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Abstract: Dynamical systems may experience undesirable behavior or instability, which can be eliminated
using feedback control means. However, in the absence of feedback control, the stability of some systems
may be increased by imposing parametric excitation. In other cases, the exit time of the system response
from the stable to the unstable domain may be prolonged by imposing external noise, a phenomenon termed
noise-enhanced stability (NES). This article presents an assessment of the mechanisms of stabilization via
multiplicative noise and noise-enhanced stability. The first part deals with stabilization via deterministic para-
metric excitation of gravity-defying systems such as the inverted simple and spherical pendulums, aeroelastic
structures, human walking, and quantum nonlinear couplers. The second part introduces the concept of
noise-induced transition (NIT) in one-dimensional nonlinear systems and ship roll motion. Stabilization of
originally unstable systems via multiplicative noise is treated in the third part. The fourth part addresses the
influence of additive noise in delaying the exit time of system response to an unstable domain. This topic is
related to the phenomenon of stochastic resonance (SR) and NES of systems with one or more metastable
states and fluctuating potential. Finally, this review article also introduces some applications in other fields
such as the Ising model, ecosystems, and tumor-immune system models.

Keywords: Stabilization, parametric excitation, additive noise, noise-induced transition, noise-induced stability,
noise-enhanced stability, stochastic resonance, inverted pendulum, Langevin equation, tumor-immune systems,
Ising model, ecosystems, flutter of aeroelastic structures, ship capsizing

1. INTRODUCTION

Stabilization of unstable systems using uncontrolled deterministic or random parametric ex-
citation has been extensively studied in different mechanical systems, chemical reactions,
nonlinear optics, and neuroscience systems. For example, the idea of stabilizing an inverted
pendulum by imposing parametric excitation can be traced back to the work of Stephenson
(1908). The analytical modeling of these systems ranges from the case of a simple one-
dimensional nonlinear differential equation to multi-dimensional coupled oscillators. The
instability state of these systems is associated with symmetry breaking due to the existence
of more than one fixed point. It is the interplay of excitation and system nonlinearity that
may produce unusual dynamical phenomena. For one-dimensional nonlinear systems the
threshold of instability is shifted if the control parameter is noisy, with a correlation time that
is much smaller than a certain characteristic time of the system.
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In nonlinear dynamical systems, parametric excitation (or noise) can shift the bifurcation
threshold from one phase to another (Lücke and Schank, 1985), or induce new phase transi-
tions in spatially-extended systems (Van den Broeck et al., 1994), or create spatial patterns
(Parrondo et al., 1996� and San Miguel and Toral, 1997). If a dynamical system is excited by
an additive noise, then the most probable value of the response coincides with the determin-
istic steady state value (fixed point) and is independent of the excitation. For parametrically
excited systems, on the other hand, the most probable value of the response depends on the
strength of the multiplicative noise. This feature has great influence on systems undergoing
bifurcation. The threshold value of the bifurcation parameter depends on the fluctuations in
multiplicative noise, but is independent of additive noise. The system response to additive
noise is stable when the associated deterministic problem has a globally stable steady-state
with respect to arbitrarily large fluctuations (Schenzle and Brand, 1979).

The term bifurcation refers to a qualitative change in the system’s (static or dynamic)
behavior under the variation of one (or more) control parameter. The idea of bifurcation may
be formalized by introducing the concept of structural stability. Structural stability deals
with the orbit structure (in the phase space) of a dynamical system undergoing perturbations
of the system parameters. It implies the existence of a continuous coordinate transformation
that transforms a nonlinear orbit into a linear orbit in the vicinity of a hyperbolic fixed point
(whose Jacobian has eigenvalues with non-zero real parts). Such a transformation is called
homeomorphism if it preserves the order of the points on the orbits. The orbit structure is
unstable in the vicinity of a bifurcation point. Structural instability may occur in the form
of static (stationary) or dynamic (Hopf) bifurcations. Static bifurcation occurs at a point for
which the Jacobian of the system vector field has a simple zero eigenvalue.

The static criterion for bifurcation is not applicable to non-conservative systems, where
bifurcation does not occur and dynamic criteria must be used. In the dynamic case, equilib-
rium is superseded by a motion represented by a limit cycle, and the oscillations are regular.
This dynamic bifurcation takes the system from the static equilibrium configuration to a pe-
riodic motion regime. In the neighborhood of equilibrium, the Jacobian has a simple pair of
purely imaginary eigenvalues, and the initial period of oscillation is related to the absolute
value of the eigenvalue. Dynamic bifurcation is also characterized by single peak amplitude
in the time domain and by a closed curve in the phase plane. As the system or excitation
parameters change there can be a qualitative change in the response behavior, characterized
by period doubling (two different amplitude peaks) in the time domain, and a double loop in
the phase plane. The process proceeds to period tripling and higher as the system or exci-
tation parameters change. This type of response behavior results in multiple maxima in the
response probability density function (pdf).

Generally, stochastic bifurcation can be classified as bifurcation in distribution (or noise-
induced transition [NIT]) or bifurcation in moments. NIT implies a change in the number
of extrema in the pdf of the system response (Horsthemke and Lefever, 1984, 1989). In the
vicinity of transition, a marked increase in the relaxation time occurs for cubic bi-stable sys-
tems (Sancho et al., 1985� Jackson et al., 1989). Relaxation time is an effect described as
“critical slowing down,” by analogy with the well-known phenomenon associated with equi-

librium phase transitions. The relaxation time T �
��
0

[�x�t�� � �x����] dt� [x�0�� �x����]
was defined by Binder (1973), where x�0� and �x���� are the initial and final states of the
system response, respectively.
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The two modes of bifurcation can be measured in terms of the sample Lyapunov expo-
nent and the moment Lyapunov exponent, respectively. Kliemann and Arnold (1983) derived
conditions for exponential sample instability of linear stochastic systems. Arnold (1984) ex-
tended the works of Molchanov (1978) and Arnold and Kliemann (1983), and developed a
formula connecting the sample Lyapunov exponent and the Lyapunov exponent of response
moments.

If the random excitation is additive, one would be interested in estimating the mean
first passage time for the response to reach a target value. The dependence of the mean
exit time on the noise intensity for metastable and unstable systems was revealed to have
resonance character (Hirsch et al., 1982). Noise can modify the stability of the system in a
counterintuitive way, such that the system remains in the metastable state for a longer time
than in the deterministic case (Dayan et al., 1992). The escape time has a maximum at some
noise intensity. Note that the phenomenon of noise-enhanced stability (NES) only results
in an increase of the escape time, rather than causing absolute stabilization of an originally
unstable system.

The purpose of this article is to provide an assessment of the role of parametric excitation
(deterministic or random) in stabilizing, rather than destabilizing, dynamical systems. The
assessment is also extended to the phenomenon of NES due to additive noise. This assess-
ment is valuable in interpreting and understanding the influence of multiplicative and addi-
tive excitations on other dynamical systems. The assessment is divided into four main parts.
The first deals with stabilization of dynamical systems via deterministic parametric excita-
tion. The systems considered include inverted simple and spherical pendulums, aeroelastic
structures, and other systems such as human walking and quantum nonlinear couplers. The
second part deals with the problem of NIT, which is characterized by a qualitative change
of the state of a given dynamical system as the intensity of random parametric excitation in-
creases. The basic concept of NIT is outlined and some applications are then described. The
third part addresses the stabilization of dynamical systems, including the inverted pendulum
and ocean structures, via random parametric excitation. NES in metastable systems is briefly
reviewed in the fourth part. The paper is closed by some conclusions and recommendations
for possible future research.

2. STABILIZATION VIA DETERMINISTIC PARAMETRIC

EXCITATION

This section is devoted to assess the main results pertaining to stabilization of some dynam-
ical systems under sinusoidal parametric excitation. Specifically, we consider the inverted
pendulum (which has been the subject of extensive studies by dynamicists, physicists, and
mathematicians) as a paradigm to examine the complex dynamical phenomena encountered
in other complex systems, such as ship dynamics and human walking. This is followed
by other, more complex, systems such as the inverted spherical pendulum and aeroelastic
structures.
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Figure 1. Inverted pendulum under parametric excitation.

2.1. Stabilization of the Inverted Pendulum

2.1.1. Sinusoidal Parametric Excitation

The idea of stabilizing the inverted pendulum by imposing parametric excitation can be
traced back to the work of Stephenson (1908). Later, Stoker (1950) and many others (see,
e.g., Kapitsa, 1951a,b� Chelomi, 1956� Bogdanoff, 1962) analyzed different versions of the
inverted pendulum. Intuitively, when the pendulum support point is accelerated upwards the
motion is unstable, while when it is accelerated downwards the motion can be stable. The
periodic switch between these two situations can be globally stable or unstable depending
on the values of some physical parameters. In particular, when the frequency of oscillation
is higher than a certain threshold value the pendulum becomes stable. Note that the inverted
pendulum has a negative restoring moment and its equation of motion in the absence of
support oscillation (see Figure 1) is

�� �
�g

�

�
sin � � 0 � �� �

�g

�

�
� � 0 for small � (1)

where � is the pendulum length and � is measured from the vertical upward position. The
solution of equation (1) is a combination of e�

	
g���t and e��

	
g���t , which results in an un-

bounded motion. This means that the inverted pendulum is unstable unless a support excita-
tion z�t� � Z0 cos�t is imposed� the equation of motion then takes the form

�� � �2
n

�
1 
 Z0�

2

g
cos�t

�
� � 0 (2)

Setting � � �t , equation (2) can be written in the standard Mathieu form
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�
�� 
 �	 
 
 cos �� � � 0 (3)

where a prime denotes differentiation with respect to the non-dimensional time � , 	 �
��2

n��
2, and 
 � �Z0�

2
n�g. For small values of �
�, the perturbation technique adopted

by Jordan and Smith (1999) may be used. This requires the solution of equation (3) to be
written in the form

���� � �0���
 
�1���
 
2�2�� �
 ��� (4)

Expressing the frequency parameter as a perturbation in 
, one can then write

	 � 	�
� � 	0 
 
	1 
 
2	2 
 ��� (5)

Substituting equations (4) and (5) into equation (3) and setting coefficients of equal powers
of 
 to zero gives the following set of differential equations

�
��
0 
 	0�0 � 0 (6a)

�
��
1 
 	0�1 � ��	1 
 cos ���0 (6b)

�
��
2 
 	0�2 � �	2�0 � �	1 
 cos ���1� and so on� (6c)

The solution of equation (6a) has a period of 2
 or 4
 if 	0 � n2�4, n � 0� 1� 2� ���.
Considering first the case of n � 	0 � 0, one finds that the solution �0�� � � �0 results in a
periodic solution of equation (3). In this case equation (6b) takes the form

�
��
1 � ��	1 
 cos ���0 (7)

This equation has a periodic solution if 	1 � 0, and the solution may be written in the
form

�1�� � � �0 cos � 
 �1 (8)

Equation (6c) becomes

�
��
2 � �	2�0 � 1

2
�0 � 1

2
�0 cos 2� � �1 cos � (9)

which has a periodic solution of period 2
 if 	2�0 
 1

2
�0 � 0, or if 	2 � �1

2
. Thus for

small �
� equation (5) takes the form (for solutions of period 2
)

	 � �1

2

2 
 O�
3� � Z0 �

	
2

g

�n�
(10)
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For n � 1, we have 	0 � 1�4, and the solution of equation (6a) is

�0��� � �0 cos���2�
 �0 sin���2� (11)

Thus equation (6b) takes the form

�
��
1 


1

4
�1 � ��0

�
	1 
 1

2

�
cos���2�� �0

�
	1 � 1

2

�
sin���2�

� 1

2
�0 cos�3��2�� 1

2
�0 sin�3��2� (12)

A periodic solution of period 4
 exists only if �0 � 0 and 	1 � �1�2, or if �0 � 0 and
	1 � 1�2. To the first-order approximation, and for small 
 equation (5) gives

	 � 1

4

 1

2

 (13)

For 	 � 0 equation (13) yields 
 � 1�2.
These results can also be obtained using the harmonic balance or multiple scales meth-

ods.
Stephenson (1908) showed that the inverted pendulum can be stabilized by applying

a parametric sinusoidal excitation with sufficiently small amplitude and sufficiently high
frequency, i.e.,

� �
�

2g��Z0 (14)

which follows from condition (10). Subsequent studies, reported by Acheson (1997), re-
vealed that the inverted state can be stabilized with lower excitation frequency and larger ex-
citation amplitude, provided that these lie within the stability region shown in Figure 2. The
first region on the left corresponds to Stephenson’s criterion (14). Acheson (1997) observed
two different ways in which the pendulum can avoid falling over. The first is characterized
by gradually wobbling closer to the upward vertical as time goes on, while the other has the
pendulum “dancing” persistently about the upward vertical with its bob at all times higher
than the pivot. In region 2, the inverted pendulum bobs twice in succession on one side of
the upward vertical before being flung across to the other side (see Figure 3). On the other
hand, in region 3 there are three successive bobs on one side of the upward vertical before
the second half of each oscillation.

Note that the negative restoring moment of the inverted pendulum can be made positive
by introducing a proper periodic parametric excitation to the support point. The resulting
governing equation becomes Mathieu’s equation. In this case, one can construct a stabil-
ity chart for which some combination of excitation amplitude and frequency always yields
bounded solutions. This means that the unstable inverted pendulum can be converted into a
stable one if one imposes a sinusoidal support motion with appropriate amplitude and fre-
quency. Valeev (1971) employed an asymptotic technique and reached similar conclusion,
as well as considering the case of an inverted pendulum with an elastic spring which de-
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Figure 2. Stability region of the excited inverted pendulum with damping factor 0.1. Upside-down
oscillation provides an alternative to the classical inverted state in regions 2 and 3 (Acheson, 1997).

Figure 3. Upside-down oscillations of a driven inverted pendulum (a) oscillation with frequency ��4
from region 2 of Figure 1 with Z0�� � 0�45, and � � 5

	
g��, may be generated with, say, � � 
 and

d��dt � 1�3
	

g�� at t � 0. (b) An oscillation with frequency ��6 from region 3, with Z0�� � 0�33 and
� � 10

	
g��, may be generated with, say, � � 
 and d��dt � 2�6

	
g�� at t � 0 (Acheson, 1997).

forms against the pendulum’s mass motion. It was shown that the inverted position can be
stabilized when the support motion frequency is close to the linear natural frequency of the
mass-spring system.

The stabilization of the inverted pendulum was studied experimentally under parametric
sinusoidal excitation by Kalmus (1970), Michaelis (1985), and Smith and Blackburn (1992).
The influence of the tilt of the excitation (relative to the gravity direction) on the stabilization
of the inverted pendulum was considered by Sudor and Bishop (1996), Weibel et al. (1997),
and Yabuno et al. (2004). It was found that the angle of inclination of the pendulum in
the stable equilibrium state is much greater than the angle of the excitation direction to the
vertical. With increasing excitation frequency, the pendulum angle was found to approach
the excitation direction angle.
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2.1.2. Periodic and Impulsed Parametric Excitations

The inverted pendulum with a periodic parametric excitation was considered as a bifurcation
problem in the reversible setting by Broer et al. (1998, 1999). Levi (1988) presented a
topological explanation and proof of stability of an inverted pendulum with a prescribed
vertical base motion. Broer et al. (1998, 1999) showed that the planar normal form of the
pendulum Hamiltonian is given by the scaled expression

�H��� �
� � 	� 
� � 1

2
�

�2 
 1

2
sin2 � � 	 �1 � cos��
 O

��	� 
�3� (15)

where �
� � �

�
� �Z0���, 	 � ��2

n��
2
� �

�2�Z2
0

�
, 
 � Z0��, a prime denotes differentiation

with respect to the non-dimensional time, � � �2t , and �H � H�
�
m�2 Z 2

0��
2
�

is the scaled
Hamiltonian. The global dynamics of the inverted pendulum revealed the existence of a
center at

�
�� ��� � �
� 0� for all values of excitation frequency and amplitude. There is

also a singularity at the origin
�
�� ��� � �0� 0� whose stability type changes at a curve in

the parameter plane of the form 	 � 1 
 O�
�, in the form of a pitchfork bifurcation as
shown in Figure 4(a). It can be seen that the origin � � 0 is stable and is surrounded by two
saddles in heteroclinic connection because of the spatial symmetry. The equilibrium � � 0
becomes unstable for 	 � 1, i.e., � � �n. Figure 4(b) shows three global phase portraits
corresponding (from left to right) to 	 � 1, 	 � 1, and 	 � 1. The only bifurcation of
interest takes place at

�
�� ��� 	� � �0� 0� 1�.

The local stability diagram of the inverted pendulum in the spatially symmetric cases is
shown in Figure 4(c) on the left of the plane �	� 
�. At

�
�� ��� � �0� 0� there is a saddle

point for �	� 
� to the right of the curve 	 � 
2 
 O�
3�. This curve represents a pitch-
fork bifurcation for �	� 
�. The shaded regions refer to the stable equilibrium of the upper
position.

Liu and Willms (1994) showed that the undamped inverted pendulum can be stabilized
by applying impulses resulting in an instantaneous change in angular velocity with no change
in position. Intuitively, their result implies that whenever the pendulum starts to fall from its
upright position one has to kick it back upward in order to keep it close to the unstable
equilibrium position.

2.1.3. Chain of Inverted Pendulums

The stabilization of the equilibrium position of a chain of N inverted pendulums was consid-
ered by Otterbein (1982) and Acheson (1993, 1997) who used modal analysis and obtained
N uncoupled Mathieu’s equations with different parameters. It was concluded that by choos-
ing a sufficiently high frequency and sufficiently small amplitude for each mode, a finite
chain can be stabilized by parametric excitation. Numerical simulation (Acheson, 1993) and
experimental tests (Acheson and Mullin, 1993) for two and three pendulums showed that the
stability is remarkably robust, even for quite large disturbances. Hurst (1996) adopted the
limiting case of this chain, i.e., N � �, as a possible interpretation of the so called “Indian
rope trick”. (The legend of an Indian magician who throws a rope to the sky. The rope does
not fall back to the ground� instead it mysteriously rises until the top disappears into thin air.
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Figure 4. Bifurcation, phase, and stability diagrams of the inverted pendulum (Broer et al., 1998, 1999).
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Unfortunately, this claim has never been substantiated) Unfortunately, for the case of a piece
of string, the stability region becomes vanishingly small, and the explanation fails. However,
a further experiment by Acheson and Mullen (1998) revealed that a piece of “bendy curtain
wire,” clamped at the bottom and free at the top, can be stabilized by parametric excitation.
Galán et al. (2005) called this wire the “Indian rod trick.”

Champneys and Fraser (2000) adopted a linearized analysis for a continuously flexible
linearly elastic rod. They derived a simple lower bound on the product of the excitation
frequency and amplitude necessary to stabilize the rod. This bound can be expressed solely
in terms of the ratio of the column’s length to the critical buckling length. Mullin et al.
(2003) reported experimental observations on the stabilization of the upright wire, which
would otherwise fall over under its own weight. They showed lower and upper bounds on
the excitation frequency required to stabilize this gravity-defying system. The upper insta-
bility boundary was found to be a harmonic resonance rather than a subharmonic one due to
a new phenomenon termed “resonance-tongue interaction.” The experimental lower bound
was found to be higher than the predicted one by a factor of between 2 and 4 (Champneys
and Fraser, 2000). The upper bound is more subtle, due to the presence of infinitely many
resonance tongues inside the stability region of parameter space. This motivated Fraser and
Champneys (2002) to address these contradictions by including three-dimensional effects in
addition to geometric nonlinear terms.

Stabilization was experimentally possible but there remains a lack of qualitative and
quantitative fit with experimental results. Galán et al. (2005) proposed a discrete model in
which small damped elastic constraints are added to the bottom joint and the joints between
N identical pendulums. At the limit N � �, and with the inclusion of realistic material
damping, the system approaches the case of a continuously flexible rod. Their analysis
revealed that damping has the effect of removing most of the regions of instability for a fixed
amplitude of parametric excitation. The shape of instability curves and the mode shapes of
the corresponding instabilities were found to be in agreement with those of an experiment on
curtain wire.

2.2. Stabilization of the Inverted Spherical Pendulum

The spherical pendulum differs from the simple pendulum in its ability to possess non-planar
oscillations. The inverted spherical pendulum was used to model ocean articulated towers by
Bar-Avi and Benaroya (1996, 1997). The stability of a spherical pendulum under sinusoidal
parametric excitation was considered by Markeyev (1999). With reference to Figure 5, the
Hamiltonian of the spherical pendulum can be written in the form

H � 1

2
m�2�2

	�
d�

d�
� Z0

�
sin � sin �

�2



�

d�

d�
sin �

�2

� 2
g

��2
cos �



(16)

Under the assumption that Z0 � �, and � � 	
g��, Markeyev (1999) obtained bifurca-

tion values of the angular momentum about the z-axis and frequency parameter
�

2g���2.
Figure 6 shows the bifurcation diagram on the plane a � f1�d��d��, b � f2�

�
2g���2��,

where fi���, i � 1� 2 are functions of the indicated arguments. In region G1, the pendulum
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Figure 5. Schematic diagram of the spherical pendulum.

Figure 6. Bifurcation Diagram of the spherical pendulum for down and inverted positions (Markeyev,
1999).
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has one equilibrium position where cos � � 0, while in the region G3 there are three equi-
librium positions, for which �1 � cos �3 � cos �2 � 0 � cos �1 � 1. In region G1 the
corresponding motion is close to conical and the center of gravity of the pendulum is below
the point of suspension. This motion is referred to as type-I motion. The corresponding
motion of the other two solutions� �1 � cos �3 � cos �2 � 0, is conical, with the center of
gravity above the pivot point, and the inverted position is stable. This motion is referred to as
type-II motion. If the values of the parameters a and b lie in the region G3, a single motion
of type-I coexists with two motions of type-II.

2.3. Stabilization in Aeroelastic Structures

The influence of parametric excitation on the flutter of aeroelastic structures has been consid-
ered by a limited number of studies. For example, Lumbantobing and Haaker (2004) studied
the parametric excitation of plunge and seesaw oscillators. Both oscillators are described by
a nonlinear Mathieu’s equation where the nonlinearity owes it origin to the dependence on
the flow angle of attack. It was found that by increasing the air flow speed above a critical
value the equilibrium position is re-stabilized. However, if the parametric excitation is due to
longitudinal turbulence, the frequency of coalescence occurs at a lower air flow speed (see,
e.g., Poirel and Price, 2003a,b).

Chin et al. (1995) obtained the modulated equations needed to calculate the equilibrium
solutions of a simply supported panel in a supersonic flow (and their stability). In the neigh-
borhood of combination parametric resonance, they identified the excitation parameters that
suppress flutter and those leading to complex motions.

The possibility of suppressing wing flutter via parametric excitation, Y �t�, acting along
the plane of highest rigidity as shown in Figure 7 was studied by Ibrahim and Castravete
(2006). The bending-torsion coupling arises mainly from the fact that the centers of mass
of cross-sections undergo a small but important displacement, v, in the plane of excitation.
This displacement is expressed in terms of the second-order of the fundamental bending,
u, and torsion, 	, displacements. The displacements of the elastic axis along the y and z
axes are ��z� t� and ��z� t�, respectively. The airfoil is exposed to an incompressible fluid
flow of speed U�. The chord of the wing is 2b, �1 is the distance between the elastic axis
and mid-chord, �2 is the distance between the aerodynamic center and mid-chord, and �3

is the distance between the elastic axis and inertia axis. The nonlinear equations of motion
in the presence of incompressible fluid flow were derived using Hamilton’s principle and
Theodorsen’s theory for modeling aerodynamic forces. For the first modes in bending and
torsion, the solutions can be expressed in terms of the generalized coordinates and mode
shapes as

u�z� t� � u0�t� f �z� � 	�z� t� � 	0�t�� �z� (17a,b)

where f �z� � cosh �1�875z� l��cos �1�875z� l��0�734
�
sinh �1�875z� l�� sin �1�875z� l�

�
,

� �z� � sin �
 z�2l�, and l is the wing length.
By applying Galerkin’s method, the following two coupled nonlinear ordinary differen-

tial equations were obtained
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Figure 7. Schematic diagram of a wing exposed to subsonic flow under parametric excitation.
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�u �Y ����� � 0 (19)

together with the boundary conditions

	�z�0 � �	

�z
�z�0 � �	

�z
�z�l � 0� u�z�0 � �u

�z
�z�0 � 0�

�2u

�z2
�z�l � �3u

�z3
�z�l � 0 (20)
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where �u � u0�b, �Y � Y�b, � � �	t , � u and � 	 are linear viscous damping factors in

bending and torsion (respectively), m is the wing mass per unit length, a � �1�b, k	 � b�	

U�
,

� � 
b2��
m

, x	 � S	
mb

, S	 � m�3, r	 � �I	��mb2�, I	 is the wing mass moment of the

inertia (about the elastic axis) per unit length = I	 � I0 
 m�2
3, I0 is the mass moment of the

inertia (about the inertia axis) per unit length, B�k� is the circulation function, which depends
on the reduced frequency parameter, k � b��U�, where � is the natural frequency of the
wing coupled modes, a prime denotes differentiation with respect to the non-dimensional

time � , �� is the air density, � is the wing density, d � b

l
, a � �1

b
, r � �u

�	

, �u � 	
Ku�m,

�	 � 	
K	�I	, and ci are constant coefficients, Ku � 12�3596E Iy� l4, K	 � 
2cG J�4l2,

Ku3 � 80�8579E Iy� l6, E is Young’s modulus, Iy is the area moment of inertia of the wing
cross-section about y axis, J is the polar moment of inertia of the wing cross-section about
the z axis, G is the modulus of rigidity, and c is a correction constant due to the noncircular
cross-section of the wing.

The response of the wing under different values of excitation amplitude, at the critical
and post-critical flutter speeds was determined for the combination parametric resonance,
� � �1 
�2, in the neighborhood of one-to-one internal resonance, �1 � �2, where �i � i �
1� 2, are the normal mode frequencies of the wing. The results were obtained for external
excitation detuning parameter � e � 0, internal resonance detuning parameter � i � 0�061,
and system parameters � � 1�38, a � �0�36, x	 � 0�024, r	 � 0�62, r � 0�5, � 	 � 0�001,
� u � 0�001, d � 0�1.

In the absence of parametric excitation, the solution of these equations revealed the co-
existence of different fixed points implying different levels of limit cycle oscillations (LCO).
Each fixed point is created by a certain domain of initial conditions. Under parametric ex-
citation, the same scenario was preserved up to an excitation level Y0 � 0�00875, at which
the response experiences Hopf bifurcation around each fixed point in addition to a new fixed
point that also experiences Hopf bifurcation. Over another range of excitation amplitude,
0�00875 � Y0 � 0�0125, the response experiences Hopf bifurcation for relatively high val-
ues of initial conditions below, which the response settled at the static equilibrium position.

Figure 8 presents the bifurcation diagram where the excitation amplitude is taken as the
control parameter. It can be seen that for some values of the initial conditions, the parametric
excitation acts as a stabilizer source for the wing flutter, and within this set of values the
response achieved its static equilibrium position. Outside this domain of initial conditions,
the equilibrium position loses its stability and the response may possess fixed points, Hopf
bifurcation, cascades of period doubling, and eventually chaotic motion. At each bifurca-
tion point, branches of symmetric and asymmetric periodic solutions meet in the form of
supercritical symmetry-breaking bifurcations.

It is obvious that the response exhibits multiple attractors, each with its own domain of
attraction. One or two of these attractors, namely the zero response or small amplitude LCO
about a small mean, are superior and desirable in the post flutter region. In order to achieve
this desirable performance, one may use one of the current techniques used to control chaos
(see, e.g., Boccaletti et al., 2000: and Pereira-Pinto et al., 2004). For the present case, the
domains of attraction of undesirable performance can be shifted away only by increasing
the parametric excitation amplitude. Figure 9 shows the dependence of the percentage of
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Figure 8. Bifurcation diagrams of bending and torsion responses at the critical flutter speed taking the
excitation amplitude as the control parameter.

domains of attraction that lead to non-zero flutter oscillation on the excitation amplitude.
It can be seen that as the excitation amplitude increases, the domains of attraction for both
small and large response amplitudes decrease up to the critical value of excitation amplitude,
Ycr � 0�01375, above which the parametric excitation suppresses the wing flutter.
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Figure 9. Percentage of domains of attraction that lead to LCO and chaotic motions.

At a flow speed that is slightly higher than the critical flutter speed, e.g., U��b�	 �
5�02, the wing enters the post flutter region. In the absence of parametric excitation the
wing experiences Hopf bifurcation of different values of amplitude oscillations depending
on initial conditions. For all values of initial conditions, there are two possible domains of
response amplitudes: small and large amplitude LCOs. Under very small excitation am-
plitude, the response experiences multi-frequencies. Over the excitation amplitude range
0�001 � Y0 � 0�003, the response experiences multi-frequencies with growing amplitudes.
Over higher excitation amplitudes (0�003 � Y0 � 0�005), there are two domains of at-
traction, of which one leads to small amplitude oscillations with multi-frequencies as in the
previous range, while the other leads to periodic then cascade of period doubling with high
amplitude oscillations. The next region of excitation amplitude, 0�005 � Y0 � 0�01, is
characterized by chaotic motion for all possible initial conditions. However, one set of ini-
tial conditions leads to a chaotic attractor with small amplitude oscillations, while the other
set leads to large amplitude oscillations for Y0 � 0�0075. There is a small window around
Y0 � 0�01 characterized by period doubling for all possible initial conditions. A new regime
of response behavior emerges at the excitation level range 0�01 � Y0 � 0�014, characterized
by a train of spikes known as the “firing” state (Lindner et al., 2004) for certain regions of ini-
tial conditions. The remaining initial conditions lead to periodic attractors. As the excitation
amplitude increases, the period between the spikes (called the “refractory” or “recovery” pe-
riod) increases, and for some initial conditions the recovery period becomes infinitely large,
constituting a stabilization effect.

Figures 10(a) and (b) show the bifurcation diagrams summarizing all the regimes de-
scribed above. In order to better demonstrate the stabilizating effect of parametric excitation,
Figure 11 delineates the dependence of the percentage of the area consisting of domains of
attraction on the excitation amplitude. The numerical simulation of the original equations
of motion has confirmed the multiple scales findings. Note that Theodorsen’s theory is only
applicable for small amplitude oscillations. This requires one to employ other aerodynamic
techniques, such as the doublet-hybrid or vortex lattice methods.
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Figure 10. Bifurcation diagrams showing different regions of response behavior at post-critical flow
speed U��b�	 � 5�02, � � �1 
 �2, �1 � �2, � e � 0, � i � 0�061.

2.4. Stabilization of Other Systems

The inverted pendulum has been used to model the mechanics of human walking. It predicts
the arched trajectory of the body’s center-of-mass (COM) and the relatively constant state
of mechanical energy during single-limb support, which is assumed to reflect a continuous
exchange of kinetic and potential energy as reported by Cavagna et al. (1977) and Cavagna
and Margaria (1996). The inverted pendulum has also been shown to predict many facets
of human walking mechanics including ratios of walking speed to frequency (Bertram and

 © 2006 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 at PENNSYLVANIA STATE UNIV on April 11, 2008 http://jvc.sagepub.comDownloaded from 

http://jvc.sagepub.com


1110 R. A. IBRAHIM

Figure 11. Stabilization effect of parametric excitation at post-critical flow speed U��b�	 � 5�02
showing the percentage of domains of attraction for large amplitude response (diamond-solid curve) and
large plus small amplitude responses (star-dotted curve).

Ruina, 2001), walk/run transition speeds (Kram et al., 1997), preferred walking speed/step
length ratios (Kuo, 2001), the influence of preferred step width (Donelan et al., 2001), the
effect of gravity (Cavagna et al., 2000� Minetti et al., 1993), stability of walking models
(Garcia et al., 1998), and the relation between work-rate and stride frequency (Minetti and
Saibene, 1992).

Winter et al. (1998) and Karlsson and Frykberg (2000) modeled postural sway as an
inverted pendulum. The inverted pendulum model predicted that the difference between the
center of pressure (COP) and COM is proportional to the horizontal acceleration of COM
(Murray et al., 1976� and Geursen et al., 1976). This prediction has been validated experi-
mentally by Winter et al. (1998). Modeling postural sway as an inverted pendulum assumes a
rigid structure above the ankles. However, the body is a segmented structure capable of mov-
ing the joints superior to the ankle independently. A study by Gage et al. (2004) supported
the inverted pendulum modeling of quiet standing. The condition for dynamic stability was
obtained on the basis of a simple inverted pendulum model by Hof et al. (2005). It was pro-
posed that the position of the COM plus its velocity multiplied by a factor of

	
��g should

be within the base of support, where � is the leg length.
The mathematical elegance of inverted pendulum analyses is confounded when the com-

plexities of the musculoskeletal system are considered. As a result, the inverted pendulum-
based models cannot identify the timing of work output by muscles (positive, negative, or
net) or muscle contributions to external power. Neptune et al. (2004) found that the net mus-
cle work output cannot be estimated from the external power trajectory, and the mechanical
and metabolic energy cost of the muscles is dominated not only by the need to redirect the
COM in double support, but also by the need to raise the COM afterward in single support.
Brénière and Ribreau (1998) modeled the sagittal and frontal components of the human gait
by means of a two inverted pendulum system formed by the head, arms, and trunk (HAT), and
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an equivalent two-legged system called the HCP, which links the middle (H) of hip centers
to the center of pressure (CP).

The vertical position of the human posture is inherently unstable. However, the physio-
logical control system is able to maintain it while developing operational performance under
unexpected variable conditions. The control of balance is a process that involves neural
latencies, feedback and random fluctuations (Moss and Milton, 2003). The presence of para-
metric fluctuations is crucial during the control process of an inverted pendulum allowing
for control at time scales smaller than the physiological delay (Cabrera and Milton, 2002).
Cabrera (2005) reproduced this behavior using a model of an inverted pendulum with time-
delayed feedback in which the parametric noise forces a control parameter across a particular
stability boundary. The model was built to use the opposition of two antagonistic forces plus
damping� the destabilizing effect of gravity was opposed by a stabilizing delayed restoring
force produced by human action.

Early attempts to characterize a biomechanical influence simplified the problem of con-
trolling an inverted pendulum by analyzing gravitationally-driven, non-inverted pendulums
with properties based on anthropometric measures of the human body (McCollum and Leen,
1989). Assuming the adult human body could behave as a two-link pendulum where the links
could oscillate in phase as a single-segment system or in anti-phase as a double pendulum,
McCollum and Leen (1989) predicted oscillation frequencies of 0.52 Hz for a single pendu-
lum and 1.45 Hz for a double pendulum. This result was found to confirm the experimental
measurements made by Park et al. (2004).

Other modeling includes a three-joint (ankle, knee, and hip) inverted pendulum to ac-
count for postural responses during fast forward bending at the waist on narrow and wide
surfaces and in response to platform perturbations (Alexandrov et al., 2001a,b). Creath et
al. (2005) demonstrated the simultaneous coexistence of in-phase and anti-phase relation-
ships between the leg and trunk angles during quiet stance� the relationship was generally
in-phase for frequencies below 1 Hz and anti-phase for frequencies above 1 Hz. Ulrich et al.
(2004) used an escapement-driven damped inverted pendulum and spring model to compare
the global levels of stiffness and angular impulse used by preadolescents with and without
Down syndrome as they walked at their preferred speed and adapted to walking faster and
slower than preferred.

It is interesting to find that the equations of motion of quantum nonlinear couplers have
the structure of a classical inverted pendulum with vertically oscillating support point (Facchi
et al., 2001). The amplitudes of the fields inside the coupler vary little during an optical
period. The resulting equations of motion consist of two sets� one set for stable motion,
and a second for unstable motion. The system is similar to other examples treated by Luis
and Pe�rina (1996), Luis and Sánchez-Soto (1998), Thun and Pe�rina (1998), and �Rehá�cek
et al. (2000) in the context of the quantum Zeno effect (see, e.g., Beskow and Nilsson, 1967�
Misra and Sudarshan, 1977). In these systems, the “measurement” is performed by a mode
of the field on another mode. When the coupling between the two modes is large enough, the
measurement becomes more effective and the dynamics more stable. This phenomenon is a
manifestation of the quantum Zeno effect, which is a hindrance of quantum evolution, caused
by measurements. (The quantum Zeno effect predicts a slow-down of the time development
of a system under rapidly repeated ideal measurements. Experimentally, this was tested for
an ensemble of atoms using short laser pulses for non-selective state measurements.) Facchi
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et al. (2001) found that by applying a laser field (pump) through a nonlinear coupler, a
well-known unstable system could be stabilized by interspersing the nonlinear regions with
regions of suitably chosen linear evolution. The generation of down-converted light can be
strongly suppressed. By increasing the strength of the observation performed by the signal
mode on idler mode and vice versa, the evolution is frozen and system tends to remain in its
initial state. This stabilization regime can be considered a quantum Zeno effect, in that the
measurements essentially affect and change the original dynamics.

3. NOISE-INDUCED TRANSITION

3.1. Basic Concept of Noise-Induced Transition

A weak random parametric excitation can result in large deviations of some nonlinear sys-
tems away from an equilibrium state, taking the system to a new state. Physicists have been
interested during the last few decades in the qualitative changes in the properties of a non-
linear system due to weak noise and the transformation of an unstable equilibrium state to
a stable one and vice versa (see, e. g., Landa, 1996� Landa and McClintock, 2000). Other
effects can be manifested in the occurrence of multi-stability or multimodality (Horsthemke
and Lefever, 1984� Smythe et al., 1983� and Simui, 2002), and noise-induced phase transi-
tion (Landa and Zaikin, 1996, 1997, 1998). Pontryagin et al. (1933), Stratonovich (1963,
1967), and Landa and Stratonovich (1962) treated the problem of transitions from one stable
state to another stable state under the influence of weak noise as a statistical problem of the
probability of the first attainment of a boundary of a Brownian particle moving in a given
potential field.

Noise-induced phase transitions are characterized by a qualitative change of the state
of a system as the intensity of the noise increases. This change is usually manifested in
the appearance of new extrema in the system response pdf or the disappearance of old ones
(Horsthemke and Lefever, 1984 and Fedchenia, 1984). It also can take the form of either
stabilization or destabilization of system equilibrium states (Landa, 1996� Landa and Zaikin,
1997). Kapitsa (1951a,b), Landau and Lifshitz (1969), and Landa (1996) have considered
pendulum dynamics under random excitation as an example of noise-induced multi-stability.

The sharp transition of the bifurcation point in the presence of noise is interpreted as the
bifurcation of a “most probable value” of the system response described by the maximum
of its pdf (Horsthemke and Mansour, 1976� Horsthemke and Lefever, 1977� Arnold et al.,
1978� Lefever and Horsthemke, 1979a, b� Morita et al., 1980� Brand and Schenzle, 1980�
Graham, 1989). The analysis is straightforward for one-dimensional models (Kitahara et al.
1980), but becomes difficult for multi-dimensional systems (Ebeling and Schimansky-Geier,
1989). Physicists are usually interested in estimating the relaxation time in the vicinity of the
transition (Leung, 1988� Jackson et al., 1989�Mannella et al., 1990� Ciuchi et al., 1993). On
the other hand, engineers and mathematicians (Moshchuk et al., 1995� Roy, 1995� Arnold,
1998) are interested in estimating the probability structure of the system near transition.

Consider the state vector Itô equation

dX�t�

dt
� f�X� t� ��
 �g�X� ����t� (21)
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where X�t� � �x1� x2� ���� xn�T is an n-dimensional vector whose elements represent dis-
placements and velocities of the system response, f � � f1� f2� ���� fn�T is the drift vec-
tor, g is the diffusion matrix, and the random vector ��t� � �� 1�t�� � 2�t�� ���� �m�t��T is
defined as the formal derivative of the multi-dimensional Brownian motion process B�t�,
i.e., ��t� � dB�t��dt , � is a small parameter depending on some physical constants of the
system, � is some control parameter, and T denotes transpose. Let the system be in equilib-
rium, which may be given by the trivial solution X � 0 for any � and � � 0. For � � 0, let
�c be the critical value above which the equilibrium position loses its stability and bifurcates
into another nearby equilibrium or steady state solution. Since the motion is random, such
a steady state cannot exist in a deterministic sense. However, as t � �, the solution X�t�
approaches zero for � � �c��� and reaches a steady state (statistically stationary) solution
X�t� �� 0 for � � �c���, then we can say that bifurcation takes place at the bifurcation
point �c���. If the solution X�t� of equations (21) has a pdf p�X� t� ��, then it satisfies the
Fokker-Planck Kolmogorov (FPK) equation:

�p�X� t� ��

�t
� L� p�X� t� �� � �

n�
i�1

�

�xi

�
ai�X� t� ��p�X� t� ��

�


 �2

2

n�
i�1

n�
j�1

�2

�xi�x j

�
bi j�X� t� ��p�X� t� ��

�
(22)

subject to the initial condition p�X0� �� 0� � ��X � X0�, where ai�X� t� �� and bi j�X� t� ��
are the drift and diffusion coefficients of system (21), respectively. If X�t� �� has a stationary
response then p�X� t� �� � ps�X� �� as t � � which satisfies the elliptic equation

L� ps�X� �� � 0 (23)

which always has a degenerate (trivial) solution ps � 0. If ps is a stationary pdf, it must
satisfy the conditions

ps�X� �� � 0 and

��
��

ps�X� ��dX � 1 (24)

Therefore, in this case, a bifurcation for system (21) occurs at �c if and only if the prob-
lem (23) and (24) has a solution for � � �c, which ceases to exist for � � �c. It must
be pointed out that the existence of a solution ps to the system (23) and (24) was used as
a criterion for the bifurcation of the nonlinear stochastic equation (21). It should not be
confused with bifurcation of the linear equation (23) itself, since for the deterministic ellip-
tic equation (Keller and Antman, 1968) bifurcation is normally associated with a nonlinear
boundary-value problem. Note that the trivial solution X � 0 may be regarded as having a
Dirac delta pdf ��X�. Thus, if it exists, it bifurcates into a solution ps�X� ��. Therefore, the
definition given above may be called “bifurcation in (stationary) distribution.” Bifurcation in
distribution can be estimated for nonlinear Hamiltonian systems whose steady state pdf can
be determined in an exact form� see for example Soize (1991) and Ibrahim and Yoon (1996).
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If ps�X� �� exhibits a change in the number of extrema as a result of a change in the control
parameter, �, the associated bifurcation is referred to as a “noise-induced transition.”

3.2. Noise-Induced Transition in One-Dimensional Systems

There is a significant difference between the response of systems with additive noise and
systems with multiplicative noise. In chemical reactors, Caroli et al. (1981) indicated that
for additive stochastic processes in a double-well potential (bi-stable), two main physical
behaviors occur. The first is the exchange of population between the two wells, which leads
to a switch from local to global equilibrium. If the barrier is very high with respect to
the diffusion coefficient, the Kramers’ relaxation time (Kramers, 1940) becomes extremely
long. From the point of view of a chemist, a very high barrier means that the corresponding
chemical reaction does not, for practical purposes, take place. The second is known as the
activation process or the Suzuki enhancement of fluctuation (Suzuki, 1981). When starting
from the top of the barrier, the time required to reach the final equilibrium is called the decay
time, and it is after this that the activation process begins. Faetti et al. (1982) showed that,
under multiplicative noise, the escape from a well will change from the small relaxation
value of the Kramers theory into the large relaxation rate of the Suzuki regime. They also
indicated that the time required to achieve equilibrium in a well after a sudden application of
multiplicative noise (the activation time) is very much shorter than the Kramers relaxation
time.

Under multiplicative random excitation the transition point is shifted depending on the
intensity of the excitation. Now consider simple one-dimensional nonlinear systems coupled
to a rapidly fluctuating noise described by the Itô stochastic differential equation

dx�t� � f �x� �� t�dt 
 �g�x� �� t�dB�t� (25)

where � is a control parameter, � is the intensity of the Brownian motion B�t�, and f and g
are linear and nonlinear functions (respectively) of the state coordinate x . The FPK equation
of (25) is (Horsthemke and Lefever, 1989)

�p�x� �� t�

�t
� � �

�x

�
f �x� ��p�x� �� t�

�
 � 2

2

�2

�x2

�
g2�x� ��p�x� �� t�

�
(26)

where p�x� �� t� is the transition pdf. The stationary solution of equation (26) is

ps�x� �� � p0

g2�x� ��
exp

�� 2

� 2

x�
0

f �u� ��

g2�u� ��
du

�� (27)

where p0 is a constant obtained from the normalization condition. If the stochastic differen-
tial equation (SDE) is written in the Stratonovich sense it takes the form

dx�t�

dt
� f �x� t�
 � 2

2

�g�x� ��

�x
g�x� ��
 �g�x� t���t� (28)
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where the Itô correction term
� 2

2

�g�x� ��

�x
g�x� �� is referred to as the noise-induced drift

(Risken, 1989). It owes its origin to the fact that during a change of ��t� � dB�t��dt there
is a corresponding change in x�t� and the average value �g�x� t���t�� does not vanish. The
corresponding stationary pdf is

ps�x� �� � p0

g�x� ��
exp

�� 2

� 2

x�
0

f �u� ��

g2�u� ��
du

�� (29)

It may happen that an Itô SDE admits a stationary solution while a Stratonovich version does
not, or vice versa, since the formulae ps�x� �� differ by a factor 1�g�x� ��.

If the deterministic equation admits more than one steady state, then stable and unstable
states alternate. If there are two or more stable stationary states, then the state space is
divided into non-overlapping regions known as the domains (or basins) of attraction of the
various stable states. Obviously the steady states are the extrema of the potential. The stable
steady states correspond to the minima of the potential and the unstable steady states to the
maxima.

In the presence of external random excitation the sharp delta peaks of the response pdf
will be broadened. The response pdf has a maximum at the coordinate that corresponds to
the minimum of the potential and has a certain spread around this value, the breadth of which
depends on the strength of the external excitation. If there is more than one minimum and
if there is no effective upper bound on the external fluctuations, then the response pdf will
be multimodal with peaks corresponding to the various minima of the potential. In order
to determine when a transition occurs, the response pdf should be monitored for qualitative
changes, which can be carried out by selecting a suitable indicator. This can be demonstrated
by considering the first-order differential equation of the pitchfork bifurcation (Horsthemke
and Lefever, 1984, 1989)

dx

dt
� �x � x3 � f �x� �� (30)

In the deterministic case, the steady state is given by the roots

x � 0� and x � 
	
� if � � 0 (31)

A stability analysis shows that x � 0 is a stable fixed point for � � 0 and loses its stability
at the critical value �c � 0, where two new stable branches x � 
	

� bifurcate. Introducing
an additive random white noise gives

dx

dt
� �x � x3 
 ���t� (32)

The corresponding pdf of system (32) is

p�x� � p0 exp



2

� 2

�
�

x2

2
� x4

4

��
(33)
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It is not difficult to verify that for � � �c, p�x� �� consists of a single peak centered on
x � 0, i.e., the stable deterministic steady state. For � � 0, the stationary pdf consists of two
peaks centered on 
	

� and �	
�, i.e., on the stable states. Clearly, the system described by

equation (32) undergoes a transition, at �c � 0, quite similarly to the deterministic system
(30). However, this transition is not reflected by the moments of the stationary pdf. The mean
value and all higher odd moments are zero for all values of the bifurcation parameter, �, and
the even-order moments are infinitely often differentiable with respect to � (Horsthemke and
Lefever, 1989). Thus for the SDE (28) the extrema of the steady state pdf of the system are
obtained from the roots of the equation

f �x� ��
 � 2

2

�g�x� ��

�x
g�x� �� � 0 (34)

If the noise is additive, i.e., g�x� �� � constant, the extrema always coincide with the deter-
ministic steady-state.

Gang and Kai-Fen (1992) studied the probability structure of the modified nonlinear
Langevin equation

�x � x � x3 
 �x�
 ��t� (35)

where the exponent 
 is not necessarily an integer and ��t� is a Gaussian white noise with
power spectral density 2D�The essential feature of equation (35) is that the unstable singular
point of the deterministic system is identical to the singular point of the stochastic system.
The FPK equation of system (35) yields the following stationary solution

ps�x� �

���������
p0 �x ��
 Exp



1

D

�
1

2 � 2

x2�2
 � 1

4 � 2

x4�2


��
for 
 �� 1

p0 �x � 1
D �1 Exp


�x2

2D

�
for 
 � 1

(36)

The extrema of the pdf can be obtained by solving the algebraic equation

x2�2
 � x4�2
 � 
D � 0 (37)

Depending on the values of D and 
, Gang and Kai-Fen (1992) obtained closed form ex-
pressions for the roots of (34). The following three cases summarize the main results:

1) For D � 1 and 
 � 0, the maxima of p�x� are repelled from the origin associated with
a deep and narrow probability dip around the origin.

2) For D � 1 and 
 � 1, the maxima are attracted closer to the origin. The distribution
around the origin is rather flat with zero value.

3) For D � 1 and 0 � 
 � 1, the probability peak appears right at the deterministic
unstable point due to the singular multiplicative noise.
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Noise-induced transition can be examined using either the adiabatic elimination method
(Haken, 1983, 1987� Gardiner, 1983, 1984� Risken, 1989) or stochastic averaging techniques
(Stratonovich, 1963� Khasminskii, 1966, 1968� Horsthemke and Lefever, 1980). In the adi-
abatic elimination method the system usually possesses widely different response times and
one may not be interested in the response behavior of those coordinates with a fast time
scale. The fast time scale variables can be eliminated using the method of adiabatic elimina-
tion. This method is based on the slave principle (Haken, 1983) which states that “long-living
systems slave short-living systems.” In the modem theory of nonlinear dynamics the concept
of adiabatic elimination is equivalent to the center manifold reduction (Carr, 1981� Arnold,
V., 1988). In stochastic averaging the functions with higher-order multiple phase angles rep-
resent rapid oscillations or higher harmonics in the solution for the slowly varying amplitude
and phase shift. When considering only the system stationary response, the high frequency
oscillations have a localized effect (in time) and do not contribute significantly to the average
behavior of the system over a long period of time. In this case one can therefore eliminate
the oscillatory effects and simplify the equations of motion by introducing a near-identity
transformation. This method has been extended to include second-order approximation by
Hijawi et al. (1997a,b).

3.3. Noise-Induced Transition in One-Dimensional Mapping

The onset of chaotic motion in dynamical systems can frequently be analyzed in terms of
a discrete-time map with quadratic nonlinearity (Colet and Eckmann, 1980). In the logistic
model, external noise induces the transition from periodic to chaotic behavior (Mayer-Kress
and Haken, 1981). The effect of external noise results in broadening of the pdf and the
power spectrum, and an increase in the Lyapunov exponent. Matsumoto and Tsuda (1983)
studied the noise effect on other types of maps encountered in real chemical reactions. They
observed that a transition from chaos to order takes place as the noise level increases. This
type of transition was referred to as “noise-induced order.” For a one-dimensional cubic map
disturbed by a noise, Arecchi et al. (1984) showed that the Lyapunov exponent constitutes
two separate contributions corresponding to the attracting and repulsive regions.

Another way to change the bifurcation structure of a quadratic map is to introduce linear
time dependence into the control parameter. Kapral and Mandel (1985) and Morris and Moss
(1986) examined the bifurcation structure and its postponement in the quadratic maps

xt
1 � �xt �1 � xt� (38)

xt
1 � 1 � �x2
t (39)

where the parameter � is swept with velocity v

� � �t � �0 
 vt (40)

Note that there are no fixed point solutions when v �� 0 except for the trivial solution,
xt � 0. Each bifurcation is postponed to a larger parameter value, ��

n . Without sweeping,
each bifurcation occurs at a well defined parameter value, �n, which corresponds to the
transition from the orbit of period 2n�1 to the one of 2n , but with sweeping of the parameter,
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Figure 12. Dependence of the restoring moment ����� and its components on the roll angle � showing
the angle of capsizing �s � 1�05rad and �n � 1.

��
n � �n. Kapral and Mandel (1985) and Morris and Moss (1986) studied this postponement

using a linearized bifurcation theory and experimentally using an electric circuit model of
the quadratic map xt
1 � 1 � �x2

t . It was found that the postponement was dependent on
the sweeping velocity, v, such that ���

n � ��
n � �n � 	

v. In addition, there is a hysteresis
effect near the bifurcation points, with postponements occurring (in opposite directions) for
both forward and reverse sweeps of �.

3.4. Noise-Induced Transition in Ship Roll Motion

The uncoupled roll motion of a ship in irregular seas may be modeled by the nonlinear
differential equation of motion

d2�

dt2

 c1

d�

dt

 c2

d�

dt

����d�dt

����
 M��� � ��t� (41)

where � is the ship roll angle, ��t� is the wave excitation moment, c1 is the linear damping
coefficient, c2 is the nonlinear Morison type damping coefficient, M��� is the restoring
moment which is nonlinear function of � as shown in Figure 12. It indicates that the restoring
moment vanishes at the capsizing angle, �s . It is possible to represent M��� in the form
(Moshchuk et al., 1995b)

M��� � �2
n sin

�


�

�s

�

 ��

�


�

�s

�
(42)
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where �n is the ship roll natural frequency and the function �� accounts for the difference
between the exact function M��� and �2

n sin�
���s�. Note that the first term in (42) and the
conservative part of equation (41) establish the equation of motion of the simple pendulum.
Introducing the non-dimensional parameters

� �
�
�n

�



�s

�
t� q � �




�s

� �� � c1

�n
	

��s

� � � c2


�s

�

�� �q� � �� �q�
�2

n

�
� �t�

�2
n

� 	
�W ���
 �� (43)

where 0 � � � 1 is a small parameter, � ,  , and � are some constants of order one, and
W ��� is a white noise of intensity 2D. Equation (41) can be written in the form

q �� 
 ��q � 
 sin q 
 � q � ��q ���� �� �q� � ��
	
�W ��� (44)

It is convenient to write equation (44) in terms of the phase space coordinates

q � � u� u� � � sin q � ��u � � u �u� 
 �� �q�
 ��
	
�W �� � (45)

where a prime denotes differentiation with respect to the non-dimensional time parameter � .
Setting � � 0 in equation (45) gives the well-known free oscillation of the simple pendulum

q � � u� u� � � sin q (46)

with the Hamiltonian

H � u2

2

 2 sin2 q

2
(47a)

or

q �2 � 2
�

H � 2 sin2 q

2

�
(47b)

Each level of energy H corresponds to a periodic closed orbit in the phase space �q� u�.
Level H � 2 corresponds to the unstable equilibrium position q � 

 and is character-
ized by two different homoclinic orbits. Periodic motion is only restricted in the domain
�q� u��H � Hc� where Hc � 2 � �h is the critical energy level above which capsizing takes
place and the trajectories will be structurally unstable, and �h � 0 is sufficiently small. The
general solution of equations (46) for H � 2 can be written in the form

� � 

q�

q0

dq

2
�

k2 � sin2�q�2�
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where k � 	
H�2 and q0 is the initial value of the angle q. For k2 � 1, the angle q can take

any value within a range governed by the condition k2 � sin2�q�2� � 0. In this case q is
given by the roots q1 � �2 sin�1 k and q2 � 2 sin�1 k. Accordingly, the angle q fluctuates
between q1 and q2 resulting in the corresponding period of oscillation

� �
q2�

q1

dq�
k2 � sin2�q�2�

The general solution of equations (46) can be expressed in terms of elliptic functions. First
introducing the transformation

sin�q�2� � k sin!� and u � 2k cos! (48)

where sin! � 
	
2H � u2�

	
2H , and differentiating the first relation in (48) with respect

to � and substituting into (47b) gives

! �2 � 1 � k2 sin2 !

The solution of this equation takes the form

� �
!�

0

d �!�
1 � k2 sin2 �! � F�!� k� (49)

where F�!� k� is an incomplete elliptic integral of the first kind. Solution (49) assumes that
the initial value of the angle is zero. The upper limit ! is referred to as the amplitude of the
function F�!� k� and is usually written as ! � am� . Relations (48) can be written in terms
of the elliptic functions

u � 2k cos�am�� � 2kcn�� q � 2 sin�1�ksn��

where sn� and cn� are Jacobian elliptic functions, and k is the modulus. The period given
by solution (49) represents one quarter of the period of one oscillation of the pendulum when
! � 
�2. In this case the period of one oscillation is given in terms of the complete elliptic
integral K �k� of the first kind

T � 4


�2�
0

d �!�
1 � k2 sin2 �! � 4K �k�

For k � 1 the system is governed by two homoclinic orbits and the corresponding equilibria


 are unstable. The coordinates q and u are related to H and � through the following
relationships
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sin�q�2� � ksn�� p � 2kcn�

Note that �H� �� and �H� � 
 4K �k�� correspond to the same position of the system and
� � � �mod 4K �k��. The time derivative of H is

H � � uu� 
 u sin q � �
���u2 �  u2 �u� 
 � �q�u 
 �u 
 D

�
	
�uW ��� (50)

including the Wong-Zakai correction. Averaging of the drift and diffusion expressions gives

� H � � � �
��� � u2 � � � u2 �u� � 
 � ��q�u � 
� � u � 
D

�

 	

� � u2 �W ��� (51)

where � � denotes averaging over one cycle with respect to the unperturbed motion.
It is known that the phase space of the unperturbed system splits into oscillatory domain

H � 2 and spinning domain H � 2 with either u � 0 or u � 0. So averaging is different in
oscillatory and spinning domains. Evaluating the averages in equation (51) gives (Moshchuk
et al., 1995b)

� u2 � � 1

T

�
p2d� � 1

T

�
pdq � 2

T

2 sin�1 k�
�2 sin�1 k

�
2
�

H � 2 sin2 q

2

�
dq

� 2�H � 2�
 4E
�	

H�2
�

K
�	

H�2
� for 0 � H � 2

� u2 � � 2H
E
�	

2�H
�

K
�	

2�H
� for H � 2

� u � � 0 for 0 � H � 2� or

� u � � �
H�2




K
�	

2�H
� sgn�u� for H � 2 (52)

� u2 �u� � � 1

T

�
H�const

p2 �p� d� � 1

T

�
H�const

p �p� dq

� 2

K
�	

H�2
� ��H � 1� cos�1�1 � H�


�
2H � H 2

�
for 0 � H � 2

� u2 �u� � � 


	
2H �H � 1�

K
�	

H�2
� for H � 2

and � ��q�u �� 0

The stationary solution of the FPK equation of system (51) is
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p�H� � p0 f �H�Exp

���� H

D
�  

D

H�
0

� u2�u� �
� u2 �

dh 
 �

D

H�
0

� u �

� u2 �
dH

�� (53)

where p0 is the normalization condition and f �H� � �1�2�K
�	

H�2
�

for H � 2, or
f �H� � 	

2�H K
�	

2�H
�

for H � 2. The function p�H� goes to infinity as H � 2. It is
convenient to write the response pdf in terms of the original variables q and u by using the
transformation

p�q� u� � p�H� ��

������H� ��

��q� u�

���� (54)

which can be determined by substituting the explicit expressions for H and � in terms of q
and u. This process results in the following expression for the stationary pdf

p�q� u� � �p0 Exp

���� H

D
�  

D

H�
0

� u2�u� �
� u2 �

dh 
 "�H�

�� (55)

where "�H� � 0, for 0 � H � 2, or

"�H� �
��� 2
�	

2D

H�
0

dh	
hE�

	
2�h

�� sgn u for H � 2 (56)

and H should be replaced by its expression in terms of q and u.
The function p�q� u� depends on the energy level H , and for H � 2 it also depends

on the sign of u (i.e., whether the pendulum rotates clockwise or counter-clockwise). It
follows from relations (55) and (56) that for sufficiently low values of the absolute value of
the moment mean ��� there is only one maximum at q � u � 0. However, if ��� exceeds
a certain critical value, then there is another maximum of the pdf. Figure 13 shows three
dimensional plot of p�q� u� for u � 0, � �  � 0�5, 2D � 1 and excitation mean value � �
4. The figure reveals two peaks� one is located at the equilibrium point �q� u� � �0�0� 0�0�,
and the other on the opposite side if u was less than 0. Figure 14 shows the pdf as a function
of H for two values of � (1.5 and 4). For � � 1�5 the pdf has only one peak, at H � 0,
and exhibits singularity at H � 2. For � � 4, the response pdf has the same singularity but
possesses two peaks� one at H � 2, and another at H � 3�5.

In order to obtain the bifurcation in probability we need to determine the condition for

�p

�H
� 0 for H � 2 (57)

This condition gives


 

2�
�k 
 
�

4�
�k � 
 

�

1
�k � E� �k� (58)
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Figure 13. Probability density function in the spinning regime (Moshchuk et al., 1996).

Figure 14. Probability density function showing two peaks and singularity at H � 2 (Moshchuk et al.,
1996).

where �k � 	
2�H is the modulus, 0 � �k � 1. The behavior of the function E� �k� is well

known. It gradually decreases from 
�2 at �k � 0 to 1 at �k � 1. The left-hand side of (58) has
negative value at �k � 0. Therefore equation (58) has a solution if and only if the left-hand
side at �k � 1 has a value greater than 1, i.e.,


�

4�
� 
 

2�
� 1 or �c � 4�




 2 (59)

provided � � �c which is the condition for the existence of another peak in the spinning
regime. If u � 0 then this condition becomes �� � �4��
� 
 2 . Figure 15 shows the
dependence of E� �k� and the left-hand side of (58) on the parameter �k for different values
of �. The points of intersection establish the points of bifurcation for each excitation mean
value �.
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Figure 15. Regions of single and two peaks of the response pdf (Moshchuk et al., 1996).

4. STABILIZATION VIA MULTIPLICATIVE NOISE

4.1. Postponement of Bifurcation

The influence of random fluctuations of the control parameter on the system’s dynamic be-
havior near instability has been experimentally studied by many physicists (see, e.g., De
Kepper and Horsthemke, 1978� Kabashima et al., 1979� Kabashima and Kawakub, 1979� Kai
et al., 1979� Fujisaka and Grossmann, 1981� Seshadri et al., 1981� Kawakubo et al., 1981�
Broggi et al., 1986� Van den Broeck and Mandel, 1987� Torrent and San Miguel, 1988a,
b). For example, Kabashima et al. (1979) and Kabashima and Kawakub (1979) observed a
phase transition induced by external noise, using a parametric oscillator driven by a random
current, supplied in addition to the sinusoidal pumping current. Shapiro (1993) indicated
that the stabilization by multiplicative noise should always be followed by an intermittency
when the noise has non-zero intensity at low frequencies.

A new type of oscillatory-to-nonoscillatory transition was observed. In addition, other
studies reported the following main results:

1) The transition, or instability, remains sharp after the noise is superimposed on the control
parameter. The new bifurcation point is the average of the fluctuating control parameter.

2) The threshold of instability is shifted to larger values of the bifurcation parameter by the
application of noise.

3) The transition point is also distinguished as the point where relaxation and fluctuations
of the system response exhibit slowing down, i.e., the associated rates vanish at this
point. Suzuki et al. (1981) established a general relationship between a phase transition
in non-equilibrium systems and this slowing of relaxation.

For nonlinear dynamical systems with widely separated time scales, Graham and Schen-
zle (1982) used the adiabatic elimination method (Haken, 1983) and showed the possibility
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of shifting the bifurcation point using broad-band multiplicative noise. Their model is identi-
cal to the free vibration of a buckled beam represented by the Duffing oscillator with negative
linear stiffness

1

�
�x 
 �x � �x 
 bx3 � 0 (60)

where b is the nonlinear stiffness coefficient, 1�� � ts is a short time scale, � � �0 
 ��t�,
such that 1��0 � t� is a long time scale, and ��t� is a random process generated from the
Ornstein-Uhlenbeck filter

�� 
��� � 	
2��DW �t� (61)

where W �t� is a white noise process of intensity 2D and �� is the filter bandwidth. The
oscillator described by equation (60) is characterized by a very small inertia, such that if
1�� � 0 and ��t� � 0, the instability is associated with symmetry breaking, since the states
x � 
	

�0�b for �0 � 0 are not invariant under the x � �x symmetry of

�x � �0x � bx3 (62)

The influence of the random process ��t� on postponing the bifurcation point was studied
for two limiting cases: # � ���� � 1 and # � 1.

Case 1: # � ���� � 1. This case implies that the short time scale 1�� � ts is much
smaller than the correlation time 1��� of the noise. In this case, the threshold value of the
bifurcation point vanishes, i.e., �0 � 0.

Case 2: # � ���� � 1. This case results in the bifurcation point moving to the value

�0 � D

��
(63)

The analysis of Graham and Schenzle (1982) showed that the shift of the threshold value
depends on the ratio # � ���� . For intermediate values of # neither the Itô nor Stratonovich
interpretations hold and it was shown that the mean square response of the system

dx

dt
� �0x � bx3 
 ��t�x (64)

for intermediate values of # is given by the relationship

lim
t�� E[x2�t�] � 1

b

�������
�0 � D��

1 
 ����� �
for �0 �

D��

1 
 ����� �

0 for �0 � D��

1 
 ����� �

(65)

where the bifurcation occurs at
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Figure 16. Dependence of the mean square response on excitation level for large values of the
Stratonovich parameter # � ���� as estimated numerically by Bellah and Shinozuka (1991).

�0 � D��

1 
 ����� �
(66)

This result agreed with the Stratonovich interpretation, producing the equivalent SDE (60)
for � � � in the form

dx

dt
�
�
�0 � D��

1 
 ����� �

�
x � bx3 
 ��t�x (67)

where
D��

1 
 ����� �
corresponds to the Itô correction term (see also Stratonovich, 1989).

Billah and Shinozuka (1991) considered the same system as Graham and Schenzle
(1982) and presented digital simulation results to resolve the controversies reported in the
literature concerning the interpretation of Stratonovich and Itô calculus and adiabatic elimi-
nation. Figures 16 and 17 show the dependence of the mean square on D��� for large and
small values of #, respectively. It can be seen that for large values of # the results are close
to the Itô interpretation (# � �) while the corresponding limiting case for those with small
# represents the Stratonovich interpretation (# � 0).

Multiplicative noise may stabilize a dynamical system which is originally unstable.
Khasminskii (1980) constructed a two-dimensional unstable system that can be stabilized
by introducing two independent white noise sources. Arnold (1979) presented another class
of unstable deterministic systems which can be stabilized by applying a single non-white
random noise.
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Figure 17. Dependence of the mean square response on excitation level for small values of the
Stratonovich parameter # � ���� as estimated numerically by Bellah and Shinozuka (1991).

Analog simulation experiments were conducted by Smythe et al. (1983a,b), and Faetti
et al. (1984, 1985). The results of Smythe et al. (1983a,b) gave different trends from those
predicted by Graham and Schenzle (1982) and the digital simulation by Billah and Shinozuka
(1991). For example, Smythe et al. (1983a,b) observed that their results were in agreement
with the Stratonovich algorithm. Faetti et al. (1984), on the other hand, obtained analog
simulation results which were in agreement with those of Graham and Schenzle (1982).
They also showed that the synergism of nonlinearities, energy pumping, and inertia can lead
to a transition from an overdamped regime to an inertial one. Festa et al. (1984) showed
that in the high noise region there are significant discrepancies between the steady state
distribution of the system response described by equation (64) as predicted by Graham and
Schenzle and the results of the analog simulation. Later Grigolnini (1989) and Manella et
al. (1986) demonstrated that these discrepancies are due to the inherent presence of inertia
in the system.

Lindner et al. (2004) presented an assessment of the dynamic behavior of some specific
models driven by Gaussian white noise. The systems considered possess a single stable
rest state which can be simply an equilibrium (or fixed) point or a small-amplitude (sub-
threshold) limit cycle. The large excursions of the system variables produced by strong
enough perturbations of this state are often called spikes, and their occurrence is referred
as “firing”. This terminology is borrowed from neuroscience and the associated scenarios
are well described by Lindner et al. (2004). In neuroscience, the electrical discharge of a
nerve cell’s membrane potential is commonly called an action potential or the firing of a
spike. The generation of a spike is considered a one-way passage through a sequence of
stable and unstable states. The resting state, being dynamically stable, can be left only by
a sufficiently strong external excitation. The firing and the following refractory (recovery)
states are unstable in the sense that the system escapes from them even in the absence of
external excitations. While the escape from the resting state strongly depends on the external
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input, the passage through the firing and refractory states possesses only a weak dependence
on the external excitation.

The occurrence of stable spiking trajectories requires a dynamical system close to a bi-
furcation toward a limit cycle regime. Accordingly, the system must possess at least two
variables. Models exhibiting this property were first proposed for neuronal spike generation
(see, e.g., Fitzhugh, 1961� Nagumo et al., 1962� Morris and Lecar, 1981). In these mod-
els a fast variable is driven above a threshold level by an external excitation. After that it
keeps growing and approaching a second metastable state. Another variable, a recovery vari-
able, acting on a slower time scale, destabilizes the excited state of the fast voltage variable,
bringing it back to its rest state by means of negative feedback. When the recovery variable
relaxes, the initial state is reestablished.

4.2. Stabilization of Inverted Pendulum

4.2.1. Parametric Random Excitation

The stabilization of the inverted pendulum via random parametric excitation has received
several analytical studies and a few experimental verifications. For example, Bogdanoff and
Citron (1965a,b) found experimentally that the inverted pendulum can be stabilized by a
two frequency parametric excitation as the smaller frequency increases, up to a certain value
above which the pendulum loses its stability. It was not possible to stabilize the inverted
pendulum with Gaussian random noise, regardless of the spectral shape. However, it was
possible to stabilize the pendulum for brief intervals with Gaussian random noise clipped at
one sigma interval.

These observations were later confirmed analytically under high-frequency parametric
excitation of the inverted pendulum (see, e.g., Levi and Weckesser, 1995� Hemp and Sethna,
1968� Sethna, 1972, 1973� Mitchell, 1972� Howe, 1974). Hemp and Sethna (1968) showed
that the effect of the motion of the support at two frequencies close to each other can desta-
bilize the pendulum. Sethna (1972) indicated that it is not possible to stabilize an inverted
pendulum unless the power spectrum of the parametric fluctuations is zero in the neighbor-
hood of the origin. Sethna (1973) extended the averaging method and obtained a criterion
for the stability of a pendulum subjected to arbitrary rapid motion of the support. By in-
cluding the low-frequency components of the support motion, he obtained results identical
to those observed by Bogdanoff and Citron (1965a,b). Mitchell (1972) employed the method
of averaging to examine the stability of an inverted pendulum subjected to deterministic and
stochastic motion of the support. He found additional regions of instability when the dif-
ference between two frequencies of an almost periodic motion is small. He extended the
analysis by including a second order approximation, which resulted in an additional insta-
bility region when one excitation frequency is about twice the other. His analog computer
simulations revealed the possibility of stabilizing the pendulum when the damping in the
support is sufficiently large and the motion of the support is a stochastic process with a
high-pass power spectral density.

Howe (1974) confirmed the results of Bogdanoff and Citron (1965a,b), and derived an-
other condition involving the power spectrum of the effective support excitation at twice
the frequency of the induced stabilized oscillation of the pendulum about the upward ver-
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tical. Howe’s analysis is a combination of the averaging method and an extension of the
energy distribution concept used to study wave propagation in random media. He obtained
an integro-differential equation that describes the energy content of each frequency compo-
nent of the smoothed variable pendulum motion. The equation indicates that an interchange
of energy occurs between various frequency components of the oscillation, and is caused by
interactions (scattering) with support motions. Another important feature of the equation is
that it accounts for resonance interactions between various frequency components of the pen-
dulum motion and the Fourier components of the support motion. The Fourier components
have twice the frequency of the pendulum.

The results of the analog computer simulation reported by Mitchell (1972) motivated
Sethna and Orey (1980) to examine the possibility of stabilizing the pendulum by allowing
the support motions to be sample functions of a stochastic process with a continuous spec-
trum. By using the averaging method they showed that the pendulum can indeed be stable
in the inverted position when the support motion is stationary in the wide sense and has a
continuous spectrum. This result was confirmed by Prussing (1981), who proved that the
inverted pendulum can be stabilized in terms of the first- and second-order moments if the
support motion is a physical white noise. However, if the excitation is a mathematical white
noise, the pendulum cannot be stabilized, as proved by Nevel’son and Khasminskii (1966)
and by Nakamizo and Sawaragi (1972).

The analytical treatment of the pendulum problem is well documented by Landa and
McClintock (2000). They considered parametric and horizontal excitations of the pendulum
whose equation of motion takes the form

�� 
 2� �� 
 �1 
 �2z�t�
�

sin � � 0 (68)

where �2z�t� is the acceleration of the pendulum support in terms of the gravitational accel-
eration. The random process z�t� is a narrow band noise generated from the second-order
filter

�z 
 2	 �z 
 �2z � W �t� (69)

where W �t� is a white noise of intensity D, 1 � 	 � �, and the autocorrelation function of
z�t� is

Rz��� � � 2e�	� cos�� (70)

where � 2 � D��2�2	� is the variance of z�t�. Landa and McClintock (2000) showed that
the pendulum in its inverted position can be stabilized if � 2 is sufficiently large. If the power
spectrum density of z�t� does not contain components in zones of parametric resonance,
fluctuations of the response � caused by the random excitation will be small. This can be
shown by setting � � ��� 
 �� in equation (68), where �� � ���, which gives the following
two equations !��"
 2�

! ��"
 sin ��� 
 �2 cos ��� �z�t���� � 0 (71)

� �� 
 2� � �� 
 cos ��� �� 
 �2z�t� sin ��� � 0 (72)
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The steady state solution of equations (71) and (72) corresponding to the inverted position
is

��� � 
� and �� � 0 (73)

The stability of this solution was obtained by linearizing equations (71) and (72) with
respect to small deviations from the solution (73), i.e., ! � ����
 . The linearized equations
are

�! 
 2� �! � ! � �2 �z�t���� � 0 (74)

� �� 
 2� � �� � �� � �2z�t�! � 0 (75)

The steady state solution of equation (75) is

���t� � �2

2
�

1 
 � 2

t�
��

�
e$ 1�t�t �� � e$ 2�t�t ��

�
z�t ��!�t ��dt � (76)

where $ 1�2 � �� 

�

1 
 � 2 are the roots of the frequency equation $ 2 
 2�$ � 1 � 0.
This solution is used to evaluate �z�t���� in equation (74) as

�z�t���� � �2

2
�

1 
 � 2

t�
��

�
e$1�t�t �� � e$ 2�t�t ��

� !
z�t�z�t ��

"
!�t ��dt � (77)

Introducing the time shift � � t � t �, and taking into account the fact that ! does not
vary significantly during the correlation time of the random process z�t�, equation (77) takes
the form

�z�t���� � �2!�t�

2
�

1 
 � 2

t�
��

�
e$ 1� � e$ 2�

� �z�t�z�t 
 ��� d�

� � � 2�2
�
�2 � �$ 1 
 	� �$ 2 
 	�

��
�2 
 �$ 1 
 	�2

� �
�2 
 �$ 2 
 	�2

�!�t� (78)

Since � � 1� � � 	, equation (78) may be written in the approximate form

�z�t���� � �� 2!�t� (79)

Substituting equation (79) into equation (74) gives the following approximate equation in the
deviation, ! ,

�! 
 2
 �! 
 ��2� 2 � 1
�
! � 0 (80)
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where
	
�2� 2 � 1 is the natural frequency of small oscillations of the pendulum about the

inverted position. Equation (74) reveals that the mean deviation of the pendulum from its
inverted position will decay, and the inverted position is stable provided that the frequency	
�2� 2 � 1 is real, i.e., if

�2� 2 � 1 (81)

4.2.2. Effect of Additive Noise

In addition to condition (81), Landa and McClintock (2000) showed the existence of a max-
imum and a minimum in the response pdf in the presence of additive noise "�t� of intensity
D1. In this case, the pendulum equation of motion takes the form

�� 
 2� �� 
 �1 
 �2z�t�
�

sin � � "�t� (82)

where "�t� is a wide-band random process with negligible spectral density at the frequency
�. Equation (82) does not have a stationary pdf for its response vector coordinates � and �� .
The “slow” variable z�t� and “fast” variable �� are used. Since z�t� is a narrow-band random
process, it can be represented in the form

z�t� � z1�t� cos�t 
 z2�t� sin�t (83)

where z1�t� and z2�t� are “slow” variables. One can also write �� in the form

�� � A�t� cos�t 
 B�t� sin�t (84)

where A�t� and B�t� are “slow” variables. Substituting ��t� � ��t� 
 ���t� and equation
(83) into equation (82), and equating the slowly varying component and the coefficients of
cos�t and sin�t , the following three equations are obtained

�� 
 2� �� 
 sin� 
 1

2
�2 cos� �Az1 
 Bz2� � "�t� (85a)�

�2 � cos�
�

A � 2��B � �2z1 sin� (85b)�
�2 � cos�

�
B 
 2��A � �2z2 sin� (85c)

Recalling that � � 1� � , equations (85b) and (85c) may be written in the approximate form

A � z1 sin�� and B � z2 sin� (86a,b)

Substituting equations (86a,b) into equation (85a) gives

�� 
 2� �� 
 sin� 
 1

2
�2 sin 2�� 2 � "�t� (87)
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where
!
z2

1 
 z2
2

" � 2� 2. The Fokker-Planck equation of equation (87) may be written in the
form

�p��� ���
�t

� �


�� �p��� ���

��
�
�

sin� 
 �2� 2

2
sin 2�

�
�p��� ���

� ��
�



	
�
�
2� �� p��� ����

� �� 
 D1

2

�2 p��� ���
� ��2



(88)

The stationary solution of equation (88) can be obtained by setting each bracket on the right-
hand side to zero. The resulting solution is

p��� ��� � p0e ��2
� �D1 p��� (89)

and

p��� � p1e
�

2
�D1

�
cos�
 �2�2

4 cos 2�
��

(90)

where p0 and p1 are normalization constants, and �D1 � D1�2� . Equation (89) has three
extrema for �� � 0, � � 0, � � 
 , and (� � arccos��1��2� 2�� provided �2� 2 � 1). For
�2� 2 � 1, the pdf, p���, has two maxima at � � 0 and � � 
 , in addition to one minimum
at � � arccos��1��2� 2�. On the other had, if �2� 2 � 1, then p��� has only one maximum
(at � � 0), and one minimum, at � � 
 . Figure 18 shows the pdf p���/p1 for different
values of �2� 2 and additive excitation level �D1 � 4.

4.3. Stabilization of Nonlinear Ocean Structures

The dynamic analysis of ocean structures involves the interaction of inertial forces, elastic
forces, and hydrodynamic forces. Basically, the hydrodynamic forces induced on structural
elements are nonlinear and a combination of inertial and drag contributions. Each force is
time-dependent and depends on the structure’s geometrical properties, fluid properties de-
scribing the flow field, and some unknown constants which must be determined experimen-
tally. Furthermore, under large deflection these structures experience inertia and curvature
nonlinearities. The hydrodynamic forces and the time variation of the system parameters
are random in nature. Within the framework of the first-order stochastic averaging method
(Ibrahim, 1985), one can predict stochastic stability boundaries, the first-passage problem,
and the response pdf of systems with damping nonlinearity. Unfortunately, it fails to account
for such factors as cubic inertia and stiffness nonlinearities because their effect is lost dur-
ing the averaging procedure. The effect of such nonlinearities can only be determined by
performing second-order averaging. Hijawi et al. (1997a) studied noise-induced stability
(NIS) in off-shore structures subjected to random parametric excitation from vertical waves.
By taking the power spectral density level of the parametric excitation as a control parame-
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Figure 18. The response pdf for different values of parametric excitation level �2� 2 � 0, 1, 2, 5, and 10,
and for additive noise level, D1�2� � 4 (Landa and McClintock, 2000).

ter, the bifurcation diagram reveals a stabilizing effect of the mean square response of the
structure as long as the inertia nonlinearity overcomes curvature nonlinearity.

Figure 19 shows an elastic beam of length L carrying a mass M at the top. The beam is
subjected to two types of excitation. The first force is due to hydrodynamic loading, while the
second is parametric, caused by two vertical wave loads which can result from the heaving
motion of the top mass as it responds to the seaway. The equation of motion of the first
mode of the system is obtained using Hamilton’s principle together with Galerkin’s method
and takes the form

Y
�� 
 Y 
 �

�
�Y

� 
 c1Y
�2Y 
 c2Y 3 � #1q0�q0� � #2 sgn�q0�Y

�2 
 #3�q0�Y ��

 	

�Y �W �� � � 	
�#4q

�
0 (91)

where Y is the non-dimensional deflection of the top of the beam, a prime denotes differ-
entiation with respect to the non-dimensional time parameter � � �nt , �n is the first mode
natural frequency, � � d�L, d is the characteristic width of the structure, �� is the linear
damping factor, and c1 and c2 are coefficients of nonlinear inertia and curvature, respec-
tively. #i , i � 1� 2� 3, are the coefficients of nonlinear hydrodynamic drag, while #4 is
the coefficient of the inertial hydrodynamic force. �W �� � is a dimensionless white random
process representing the parametric excitation. q0 � u���nd� is a non-dimensional fluid
wave velocity at the free surface, where u is the fluid velocity. q0 may be represented by a
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Figure 19. Schematic diagram of an elastic beam subjected to random ocean waves.

narrow-band random process and can be modeled as the output of the second-order shaping
filter

q
��
0 
 2� f � f q

�
0 
 �2

f q0 � ���� (92)

where � f � � f ��n is a non-dimensional filter frequency defined as the ratio of the filter
frequency to the system natural frequency and � f is the filter damping ratio. ���� is a white
noise random process of intensity %. The power spectral density and mean square of the
process q0��� are, respectively,

Sq0��� � %

2


1�
�2

f � �2
�2 
 �2� f �� f

�2 � Sq
�
0
��� � �2Sq0��� (93a)

E[q2
0 ] � %

4�3
f � f

(93b)

The average value ��q0�� can be calculated by using the pdf of the filter equation (92)

��q0�� � 2

�
	

2


��
0

�q0� exp

�
� q2

0

2� 2

�
dq0 (94)

where � 2 � E[q2
0 ] since the process ���� has a zero mean. More realistic shaping filters,

such as the Pierson and Moskowitz spectrum (1964) and those reported in Moshchuk et
al. (1995a,b) and Moshchuk and Ibrahim (1996) can be used to model the wave spectrum.
However, the second-order filter (92) was adopted for the sake of simplification.

The solution of equation (91) may be assumed in the form
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Y ��� � A��� cos����� ���� � � 
 ���� (95)

such that Y
�
��� � �A�� � sin����. Introducing equation (95) into equation (91) and follow-

ing the procedure of the stochastic averaging method, the following standard amplitude and
phase equations are obtained#

A
�

�
�

$
� �

#
f1�A� �� ��

f2�A� �� ��

$

	

�

	
g11�A� �� � � g12�A� �� � �

g21�A� �� � � g22�A� �� � �



(96)

where f1 and f2 stand for drift terms, while the functions gi j are diffusion terms. The non-
linear terms in f1 and f2 contain numerous products of sine and cosine functions with phase
angle ����. These terms may be expanded into series of sine and cosine functions at the
multiple phase angles, n�, n � 0� 2� 4� ���. We can therefore eliminate the oscillatory effects
and simplify the equations of motion by introducing the near-identity transformation

A��� � �A���
 �u� �A� ��� ��� ���� � �����
 �&� �A� ��� �� (97)

where �A���, ���� � ����� 
 � , and �� stand for non-oscillatory amplitude, phase angle, and
phase shift, respectively. The process involves differentiating relations (97) and equating
each result with the corresponding drift functions such that the average values are subtracted
from f j , j � 1� 2, to make sure that u and & are oscillatory functions. Having obtained u
and &, adding the contribution of the diffusion terms and following the second averaging
procedure outlined in Hijawi et al. (1997a,b) yields the average equation for the amplitude

�A� � C0

�A 
 C1 �A 
 C3 �A3 

%

2C0 
 D2 �A2W1�� � (98)

where

C0 � �
&


2
#2

4Sq
�
0
�1�
'
� C3 � �2

(
1

32
�c1 � 5c2�

�
� 
 #3 ��q0�� 
 
 S �W �2�

�)

C1 � �

(
�1

2
�� 
 #3 ��q0���
 3


8
S �W �2�

)

 �2

& 


32
#2

4 �c1 
 7c2� Sq
�
0
�1�
'

D2 � �
&


4
S �W �2�

'
� �2

& 


16
#2

4 �c1 � 9c2� Sq
�
0
�1�
'

Introducing the Hamiltonian �H � �A2, and differentiating �H according to the Ito for-
mula, the averaged equation of the system energy takes the form

�H � � 4C0 
 �2C1 
 D2� �H 
 2C3 �H 2 

%

8C0 �H 
 4D2 �H 2W1�� � (99)

The stationary response pdf of equation (99) can be obtained by solving the stationary FPK
equation, giving
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p� �H� � K0

�
2C0 
 D2 �H�' exp

�
C3

D2

�H
�

(100)

where ' � �
�

3

2

 2

C0C3

D2
2

� C1

D2

�
and K0 is the normalization constant given (using the

integration tables of, for example, Gradshteyn and Ryzhik, 1980) by

K0 � ��C3�
'
1 exp

�
2C0C3�D2

2

�
D2'
1

2 �
�
' 
 1��2C0C3�D2

2

� (101)

where ��a� x� �
��
x

e�t t a�1dt is the incomplete gamma function. This function is monotonic

and (for a � 1) rises from near zero to near unity in a range of x centered on about a�1, and
of width about

	
a. Note that the response pdf given by equation (100) includes the effects of

inertia and curvature nonlinearities of the structure and the effects of two components of the
hydrodynamic forces� #3 �q0�Y

�
and

	
�#4q

�
0. However, it does not capture the effect of the

two hydrodynamic drag components �#1q0�q0� and �#2 sgn�q0�Y
�2. These two terms have

zero average� they have only a localized effect (in time) and do not contribute significantly
to the average behavior of the system over a long period of time. Note that the normalization
is valid provided C3 � 0, or

�c1 � 5c2� � 0 (102)

An interesting case of the response behavior of this system is the special case under
parametric excitation. In the absence of hydrodynamic forces the averaged equation takes
the form

�H � � �2C�
1 
 D�

2

� �H 
 2C�
3
�H 2 


%
4D�

2
�H 2W1��� (103)

where

C�
1 � �

(
�1

2
� 
 3


4
S �W �2�

)
� C�

3 � �2

(
1

32
�c1 � 5c2�

�
� 
 
S �W �2�

�)
�

D�
2 � �

&

4

S �W �2�
'

The corresponding stationary pdf has the form

p� �H� � K �
0
�H
�

C�
1

D�
2
� 3

2

�
exp

�
C�

3

D�
2

�H
�
�

K �
0 �

�
�C�

3

D�
2

�� C�
1

D�
2
� 1

2

�
1

�

�
C�

1

D�
2

� 1

2

� (104)
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Figure 20. Dependence of the response mean energy on the parametric excitation level, for � � 0�005,
� � 4, and c2 � 9. - - - - Gaussian closure solution, � � �� non-Gaussian closure solution, ����
second-order averaging, � � � � Monte Carlo simulation (Hijawi et al., 1997a).

The normalization constant is valid only under the two conditions

�i�
C�

1

D�
2

� 1

2
� 0� or


S �W �2�
�

� 2 (105a)

�ii� C�
3 � 0� or �c1 � 5c2� � 0 (105b)

Finally, the expression of the mean value of the response energy has the form

E[ �H ] � �D�
2

C�
3

�

�
C�

1

D�
2


 1

2

�
�

�
C�

1

D�
2

� 1

2

� (106)

The dependence of the response mean square E[ �H ] on the parametric excitation level
is shown by the solid curve in Figure 20. Figure 20 also shows the mean energy level as
predicted by Gaussian and non-Gaussian closures and Monte Carlo simulation. It can be seen
that there is a critical excitation level, give by relation (105a), above which the response mean
square bifurcates to non-zero value. This level corresponds to the well-known ensemble
stochastic stability condition of dynamic systems parametrically excited by a white noise.
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The bifurcation point predicted by second-order averaging is in good agreement with the one
estimated by the Monte Carlo simulation (shown by solid small circles).

In order to study the problem of NIT, one should consider the averaged equation of the
response amplitude by setting the external excitation to zero in equation (98)

�A� � C�
1
�A 
 C�

3
�A3 


%
D�

2
�A2W1��� (107)

The corresponding stationary pdf is given by the formula

p� �A� � K �
1
�A2

�
C�

1
D�

2
�1

�
exp

�
C�

3

D�
2

�A2

�
�

K �
1 � 2

�
�C�

3

D�
2

�� C�
1

D�
2
� 1

2

�
1

�

�
C�

1

D�
2

� 1

2

� (108)

In terms of system parameters the response pdf takes the form

p� �A� � 2

�
��

8
�c1 � 5c2�

�
1 
 �


S �W �2�

���1� 2�

S �W �2�

�
�A
�

1� 4�

S �W �2�

�

� exp

�
�

8
�c1 � 5c2�

�
1 
 �


S �W �2�

�
�A2

�
��

�
1 � 2�


S �W �2�

�
(109)

Inspecting this result, one may establish the following three different response regimes, de-
pending on the parametric excitation level 
S �W �2���

1) Zero motion occurs for all excitation levels within the range 0 � 
 S �W �2��� � 2. This
condition preserves the positive property of the response pdf as dictated by the argument
of the Gamma-function in equation (109), from condition (105a). Physically the sys-
tem linear damping overcomes the excitation energy input and the equilibrium remains
stable.

2) Partially developed random motion (or on-off intermittency) takes place for all excita-
tion levels within the range 2 � 
 S �W �2��� � 4. Within this range the peak of the
response pdf occurs at zero response amplitude, as determined by the exponent of �A.
The time evolution of the response passes through a sequence of zero and non-zero re-
sponse periods, as revealed by Monte Carlo simulation. The periods of zero response
decrease in length as the excitation level increases. This statement is based on numerical
simulation results and experimental observations (Ibrahim and Heinrich, 1988).

3) Fully developed random motion occurs for all excitation levels exceeding 4, i.e., when

 S �W �2��� � 4. This regime is characterized by continuous random motion and the
peak of the response pdf is shifted from zero amplitude.
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Figure 21. Probability density function of response amplitude for different values of parametric excitation
level for � � 0�005, � � 4, #4 � 10, and c2 � 9 (Hijawi et al., 1997a).

The response pdf p� �A� is shown in Figure 21 for different parametric excitation levels.
Note that both on-off intermittency and NIT cannot be predicted by estimating the response
moments because a great deal of information about the state of the system is not contained
in the moments. The on-off intermittency can only be uncovered by using Monte Carlo
simulation or experimental tests (Ibrahim, 1991). The problem of NIT can be examined
using the qualitative change in the state of the system as outlined by Horsthemke and Lefever
(1984, 1989). The extrema of the stationary pdf of the system are determined from the
condition

C�
1
�A 
 C�

3
�A3 � 1

2

d

d �A
�

D�
2
�A2
� � 0 (110)

This equation yields

C�
3
�A3 � �A �D�

2 � C�
1

� � 0 (111)

which has three solutions given in terms of the system parameters in the form

�A1 � 0� �A2�3 � 

*

4
�4 � �
S �W �2��� ���

� �c1 � 5c2�
�
1 
 �
S �W �2��� �

�� (112)
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Figure 22. Bifurcation diagram for the extrema transition of the response pdf showing regions of
stabilization/destabilization under parametric excitation (Hijawi et al., 1997a).

For �c1 � 5c2� � 0, there is one peak of the response pdf at �A1 � 0 as long as

S �W �2��� � 4. Above this level a transition of the response pdf takes place and the peak is
determined by the second root of (112). A transition to the peak �A2 takes place due to the
multiplicative noise, and its value depends on whether the net value of the nonlinear inertia
and stiffness expression �c1 � 5c2� is greater or less than zero. A bifurcation diagram show-
ing the dependence of the extrema on the excitation level is shown in Figure 22. It can be
seen that 
S �W �2��� � 4 separates between the extrema of positive and negative nonlinear
parameter �c1 � 5c2�. Figure 22 reveals the stabilization effect of the multiplicative noise on
the originally unstable system when �c1 � 5c2� only assumes positive values.

The effect of parametric colored noise on the stabilization of nonlinear bi-stable systems
or on delaying the bifurcation point has been examined analytically (Graham and Schen-
zle, 1982� Zaghlache et al., 1989� Stocks, et al., 1989, 1990) and numerically (Billah and
Shinozuka, 1990� Shinozuka and Billah, 1991).

The time history records of the response as estimated by Monte Carlo simulation ex-
hibit the well known phenomenon of on-off intermittency, which is similar to the one ob-
served experimentally and referred to as “uncertain response motion” by Ibrahim and Hein-
rich (1988) and Yoon and Ibrahim (1995) under relatively small parametric excitation levels.
Figures 23(a), (b), and (c) show a set of time history records of response for excitation lev-
els 
S �W �2��� � 1�95, 2�0 and 3�0, respectively. This type of response corresponds to the
class of partially developed motion discussed earlier. It can be seen that the periods of zero
response decrease as the excitation level increases, until the response exhibits fully devel-
oped random motion where the excitation level is 6.25 (not shown). This type of on-off

 © 2006 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.
 at PENNSYLVANIA STATE UNIV on April 11, 2008 http://jvc.sagepub.comDownloaded from 

http://jvc.sagepub.com


EXCITATION-INDUCED STABILITY AND PHASE TRANSITION: A REVIEW 1141

Figure 23. Samples of time history records of response to different values of excitation level (Hijawi
et al., 1997a).
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intermittency is similar to a great extent to the type reported by Platt et al. (1993, 1994)
and Heagy et al. (1994) who reported the on-off intermittency in a class of one dimensional
maps that are multiplicatively coupled to either random or chaotic signals. In this case the
on-off intermittency is a result of time-dependent forcing of a bifurcation parameter through
a bifurcation point.

5. NOISE-ENHANCED STABILITY (NES)

The previous sections addressed some effects of multiplicative noise such as noise-induced
phase transition, and stabilization (or destabilization) of originally unstable (or stable) sys-
tems. However, if the random excitation is additive, one would be interested in estimating
the mean first passage time for the response to reach a target value. With an additive ran-
dom noise, the mean exit time of a Brownian particle moving in a potential field usually
decreases with noise intensity according to the Kramers formula (Kramers, 1940� Hänggi
et al., 1990) or some universal scaling function of the same parameters (Colet et al., 1991�
Miguel and Toral, 1997). Kuznetsov et al. (1997) and Kuznetsov (2002) presented some
analyses of convective and absolute instabilities in one-dimensional Brusselator flow model
and reaction-diffusion systems. The transition from one type of instability to another occurs
at a critical value of the control parameter.

The dependence of the mean exit time on the noise intensity for metastable and unsta-
ble systems was revealed to have a resonance character (Hirsch et al., 1982). Noise can
modify the stability of the system in a counterintuitive way such that the system remains
in the metastable state for a longer time than in the deterministic case (Dayan et al., 1992�
Casado and Morillo, 1994� Agudov and Malakhov, 1995, 1999� Agudov, 1998� Malakhov
and Pankratov, 1996). The escape time has a maximum at some noise intensity. Note that
the phenomenon of NES only results in an increase of the escape time rather than causing
absolute stabilization of the originally unstable system. The escape rate of a particle over
a fluctuating barrier, due to an external Ornstein-Uhlenbeck noise, in a double-well poten-
tial exhibits resonance at an optimum value of correlation time of fluctuation (Ghosh et al.,
2005).

Related work involving noise-induced stability (NIS) includes several different types of
applications: (i) Physical systems such as tunnel diodes (Mantegna and Spagnolo, 1996,
1998) and Josephson junctions (Malakhov and Pankratov, 1996� Al-Khawaja and Alsous,
2005) where the influence of thermal fluctuations on the superconductive state lifetime and
the turn-on delay time for a single Josephson element with high damping was considered�
(ii) chemical systems such as the one-dimensional return map of the Belousov-Zhabotinsky
reaction in which one may be interested in the behavior of the length of the laminar region as
a function of the noise intensity (Matsumoto and Tsuda, 1983)� and (iii) biologically moti-
vated models (Mielke, 2000� Dan et al., 2003� Dubkov et al., 2004) in which the overdamped
motion of a Brownian particle moving in an asymmetric fluctuating potential exhibited NIS.

In an analytical study of an over-damped system with a time potential, Dayan et al.
(1992) showed that the stability of an unstable system is enhanced in the presence of a noise
of finite intensity. Mantegna and Spagnolo (1996) showed that this phenomenon is not cru-
cially dependent on the exact shape of the potential of a system comprised of a series of
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biasing resistors with tunnel diode in parallel to a capacitor (see also Landauer, 1962, 1978�
Mantegna and Spagnolo, 1994, 1995). Other studies (Dan et al., 1999� Mahato and Jayan-
navar, 1997, 1998�Wackerbrauer, 1998, 1999�Mielke, 2000�Mantegna and Spagnolo, 1996,
1998) revealed that the noise-induced slowing down and noise-induced stabilization are re-
lated to NES. Agudov and Spagnolo (2001) analytically estimated the escape time from a
periodically driven metastable state for a piecewise linear potential. They found that for a
fixed potential, the decay time of the unstable initial state can be dramatically increased by
the presence of a small noise, depending on the initial condition of the system.

In addition to NES, the presence of external noise in nonlinear dynamical systems may
result in some resonance-like phenomena such as SR (Gammaitoni et al., 1998� Anishchenk
et al., 1999�Mantegna et al., 2001� and Wellens et al., 2004) and resonant activation (Doering
and Gadoua, 1992� and Mantegna and Spagnolo, 2000).

We will focus on the counterintuitive dynamics of nonlinear systems in the presence
of random noise. Specifically, this section will address the phenomenon of NES in some
applications. The door to this phenomenon is the SR, the basic concept of which is discussed
in the next subsection.

5.1. Stochastic Resonance (SR)

The effect of very small noise excitations on the behavior of dynamical systems may cause a
significant difference in the observable behavior of some systems, in which such systems act
as a noise amplifier. Noise enhancement of the transmission of periodic or aperiodic signals
via SR has been demonstrated in nonlinear systems. The concept of SR differs from the tra-
ditional definitions of linear and nonlinear resonances� it arises as a result of a cooperative
effect in which a small periodic influence entrains external random noise. The cooperation
between the internal noise and the external periodic force is manifested by a peak in the
response power spectrum around the forcing frequency. The concept of SR was originally
introduced independently by Benzi et al. (1981, 1982, 1983), and Nicolis (1982, 1993) (see
also Nicolis and Nicolis (1981)) in dealing with the problem of periodically recurrent ice
ages. It was pointed out by Benzi et al. (1981, 1982) that a weak periodic eccentricity in the
earth’s orbit can lead to more drastic weather changes than expected due to nonlinear cou-
pling with environmental fluctuations. For a comprehensive assessment of SR and related
issues the reader may consult Nicolis (1995), Moss (1994), Moss et al. (1993, 1994), Wiesen-
feld and Moss (1995), and Gammaitoni et al. (1998). Some measures have been adopted in
the literature to measure the transmission process receiving enhancement from noise. For
periodic signals, these measures include the signal-to-noise ratio the amplitude of the coher-
ent component in the noisy output (see, e.g., McNamara and Wiesenfeld, 1989� Gammaitoni
et al., 1989� Jung and Hänggi, 1991�Moss et al., 1994� Chapeau-Blondeau, 1997b).

Benzi et al. (1981) considered the Langevin equation, subject to a periodic forcing
A cos�t ,

dx � [x�� � x2�
 A cos�t]dt 
 �dB�t� (113)

where B�t� is a Brownian-Weiner process. In the absence of the sinusoidal excitation, there
are two stable solutions (x1�2 � 
	

�) and one unstable one (x � 0) at the bifurcation point.
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Due to the random noise, the solution of equation (113), with A � 0, jumps at random times
between the two stable steady states x1�2 � 
	

�. Benzi et al. (1981) estimated the exit time
when the excitation amplitude A is small compared with the bifurcation parameter �3�2. The
influence of the periodic force was studied for t � 0 and t � 
��. In other words, they
considered the two stochastic equations

dx � [x�� � x2�
 A]dt 
 �dB�t� (114a)

dx � [x�� � x2�� A]dt 
 �dB�t� (114b)

Let the corresponding fixed points of equations (114a,b) be �x1, and �x2, respectively. The first
moment of the first passage time of equations (114a,b) was estimated using the Kolmogorov
backward equation (Pontryagin equation)

[x0�� � x2
0�
 A]

d �T �x0��
dx0


 � 2

2

d2 �T �x0��
dx2

0

� �1 (115)

where T �x0� � inf �t : x�t� � 0 and x�0� � x0 � ���� 0��. The solutions of equation (115)
corresponding to the fixed points �x1, and �x2 are, respectively,

�T � �x1�� �� 


�
	

2
Exp



�2

2� 2

�
1 
 4A

�3�2

��
(116a)

�T � �x2�� �� 


�
	

2
Exp



�2

2� 2

�
1 � 4A

�3�2

��
(116b)

where �T � �x1�� and �T � �x2�� are the mean exit times from the basins of attraction belonging
to �x1 and �x2, respectively. The qualitative behavior of equation (113) can be described if one
starts to observe the motion of the system at t � 0 with x � �x1. If �T � is the mean exit time
from the basin of attraction, it follows that �T � �x2�� � �T � � �T � �x1��. If

�T � �x1�� � 
�� and �T � �x2�� � 
�� (117a,b)

then �T � � 
��, while the variance of the exit time is of order �T � �x2��. Thus, with prob-
ability 1, the solution of equation (113) with initial condition x�t � 0� � �x1 will jump to
the point x � �x2 at t � 
��. It can also be seen that the solution will spend a period of
time 
�� in the new basin of attraction and at t � 2
�� the motion will jump to the point,
x�t � 2
��� � �x1. In this case, the motion will jump between two stable steady states
nearly periodically in phase with the periodic force. Benzi et al. (1981) found that in order
to satisfy the inequalities, the variance of the noise has to be confined in the interval �� 1� � 2�,
where

� 1 � �

*
1 � 4�A��3�2�

2 ln�2�
	

2���
� � 2 � �

*
1 
 4�A��3�2�

2 ln�2�
	

2���
(118a,b)
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Figure 24. Time history record of the Langevin equation with periodic excitation (Benzi et al., 1981).

For a given value of A, small compared with �3�2, the power structure of x�t� exhibits
a peak at the frequency when � is confined between the values � 1 and � 2. This is the
condition of SR. Figure 24 shows a time history record of the response of system (113) for
� � 1, A � 0�12, � � 2
�T � 0�001, and � � 0�25. The corresponding values of
equation (111) are � 1 � 0�18 and � 2 � 0�31.

SR is manifested in electronic systems (Fauve and Heslot, 1983� Harmer et al., 2002),
tunnel diodes (Mantegna and Spagnolo, 1995� Mantegna et al., 2001), and operational am-
plifiers (Harmer and Abbott, 2000). SR has also been demonstrated in a wide range of phys-
ical and biological systems (see, e.g., Gammaitoni et al., 1998� Wiesenfeld and Jaramillo,
1998� Yang et al., 1998a,b) and social systems (Babinec, 1997). SR has been extended to
aperiodic signals by Collins et al. (1995), Bulsara and Zador (1996), and Chapeau-Blondeau
(1997a), and has been used to improve the transmission of actual useful information by im-
plementing a broadband aperiodic signal in place of the periodic one (Kiss, 1995� Collins
et al. 1995� Heneghan et al., 1996� Chapeau-Blondeau, 1997a). Casado-Pascual et al. (2005)
adopted some analytical and numerical tools to study the SR in the nonlinear regime of two
simple models. The first model is an overdamped bistable system with white noise and a
time periodic external force. The second model is a discrete two-state system with NIT rates
modulated by the external driving excitation.

Abbott (2001) highlighted some unsolved problems in SR. In particular, the underlying
principles of SR have not been unified. For example, SR was thought to be inherent (and
restricted) to bistable systems until Gingl et al. (1995) observed SR in a simple threshold
element� however, Bezrukov and Vodyanov (1997) have shown that not even a threshold
operation is required. Others (Klimontovich, 1999� McClintock, 1999) generalized SR as a
nonlinear filtering phenomenon, or a natural feature of any nonlinear system with a large,
strongly noise-dependent susceptibility. Other works by Bezrukov (1998) and Bezrukov and
Vodyanov (2000) demonstrated that these features are not in fact necessary for SR to occur.
Among other unsolved problems is the need to develop suitable metrics to quantify SR of
aperiodic signals, since the signal-to-noise ratio is not useful for aperiodic signals. Some
attempts have been made by Kish et al. (2001), based on a threshold potential.
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5.2. Selected Applications of NES

5.2.1. Systems Described by Langevin Equation

NES is usually manifested as an increase of the average escape (exit) time as the noise
intensity increases. Mantegna and Spagnolo (1996) conducted an experimental investigation
on a system consisting of a biasing resistor with a tunnel diode parallel to a capacitor when
the system exhibited a strongly asymmetric bistable potential. The initial conditions were
taken as identical to the minimum of the well characterized by the smaller barrier. The
difference between the barriers of the two wells was such that the probability of the system
returning to the starting well after the first escape is totally negligible for the noise intensities
used in the experiments. The system was designed to remain in the metastable state in all
cases. Mantegna and Spagnolo (1996) applied across the network the voltage signal

��t� � Vb 
 Vs sin�s t 
 Vn�t� (119)

where Vb is a biasing voltage, Vs sin�s t is a sinusoidal modulating signal, and Vn�t� is
the noise voltage. Under this condition, the equation of motion for the voltage across the
tunnel diode �d was found to be a Langevin equation, in the overdamped regime, of a system
characterized by a time dependent potential. By properly selecting Vb and Vs one can obtain:
(a) an overall-stable system, i.e., a system with a time-dependent potential well which has
a finite barrier at any time� (b) an overall-unstable system with a time-dependent potential
well, which has no barrier for a short interval of time within each period of the modulated
signal. The degree of stability of the time modulated system was quantified by introducing
the variable

� � Vs � Vsm

Vsm
(120)

where Vsm is the value of the amplitude of the modulated signal driving the system into the
marginal state of the potential at t � Ts�4, Ts is the period of the modulated signal. The
point at which the unstable and locally stable branches of the potential coalesce (Arecchi
et al., 1982� Colet et al., 1989) has been taken to identify the marginal state of the system.
Figure 25 shows the dependence of the average escape time on the noise root-mean-square
amplitude Vrms measured for six different values of �, of which three belong to the stable
case and three to the unstable case. It can be seen that for an overall stable system (� � 0)
the average escape time monotonically decreases with the noise amplitude. On the other
hand, for an overall unstable system (� � 0), the average escape time increases over an
interval of Vrms , and �T � � Ts�4, i.e., longer than the deterministic escape time observed
in the absence of noise. Over this interval the presence of noise enhances the stability of an
unstable modulated system.

Fiasconaro et al. (2003a,b) considered more realistic noise sources such as colored noise
with a finite correlation time. They found that the value of the noise intensity at which the
maximum of the average exit time occurs is larger than that corresponding to the white
noise case. Fiasconaro et al. (2005) analyzed the dynamic behavior of a Brownian particle
governed by the Langevin equation
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Figure 25. Dependence of the average escape time on the noise level for six different values of stability

parameter �. The overall-stable cases ���� � �0�0195, � �� � �0�009, and � �� � �0�0039, show

monotonic decrease of escape time. The overall-unstable cases � �� � 
0�0039, � �� � 
0�0091,
and � �� � 
0�0195 show a non-monotonic change. The dot-dashed curve is a scaling behavior. The
inset is the dependence of the variance of the escape time (in microsecond square) as a function of the
noise amplitude for six different values of �. (Mantegna and Spagnolo, 1996).

�x � �dU�x�

dx

	

D��t� (121)

where ��t� is a white Gaussian random process (with a zero mean), which is delta-correlated
in time, and U�x� � 0�3x2 � 0�2x3 is a cubic potential. The potential has a local stable state
at xs � 0, an unstable state at xu � 1, and intersects the x-axis at xc � 1�5 as shown in
the inset of Figure 26. Let xF � xc be the final target position. Hänggi et al. (1990) and
Gardiner (1983) showed that the average time for a particle starting from an initial position
x0 to reach the target value xF is given by the following closed form expression

�T �x0� xF�� � 2

D

xF�
x0

e2 �U�z�

z�
��

e�2 �U�y�dydz � 2

D

xF�
x0

e2 �U�z�G�z�dz (122)

where �U�x� � U�x��D is the dimensionless potential,

G�z� � 0�6046e�a
�
I�1�3�z�
 I1�3�z�

�� 1

2 2 F2

�
1

2
� 1� 2

3
�

4

3
� �2z

�



z�
0

e�2 �U�y�dy
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Figure 26. Dependence of the mean first passage time on the noise intensity level for target value
xF � 2�2 and for different values of initial conditions: ___�____ x0 � 1�3, ����� ����� x0 � 1�4, ��� ���
x0 � 1�45, ���� ��� � ��� ��� x0 � 1�47, ��� ��� x0 � 1�49, ��� �� � �� �� x0 � 1�51,

�� �� x0 � 1�55, �� �� x0 � 1�60. Inset is the cubic potential U�x� with the metastable state
at x � 0. (Fiasconaro et al., 2005).

z � 1

10D
, and p Fq �a1� a2� b1� b2� z� is the generalized hypergeometric function (Morse and

Feshbach, 1953).
Figure 26 shows the dependence of mean first passage time �T �x0� xF�� on the noise

intensity D, for xF � 2�2 and different values of x0. The figure reveals two different regimes.
The most interesting regime is characterized by NES and is only valid for all initial conditions
where x0 � xc. The second regime is referred to as the divergent regime, and takes place
for initial conditions occupying the range xu � x0 � xc, where xu � 1 is the location
of the relative maximum of the potential. Note that for all initial positions x0 smaller than
(but sufficiently close to) xc the mean exit time displays a non-monotonic behavior with a
minimum and a maximum. For very low values of noise intensity, the Brownian particle is
trapped in the potential well, as a consequence of the divergence of the mean exit time at
the limit D � 0. As the noise intensity increases the particle can escape more easily and
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the mean exit time decreases. When D � �U � 0�1 (corresponding to the potential barrier
height), the concavity of the mean exit time curves changes and the escape process is slowed
down. At higher noise intensities the mean exit time exhibits a monotonic decrease.

It was indicated by Dubkov et al. (2004) that the estimation of the mean first passage
time (MFPT) requires the implication of absorbing boundary in the system. Alternatively,
the nonlinear relaxation time (NLRT) introduced by Agudov and Malakhov (1999) does not
have that restriction. The NLRT measures the average residence time or the mean lifetime of
Brownian particles within a certain domain. The general equations for the NLRT for poten-
tials randomly switching between two arbitrary configurations with a sink were derived by
Dubkov et al. (2004). The noise enhanced stability phenomenon for the NLRT in a randomly
switching metastable state was studied by considering a modified system of equation (121)
in which the potential includes dichotomous noise, i.e.,

�x � � d

dx
[U�x�
 V �x�(�t�] 
	

D��t� (123)

where the Markovian dichotomous noise (�t� takes the values 
1 with the mean flipping
rate %. By introducing the following expression for the pdf in terms of the average

p�x� t� � ���x � x�t�� (124)

together with the auxiliary function Q�x� t�,

Q�x� t� � �(�t���x � x�t��� (125)

Dubkov et al. (2003, 2004) obtained the following set of the time evolution equations

�p

�t
� �

�x



�U

�x
p 
 �V

�x
Q

�

 D

�2 p

�x2
(126a)

�Q

�t
� �2%Q 
 �

�x



�U

�x
Q 
 �V

�x
p

�

 D

�2 Q

�x2
(126b)

Dubkov et al. (2004) considered the potential profiles U�x�
 V �x� shown in Figure 27,
with a wall at x � �� and a sink at x � 
�. The potential profile U�x�
 V �x� corre-
sponds to a metastable state, while U�x� � V �x� corresponds to an unstable state. Agudov
and Malakhov (1999) defined the nonlinear relaxation time using the expression

T �x0� �
��

0

dt

X2�
X1

p�x� t �x0� 0�dx (127)

where x0 � �X1� X2�. For the special case of a piece-wise linear potential profile with
V �x� � ax , (x � 0� 0 � a � k), and
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Figure 27. Switching potential with metastable state (Dubkov et al., 2004).

U�x� �

�����������

� x � 0

0 0 � x � X

k�X � x� x � X

(128)

Dubkov et al. (2004) estimated the dependence of the normalized mean life-time T��0��T0

on the noise intensity D, where T��0� represents the mean life-time corresponding to the
potential profile U�x� � V �x�, with x0 � 0, and T0 is the mean life-time corresponding to
very slow switching % � 0. Figure 28 shows such dependence for three different values of
the dimensionless mean flipping rate %X�k � 0�1, 0.05, and 0.01. It can be seen that the
maximum value of the NLRT and the range of noise intensity values where NES occurs both
increase when the mean flipping rate decreases.

5.2.2. Ising Model

The Ising model was originally proposed by Ernst Ising (1924) in his doctoral thesis, to
explain the physical alignment of particles within a magnetically-charged material such as
iron. This model has been used as a prototype for the metastable dynamics of short-range
systems using Monte Carlo simulations in both two and three dimensions (Stoll and Schnei-
der, 1972, 1977� Binder, 1973� Binder and Stoll, 1973� Stauffer et al., 1982� Rikvold et al.,
1994). It was demonstrated that the metastable lifetimes for impurity-free kinetic Ising mod-
els exhibit system-size and field dependence. Hurtado et al. (2004a,b, 2006) studied the sim-
plest non-equilibrium Ising model with dynamic impurities and the interfaces that separate
non-equilibrium phases. They predicted noise-enhanced stabilization of the non-equilibrium
metastable states at low temperature. This is caused by the nonlinear interplay between
thermal and non-equilibrium fluctuations, which induces anomalous, non-monotonous de-
pendence on the temperature of the surface tension.

The analytical modeling of the Ising model was based on a two-dimensional square
lattice with periodic boundary conditions and a spin variable at each node. Two different
heat paths were found to compete in the model. Both induce completely random spin-flips�
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Figure 28. Dependence of the normalized mean life-time on the white noise intensity for three different
values of mean flipping rate parameter %X�k, for X � 1, k � 1, X1 � 0, X2 � 2, and a � 0�995 (Dubkov
et al., 2003).

one with probability p, and the other with probability �1 � p�. This competition resulted in
non-equilibrium steady state sets. The strength of fluctuations affecting a spin was found to
increase with the local order (the number of neighbors with the same state). It was implied
that such a situation implies the presence of multiplicative noise and allows one to use a
Langevin equation, which can capture the essential physics of the model (Hurtado et al.,
2006) in the form

�!

�t
� ! � !3 
 h 


%
D 
 �!2��t� (129)

where ! is the transition rate of spin-flip, h is the external magnetic field, ��t� is a Gaussian
white noise with zero mean and autocorrelation function ���t���t ��� � 2��t � t ��, D is the
strength of the noise, and � is the renormalized version of p. The steady state probability
density function, pst�!�, obtained by solving the Fokker-Planck equation of system (129)
is

pst�!� � p0

2
%
�
�

D 
 �!2
�Exp

(
� 1

�

�
!2 � �1 
 D��� ln

�
!2 
 D��

��)
(130)

where p0 is the normalization constant.
The extrema of the effective potential

�
!2 � �1 
 D��� ln

�
!2 
 D��

��
are:

!k �
2	
3

cos �� k� (131)
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where � k � 1

3

	
cos�1

+
�
	

27

2
h

,

 2k




, k � 0� 1� 2�

For h � 0, !0, !1, and !2 correspond the metastable, stable, and unstable extrema,
respectively. The escape time from the metastable minimum was obtained by Hurtado et al.
(2006). This modeling was shown to recover the thermal NES phenomenon for the escape
time.

5.2.3. Ecosystems

Ecosystems such as dry-land plants (D’Odorico et al., 2005) and interacting species (La
Barbera and Spagnolo, 2002� Spagnolo and La Barbera, 2002� Spagnolo et al., 2002� Valenti
et al., 2004) are examples demonstrating NIS. Dry-land plant systems tend to exhibit bistable
dynamics with two preferential configurations of bare and vegetated soils. Climate fluctua-
tions are usually believed to act as a source of disturbance on these systems and to reduce
their stability and resilience. Random inter-annual fluctuations of precipitation may lead to
the emergence of an immediate statistically stable condition between the two stable states
(Walker et al., 1981� Scheffer et al., 2001) of the deterministic vegetation dynamics. The
existence of these two stable states is usually associated with positive feedbacks between
vegetation and its most limiting resources.

The dynamics of interacting species can be described by the generalized Lotka-Volterra
equations. Valenti et al. (2004) studied the role of the noise in the dynamics of two competing
species. They modeled the interaction between the species and the environment using gen-
eralized Lotka-Volterra equations in the presence of a multiplicative noise. The interaction
parameter between the species was assumed to be a random process obeying a stochastic dif-
ferential equation with a generalized bistable potential in the presence of a periodic driving
term. This term accounted for the environmental temperature variation. It was found that
noise induced periodic oscillations of the species concentrations and SR phenomenon. A
non-monotonic behavior of the mean extinction time of one of the two competing species
was found as a function of the additive noise intensity.

5.2.4. NES in Tumor-Immune Systems

Instability phenomena encountered in nonlinear systems can take place in tumor systems
as well. This particular problem has been the subject of extensive research by oncologists,
physicists, and mathematicians. Significant research funds are currently directed to the treat-
ment of cancer and its prevention. The related tumor behavior is called tumor dormancy,
prolonged arrest, or spontaneous remission. Kaiser (1990) indicated that spontaneous regres-
sion and very long-term arrest of cancer is a most paradoxical, captivating, and promising
phenomenon of immunology. Different types of analytical models of cancer-immune system
interactions have been reported by Stepanova (1980), Kuznetsov et al. (1994), Bellomo and
Preziosi (2000), Nani and Freedman (2000), Szymanska (2003), De Vladar and Gonzalez
(2004), Bellomo et al. (2004) and D’Onofrio (2005). The main features of these models
are the existence of a tumor free equilibrium and that, depending on the values of model
parameters, the tumor may tend either to 
� or to a macroscopic value. Additional features
include the existence of limit cycles as indicated by Kirschner and Panetta (1998).
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Galach (2003) and Sotolongo-Costa et al. (2003) proposed a model for the interaction
between a population of tumor cells whose number is X and a population of lymphocyte
cells whose number is Y . The rate of increase of the malignant cells, dX�dt , was assumed
to be proportional to X , which is justified for the initial phases of the growth. The rate was
also assumed to decrease with increasing frequency of interaction with lymphocytes. This
was described by the equation

dX

dt
� aX � bXY (132)

where a and b are constant coefficients, a being tissue-dependent. The growth rate of lym-
phocytes, dY�dt , was described by the equation

dY

dt
� d XY � f Y � K X 
 u 
 P�t� (133)

where d, f , and K are constant coefficients, and u represents the diffusion process of lym-
phocytes that takes place in the tissue surrounding the tumor, assuming a constant flux of
lymphocytes (Kuznetsov et al., 1994). The last term in equation (133) represents the effects
produced by the treatment with cytokines in the process of activation of the immune sys-
tem. Sotolongo-Costa et al. (2003) proposed periodic treatment represented by the function
P�t� � Pcos2�t , where � is the frequency of the periodic behavior of the cytokines inside
the body. Equation (133) shows that the growth rate of lymphocytes, dY�dt , is proportional
to their rate of interaction with malignant cells and also to the flux per unit time of lympho-
cytes to the place of interaction. These effects are represented by the first and fourth terms
on the right-hand sides of equation (133).

Note that in the absence of treatment, i.e., P�t� � 0, equations (132) and (133) take the
autonomous non-dimensional form

dx

d�
� 	x � xy (134)

dy

d�
� xy � 1

	
y � kx 
 � (135)

where � � t
	

a f , k � K b�d
	

a f , 	 � 	
a� f , and � � ub�a f . Equations (134) and (135)

can be combined into the second-order nonlinear differential equation

d2x

d� 2


�

1

	
� x � 1

x

dx

d�

�
dx

d�
� �k � 	� x2 � �1 � � � x � 0 (136)

This equation describes the motion of a particle in a force field whose potential is

U �x� � �1

3
�k � 	� x3 � 1

2
�1 � � � x2 (137)
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This potential possesses the two extrema

x1 � 0� and x2 � � � 1

k � 	
(138)

These extrema depend on the values of � , k, and 	. Sotolongo-Costa et al. (2003) classified
them as follows

� � 1 �

�������������

x1 � 0 minimum

k

	
� 1� x2 � 0 maximum

k

	
� 1� x2 � 0 maximum

� and

� � 1 �

�������������

x1 � 0 maximum

k

	
� 1� x2 � 0 minimum

k

	
� 1� x2 � 0 minimum

(139)

It is not difficult to study the stability of fixed points in the phase space. A saddle point
occurs for values of � in the range 1 � � � k�	 and 1 � k�	 � � . The correspond-
ing time history records of unstable and stable trajectories are shown in Figures 29(a) and
(b), respectively. The system can evolve towards a state of uncontrollable tumor growth as
shown in Figure 29(a). This case can be interpreted as a recurrence-like behavior (Forys,
1995� Wheldom, 1988). On the other hand, Figure 29(b) corresponds to the case where the
system evolves towards a controllable mass of malignant cells in a damped oscillatory trend.
This is known as a dormant state (Kuznetsov et al., 1994� Kuznetsov and Makalkin, 1992�
Kuznetsov and Knott, 2001�Michelson and Leith, 1994).

With periodic treatment, P�t� � Pcos2�t , equations (132) and (133) should be con-
sidered. For the case k�	 � 1, � � k�	, and for effective doses and frequencies higher
than a certain threshold value, the system was found to revert from uncontrollable growth to
a treatment controlled population. Sotolongo-Costa et al. (2003) studied this situation and
found that for every set of parameters � , k, and 	, there are threshold values for the treatment
frequency � and amplitude P which split the parameter space into two zones corresponding
to uncontrollable and controllable growth of malignant cells, as shown in Figure 30. The
existence of threshold values reflects the fact that reaching controllable populations of ma-
lignant cells is only possible by maintaining a minimal dose above a certain threshold value
given by the continuous line shown in Figure 30 and fitting the function

Pb

a f
� 0�10478 
 0�00044�

�0�05343 
 �	
a f

�2�7313 (140)
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Figure 29. Time history records of malignant cells without treatment (a) 	 � 2, k � 0�2, � � 0�05 with
initial conditions x0 � 2�1 and y0 � 2�7 (b) 	 � 2, k � 0�2, � � 0�25 with initial conditions x0 � 5�3 and
y0 � 6�7 (Sotolongo-Costa et al., 2003).

Figure 30 contains some questionable features. For example, the growth of malignant
cells can be controlled with low treatment frequencies (below the threshold values). Further-
more, the growth becomes uncontrollable at given frequencies above those localized in the
region of controllable growth malignant cells.

De Vita et al. (1995), Heim and Kobele (1998), and These (2000) conducted different
studies pertaining to the role of lymphocytes in tumor instability and spontaneous tumor re-
gression and progression from information processing, respectively, in terms of reception,
storage, processing, and transmission. During the working-resting cycle of the lymphocytes,
the immune cells or lymphocytes have two alternating functional phases� active (A) and pas-
sive (P). The actual phase (A or P) depends on whether the lymphocyte is in the working
mode (hunting or counteracting tumor cells) or in the resting mode (recuperating state after
a tumor cell has been counteracted). Each mode consists of two of the informational opera-
tions, and these cyclically repeat as further new tumor cells are presented to the lymphocyte.
The interaction between the lymphocyte and the tumor cell was considered by Roy et al.
(2002). Let the durations of the active and passive phases be t � and t ��, respectively, and the
corresponding rate constants of predatory and resting phases be k1 � 1�t � and k2 � 1�t ��,
respectively. Let the density of tumor cells and that of cytotoxic lymphocytes in phase A be
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Figure 30. Growth behavior of malignant cells with periodic treatment for 	 � 2, k � 0�2, � � 0�05,
with initial conditions x0 � 5�3 and y0 � 6�7. Uncontrollable growth is shown by gray points, controllable
growth by white points. Solid curve represents a fitting function. (Sotolongo-Costa et al., 2003).

M and N, respectively. The intensity Q of tumor cells undergoing processing and extinction
by lympocytes is given by the expression (Roy et al., 2002)

Q � ��M N�k1 � ��M N ��t � (141)

Note that the negative sign signifies extinction or subtraction of tumor cells. The rate of
increase of the predatory lymphcytes (in phase A) and the rate of increase of tumor cells are
given, respectively, by the two equations

dN

dt
� �M N�t � 
 Z�t �� (142)

dM

dt
� q 
 �s M �1 � �M�K ���� r f �M� (143)

where Z�t �� denotes the generation of A-phase lymphocytes from the P-phase lymphocytes
whose density is Z, and q is the rate of conversion of normal cells to malignant ones (ma-
lignant cellular transformation). The expression in square brackets is known as the Fisher
logistic growth term, describing the increase of tumor cells with replication rate s and maxi-
mum carrying capacity or packing capacity K. The last term, r f �M�, is the intensity of tumor
cells killed (Q), where r is the rate of tumor cell destruction and f �M� is a saturating func-
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tion of tumor cell population M. The following dimensionless equation of the scaled tumor
cell density m in terms of the rescaled time t � t �s � q� was obtained by Roy et al. (2002)

dm � -� 
 m �1 � um�� r
�
m� �1 
 m�

�.
dt (144)

where � � qt ���st �, u � t ��K t ��, m � Mt ���t �, and r � �M 
 Z� �st �. The steady-state
solution of equation (144) exhibits a remarkable feature of bistability, i.e. a cusp catastrophe
with critical points � �� r �� and m�.

Garay (1978) and Perelson (1988) have shown that the fluctuation of the tissue environ-
ment and the stochastic nature of the immune system have a crucial effect on the immuno-
logical interactions. In this case, the parameter r will be fluctuating with time and can be
represented by a mean value �r plus a random component, i.e.,

r�t� � �r 
 � H�t� (145)

where � H�t� is the perturbation with standard deviation � . Equation (144) can be written as
a stochastic differential equation in the form

dm�t� �
(
� 
 m �1 � um�� r



m

1 
 m

�)
dt 




�m

1 
 m

�
dB�t� (146)

where B�t� is the Brownian (Wiener) motion process. The corresponding Fokker-Planck
equation of equation (146) is

�p�m� t�

�t
� � �

�m


(
� 
 m �1 � um�� r



m

1 
 m

�)
p�m� t�

�


 � 2

2

�2

�m2

#

m

1 
 m

�2

p�m� t�

$
(147)

The stationary solution of equation (147) is

p�m� � e2�� 2



� �

m

 �� 
 2 � u � r�m � m2

2
�1 � 2u�

� 1

3
um2 
 �2� 
 1 � r � � 2

�
ln m 
 � 2 ln �1 
 m�

�
(148)

This solution can provide useful information regarding the way in which the peak of the prob-
ability density function of tumor cell shifts as one increases the non-equilibrium perturbation
intensity, � , which implies a non-equilibrium phase transition.

This subsection did not exhaust the available research results and the presented results
are only a sample of hundreds of papers published in this field.
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6. CONCLUSIONS

Stabilization and delay of instability of dynamical systems using deterministic or stochastic
excitation has been the focus of many studies by dynamicists, physicists, mathematicians,
and oncologists. The excitation can be additive or multiplicative. This review article has
addressed three major topics: Noise-induced transition, noise-induced stability and noise-
enhanced stability. One should take care not to confuse NIS with NES: NIS implies com-
plete stabilization of an unstable system, while NES is only a postponement of the system
instability. Deterministic and stochastic stability conditions, in the absence of feedback con-
trol, have been developed analytically and verified experimentally. The early paradigm of
stabilization without feedback control is the inverted pendulum and has been considered ex-
tensively in the literature. However, some studies have been devoted to the stabilization of
aeroelastic structures, human walking, and quantum nonlinear couplers.

Significant research activity by physicists and mathematicians has dealt with the problem
of NIT in one-dimensional systems, one-dimensional mappings and nonlinear oscillators
such as ship roll dynamics. Stabilization via multiplicative noise includes postponement of
bifurcation. For nonlinear dynamical systems with widely separated time scales the adiabatic
elimination method has proven to be very effective. Applications of NIS have been limited
to few dynamical systems such as the inverted pendulum, ocean structures, and ship roll
capsizing.

Conditions of NES have been obtained analytically and numerically. Applications of
NES covered systems described by Langevin equation such as tunnel diodes, chemical sys-
tems, the Ising model, biologically motivated models, and tumor-immune systems. The
modern nonlinear theory of dynamics has been extended to the phenomena of tumor desta-
bilization or spontaneous biological regression of malignant focus-lymphocyte interactive
systems. The available models of cancer-immune system interactions have provided some
guidelines to the threshold values of the effective doses and their frequencies. However,
some questionable features were reported in the parameter plane. The presence of random
fluctuations of the immune system has a crucial effect on the immunological interactions. In
addition to NES, the presence of small noise in nonlinear dynamical systems may result in
what is known as stochastic resonance (SR). SR is manifested in electronic systems, tunnel
diodes, and operational amplifiers and a wide range of physical and biological systems.

Noise-enhanced/induced stability needs to be explored in structural systems subjected to
earthquakes, wind forces, and non-Gaussian ocean waves. These systems have been treated
in the literature within the framework of the first passage problem. However, only a lim-
ited number of studies have considered the problem of NIS. The difficulty in establishing
the conditions of NES arises in estimating the mean exit time using Pontryagin’s equation.
Alternatively, one has to develop numerical simulations for different levels of the additive
noise to establish the threshold level for stabilizing such systems. Particular attention should
be directed to developing reliable phenomenological models of cancer-immune system in-
teractions in collaboration with oncologists.

More research needs to be directed to the study of ocean and aerospace systems subjected
to irregular impact loading and non-smooth contact forces. Equally important is the need
to conduct experimental investigations into simple models, with the purpose of developing
phenomenological modeling of boundary condition relaxation. In real applications, most of
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the boundary conditions are not ideal, since one cannot achieve infinite stiffness for clamped
ends. Relaxation of boundary conditions will certainly affect the stability of dynamic systems
under severe environmental conditions and the system dynamical properties become time-
dependent.
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