4)
We consider the case where the composite channel of a =t

wireless system can be perfectly modeled as a finite impulgfiere the subscript denotes the user's index. The problem
response (FIR) filter. We also assume that the informatiofinder consideration is to estimaft;} and {s;(n)} from a
bearing symbols are drawn from a finite alphabet, e.g., bingfiite number of system outpugs(1), - - -, y(N) without any
phase shift keying (BPSK) or quaternary phase shift keyingatistical knowledge of the inputs.
(QPSK). Both assumptions are plausible for most digital For a single user system, there are several different ways of
wireless communication scenarios. blind estimation. Optimal solutions in a bit error sense require
Under the above assumptions, the output of a lineanint estimation of the channels and inputs, and often involve
modulated communication system can be expressed asj@rbi-type searching [26]-[28]. However, their advantages
convolution of the transmitting symbaln) and the channel might be negated by the computational cost. Tong, Xu, and
responseh(t) Kailath [15] showed that the output of aversampledsys-
o tem as in (3) contains sufficient information for closed-form
y(t) = Z h(t —mT)s(m) solutions ofh(-) ands(-). A class of data-efficient subspace-
m=—00 based blind estimation algorithms have been developed to
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TABLE |
RECURSIVE BLIND |DENTIFICATION

Initialization:

Choose the smoothing factor K and the highest order of the channels L. Construct Y (K)
Computer V,(A)  the null space of Y(K)

For!l=1,.-- 1,if d; # 0, do:

Construct V(I +1) as in (7)

Calculate its null subspace V(K +1)

Apply VE(K + 1) and 874(2),- -+, 8*(L — { + 1) to the Partial ILSP algorithm, identify S*(1)
Output:

The symbols from cach user

The channels, which can be cstimated by least-squares fitting: H(1) = Y(1)S(1)” (S(I)S(l)”)"1

System Output [ Deconvolution
with ISI and CCI { (Subspace)

Signal |with cCI Symbol Id. Original Messages

(Finite-alphabet)

Fig. 2. Identification block diagram.

deconvolve the ISI effect and estimate the channels andidhnere K is defined as themoothing factar
input sequences directly from the data matrix. Unfortunately,
for a multiuser system described in (4) where the outputs are

clouded by both ISI and CClI, the subspace of the data matrix hi(L) - hi(0) e 0
is no longer adequate to resolve the system [2], [25]. H;(K) = ; K :
L 0 - k(L) -+ hy(0)
Ill. M ULTIUSER BLIND CHANNEL IDENTIFICATION h KL blocks

We begin our derivation by considering the simplest case of rsi(l—L) -+ s;(N—L—-K+1)
a multiuser system where all channels have the same order. We si(2-L)y -+ s(N—-L-K+2)
present a two-stage blind estimation scheme by combining thes (K + L) = . o .
techniques developed in [13] and [23]. Next, we extend our <(IK) <(IN)
study to a general system and focus on the deconvolution of - 5 (6)
channels with nonidentical orders. Finally, we establish thggte thatH(K) is PMK x d(K + L) and S(K + L) is
complete identification procedure. d(K+L)x (N —K +1). Clearly, if the effective oversampling

_ _ ) rate, i.e.,PM, is larger than the number of usetsthere exists

A. A Simple Case: Channels with Identical Orders a finite K such thafH(K') has more rows than columns. In the

Given a finite number of data samples, the channel outgemainder of this paper, we shall referl{X’) andS(K + L)
vectors can be arranged in a matrix form in accordance wils the multiusechannelmatrix andinput matrix, respectively.

(4) If either is identified, the other can easily be estimated by
y(1) y(2) oo y(N=—K+1) simple least-squares fittir_wg. _ _

y(2) y(3) oo y(N=—K+2) Our approach to resolving a multiuser system is as follows:

Y(K)= . Given the multiuser system outputs with both ISl and CCI, we
: : e : first deconvolve the ISI using the subspace structure of the data

y(K) y(K+1) - y(N) matrix, and then determine the inputs from CCI by exploiting

Si1(K + L) the finite-alphabet property. After all the inputs are available,

=[H(K) - HyK)] : (5) the system is readily determinethe cascade operations are

b ~— depicted in Fig. 2.
HE) \SL(KVﬂ/ In the following, we briefly describe the techniques which

S(K+L) play a key role in our approach.
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1) Multiuser Channel Deconvolution (MCD)With the as- The above estimation scheme, although being simple and
sumption that the channel matrid(k) is of full column effective, may only have limited applications since natural
rank, the row span o8(K + L) is equal to that ofY(K), channels can be more complex. 1) The channels may be of
e, R{Y(K)} = R{S(K + L)}. A least-squares approachdifferent orders and 2) the orders of the channels are not known
that accomplishes channel deconvolution is provided in [25].priori. In the following, we extend our analysis to general
The method is summarized as follows. channels and present a recursive scheme to address the above

1) ComputeV,(K)—the null space of the row vectors ofPractical problems.
Y(K) and S(K + L).

2) Construct the following matrix: B. General Case—Channel with Nonidentical Orders

V,(K) 0 The strategy for identifying a general system is similar to
that of a system with identical channel orders, i.e., Step 1)
V(K +L) = 0 Vo (K) (7 deconvolve the outputs to remove the ISI, and Step 2) identify
: . 0 each symbol from CCI. Since the channels causing ISI are

0 s Vo (K) now much more complex, our focus in the following will be

~ ~ on Step 2).
K+ L blocks

Again, letd be the total number of users aiicH 1 be the

where 0 is a column vector with number of zerogMaXimum channel length. Rearrange the inputs and channels

equalling the number of rows ¥, (k) into L groups such that each group hds users with the
3) CalculateR{S(1)} as the null space o¥ (K + L). In same channel length,+ 1. Obviously, d; can be zero and

L pu—
other words,VL(K + L) = WS(1), where W is a EIS=_1 i = CL _ b ith identical ch |
d x d full rank matrix. ince each group is now a subsystem with identical channe

orders, we thus definBl'(K) and S{(K + 1) as the channel

Note that and input matrix for théth subsystem in accordance with (5),
s:(1—L) s (2—L) --- s1(N) where the superscrigtdenotes the channel order. Using such
S(1) = . . . : _ notation, (5) can be modified accordingly for a general system
Sd(]. —L) Sd(Q—L) Sd(N)

L
_ ! l
The inputs are readily determined by the last step if there Y(K) = Z H(K)SY(K +1)

is only one user. Wher > 1, each individual symbol in I=Ldi#0

S(1) is yet to be identified. However, the convolution effect SH(K +1)

of the channels that causes ISI has been removeéd K + L) =[HYK) --- HYK)] : (8)
is now a linear transformation of aynchronousmultiuser h HK) SY(K + L)
systemS(1)! The blind estimation problem is reduced to the —

identification ofS(1) and W from V(K + L). S(K)

2) Symbol Identification Using the Finite-Alphabet Property:
To identify S(1) from V(K + L), notice that for most digital  The total number of rows o8(K) is 31, (K + 0)d;. It
communication signals, the information bearing symbols ai® not difficult to see that if the effective oversampling rate
from a finite alphabet. It is proved in [13] and [29] thais larger thand, the overall channel matri(K’) can be
given sufficient data samples, blind symbol estimation ca&foothed to have more rows than columns. We assume that
be achieved almost surely. L& = V(K + L), we adopt H(K) is of full column rank and at the same time, there
the iterative least squares with projection (ILSP) algorithire sufficient data samples such ti#t() has many more
proposed in [13] for symbol identification: columns than rows.

1) given[Sy(1)];; with each element a member of the finite A recursive identification procedure is established in
alphabet: Table I. The details of each recursion are explained in the

2) k= k+ 1 folllc;vxéi:r;g secltigns. tonE . -
annel DeconvolutionFirst, we need to examine the
E) Si+1(1) = Sk(l)Sf(l)(I;Sf(ll)) U bol in th feasibility of deconvolving the channel effects using the sub-
) project [S_"’““(l)]“ to the closest symbol in t € space structure of the data matrix. More specifically, we
alphabet, _ need to examine the identifiability of the row span of the
3) continue until(Sk4+1(1) — Sk(1)) = 0. input vectors using the null spac¥,(K). This requires
3) Estimation ProcedureWith MCD and ILSP, the blind some additional discussion since unlike in the system with
estimation of a system with identical channel orders becomiégntical channel order&V,(K) is now only a subset of the
more or less a solved problem. We can: 1) estinMitd KX) null space of S (K +1),I = 1,---,L. The V(-) matrices
from the data matrix and construst(K + L) as in (7); then constructed fromV,(K) may not be sufficient to determine
2) calculate its null space and apply it to ILSP and identifR {S!(1)}, = 1,---, L.
the inputs; 3) if the channels need to be identified, they canTo build intuition on the use oV (:) for estimation, let
be easily determined using least-squares fitting. K =1 and consider a simple two-user system with channels
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of length two and thre¢L = 2,d; = 1,d, = 1). By (8) computer simulations show th&( K + 1) is almost always

of full rank. The above theorem asserts that we can determine

s1(0)  s1(1) - Sl(NA_f 1 the row span of the inherent null vectors from the data matrix,
V(1) = V,(1) L 31((_12) 31((2)) 3}\(7 _)2 which means we can achieve channel deconvolution with the
0 52 52(0) 52 ) subspace information. The significance of Theorem 1 also
32((1)) 32(;) SQ(NA_T 1 lies in the fact that it leads to a practical method of order
. 2(1) 522 o s2(N) detection for a system with nonidentical channel orders. More
= {82(2)} (9) specifically, itis seen from (5) and (6) thalt(i—1+1),1 <i <
S*(3) L has(i—1+1)d; rows, consequently, the number of inherent

null vectors of V(K + 1) is ¥ ,(i — I + 1)d;. Therefore,
using this formula and the fact thRank{V+(K + L)} = dr,
andRank{V+(K + L +4)} = 0, i > 1, we can recursively

Recognizing the Hankel structure 8(2) andS?(3), it can
be easily shown that by some rearrangement similar to (7)

V(1) 0 51(0)  si(1) o si(N) determined the number of useds with channels ordet by
{ 00 v (1)} L |s2(=1) s2(0) - s2(N-—1) observing the change of the dimension of the null space of
° 52(0)  s2(l) - sa(N) VIK+D,l=1,---,L.
Si(1) 3) Partial ILSP Algorithm: Once the row spaces of
=>V(2) L {82(2)} {N({),l = 1,---,L} are available, the determination of
v, (1) 0 0 S(1) is no different than the identification of a system with
00 V. (1) 0 L [sa(=1)  2(0) 52(N)] identical channel orders. However, the ILSP algorithm in
0 o Vo (1) 2 2 2 the succeeding recursiong < L) needs to be modified,

since set of the symbols ilN(/) that corresponds to the

= V(3) L S*(1). (10) subsystems with higher order channels has already been

identified. Therefore, this part of symbols should be used as

Sappriori knowledge to help identifying the unknown symbols.
Let P be the unknownsymbol matrix and letQ be the

known symbol matrix. DenoteD = W[PT QT]¥, where

W is a full rank square matrix, a partial ILSP method which

identifiesP given O and Q can be easily extended from the

original ILSP algorithm. Thus

1) given[P;];; with each element a member of the finite

Apparently, one can us¥(3) to determineS?(1), provided
that they are complementary (for this particular example, IL
is not necessary sine® = 1). Such is not the case f&* (1)
sinceV(2) is not its complete null space. Howev&?(-) can
be constructed from the already identifi8d(1); thus, it is
possible to determing!(1) using the knowledge o¥(2) and
S2(2).

Following this idea, let us consider a general system with
more users. By the Hankel structure®{ K +1) and the fact alphabet;
that V(1) = V,(K) L {SF(K + L),---,.S{(K + 1)}, we 2 k=Fk+1
may properly rearrange the corresponding blocks and obtair®) Pr+1 = Pr[P{  Q7](O[P; QF])~'0O;
the following: b) project[P41];; to the closest symbol in the alphabet;

V(K +1) 3. contir_1ue L!ntiI(PkH_ -Py)=0. _

. In each iteration, the fixed symbol matrd guidesP;, to
the right direction. This ILSP may converge faster than its

1 SHL+1), SEYL), .- Si1);

VIK+L-1) L 52(2)7 St (1) original version.

V(K +1L) 1 S™(1). (11) 4) Recursive Blind IdentificationWe have explained all

. . the k ti for th ive blind identificati RBI
It is seen tha{V(K +1),Il = 1,---, L} haveinherentnull e key operations for the recursive blind identification (RBI)

scheme for general systems. The estimation procedures in
Table | can now be well understood.

1) The aim of the initialization is: 1) to choose a proper

vectors:

N() &' [sy1)T  sH+i(2)T SL(L—1+1)T]".

(12)
Given knowledge ofR{N(/)},i =1---, L, one can expect
to recursivelyidentify the subsystems fror8L(1) to S(1).
The question is whether or nd®{N(/)} can be uniquely
determined fromV ,(K). In other words, iSR{N(l)} the

smoothing factor such that the channel matrix has full
column rank. This allows the row span of the input
matrix S(K) to be shared by the data mati&(k). 2)
PreselectL, which is the highest order of the channels,
based on previous knowledge. 3) Calculate the null space

complete null space oV (K + [)? The following theorem of Y(K), V,(K), which contains information of the
provides the answer to this question. span of theinherentnull vectors.

2) Theorem L:R{N()} = R{V+(K + 1)} provided that  2) The initial step provides all necessary information to
S(K + 1) has full row rank. deconvolve the CCl and remove the ISI. The next part of

Proof: See the Appendix. RBI is a loop indexed by which gradually reduces the

Since most communication sequences are random in nature, channel orders and determine all the subsystems. In each
the full rank condition ofS(X + 1) can easily be satisfied. loop, the rank ofV (K +1) is first examined to determine
Although more studies are required to find out how uncor-  whether or notd; = 0, R{N(I)} can then be calculated
relatedness of the symbols ensures full-rank, our extensive as the null space & (K +1). SinceS!*t1(1), .-, S%(1)
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have already been identified from the previous loops, we
can applyV+ (K +1) and the identified inputs to partial
ILSP algorithm and obtai$!(1).

3) When the loop is completed, the channels can be iden
tified by least-squares fitting.

s1(n)

IV. |MPLEMENTATIONS

So far, most of our attention has been focused on the
development of the estimation algorithm. While the RBI S
scheme is quite self-contained for blind estimation in most
scenarios, certain types of channelc may be degenerate and
cause a failure in estimation. In this section, we study in more
detail the implementation aspects of the proposed algorithm.

In order for the proposed BCI scheme to be valid, the
channel matrixH(K) must be of full column rank. Since @) Y@ Yatl) -
H(K) can be rearranged into a generalized Sylvester resultant
matrix by padding zeros to shorter channels, its rank can & 3- Asynchronous BPSK signals witfl = 2.
calculated from [30, eq. (30)], where the rank condition of

a generalized Sylvester resultant matrix is studied. However,1) Spatial Oversampling OnlyFig. 3 depicts the wave-
such a formula is not so helpful without a physical interpretdorms of two asynchronous BPSK signals. Let us examine
tion. In the following, we simplify the discussion by analyzinghe effective channels for each user. If the output from one
the fundamental structure of the channel matrix fosirgle antennay(t) is sampled at the symbol rate, each point in
user. It is reasonable to believe that if each single channgk data sequencdy®(n)} or {y'(n)}) will be affected by
matrix is of full column rank, then the overall multiuseronly two adjacent symbols, provided that the energy of the
channel matrix should be of full rank, since channels fropuise function is limited to two symbol periods. Therefore,
different users are not correlated in genéral. the effective channel order is almost always two. The discrete
For later reference, we recall an important lemma regardig@ray output can thus be writted as
the rank condition of the channel matrix [15]:
Lemma 1: Let H(K) be the channel matrix constructed y(n) = h(0)s(n) +h(1)s(n — 1)
from h(0),---,h(L), and h;(z) = h;(0) + h;(D)z + - + _ _
hi(L)z%=L, i =1,---, M, whereh;(n) is theith element of = alaus(n) +azs(n 1)) (13)
h(n). H(K) can be smoothed to be of full column raifk
polynomials{h;(z)} do not share any common roots.

where a1, ap are complex scalars. Equation (13) suggests
that the channel vectorh(0) = «;a and h(1) = apa are
aligned. Clearly, by Lemma 1, the channel matrix constructed
A. Short-Delay Multipath Channels from h(0) andh(1) is always rank deficient regardless of the
In some wireless systems, e.g., an indoor wireless systegffjoothing factor.
the propagation channels are frequency-nonselective [31]. Ir2) Spatial and Temporal Oversamplingdow let us con-
other words, all the multipath components corresponding $ider the case with both temporal and spatial oversampling.
one user can be regarded as coherent. In such cases,Wen the antenna output is temporal oversampled by a factor
continuous antenna output can be represented as of two, as illustrated in Fig. 3, then by stacking two neighbor-
ing array output vectors as in (2), we obtain
y(t) = ajwi(t)
alars(n) + agas(n —1
where a; !s defin'ed as thespatial signatureof the ith user y(n) = |:y1(n):| = {aga;sgng +a;;gn _ 1;;} (14)
andw;(t) is the signal waveform from th&h user. For linear or

modulation with pulse functiop(t), w;(¢t) => o ___ p(t — (n) = yvi(n) | _ [a(azis(n) + azs(n — 1))
nT)s(n). YU = 1500 + D |aleis(n +1) + aias(n))
One of the most important applications of the proposed (15)

approach is to estimate the spatial signatures without knowing

the inputs. It is worth pointing out that in practical situationgjepending on the choice of the starting point. Consequently,
{w;(t)} from different users cannot be synchronous at a bifse channels can be expressed as

level in general. Therefore, in the case of multiple users,

y(n), the discrete counterpart of(¢), contains both CCI @1a  asa
and ISI regardless of the sample timing. The spatial signature [b(0) h(1)]= QoA aea (16)
estimation problem is a special case of BCI. or

Lif a single user channel matrix is of full column rank, it is always of full [h(0) h(1) h(2)]= { 0 ana 04202a} . @n
column rank with a larger smoothing factor [15]. G1ia apa
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TABLE I
EXPERIMENTAL RESULTS FOR SHORT-DELAY MULTIPATH CHANNELS

# Data Vectors M P K # Sources Baud Rate Modulation
50 8 2 1 2 50 KHz BPSK
Exp. # delay 1 [T] | delay 2 [T] | ||a; — a;]| | [|82 — as| | RMSE (SIR): 3; | RMSE (SIR): é,
i 0.4 0.7 0.31% 1.32 % 0.0326 (29.7[dB]) | 0.0339 (29.4[dB])
2 0.2 0.9 0.28% 0.67 % 0.0219 (33.2[dB]) | 0.0537 (25.4[dB})
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Either way, the channel vectors are not aligned, which megm®vides a graphic illustration of the estimation resailts.
that the channel matrix can be smoothed to be of full colunioot mean square error (RMSE) of the symbol estimates

(X2, 113(n) — s(n)]|2/50) is utilized to quantify the

rank.

3) Property 1: A system with only coherent multipath

CANNOT be identified using the spatial oversampled datg;
Temporal oversampling has to be used to restore the rank o

the channel matrix.

By applying the proposed algorithm, the channels for each

A. Short-Delay Multipath Channels

estimation performance. Equivalently, one can calculate the
g%nal—to—interference ratio (SIR) @& log,, (RMSE).

We transmitted two asynchronous BPSK sequences with

user can be determined. One can rearrange its correspon@agaI power from two remote antennas placed 2Part
parts according to (16) or (17) into )

The SIR for each signals before spatial separation was about
0 dB. Reflections from surrounding generated a typical flat
fading scenario. The superposition of these two co-channel
The spatial signature can be estimated as the left principakignals and their multipath components was received by the
singular vector of the constructed matrix. antenna array and sampled at twice the symbol rate. Therefore,

4) Long-Delay Multipath ChannelsFor wireless systems the effective oversampling rate is 16. The experimental setup
with long-delay multipath (frequency-selective fading), denotgnd processing results, e.g., percentage errors of the spatial
7 <12 <-o- <7y, 71 < T'the ordered delays. For the singlesignature estimates, RMSE'’s of the signal estimates and SIR’s
user case, it is straightforward to show that the array outpafter separation, are summarized in Table II.

without temporal oversampling is given by The top plot of Fig. 4 depicts the singular value distribution

r ‘ ‘ of the acquired data matri¥'(1). The first four values are
y(n) = Za(i)(ails(n - {%D + OéiQS(TL - {%1 - 1)) distinctively larger than the others which suggests that the
=1
(18)

total channel order is four. It is adequate to conclude that both
. ¢ channels have a channel order of two. The singular values
where a(i) is the array response vector corresponding @stribution of V(K + 1) provides ever finer discretization
the ith delay and[z] stands for the smallest integer that i§rig 4, bottom plot). The last two singular values, which are
greater than or equal to. The effective channel length isych smaller than the others, imply that both channels are of
[ ]+2. In contrast to (13), uncorrelateféh(s)} are involved, orger two.

so the composite channeig0) - -- h([ 7 ) are thus coprime  The estimation procedures in Sections I11-A and IV-A were
in general. applied to estimate the spatial signaturés, and &,. We

5) Property 2: A system with long-delay multipath com- neagured the spatial signaturesanda, by letting one user
ponents can be identified from the spatially oversampled dafgynsmit at a time and calculating its spatial signature based on

Temporal oversampling is not required. the array outputs. Usingl — 4”2?@]72!]2) as the performance
measure, the estimation errors are only 0.31% and 1.32%.
Fig. 5 compares the scatter plots from the antenna outputs

To emphasize the practicality of the RBI scheme, we appliedth the scatter plots of the separated sources using the spatial
it to some real data collected from RF field experiments. Ofilter designed from the spatial signatures [32]. Clearly, both
facilities include an eight-element uniform linear antenna arrapurces have been successfully recovered (above 25 dB gain
at the base station, several remote transceivers and a cernitrdéIR; see Table II).
control unit equipped with data acquisition boards. The RF We repeat the above experiment with different parameters
system operates at 900 MHz. The baseband signals are 5@rkl the results are listed in Table II.
symbols/s BPSK sequences with raised-cosine pulse shaping. )
Multiple transmitters, positioned at roughly 30 m away frors- Long-Delay Multipath Channels
the antenna array, were used to generate a co-channel multiplin the same experimental environment, we added two more
access environment. transmitters to generagetificial long-delay multipath signals.

In each experiment, 50 data vectors were applied 8pecifically, we let transmitters 1 and 2 transmift) with
the proposed RBI algorithm. In order to evaluate the new, . - . ) . .

There exists a perfect finite length equalizer which can invert a multichan-

approach, we used the identified channels to gquali;e WFIR filter. This specificity was already pointed out in several places [20],
system outputs. The scatter plot of the equalized signgds].

[alla d1oa o1a OéQQa].

V. EXPERIMENTAL RESULTS
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different time delays. At the same time, transmitter 3 ardklays and the distance between the transmitters and the base-
4 were used to transmit;(¢) with another set of delays. station. The experimental setup and results are summarized
The delay parameters were selected according to [33], im Table Ill. It is important to point out that our scenarios
which the authors showed that almost all delays in a wirelede not necessarily represent the wireless environments in real
environment are within 1@s (10us equals 0.5 symbol period applications. Our sole purpose here is to evaluate the proposed
at our transmitting rate, and around 0.26 and 2.0 symbalgorithm on real data.

periods for IS-54 and GSM, respectively). The transmitting In the first two experiments, only spatial oversampling was
power from each transmitter was adjusted according to theed. In each experiment, we studied the rank conditions of
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TABLE 11l
EXPERIMENTAL RESULTS FORLONG-DELAY MULTIPATH CHANNELS
# Data Vectors M P K # Sources Baud Rate Modulation

50 8/2 1/5 1 2 50KHz BPSK

Source # 1 Source #2

Exp. # delay 1 [T] | delay 2 [T] | delay 1 [T] [ delay 2 [T] | RMSE (SIR): 5, | RMSE (SIR): &

1 0.1 0.7 0.2 0.8 0.0365 (29.8[dB]) | 0.0747 (22.5[dB])
2 0.3 1.2 0.1 0.2 0.0897 (20.1[dB]) | 0.0383 (28.3[dB])
3 0.1 0.7 0.2 0.8 0.0566 (25.0 [dB]) | 0.0745 (22.6[dB])

8 10 1 14 16
Singular Value Dist. of Y(K)

Singular Values
N =
N OO0 = N

3 4 5 6 7 8 9 10
Least Significant Singular Value Dist. of Vo(K+2)

-
N

Fig. 6. Singular value distribution: long-delay multipath channels.

the data matrixY(K) and {V(-)} to determine the channeldata from the antenna outputs. The comparison of the results
orders. are illustrated in Fig. 9.

The singular value distribution oY (K) and V(K + 2) Finally, we repeated the first experiment with a different
for the first experiment are shown in the top and botto@versampling rate. This time, the outputs from only two anten-
plots of Fig. 6. The six distinctively larger singular values ofas from the array were used, and the temporal oversampling
Y(K) suggests that both channels are of order three. TH€ was raised to five. Sinc_e we _already knew that the total
is verified by the two least significant singular values derder of the channels was six, which was much smaller than

V(K + 2). Therefore, no recursion is necessary. ILSP wd@€ efféctive oversampling rate ten, we could directly use the
applied to the null space oV (K + 2) and Fig. 7 gives the original data without smoothing. Fig. 10 gives the comparison

comparison of scatter plots before and after source separatri UItS'. It is seen that the' perfor'mance IS compar able .to. that
o of the first experiment, which indicates that there is sufficient
and equalization were performed.

; , . . temporal diversity among the channels.
In the second experiment, we first examined the singular P y 9

value distribution of the data matrix depicted on the top part

of Fig. 8. The decay after the fifth value implied that the total VI. CONCLUSION

channel order is five. We thus knew that there must be an this paper, we have studied the uplink multiuser channel
channel with order three and the other with order two. Thtﬁ-]d sequence estimation pr0b|em for an SDMA wireless
was verified by the singular value distribution¥{ K +2) and system. We developed a general framework for the array
V(X +1) in the middle and bottom of Fig. 8. We applied theutput with both ISI and CCI, based on which we showed

proposed RBI method to identify the inputs and channels. Ttieat source separation can be accomplished by exploiting the
channels were then used to separate and equalize the origapatial and temporal diversities among the users. A data-
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efficient algorithm was derived to recursively identify each Lemma 2: DefineD(l,a) as afinite Hankel matrix with/N’
spatial channel and the uplink symbols. Experimental resuttslumns formed by the elements of a vector
show the proposed method can effectively resolve systems

with both short-delay multipath (flat fading) and long-delay a(l)  o2) - a(N)
multipath (frequency-selective fading). a(2)  a3) -+ a(N+1)
D(l.a)=| . : :
APPENDIX al) a(l+1) - a(N4+1-1)

PROOF OF THEOREM 1

To prove this theorem, we first introduce an importaskssume thatiD?(l; + 1,a;1),---,D¥(lp + 1,ap)]? is of
lemma concerning multiple Hankel matrices. full row rank. If there exists another vectds such that
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D(L,b) = ¥i_; W,;D(l;,a;), I > I;, then

Wj :OéjI, iflj:L
W; =0, ifl;<L.

Proof: We usec (c) to denote the vectoe without the
first (last) element. Definel(a;); the ith row of D(l;,a;).
SinceD(L,b) = 1., W, D(l;, a;).

2,

For any consecutive rows in the above equatign=

,L), we have
r i;
d(b)ii1 =) W;(i — 1,k)d(a; )i
j=1 \ k=1
r i;
d(b); = > W; (4, k)d(a;)s (A.1)
j=1 \k=1
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where W (i, k) is the element oW at theith row andkth

column. Consequently, ]

W;(i = 1,k)d(ay)r [2]

l; [3]
Wi, k)yd(a;)x (A.2)
[4]

Using the fact thad(-),_; = d(-); for a Hankel matrix,
we obtain

5]
r L
YA Wi Dda) + Y (W(i.k) = W(i-LEk-1) [
J=1 k=2
x d(aj)x + W(i — 1,1;)d(a;);, | =0. (A3)
Under the assumption that the rows oD¥(l; + [8]
Layp),---,DY(lp + 1,ap)]' are linearly independent, ]
and noting thatd(a;);,d(a;)2, - -,d(a;)i;,d(a;);, are the
l; + 1 rows of D(l; + 1,a;), all the coefficients in (A.3)
must be zero (10]
Wi 1) =0 . [11]
W,(t, k) =W;(i—-1,k-1), k=2,---,l;;i=2,---,L
W, —1,1;)=0.
(Ag) 12

Considering all the possiblevalues, we can easily verify that [13]
WJIOéIIflJILandWJIOIflJ<L O
Theorem 1 is equivalent to thaf (K + l)a’’ = 0 leads [14]
to a = >, a;n; for any a, wheren; is one of the inherent
vectors. [
From V(K + l)al’ = 0 and the Hankel block structure of
V(K + 1), one can easily obtain that

[16]

a(l) a(2) a(N)
a(2) a(3) a(N +1) [17]
a(K+1) aoK+14+1) a(N+K+1-1) (18]

D(I;:—l,a)

X VO(K)H =0. [19]
Therefore, R{D(l + K,a)} C R{S(K)}. 20
20

Note that the row span &(K) is the union of the K +1)-
row Hankel matrices formed from the inherent null vectors
{n;}, and the(K + [;)-row Hankel matrices formed from [21]
input vectors{s; } whose corresponding channel ordek .

Lemma 2 asserts thdD(K + l,a) = >, a;D(ni, K +1). [22]

Comparing each element of both size, we obtaia ). a;n;,

which completes the proof. 23]
[24]

ACKNOWLEDGMENT

The authors would like to thank S. Wilson at the Univer-

. S . S 25]
sity of Virginia and the anonymous reviewers for |nS|ghtfui
comments and helpful critiques of the manuscript.

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 45, NO. 2, FEBRUARY 1997

REFERENCES

J. H. Winters, J. Salz, and R. D. Gitlin, “The capacity of wireless
communication systems can be substantially increased by the use of
antenna diversity,” ilProc. Conf. Inform. Sci. SysPrinceton, NJ, 1992.

G. Xu, H. Liu, L. Tong, and T. Kailath, “A least-squares approach to
blind channel identification,IEEE Trans. Signal Processingol. 43,

pp. 2982-2993, Dec. 1995.

S. Andersson, M. Millnert, M. Viberg, and B. Wahlberg, “An adaptive
array for mobile communication system$PEE Trans. Veh. Technol.
vol. 40, pp. 230-236, Feb. 1991.

S. C. Swales, M. A. Beach, D. J. Edwards, and J. P. McGreehan, “The
performance enhancement of multibeam adaptive base-station antennas
for cellular land mobile radio systemdEEE Trans. Veh. Technolvol.

39, pp. 56-67, Feb. 1990.

J. H. Winters, J. Salz, and R. D. Gitlin, “The impact of antenna
diversity on the capacity of wireless communication systenEEE
Trans. Communwvol. 42, pp. 1740-1751, Feb./Mar./Apr. 1994.

P. Balaban and J. Salz, “Optimum diversity combining and equaliza-
tion in digital data transmission with applications to cellular mobile
radio—Part I: Theoretical considerations£EE Trans. Communyvol.

40, pp. 885-894, May 1992.

M. V. Clark, L. J. Greenstein, W. K. Kennedy, and M. Shafi, “NMSE
diversity combining for wide-band digital cellular radidEEE Trans.
Commun,. vol. 40, pp. 1128-1135, June 1992.

P. S. Henry and B. S. Glance, “A new approach to high capacity digital
mobile radio,”Bell Syst. Tech. Jvol. 60, Oct. 1981.

J. Yang and S. Roy, “Joint transmitter-receiver optimization for multi-
input multi-output systems with decision feedbadEEE Trans. Inform.
Theory vol. IT-40, pp. 1334-1347, Sept. 1994.

M. L. Honig, P. Crespo, and K. Steiglitz, “Optimization of pre- and
post-filters in the presence of near- and far-end crosstlflEE J. Select
Areas Commun.vol. 10, pp. 614-629, Apr. 1992.

R. O. Schmidt, “Multiple emitter location and signal parameter estima-
tion,” in Proc. RADC Spectrum Estimat. Worksh@riffiss AFB, NY,
1979, pp. 243-258.

R. Roy and T. Kailath, “ESPRIT—Estimation of signal parameters via
rotational invariance techniqguesEEE Trans. Acoust., Speech, Signal
Processing vol. 37, pp. 984-995, July 1989.

S. Talwar, M. Viberg, and A. Paulraj, “Blind estimation of multiple co-
channel digital signals using an antenna arrdigEE Signal Processing
Lett, vol. 1, pp. 29-31, Feb. 1994.

Y. Sato, “A method of self-recovering equalization for multilevel
amplitude-modulation,”IEEE Trans. Commun.vol. COM-23, pp.
679-682, June 1975.

5] L. Tong, G. Xu, and T. Kailath, “Blind identification and equalization

based on second-order statistics: A time domain appro#€EE Trans.
Inform. Theory vol. 40, Mar. 1994.

H. Liu and G. Xu, and L. Tong, “A deterministic approach to blind
equalization,” in Proc. 27th Asilimar Conf. Signals, Syst. Comput.
Pacific Grove, CA, Nov. 1993, pp. 751-755.

J. K. Tugnait, “On blind identifiability of multipath channels using
fractional sampling and second-order cyclostationary statistic®tan.
Global Telecom. Conf1993, pp. 2000-2005.

L. Tong, G. Xu, B. Hassibi, and T. Kailath, “Blind identification
and equalization based on second-order statistics: A frequency domain
approach,”IEEE Trans. Inform. Theoryvol. 41, no. 1, pp. 329-333,
Jan. 1995.

S. V. Schell, D. L. Smith, and S. Roy, “Blind channel identification
using subchannel response matching,Pioc. 1994 Conf. Inform. Sci.
Syst, Princeton, NJ, Mar. 1994.

E. Moulines, P. Duhamel, J. Cardoso, and S. Mayrargue, “Subspace
methods for the blind identification of multichannel FIR filters,”Rroc.
IEEE ICASSP'94 Apr. 1994, pp. IV573-IV576.

D. T. M. Slock, “Blind fractionally-spaced equalization, perfect-
reconstruction filter banks and multichannel linear predictionPiac.
IEEE ICASSP’94 Apr. 1994, pp. IV585-1V588.

L. A. Baccala and S. Roy, “A new time-domain blind channel iden-
tification method based on cyclostationarityZEE Signal Processing
Lett, vol. 1, pp. 89-91, June 1994.

H. Liu and G. Xu, “A deterministic approach to blind symbol estima-
tion,” IEEE Signal Processing Lettvol. 1, Dec. 1994.

J. H. Winters, “Signal acquisition and tracking with adaptive arrays in
the digital mobile radio system 1S-54 with flat fadingZEE Trans. Veh.
Technol, vol. 42, pp. 377-384, Nov. 1993.

H. Liu and G. Xu, “Closed-form blind symbol estimation in digital com-
munications,”|EEE Trans. Signal Processingol. 43, pp. 2714-2723,
Nov. 1995.



LIU AND XU: SMART ANTENNAS IN WIRELESS SYSTEMS 199

[26] L. Tong, “Blind sequence estimationEEE Trans. Communsubmitted Guanghan Xu (S’86—M’'92) was born in Shanghai,
for publication. China, on November 10, 1962. He received the B.S.

[27] N. Seshadri, “Joint data and channel estimation using fast blind trel degree with honors in biomedical engineering from
seach techniques,” iRroc. GLOBECOM'90 1991, pp. 1659-1663. - Shanghai Jiao Tong University, Shanghai, China,

[28] E. Zervas, J. Proakis, and V. Eyuio, “A Quantized channel approach =g o= ! in 1985, the M.S. degree in electrical engineering
to blind equalization,” inProc. ICC'92 Chicago, IL, June 1992, pp. . from Arizona State University, Tempe, AZ, in 1988,

1539-1643.
[29] D. Yellin and B. Porat, “Blind identification of FIR systems excited by ‘
discrete-alphabet inputsJEEE Trans. Signal Processingol. 41, pp.
1331-1339, Mar. 1993. . ) @ Fellow at the Institute of Robotics, Swiss Institute
[30] S. Y. Kung, T. Kailath, and M. Morf, “A generalized resultant matrix of Technology, Zurich, Switzerland. From 1990 to
for polynomial matrices,” irProc. IEEE Conf. Decision ContrFlorida, 1991, he was a General Electric Fellow of the Fellow—Mentor—Advisor
1976, pp. 892-895. o . ) Program at the Center of Integrated Systems, Stanford University, Stanford,
(31] 198(3 gr:galéas,Dlgltal Communications New York: McGraw-Hill, A “From 1991 to 1992, he was a Research Associate with the Department of
y : . i .. _Electrical Engineering, Stanford University, Stanford, CA, and a short term
[32] B. Ottersten, R. Roy, and ; Ka";;hd ASl_?naI w?:vef?rg_ estllmagon Qs a Visiting Scientist at the Laboratory of Information and Decision Systems,
éensor agay_fprogessmgéA :\?C' 15;89 St Olmé’" on7é;7 '%i S, Syst. Massachusetts Institute of Technology, Cambridge, MA. In 1992, he joined
33 Ton;pué,a ag Icc)rt rgve\,( Séidgl\/' and I’?VOS'in ’hpp‘:900-|\_/|Hz .multi atrt1he faculty of the Department of Electrical and Computer Engineering, The
[33] T. S. Rappaport, S. Y. ' . >Ingn, ! Patl iversity of Texas at Austin. He has worked in several areas including signal
propagation measurements for U.S. digital cellular radiotelephon

%rocessing, communications, numerical linear algebra, multivariate statistics,
IEEE Trans. Veh. Technolvol. 39, pp. 132-139, May 1990. and semiconductor manufacturing. His current research interest is focused on

smart antenna systems for wireless communications.
Dr. Xu received the 1995 NSF career Award and is a member of Phi
Kappa Phi.

Hui Liu (S'92-M'96) received the B.S. degree
from Fudan University, Shanghai, China, in 1988,
the M.S. degree from Portland State University,
Portland, OR, in 1992, and the Ph.D. degree from
The University of Texas at Austin, in 1995, all in
electrical engineering.

From September 1992 to December 1992, he was
a Software Engineer at the Quantitative Technology
7 = Corporation, Beaverton, OR. During the summer
%@ ( of 1995, he was a Consultant for Bell Northern

S N Research. In the fall of 1996, he held the position
of Director of Engineering at CWILL Telecommunications, Inc., where he
directed the development of the CWILL smart antenna prototype. He joined the
Faculty of the Department of Electrical Engineering, University of Virginia,
Charlottesville, VA, in September 1995. His current research interests include
wireless communications, array signal processing, system identification, and
DSP applications.

and the Ph.D. degree in electrical engineering from
Stanford University, Stanford, CA, in 1991.
During the summer of 1989, he was a Research




