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Smart Antennas in Wireless Systems:
Uplink Multiuser Blind Channel

and Sequence Detection
Hui Liu, Member, IEEE, and Guanghan Xu,Member, IEEE

Abstract— Recently, space-division multiple-access (SDMA)
schemes [1], [2] have been proposed to increase the capacity of
wireless communication systems by simultaneously transmitting
and receiving multiple co-channel signals through different
spatial channelsspatial channelsspatial channels. In this paper, we address the uplink (remote
users to the base station antenna array) blind channel and
sequence identification problem for an SDMA system. We show
that multiuser blindblindblind identification can be accomplished by
exploiting the spatial and temporal diversities of an antenna
array system. In particular, a recursive estimation algorithm
is developed to recover multiple signals from intersymbol
interference (ISI) and co-channel interference (CCI) by taking
advantage of a special structure of the array output and
the finite-alphabet property of digital communication signals.
The implementation of the proposed approach in practical
applications is discussed, and field experiments have been
conducted to demonstrate the effectiveness of the proposed
algorithm.

Index Terms—Equalization, multiple-access.

I. INTRODUCTION

SMART ANTENNA systems (SAS) [1]–[5], i.e., wireless
systems that exploit the spatial dimension in signal pro-

cessing by employing multiple antennas, have shown their
prominence in overcoming some of the major difficulties in
current wireless systems, e.g., capacity limitation, co-channel
interference, multipath fading, etc. Among the many utiliza-
tions of a smart antenna system, the most compelling appli-
cation is probably the space-division multiple-access (SDMA)
system, in which multiple co-channel users communicate with
the base station simultaneously without mutual interference. In
principle, one can integrate SDMA with any existing multiple
access standard and gain significantly in channel capacity
with limited increase in system complexity. For example, by
applying smart antennas to a time-division multiple-access
(TDMA) system, two or more users are allowed to occupy
the same time slots, leading to two or more times increase in
total capacity. In this paper, we consider the uplink SDMA
operation for linearly modulated digital wireless systems, e.g.,
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IS-54, with frequency-selective channels. More specifically,
we address the multiuser source recovery problem for array
outputs suffering from both intersymbol interference (ISI) and
co-channel interference (CCI).

Optimum detection and equalization, as an effective means
for recovering multiple signals and overcoming the adverse
effects of dispersion, has been extensively studied by various
researchers [5]–[10]. To perform such operations, the spa-
tial channel associated with each user needs to be reliably
estimated. Since in many current systems the same training
sequence is assigned to different users, without changing
the existing system protocols, channel estimation approaches
that rely on training sequences are inherently prohibited.
Furthermore, the use of training sequences leads to a sig-
nificant decrease in the bandwidth efficiency, especially in a
fast changing mobile environment. Moreover, the occasional
breakdown in communication links requires the system to
have certain self-starting abilities. All these factors make it
particularly desirable for ablind estimation algorithm which is
capable of identifying multiple channels or separate co-channel
signals based solely on the array outputs.

Since the antenna outputs are composed of upcoming signals
from different directions, Anderssonet al. [3] proposed to
use directional beam forming to separate multiple co-channel
signals. Their model approximates all coherent multipath sig-
nals with apoint source, thus allows the direct use of many
subspace-based direction of arrival (DOA) estimation algo-
rithms, e.g., MUSIC [11] and ESPRIT [12]. The problem
with this model, however, is its applicability to real commu-
nication scenarios. Talwaret al. [13] attacked this problem
from a different direction and introduced a blind estimation
approach which estimates the users’ array response vectors
(often referred to as their spatial signatures) by exploiting the
finite-alphabet property of a digital communication signal. The
algorithm is theoretically simple and efficient. Unfortunately,
it cannot be applied to a long-delay multipath environment.
Besides, the algorithm requires that signals from all users to
be perfectly synchronized at the bit-level, which is impractical
due to the different delays from remote users to the base-
station.

In the presence of long-delay multipath components, the
received signal suffers from ISI which can only be cured
by channel equalization. Blind channel identification (BCI)
[14] provides a possible solution to this problem. In wireless
applications, the search for data-efficient algorithms has led
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Fig. 1. Multiuser blind identification.

to the recent development ofoversamplingtechniques that
are potentially of great practical importance. Various newly
developed approaches have shown great promise in studies
and simulations performed to date [2], [15]–[22]. However,
all these methods can only handle a single source with an
exception of [23].

In this paper, we first establish a general framework for
an antenna array system with co-channel signals, each of
which suffers from ISI, so that a systematic approach for
SDMA blind estimation can be developed. We assume that the
channel characteristics remain constant over many information
symbols—a condition which clearly depends on the fading rate
of a specific application [24]. The prime objective of this paper
is to introduce a new blind channel and sequence estimation
algorithm for the multiuser system illustrated in Fig. 1. Our
approach combines and subsequently extends the techniques
of [25] and [13] to deconvolve the input sequences and then
determine each individual symbol and channel. The method
we propose is parametric, and therefore can accomplish blind
estimation using a small number of data samples. In addition,
we derive the identifiability condition of the new method
and discuss its implementations. Field experiments have been
conducted at the J. J. Pickle Research Campus using a Smart
Antenna Testbed developed at the University of Texas at
Austin. The results show that in an outdoor nearly stationary
environment, the new approach is effective in both flat fading
and frequency-selective fading (artificially created) scenarios.

II. DATA FORMULATION

Let us first list some notational conventions to be used in this
paper. denote the transpose, conjugate transpose,
and the pseudo-inverse of, respectively. represents
the row span of and is its orthogonal complement (null
space). denotes the convolution operator.

Next, we introduce some basic assumptions on our problem.
We consider the case where the composite channel of a
wireless system can be perfectly modeled as a finite impulse
response (FIR) filter. We also assume that the information-
bearing symbols are drawn from a finite alphabet, e.g., binary
phase shift keying (BPSK) or quaternary phase shift keying
(QPSK). Both assumptions are plausible for most digital
wireless communication scenarios.

Under the above assumptions, the output of a linearly
modulated communication system can be expressed as a
convolution of the transmitting symbol and the channel
response

where is the symbol period. Temporally oversample by
a factor of , and denote by the sampling period, a
set of sequences with period can be constructed according
to . Assume that the
channel response is limited to symbol periods, we have

Denoting yields

(1)

In an antenna array system, the system output is also
spatially oversampled. An -element array can produce
set of sequences given in (1)

where denotes the antenna index.
Define

(2)

A standard single-input and multiple-output (SIMO) system
which accounts for both temporal and spatial oversampling
results

(3)

Clearly, the effective oversampling rate, e.g., the number of
elements in the output or channel vector, is now .

In the presence of co-channel users, (3) becomes

(4)

where the subscript denotes the user’s index. The problem
under consideration is to estimate and from a
finite number of system outputs without any
statistical knowledge of the inputs.

For a single user system, there are several different ways of
blind estimation. Optimal solutions in a bit error sense require
joint estimation of the channels and inputs, and often involve
Viterbi-type searching [26]–[28]. However, their advantages
might be negated by the computational cost. Tong, Xu, and
Kailath [15] showed that the output of anoversampledsys-
tem as in (3) contains sufficient information for closed-form
solutions of and . A class of data-efficient subspace-
based blind estimation algorithms have been developed to
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TABLE I
RECURSIVE BLIND IDENTIFICATION

Fig. 2. Identification block diagram.

deconvolve the ISI effect and estimate the channels and/or
input sequences directly from the data matrix. Unfortunately,
for a multiuser system described in (4) where the outputs are
clouded by both ISI and CCI, the subspace of the data matrix
is no longer adequate to resolve the system [2], [25].

III. M ULTIUSER BLIND CHANNEL IDENTIFICATION

We begin our derivation by considering the simplest case of
a multiuser system where all channels have the same order. We
present a two-stage blind estimation scheme by combining the
techniques developed in [13] and [23]. Next, we extend our
study to a general system and focus on the deconvolution of
channels with nonidentical orders. Finally, we establish the
complete identification procedure.

A. A Simple Case: Channels with Identical Orders

Given a finite number of data samples, the channel output
vectors can be arranged in a matrix form in accordance with
(4)

...
...

...

... (5)

where is defined as thesmoothing factor,

...
...

...
...

...

...
...

(6)
Note that is and is

. Clearly, if the effective oversampling
rate, i.e., , is larger than the number of users, there exists
a finite such that has more rows than columns. In the
remainder of this paper, we shall refer to and
as the multiuserchannelmatrix andinput matrix, respectively.
If either is identified, the other can easily be estimated by
simple least-squares fitting.

Our approach to resolving a multiuser system is as follows:
Given the multiuser system outputs with both ISI and CCI, we
first deconvolve the ISI using the subspace structure of the data
matrix, and then determine the inputs from CCI by exploiting
the finite-alphabet property. After all the inputs are available,
the system is readily determined. The cascade operations are
depicted in Fig. 2.

In the following, we briefly describe the techniques which
play a key role in our approach.
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1) Multiuser Channel Deconvolution (MCD):With the as-
sumption that the channel matrix is of full column
rank, the row span of is equal to that of ,
i.e., . A least-squares approach
that accomplishes channel deconvolution is provided in [25].
The method is summarized as follows.

1) Compute —the null space of the row vectors of
and .

2) Construct the following matrix:

...
...

...
(7)

where is a column vector with number of zeros
equalling the number of rows of .

3) Calculate as the null space of . In
other words, , where is a

full rank matrix.
Note that

...
...

...
...

The inputs are readily determined by the last step if there
is only one user. When , each individual symbol in

is yet to be identified. However, the convolution effect
of the channels that causes ISI has been removed.
is now a linear transformation of asynchronousmultiuser
system ! The blind estimation problem is reduced to the
identification of and from .

2) Symbol Identification Using the Finite-Alphabet Property:
To identify from , notice that for most digital
communication signals, the information bearing symbols are
from a finite alphabet. It is proved in [13] and [29] that
given sufficient data samples, blind symbol estimation can
be achieved almost surely. Let , we adopt
the iterative least squares with projection (ILSP) algorithm
proposed in [13] for symbol identification:

1) given with each element a member of the finite
alphabet;

2) ;

a) ;
b) project to the closest symbol in the

alphabet;

3) continue until .

3) Estimation Procedure:With MCD and ILSP, the blind
estimation of a system with identical channel orders becomes
more or less a solved problem. We can: 1) estimate
from the data matrix and construct as in (7); then
2) calculate its null space and apply it to ILSP and identify
the inputs; 3) if the channels need to be identified, they can
be easily determined using least-squares fitting.

The above estimation scheme, although being simple and
effective, may only have limited applications since natural
channels can be more complex. 1) The channels may be of
different orders and 2) the orders of the channels are not known
a priori. In the following, we extend our analysis to general
channels and present a recursive scheme to address the above
practical problems.

B. General Case—Channel with Nonidentical Orders

The strategy for identifying a general system is similar to
that of a system with identical channel orders, i.e., Step 1)
deconvolve the outputs to remove the ISI, and Step 2) identify
each symbol from CCI. Since the channels causing ISI are
now much more complex, our focus in the following will be
on Step 2).

Again, let be the total number of users and be the
maximum channel length. Rearrange the inputs and channels
into groups such that each group has users with the
same channel length, . Obviously, can be zero and

.
Since each group is now a subsystem with identical channel

orders, we thus define and as the channel
and input matrix for theth subsystem in accordance with (5),
where the superscriptdenotes the channel order. Using such
notation, (5) can be modified accordingly for a general system

... (8)

The total number of rows of is . It
is not difficult to see that if the effective oversampling rate
is larger than , the overall channel matrix can be
smoothed to have more rows than columns. We assume that

is of full column rank and at the same time, there
are sufficient data samples such that has many more
columns than rows.

A recursive identification procedure is established in
Table I. The details of each recursion are explained in the
following sections.

1) Channel Deconvolution:First, we need to examine the
feasibility of deconvolving the channel effects using the sub-
space structure of the data matrix. More specifically, we
need to examine the identifiability of the row span of the
input vectors using the null space . This requires
some additional discussion since unlike in the system with
identical channel orders, is now only a subset of the
null space of . The matrices
constructed from may not be sufficient to determine

.
To build intuition on the use of for estimation, let

and consider a simple two-user system with channels
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of length two and three . By (8)

(9)

Recognizing the Hankel structure of and , it can
be easily shown that by some rearrangement similar to (7)

(10)

Apparently, one can use to determine , provided
that they are complementary (for this particular example, ILSP
is not necessary since ). Such is not the case for
since is not its complete null space. However, can
be constructed from the already identified ; thus, it is
possible to determine using the knowledge of and

.
Following this idea, let us consider a general system with

more users. By the Hankel structure of and the fact
that , we
may properly rearrange the corresponding blocks and obtain
the following:

...
...

...
...

(11)
It is seen that have inherent null
vectors:

(12)
Given knowledge of , one can expect

to recursively identify the subsystems from to .
The question is whether or not can be uniquely
determined from . In other words, is the
complete null space of ? The following theorem
provides the answer to this question.

2) Theorem 1: provided that
has full row rank.

Proof: See the Appendix.
Since most communication sequences are random in nature,

the full rank condition of can easily be satisfied.
Although more studies are required to find out how uncor-
relatedness of the symbols ensures full-rank, our extensive

computer simulations show that is almost always
of full rank. The above theorem asserts that we can determine
the row span of the inherent null vectors from the data matrix,
which means we can achieve channel deconvolution with the
subspace information. The significance of Theorem 1 also
lies in the fact that it leads to a practical method of order
detection for a system with nonidentical channel orders. More
specifically, it is seen from (5) and (6) that

has rows, consequently, the number of inherent
null vectors of is . Therefore,
using this formula and the fact that
and , we can recursively
determined the number of users with channels order by
observing the change of the dimension of the null space of

.
3) Partial ILSP Algorithm: Once the row spaces of

are available, the determination of
is no different than the identification of a system with

identical channel orders. However, the ILSP algorithm in
the succeeding recursions needs to be modified,
since set of the symbols in that corresponds to the
subsystems with higher order channels has already been
identified. Therefore, this part of symbols should be used as
a priori knowledge to help identifying the unknown symbols.

Let be the unknownsymbol matrix and let be the
known symbol matrix. Denote , where

is a full rank square matrix, a partial ILSP method which
identifies given and can be easily extended from the
original ILSP algorithm. Thus

1) given with each element a member of the finite
alphabet;

2) ;

a) ;
b) project to the closest symbol in the alphabet;

3. continue until .

In each iteration, the fixed symbol matrix guides to
the right direction. This ILSP may converge faster than its
original version.

4) Recursive Blind Identification:We have explained all
the key operations for the recursive blind identification (RBI)
scheme for general systems. The estimation procedures in
Table I can now be well understood.

1) The aim of the initialization is: 1) to choose a proper
smoothing factor such that the channel matrix has full
column rank. This allows the row span of the input
matrix to be shared by the data matrix . 2)
Preselect , which is the highest order of the channels,
based on previous knowledge. 3) Calculate the null space
of , which contains information of the
span of theinherentnull vectors.

2) The initial step provides all necessary information to
deconvolve the CCI and remove the ISI. The next part of
RBI is a loop indexed by which gradually reduces the
channel orders and determine all the subsystems. In each
loop, the rank of is first examined to determine
whether or not can then be calculated
as the null space of . Since
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have already been identified from the previous loops, we
can apply and the identified inputs to partial
ILSP algorithm and obtain .

3) When the loop is completed, the channels can be iden-
tified by least-squares fitting.

IV. I MPLEMENTATIONS

So far, most of our attention has been focused on the
development of the estimation algorithm. While the RBI
scheme is quite self-contained for blind estimation in most
scenarios, certain types of channelc may be degenerate and
cause a failure in estimation. In this section, we study in more
detail the implementation aspects of the proposed algorithm.

In order for the proposed BCI scheme to be valid, the
channel matrix must be of full column rank. Since

can be rearranged into a generalized Sylvester resultant
matrix by padding zeros to shorter channels, its rank can be
calculated from [30, eq. (30)], where the rank condition of
a generalized Sylvester resultant matrix is studied. However,
such a formula is not so helpful without a physical interpreta-
tion. In the following, we simplify the discussion by analyzing
the fundamental structure of the channel matrix for asingle
user. It is reasonable to believe that if each single channel
matrix is of full column rank, then the overall multiuser
channel matrix should be of full rank, since channels from
different users are not correlated in general.1

For later reference, we recall an important lemma regarding
the rank condition of the channel matrix [15]:

Lemma 1: Let be the channel matrix constructed
from , and

, where is the th element of
. can be smoothed to be of full column rankiff

polynomials do not share any common roots.

A. Short-Delay Multipath Channels

In some wireless systems, e.g., an indoor wireless system,
the propagation channels are frequency-nonselective [31]. In
other words, all the multipath components corresponding to
one user can be regarded as coherent. In such cases, the
continuous antenna output can be represented as

where is defined as thespatial signatureof the th user
and is the signal waveform from theth user. For linear
modulation with pulse function

.
One of the most important applications of the proposed

approach is to estimate the spatial signatures without knowing
the inputs. It is worth pointing out that in practical situations,

from different users cannot be synchronous at a bit-
level in general. Therefore, in the case of multiple users,

, the discrete counterpart of , contains both CCI
and ISI regardless of the sample timing. The spatial signature
estimation problem is a special case of BCI.

1If a single user channel matrix is of full column rank, it is always of full
column rank with a larger smoothing factor [15].

Fig. 3. Asynchronous BPSK signals withP = 2.

1) Spatial Oversampling Only:Fig. 3 depicts the wave-
forms of two asynchronous BPSK signals. Let us examine
the effective channels for each user. If the output from one
antenna is sampled at the symbol rate, each point in
the data sequence or will be affected by
only two adjacent symbols, provided that the energy of the
pulse function is limited to two symbol periods. Therefore,
the effective channel order is almost always two. The discrete
array output can thus be writted as

(13)

where are complex scalars. Equation (13) suggests
that the channel vectors and are
aligned. Clearly, by Lemma 1, the channel matrix constructed
from and is always rank deficient regardless of the
smoothing factor.

2) Spatial and Temporal Oversampling:Now let us con-
sider the case with both temporal and spatial oversampling.
When the antenna output is temporal oversampled by a factor
of two, as illustrated in Fig. 3, then by stacking two neighbor-
ing array output vectors as in (2), we obtain

(14)

or

(15)

depending on the choice of the starting point. Consequently,
the channels can be expressed as

(16)

or

(17)
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TABLE II
EXPERIMENTAL RESULTS FOR SHORT-DELAY MULTIPATH CHANNELS

Either way, the channel vectors are not aligned, which means
that the channel matrix can be smoothed to be of full column
rank.

3) Property 1: A system with only coherent multipath
CANNOT be identified using the spatial oversampled data.
Temporal oversampling has to be used to restore the rank of
the channel matrix.

By applying the proposed algorithm, the channels for each
user can be determined. One can rearrange its corresponding
parts according to (16) or (17) into

The spatial signature can be estimated as the left principal
singular vector of the constructed matrix.

4) Long-Delay Multipath Channels:For wireless systems
with long-delay multipath (frequency-selective fading), denote

the ordered delays. For the single-
user case, it is straightforward to show that the array output
without temporal oversampling is given by

(18)
where is the array response vector corresponding to
the th delay and stands for the smallest integer that is
greater than or equal to. The effective channel length is

. In contrast to (13), uncorrelated are involved,
so the composite channels are thus coprime
in general.

5) Property 2: A system with long-delay multipath com-
ponents can be identified from the spatially oversampled data.
Temporal oversampling is not required.

V. EXPERIMENTAL RESULTS

To emphasize the practicality of the RBI scheme, we applied
it to some real data collected from RF field experiments. Our
facilities include an eight-element uniform linear antenna array
at the base station, several remote transceivers and a central
control unit equipped with data acquisition boards. The RF
system operates at 900 MHz. The baseband signals are 50 K
symbols/s BPSK sequences with raised-cosine pulse shaping.
Multiple transmitters, positioned at roughly 30 m away from
the antenna array, were used to generate a co-channel multiple
access environment.

In each experiment, 50 data vectors were applied to
the proposed RBI algorithm. In order to evaluate the new
approach, we used the identified channels to equalize the
system outputs. The scatter plot of the equalized signals

provides a graphic illustration of the estimation results.2

Root mean square error (RMSE) of the symbol estimates

is utilized to quantify the
estimation performance. Equivalently, one can calculate the
signal-to-interference ratio (SIR) as .

A. Short-Delay Multipath Channels

We transmitted two asynchronous BPSK sequences with
equal power from two remote antennas placed 20apart.
The SIR for each signals before spatial separation was about
0 dB. Reflections from surrounding generated a typical flat
fading scenario. The superposition of these two co-channel
signals and their multipath components was received by the
antenna array and sampled at twice the symbol rate. Therefore,
the effective oversampling rate is 16. The experimental setup
and processing results, e.g., percentage errors of the spatial
signature estimates, RMSE’s of the signal estimates and SIR’s
after separation, are summarized in Table II.

The top plot of Fig. 4 depicts the singular value distribution
of the acquired data matrix . The first four values are
distinctively larger than the others which suggests that the
total channel order is four. It is adequate to conclude that both
channels have a channel order of two. The singular values
distribution of provides ever finer discretization
(Fig. 4, bottom plot). The last two singular values, which are
much smaller than the others, imply that both channels are of
order two.

The estimation procedures in Sections III-A and IV-A were
applied to estimate the spatial signatures, and . We
measured the spatial signaturesand by letting one user
transmit at a time and calculating its spatial signature based on

the array outputs. Using as the performance
measure, the estimation errors are only 0.31% and 1.32%.
Fig. 5 compares the scatter plots from the antenna outputs
with the scatter plots of the separated sources using the spatial
filter designed from the spatial signatures [32]. Clearly, both
sources have been successfully recovered (above 25 dB gain
in SIR; see Table II).

We repeat the above experiment with different parameters
and the results are listed in Table II.

B. Long-Delay Multipath Channels

In the same experimental environment, we added two more
transmitters to generateartificial long-delay multipath signals.
Specifically, we let transmitters 1 and 2 transmit with

2There exists a perfect finite length equalizer which can invert a multichan-
nel FIR filter. This specificity was already pointed out in several places [20],
[21].
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Fig. 4. Singular value distribution: short-delay multipath channels.

Fig. 5. Signal constellation: short-delay multipath channels.

different time delays. At the same time, transmitter 3 and
4 were used to transmit with another set of delays.
The delay parameters were selected according to [33], in
which the authors showed that almost all delays in a wireless
environment are within 10s (10 s equals 0.5 symbol period
at our transmitting rate, and around 0.26 and 2.0 symbol
periods for IS-54 and GSM, respectively). The transmitting
power from each transmitter was adjusted according to the

delays and the distance between the transmitters and the base-
station. The experimental setup and results are summarized
in Table III. It is important to point out that our scenarios
do not necessarily represent the wireless environments in real
applications. Our sole purpose here is to evaluate the proposed
algorithm on real data.

In the first two experiments, only spatial oversampling was
used. In each experiment, we studied the rank conditions of
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TABLE III
EXPERIMENTAL RESULTS FOR LONG-DELAY MULTIPATH CHANNELS

Fig. 6. Singular value distribution: long-delay multipath channels.

the data matrix and to determine the channel
orders.

The singular value distribution of and
for the first experiment are shown in the top and bottom
plots of Fig. 6. The six distinctively larger singular values of

suggests that both channels are of order three. This
is verified by the two least significant singular values of

. Therefore, no recursion is necessary. ILSP was
applied to the null space of and Fig. 7 gives the
comparison of scatter plots before and after source separation
and equalization were performed.

In the second experiment, we first examined the singular
value distribution of the data matrix depicted on the top part
of Fig. 8. The decay after the fifth value implied that the total
channel order is five. We thus knew that there must be a
channel with order three and the other with order two. This
was verified by the singular value distribution of and

in the middle and bottom of Fig. 8. We applied the
proposed RBI method to identify the inputs and channels. The
channels were then used to separate and equalize the original

data from the antenna outputs. The comparison of the results
are illustrated in Fig. 9.

Finally, we repeated the first experiment with a different
oversampling rate. This time, the outputs from only two anten-
nas from the array were used, and the temporal oversampling
rate was raised to five. Since we already knew that the total
order of the channels was six, which was much smaller than
the effective oversampling rate ten, we could directly use the
original data without smoothing. Fig. 10 gives the comparison
results. It is seen that the performance is comparable to that
of the first experiment, which indicates that there is sufficient
temporal diversity among the channels.

VI. CONCLUSION

In this paper, we have studied the uplink multiuser channel
and sequence estimation problem for an SDMA wireless
system. We developed a general framework for the array
output with both ISI and CCI, based on which we showed
that source separation can be accomplished by exploiting the
spatial and temporal diversities among the users. A data-
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Fig. 7. Signal constellation: long-delay multipath channels.

Fig. 8. Singular value distribution: long-delay multipath channels.

efficient algorithm was derived to recursively identify each
spatial channel and the uplink symbols. Experimental results
show the proposed method can effectively resolve systems
with both short-delay multipath (flat fading) and long-delay
multipath (frequency-selective fading).

APPENDIX

PROOF OF THEOREM 1

To prove this theorem, we first introduce an important
lemma concerning multiple Hankel matrices.

Lemma 2: Define as afinite Hankel matrix with
columns formed by the elements of a vector

...
...

...

Assume that is of
full row rank. If there exists another vector such that
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Fig. 9. Signal constellation: long-delay multipath channels.

Fig. 10. Signal constellation: long-delay multipath channels.

, then

if
if

Proof: We use to denote the vector without the
first (last) element. Define the th row of .
Since .

For any consecutive rows in the above equation
, we have

(A.1)
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where is the element of at the th row and th
column. Consequently,

(A.2)

Using the fact that for a Hankel matrix,
we obtain

(A.3)

Under the assumption that the rows of
are linearly independent,

and noting that are the
rows of , all the coefficients in (A.3)

must be zero

(A.4)

Considering all the possiblevalues, we can easily verify that
if and if .

Theorem 1 is equivalent to that leads
to for any , where is one of the inherent
vectors.

From and the Hankel block structure of
, one can easily obtain that

...
...

...

Therefore, .
Note that the row span of is the union of the -

row Hankel matrices formed from the inherent null vectors
, and the -row Hankel matrices formed from

input vectors whose corresponding channel order .
Lemma 2 asserts that .
Comparing each element of both size, we obtain ,
which completes the proof.
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