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Abstract

The compressive sensing (CS) framework aims to ease the burden on analog-to-digital converters
(ADCs) by exploiting inherent structure in natural and man-made signals. It has been demon-
strated that structured signals can be acquired with just a small number of linear measurements,
on the order of the signal complexity. In practice, this enables lower sampling rates that can be
more easily achieved by current hardware designs. The primary bottleneck that limits ADC sam-
pling rates is quantization, i.e., higher bit-depths impose lower sampling rates. Thus, the decreased
sampling rates of CS ADCs accommodate the otherwise limiting quantizer of conventional ADCs.

In this thesis, we consider a different approach to CS ADC by shifting towards lower quantizer
bit-depths rather than lower sampling rates. We explore the extreme case where each measurement
is quantized to just one bit, representing its sign. We develop a new theoretical framework to
analyze this extreme case and develop new algorithms for signal reconstruction from such coarsely
quantized measurements. The 1-bit CS framework leads us to scenarios where it may be more
appropriate to reduce bit-depth instead of sampling rate. We find that there exist two distinct
regimes of operation that correspond to high/low signal-to-noise ratio (SNR). In the measurement
compression (MC) regime, a high SNR favors acquiring fewer measurements with more bits per
measurement (as in conventional CS); in the quantization compression (QC) regime, a low SNR
favors acquiring more measurements with fewer bits per measurement (as in this thesis). A surprise
from our analysis and experiments is that in many practical applications it is better to operate in
the QC regime, even acquiring as few as 1 bit per measurement.

The above philosophy extends further to practical CS ADC system designs. We propose two
new CS architectures, one of which takes advantage of the fact that the sampling and quantization
operations are performed by two different hardware components. The former can be employed at
high rates with minimal costs while the latter cannot. Thus, we develop a system that discretizes
in time, performs CS preconditioning techniques, and then quantizes at a low rate.
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CHAPTER 1

Introduction

T
he great shift to digital processing over the last few decades has created an insatiable
demand for the digitization of ever wider bandwidth signals [1]. In turn, this has led
to an increased burden on signal acquisition devices that rely on the Shannon sampling
theorem which requires that such devices must sample at least at the Nyquist-rate,

twice the bandwidth of the signal, for any bandlimited signal [2, 3].1 This requirement forces
analog-to-digital converters (ADCs) to sample faster to capture wideband signals for later digital
processing. It is no longer feasible to build devices that meet our demands for size, weight, power,
and bandwidth while still adhering to classical notions of signal acquisition [6, 7].

Thankfully, we have come a long way in our understanding of signals since Shannon’s original
theory. The class of bandlimited signals is extremely broad, consisting of all signals with some
maximum frequency. For example, the sampling theorem enables us to accurately capture an
instance of bandlimited noise, even though there may be little utility for such a signal. In fact, most
natural and man-made signals have some inherent additional structure beyond bandlimitedness.
In particular, in this thesis we are interested in signals that when transformed into some domain
(via a linear transformation), have energy that is primarily concentrated among just a few large
coefficients, and all other coefficients can be approximated as zero. This particular description of
signal structure is extremely practical since transforms exist that firmly put many natural signals
such as images [8, 9] and man-made signals [10, 11] in this class. Indeed, the exploitation of this form
of structure is the basis for transform coding and compression, e.g., JPEG image compression [12,
13].

The confluence of rigorously defined structured signal models and the desire to circumvent the
Shannon-Nyquist limitation has prompted a new signal acquisition framework, compressive sensing

1While Shannon’s theory of communication (ca. 1949) is perhaps the most popularly cited origin of this idea,
similar sampling theorems were proven by Whittaker [4] in 1915 and Kotelnikov [5] in 1933.

1



CHAPTER 1. INTRODUCTION

(CS) [14, 15]. A key insight is rather than attempting to acquire all bandlimited signals, CS
assumes that we are only interested in signals with the structure described above. By reducing the
size of class of signals of interest, we should be able to drive down the number of samples required
to ultimately distinguish between the signals. The CS framework harnesses this insight via three
fundamental components:

1. underdetermined linear measurement systems, i.e. we obtain the measurements

y = Φx+ e, (1.1)

of the signal x ∈ RN where Φ is an M × N matrix with M � N that models the linear
physical sampling system, and with measurement error e ∈ RM ;

2. signal models, the most simple model being that comprising of all K-sparse signals, i.e., signals
for which only K elements are non-zero; and

3. algorithmic reconstruction, such as convex optimization or greedy algorithms. Briefly, to re-
construct a signal estimate x̂ from y we generally ask for the sparsest solution such that its
measurements, Φx̂, are the same as, or within some close distance of the observed measure-
ments y. Such algorithms are non-linear and iterative.

A large body of work has been devoted to the study of each of these components, e.g., by i)
characterizing conditions on Φ that provide robust mappings of sparse signals to lower dimensions
and designing physical sampling systems that satisfy such conditions [16–21]; ii) proposing more
refined classes of highly structured signals [22–24]; and iii) providing reconstruction guarantees and
fast solvers for convex programs [25–28] as well as greedy and first order algorithms [29–31]. We
will review some of these topics in more detail in Section 1.2.

CS promises to lessen our sampling burden by decreasing sampling rates. The simple conse-
quence of (1.1) is that when the acquisition of each measurement is “expensive,” then we benefit
by only sensing M values rather than N . For instance, it is possible to design a physical sampling
system Φ̄ such that y = Φx = Φ̄(x(t)) where x is a vector of Nyquist-rate samples of a bandlimited
signal x(t), t ∈ R. In this case, (1.1) translates to low, sub-Nyquist sampling rates. This is a poten-
tial boon for wideband acquisition as mentioned earlier, since it enables current ADC technology
to acquire larger bandwidths than was possible before, or alternatively enables a higher precision
ADC to be used in current wideband systems.

The significant attention given to reducing the number of acquired measurements only explic-
itly acknowledges half of the acquisition process. In practice analog-to-digital conversion really
comprises of two steps: i) discretization in time (sampling), and ii) discretization in amplitude
(quantization). Thus, just as in any conventional sampling system, CS measurements are quan-
tized, i.e., each measurement is mapped from a real value (over a potentially infinite range) to
a discrete value over some finite range. For example, in scalar quantization, a measurement is
mapped to one of 2B distinct values, where B denotes the number of bits per measurement, i.e.,
the bit-depth. The finite range of the quantizer results from a finite number of bits as well as
physical limitations of hardware components.

2



There are several interesting problems and attributes associated with quantization (and physical
quantizers) that are not considered by the prototype CS framework described above:

• The quantizer begets the dynamic range of the system: Quantization introduces two kinds of
error: quantization error and saturation error. The former is the result of measurements that
are within the range of the quantizer; this error is bounded. The latter is the result of mea-
surements with amplitudes beyond the range of the quantizer, i.e., saturated measurements;
this error is unbounded and in many case more detrimental to performance than quantization
error.

The dynamic range of a system is typically defined as the ratio maximum amplitude tone to
the minimum amplitude tone that can sampled with some given accuracy. Thus, the finite
range of the quantizer places strict limits on the dynamic range of the ADC system.

Dynamic range tells us how much quieter the “quietest” signal can be than the “loudest.”
This is a fundamental metric of system performance for many practical applications [32].

• The quantizer is the ADC bottleneck : The ADC is beholden to the quantizer [6, 7]. Quantiza-
tion significantly limits the maximum speed of the analog-to-digital converter (ADC), forcing
an exponential decrease in sampling rate as the number of bits is increased linearly [7]. Fur-
thermore, the quantizer is the primary power consumer in an ADC. Thus, more bits per
measurement directly translates to slower sampling rates and increased ADC costs.

• The quantizer is sensitive to noise: High bit-depth quantization is more susceptible to non-
linear distortion in the ADC electronics [33].

By reducing the sampling rate, the CS framework implicitly assumes we can relieve some of the
burdens associated with the quantizer.

In this thesis, we take a unified approach to CS ADCs, considering the sampling rate, finite range
quantization, and signal noise when studying CS systems. A driving theme behind this work is that
the tradeoff between sampling and quantization can be manipulated in both directions; simply put,
reducing the bit-depth of the quantizer also reduces our sampling burden and furthers the goals
of CS acquisition devices. We develop the following main ideas (each roughly corresponding to a
chapter), that ultimately lead to this insight.

CS enables higher dynamic range systems. By reducing the sampling rate, CS enables
the use of a higher bit-depth or higher dynamic-range quantizer [7]. If we are to claim any benefit
by this fact, then it is of fundamental importance that the CS measurement system Φ can take
advantage of any additional dynamic range granted by a better quantizer. We rigorously study the
dynamic range of CS systems and determine that indeed it is on the same order as conventional
systems for a uniform quantizer at a given bit-depth. This then verifies that by reducing the
sampling rate, we may indeed obtain an improvement in the dynamic range of the system.

It is possible to extend the dynamic range of CS systems beyond the claims above. In CS
systems, saturated measurements can either be rejected before reconstruction or included in a re-
construction algorithm. Robust signal reconstruction is possible in both cases [34, 35]. Intuitively
then, if we increase the input signal gain (equivalent to increasing the scale of the measurements)

3



CHAPTER 1. INTRODUCTION

such that the quantizer saturates significantly, yet we still achieve similar reconstruction perfor-
mance, then the dynamic range of the system has effectively been increased. The question arises:
how many measurements are allowed to saturate?

Saturate all measurements ↔ Quantize measurements to just 1 bit. Although unin-
tuitive, it is possible to saturate all of the CS measurements. In this case, we effectively retain just
1 bit of information per measurement, representing its sign. Thus, an alternative interpretation
is that we can drive the depth of quantizer down such that it is a simple comparator, testing for
measurements above or below zero. Previous notions of dynamic range no longer apply since any
positive scaling of the signal will result in the same set of measurement signs, i.e., the scale of the
signal will be obliterated. To reconstruct we search for the sparsest signal that yields the same
measurement signs when projected through the measurement system. We call this consistent re-
construction. Since the scale of the signal is unknown and arbitrary, we only search for signals with
unit energy. We demonstrate that there are is a large class of 1-bit CS mappings that enable stable
reconstruction in this way and we further demonstrate that practical algorithms can be designed
to solve this reconstruction problem. Finally, we extend the methods for 1-bit CS to measure-
ments that have been quantized at arbitrary bit-depths, or with arbitrary numbers of saturations,
unknown a priori. We dub this reconstruction technique saturation-agnostic CS.

Reduce the bit-depth, increase the sampling rate. 1-bit CS provides a fresh perspective
on CS ADCs. Driving down the bit-depth to the extreme case of a single bit per measurement
enables extremely fast hardware quantizers; now the quantizer is a simple comparator. Thus, in
stark contrast to the typical CS assertion that we should reduce the sampling rate and increase the
bit-depth of the quantizer we have demonstrated that indeed the reverse possible. We take this yet
a step further to answer the question: when should we do this?

Signal noise subject to noise folding in CS, i.e., it is amplified by underdetermined linear
systems [36–38]. This means that as the sampling rate decreases, we incur an increasing penalty
due to input signal noise. Employing more bits at the quantizer when there is more noise means
the extra precision is not being used efficiently. Sampling at a higher rate with an extremely low
bit-depth addresses this problem. Noise folding either becomes less prevalent, or in the oversampled
case, is not present at all. Meanwhile, the burdens of higher-rate sampling are still relieved by the
low bit-depth of the quantizer.

CS ADCs: Disconnect the sampler from the quantizer. Sampling and quantization are
carried out by two distinct hardware components in physical ADCs. Specifically, the sample and
hold (S/H) component discretizes in time while the hardware quantizer discretizes in amplitude. As
previously noted, the quantizer is the main ADC bottleneck. Indeed, S/H components can operate
accurately at extremely high speeds and low power, as opposed to the quantizer. We propose two
new CS ADC architectures that take advantage of this insight. While previous CS ADC designs use
an off-the-shelf ADC at a low rate, we separate the two ADC discretization steps. The sampling
components operate at a high rate while the quantizer operates at a low rate. We demonstrate
that this yields new CS ADCs that avoid many problems associated with earlier designs.

In this thesis we carefully explore the ideas described above. Along the way we develop new
theoretical frameworks for analyzing dynamic range and 1-bit CS, we develop new algorithms for
sparse signal reconstruction, and we perform extensive simulations to demonstrate the validity of
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our claims. We now briefly describe in ever so slightly more detail what topics and results can be
found in each chapter.

1.1 Roadmap and Main Contributions

For the remainder of this chapter in Section 1.2, we review and define the key components and
results of the CS framework that will be made use of later in this thesis. We cover sparse signal
models and undetermined linear sensing models. We then move on to introduce a useful property
of the matrix Φ, the restricted isometry property (RIP), for which robust signal reconstruction from
many algorithms is guaranteed. We review the convex optimization formulations that can be used
to reconstruct sparse signals as well as greedy and first order algorithms that are often used in
practice and will be adapted for our purposes. Finally we discuss the noise folding effect in these
systems.

In Chapter 2 we analyze the dynamic range of CS systems with finite-range uniform scalar
quantizers. Our new contributions are as follows. We begin by defining a rigorous and deterministic
notion of dynamic range. This enables us to avoid more heuristic dynamic range analyses that
make assumptions about the signal (or measurement) distribution. We then go on to derive the
dynamic range of a conventional system and demonstrate that it reasonably similar to the more
conventional dynamic range definitions. The dynamic range of conventional systems provides a
basis for comparison against CS systems. Thus, given our definition, we next derive the dynamic
range for a large class of CS systems (those depending on the RIP of Φ discussed in Section 1.2).
Combining these results we can then claim that the dynamic range of CS systems is on the same
order as that of conventional sampling systems. We follow up with a short discussion on the
peak-to-average ratio (PAR) and how for some CS systems this is improved on average.

We conclude the chapter with a review of the democratic property of random matrices and
explain how this can be exploited to further increase the dynamic range of CS systems [34]. We
derive an analytical expression for the improvement in terms of the previous analysis. We ex-
perimentally verify the claims in the chapter and demonstrate the improvement gained by both
increasing the quantizer bit-depth as a function of decreasing measurement rate as well as em-
ploying the democratic saturation-robustness techniques. A surprising empirical result leads us
towards the philosophy espoused in the next two chapters: we should consider decreasing bit-depth
and increasing measurement-rate.

In Chapter 3 we study 1-bit quantization for CS measurements. We begin by explaining how
saturating all measurements corresponds precisely to 1-bit quantization. We then formally define
the 1-bit framework as in [39] and explain several benefits of this framework. Our new contributions
are as follows. First we provide optimal reconstruction bounds from 1-bit measurements from
any mapping. We then demonstrate that Gaussian Φ (among a few others) will enable us to
satisfy the previous bounds in the noiseless case. We next introduce a new property for 1-bit
CS systems that we dub the Binary ε-Stable Embedding (BεSE) and demonstrate how if a system
satisfies this property, then robust reconstruction is guaranteed. We further demonstrate that again
Gaussian sensing systems satisfy this property with high probability and we derive the number of
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measurements required for this to hold. We then apply our results to formulate guarantees from
noisy measurements and signals that are not strictly sparse. We next derive a new reconstruction
formulation that extends the framework to be used not only in the fully saturated case, but can be
applied to problems with arbitrary saturations, i.e., saturation-agnostic sensing.

We continue on to more practical aspects of the 1-bit framework by introducing two new al-
gorithms for signal reconstruction: Restricted-Step Shrinkage (RSS) and Binary Iterative Hard
Thresholding (BIHT). For the former algorithm we give convergence guarantees and for the latter
algorithm we discuss what problem it is attempting to solve and why the reconstruction error per-
formance may differ between the two. We additionally motivate the formulation of several convex
reconstruction algorithms. We conclude the chapter and our contributions with an extensive suite
of simulations, comparing the 1-bit algorithms against previously proposed algorithms and studying
the performance in comparison with higher bit-depth uniformly quantized CS systems. We also
verify the validity of the saturation-agnostic approach.

In Chapter 4 we explore the tradeoff between bit-depth and measurement rate. We find that
by considering signal noise, we expose a regime where 1-bit CS outperforms more conventional CS
systems. Our new contributions are as follows. We study the scenario where there is a fixed bit-
budget, a scalar quantizer, and input signal noise. We begin by developing a theoretical bound on
the reconstruction error from quantized CS measurements. We then show numerically that the min-
imum of of this bound is attained for lower bit-depths as the input measurement noise is increased.
In fact, these simulations demonstrate that 1-bit CS outperforms conventional CS when the input
SNR is low enough. Thus, we can categorize CS into two compression regimes, corresponding to the
input SNR: measurement compression (MC) when input SNR is high, and quantization compres-
sion (QC) when input SNR is low. The former finds application when measurements are expensive
to sense and high bit-depths are inexpensive, while the latter finds application when measurements
are inexpensive to sense and high bit-depths are expensive.

In Chapter 5 we introduce two new CS architectures. First, we introduce the Compressive
Multiplexer (CMUX) that can be used to acquire signals from a multi-channel signal model. We
discuss the benefits of this design over previous designs. We also discuss several algorithms that can
be used with this system due to its unique structure. Second, we introduce the Polyphase Random
Demodulator (PRD), a new take on a more “classical” system the Random Demodulator (RD) [18].
The key insight driving this design is that the S/H hardware can be separated from the quantizer,
providing significant gains over the RD in calibration and computer modeling for reconstruction.
We also discuss the relationship between the CMUX and the PRD. We conclude this chapter with
simulations demonstrating the validity of the CMUX and PRD designs.

Without further delay, we now throw down a plain introduction to vanilla CS.

6



1.2. COMPRESSIVE SENSING (CS) TOOLKIT

1.2 Compressive Sensing (CS) Toolkit

1.2.1 Signal and sensing models

In the CS framework [14, 15], we acquire a signal x ∈ RN via the linear measurements

y = Φx+ e, (1.2)

where the underdetermined matrix Φ ∈ RM×N models the physical sampling system, y ∈ RM is
the vector of measurements acquired, and e ∈ RM is a measurement noise vector.

In the most basic CS setup, we are interested in K-sparse signals, i.e., x ∈ ΣK where ΣK :=
{x ∈ RN : ‖x‖0 := |supp(x)| ≤ K}.2 However in practice, signals may not be strictly sparse
but rather may contain many small coefficients that do not contribute considerable energy to the
signal, or when sorted by magnitude, the signal coefficients decay with some power law, i.e., have
elements such as xn ∝ |n|−1/p for p > 1. Such signals that can be well-approximated by just K
largest in magnitude coefficients are called compressible signals. We will denote the best K-term
approximation of x as xK . Finally, in many cases x will not be canonically sparse; instead it can be
sparse is some orthonormal transform basis Ψ. In this case we write x = Ψα where α ∈ ΣK . Since
we still sense x, the measurements can be written as y = ΦΨα+ e, and thus the matrix ΦΨ is used
in reconstruction when solving for a sparse estimate α̂. Unless otherwise noted, for the remainder
of this thesis without the loss of generality, we fix Ψ = I, the identity matrix, implying that x = α.

Recently there has been significant interest in exploiting stronger signal models. In some cases,
there is additional structure known a priori about the non-zero coefficients. For instance, model-
based signal reconstruction algorithms have been proposed for the case when some explicit relation-
ship between the support of the non-zero coefficients is known [24]. This has been used for recovery
of spectrally sparse signals [22] and neural spike trains [23]. Another popular signal model has
been that of group-sparsity where the non-zero coefficients are clustered together [40, 41]. These
stronger models further empower the CS framework to produce more accurate estimates with the
same set of measurements but are primarily beyond the scope of this thesis. We only mention these
models since it is possible that many of the methods described in this thesis can be extended to
make use of these models and could be considered in practical instantiations.

1.2.2 The restricted isometry property (RIP)

Not all underdetermined sensing systems Φ are admissible. For instance, it is clear that if any
signal x ∈ ΣK lies in the nullspace of Φ, then it can never be recovered with bounded error. While
Φ can sometimes be analyzed in conjunction with a reconstruction algorithm to provide theoretical
guarantees [16, 18, 42, 43], we can study a more generic property of Φ, the so-called restricted
isometry property (RIP); the sufficient condition that the norm of the measurements is close to the
norm of the signal for all sparse x, i.e.,

(1− δ)‖x‖22 ≤ ‖Φx‖22 ≤ (1 + δ)‖x‖22, (1.3)

2‖ · ‖0 denotes the `0 quasi-norm, which simply counts the number of nonzero entries of a vector.
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for all x ∈ ΣK [44]. As a minimal sanity check, notice that under this definition no sparse signal will
be in the nullspace of Φ. In words, the RIP requires Φ to act as an approximate isometry on the set
of K-sparse vectors. Remarkably, it has been shown that if we set M ≥ CδK log(N/K) (where Cδ
is some constant) and draw the elements of Φ from a sub-Gaussian distribution, then these matrices
will indeed satisfy the RIP with high probability [45, 46]. Indeed, practical measurement systems
with significantly more structure may also be admissible. For instance, hardware inspired designs
have also been shown to hold this property [18, 47–50]. We will discuss some of these systems as
well as some new architectures in Chapter 5.

The RIP can be expressed in general terms, as a δ-stable embedding. Let δ ∈ (0, 1) and X,S ⊂
RN . We say the mapping Φ is a δ-stable embedding of X,S if

(1− δ)‖x− s‖22 ≤ ‖Φx− Φs‖22 ≤ (1 + δ)‖x− s‖22, (1.4)

for all x ∈ X and s ∈ S. The RIP requires that (1.4) holds for x± s ∈ ΣK ; it is a stable embedding
of sparse vectors. Expressing the RIP in this way enables further interpretation of this property.
Specifically, it is clear from (1.4) that the RIP ensures that the distance between any two length-N
K-sparse vectors is preserved when they are mapped down to the lower dimensional space. This
interpretation will be important when we study 1-bit quantized CS measurements in Chapter 3.

1.2.3 Signal reconstruction via convex optimization

To reconstruct an estimate x̂ from y when there is no noise, i.e., ‖e‖2 = 0, we could näıvely solve
for the sparsest signal that satisfies (1.2),

x̂← argmin
x∈RN

‖x‖0 s.t. y = Φx; (`0-min)

however, this non-convex program exhibits combinatorial complexity in the size of the problem
[51]. Instead, we solve Basis Pursuit (BP) by relaxing the objective in (`0-min) to the `1-norm

x̂← argmin
x∈RN

‖x‖1 s.t. y = Φx; (BP)

the result is a convex, polynomial-time algorithm [52]. A key realization is that, under certain
conditions on Φ (e.g., the RIP), the BP solution will be equivalent to that of (`0-min) [14]. This
is remarkable since we seemingly have solved a combinatorial problem in polynomial time. Indeed,
this is a key result that generated significant interest during the nascent years of CS.

The RIP suffices to ensure that a variety of other convex optimization algorithms can successfully
recover any sparse or compressible signal from noisy measurements. In particular, for bounded
errors of the form ‖e‖2 ≤ ε, the convex program Basis Pursuit Denoising (BPDN)

x̂← argmin
x∈RN

‖x‖1 s.t. ‖Φx− y‖2 ≤ ε (BPDN)

can recover a sparse or compressible signal x with bounded error. The following theorem makes this
notion precise by bounding the recovery error of x with respect to the measurement noise norm,
denoted by ε, and with respect the best K-term approximation xK .

8



1.2. COMPRESSIVE SENSING (CS) TOOLKIT

Theorem 1 (Theorem 1.2 of [44]). Suppose that Φ satisfies the RIP of order 2K with δ <
√

2− 1.
Given measurements of the form y = Φx+ e, where ‖e‖2 ≤ ε, the solution to (BPDN) obeys

‖x̂− x‖2 ≤ C0ε+ C1
‖x− xK‖1√

K
, (1.5)

where

C0 =
4
√

1 + δ

1−
Ä√

2 + 1
ä
δ
, C1 = 2

1 +
Ä√

2− 1
ä
δ

1−
Ä√

2 + 1
ä
δ
. (1.6)

Many other convex formulations for reconstruction from noisy measurements have been pro-
posed with different robustness guarantees depending on the noise model of e. [53, 54]. Furthermore,
many fast algorithms have been developed to solve these problems [26–28, 55].

We conclude this subsection on convex reconstruction algorithms by mentioning another ex-
tremely popular reconstruction formulation, known as the LASSO [56],

x̂← argmin
x∈RN

1

2
‖y − Φx‖22 + λ‖x‖1. (LASSO)

For any ε in (BPDN), there is an appropriate choice of λ such that the solutions to (BPDN) and
(LASSO) are equivalent [57, 58]. A wide range of algorithms have been design to solve this problem
rather than (BPDN) [25, 59].

Although (LASSO) can be thought of as a relaxation of (BPDN) where the constraints have been
moved into the objective function, the LASSO actually has its roots in statistical regression and is
often interpreted as solving the least squares problem with a sparse penalty, or `1-regularizer. It has
long been known in the statistics community that the `1 penalty biases in favor of sparse solutions,
but a complete analytical framework for signal reconstruction with deterministic guarantees such
as those given in Theorem 1.5 are a new result of the CS framework.

1.2.4 Signal reconstruction via greedy and first order algorithms

While convex optimization programs such as (BPDN) are powerful methods for CS signal recovery,
there also exist a variety of alternative algorithms that are commonly used in practice and for
which performance guarantees comparable to that of Theorem 1 can be established. In particular,
greedy algorithms such as CoSaMP [29] and first order optimization algorithms such as iterative
hard thresholding (IHT) [30, 60] are known to satisfy similar guarantees under slightly stronger
assumptions on the RIP constants. We briefly describe a prototypical greedy CS algorithm and
IHT since algorithms in later chapters will inspired by these methods.

Greedy Algorithms. We call an algorithm greedy if it makes decisions that are locally optimal
in each iteration. While greedy algorithms are popular because they are fast and effective in
practice, under certain circumstances these algorithms can produce solutions that are also globally
optimal [61]. Algorithm 1 summarizes the general steps employed by a CS greedy algorithm, such as
CoSaMP. The basic steps are as follows. Form a signal proxy, usually by computing hs+1 = ΦT ys at
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Algorithm 1: Prototype CS greedy algorithm

S0 Initialize
Set initial solution x0 := 0
Set iteration s := 0

while not converged do
S1 Form signal proxy

hs+1 := ΦT ys

S2 Update coefficient support set Ω
e.g., add location of largest element in hs+1 to Ω (in OMP [16, 61])

S3 Update coefficient estimate
e.g., via pseudo-inverse x̂s+1|Ω := Φ†Ωy

s

S3 Subtract current estimate from measurements
ys+1 := ys − Φxs+1

S4 Update iteration count
Set s := s+ 1

iteration s. This vector looks like a noisy version of the signal and enables fairly accurate detection
of signal support, of course depending on ‖e‖2 and K. We next refine our support set estimate Ω.
In orthogonal matching pursuit (OMP) [16, 61] this is done by simply selecting the support of the
single largest in magnitude element of hs+1 and adding it to the support set, while in CoSaMP, 2K
elements are selected simultaneously and added to support set. In the case of CoSaMP this set is
later pruned. After updating the support estimate, we refine the coefficient amplitude estimates.
Typically to do this, the optimal linear estimator, least squares is performed

x̂|Ω ← min
x|Ω

1

2
‖y − ΦΩx|Ω‖22, (1.7)

where ΦΩ denotes the submatrix of Φ formed by selecting the columns of Φ according to the index
set Ω and similarly x|Ω represents the corresponding subvector of x. Thus, the estimator is only
applied to the non-zero coefficients and the resulting linear system is overdetermined. This can be
computed via

x̂s|Ω ← Φ†Ωy
s, x̂s|ΩC = 0, (1.8)

where ΦΩ denotes the submatrix of Φ formed by selecting the columns of Φ according to the index
set Ω, x̂s|Ω is the corresponding subvector of x̂s, ΩC is the complement set to Ω, and † denotes
the Moore-Penrose pseudo-inverse. This can also be computed using an algorithmic technique
such as the conjugate-gradient method [62]. Finally, once the coefficients supports and values are
estimated, we subtract their contribution from the measurements, ys+1 = ys − ΦΩx̂

s|Ω.

Iterative Hard Thresholding (IHT). Algorithm 2 summarizes the IHT algorithm. In the
first step we add the proxy h (from the greedy algorithm) to the current signal estimate resulting
in as+1 = xs + ΦT (y − Φxs), at iteration s. We then simply threshold this estimate by setting all
elements of as+1 to zero except for the largest K elements via the function ηK(·). The first step is
effectively a gradient descent for the function 1

2‖y −Φx‖22. Thus, IHT for CS can be thought of as
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Algorithm 2: Iterative Hard Thresholding (IHT) [30, 60]

S0 Initialize
Set initial solution x0 := 0
Set iteration s := 0

while not converged do
S1 Update estimate

as+1 := xs + ΦT
Ä
y − Φxs

ä
S2 Hard threshold – select largest K

xs+1 := ηK(as+1)
S3 Update iteration count

Set s := s+ 1

trying to solve the problem

x̂← argmin
x∈RN

1
2‖y − Φx‖22 s.t. ‖x‖0 = K. (1.9)

Other first order algorithms such as approximate message passing (AMP) proceed in a similar
manner, sometimes adding additional terms to the first step and adapting how many coefficients
are selected in each iteration [31].

1.2.5 Oracle-assisted signal reconstruction

As we saw in the greedy algorithm, CS reconstruction can be thought of as consisting of two steps:
first finding the non-zero coefficient locations (the support) and then estimating the coefficient
values. If we can correctly identify the true signal support, then the optimal linear estimate for
coefficient values can be computed via least squares. Indeed, if an oracle were to provide the
true support Ω, then no linear CS reconstruction algorithm can perform better than (1.8). Thus,
reconstruction with known signal support is sometimes called oracle-assisted reconstruction [38, 53].
Some of our analysis will be primarily in terms of the performance of this best-case reconstruction
algorithm.

1.2.6 Noise folding

Signal noise is amplified by underdetermined linear measurement systems [36]. Specifically, it has
been shown that if n is white Gaussian noise with variance σ2

n, then for CS measurement systems,
Φn is also white, Gaussian, and each noise measurement has increased variance σ2

Φn ≈ N
M σ

2
n [37, 38];

this increase in noise power is often called noise folding. It can be shown that for Gaussian noise,
the oracle reconstruction error is proportional to σ2

Φn, thus the reconstruction incurs a penalty due
to the noise folding. Roughly speaking, this result implies that during reconstruction we lose about
3dB of signal-to-noise ratio (SNR) as the number of measurements decreases by half. The key series
of results that make this so are as follows.
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Suppose that z = Φx − y, where z is a zero-mean random vector with uncorrelated (white)
entries, each having variance σ2

z . Furthermore suppose that Φ has the RIP of order K, and that x
is K-sparse. Then Theorem 4.1 of [38] demonstrates that oracle-assisted reconstruction will have
expected error

Kσ2
z

1 + δ
≤ E(‖x− x̂‖22) ≤ Kσ2

z

1− δ
. (1.10)

A key component of our analysis in Chapter 4 will be understanding the variance of the noise term z
that arises from quantized noisy measurements. The expression (1.10) then gives the intuition that
the expected reconstruction error behaves on the order of the variance of the error per measurement
σ2
z .

The variance σ2
n of the signal noise can be easily related to the variance of the measured noise

σ2
Φn. If n is white with mean zero and variance σ2

n, and Φ has orthonormal rows, i.e., ΦΦT = N
M IM ,3

then it is straightforward to show that the measured noise is also white and zero mean and has
variance

σ2
Φn =

N

M
σ2
n. (1.11)

Note that the measured noise is only uncorrelated (i.e., white) when M ≤ N ; indeed, the condition
ΦΦT = N

M IM can only hold when M ≤ N .

In [38], the authors combine the results of (1.10) and (1.11) to obtain a bound on the oracle-
assisted reconstruction error due to noise folding. In Chapter 4 we will take a similar approach,
however we will additionally include the effects of quantization. Furthermore, because our quanti-
zation error is not necessarily uncorrelated, we also generalize (1.10) to obtain an upper bound on
the oracle reconstruction error with correlated measurement noise.

3The so-called tight frame condition ΦΦT = N
M
IM is not overly restrictive, since for any RIP matrix U , a matrix

that has both the same row-space as U and the tight frame condition can be derived from U [38].
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CHAPTER 2

Quantization and Dynamic Range in Compressive Sensing

P
ractical, finite range quantization imposes a finite dynamic range on a system, i.e.,
there is an intimate relationship between the scale and the precision of the signal that
can be represented. A fundamental advantage of CS is that it enables a significantly
lower sampling rate for sparse signals, which in turn enables the use of higher-resolution

ADCs [7]. By exploiting this fact, a CS acquisition system should be able to provide a significantly
larger dynamic range than a conventional system. In this chapter,1 we justify this claim in two
ways. First, we define and review finite range scalar quantization. Second, we provide a theoretical
justification that the dynamic range of a conventional CS systems is on the same order as for a
conventional ADC. We can then conclude that using a lower rate ADC enables higher bit-depth
quantizers and thus the dynamic range is increased. Third, we demonstrate that because a large
class of randomized CS systems are democratic, we can in fact increase the dynamic range of some
CS systems in unconventional ways.

2.1 Finite-Range Scalar Quantization

In practice CS measurements are mapped to bits via a physical quantizer. A more precise model
of the CS acquisition step (1.2) might be written as

yQ = QB(Φ(x+ n) + e), (2.1)

where QB : R → A is a B-bit scalar quantization function (applied element-wise in (2.1)) that
maps real-valued CS measurements to the discrete alphabet A with |A| = 2B. We have additionally

1This chapter includes work done in collaboration with Mark Davenport, John Treichler, Petros Boufounos, and
Richard Baraniuk [34, 38].
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(a) (b)

Figure 2.1: (a) Midrise scalar quantizer. (b) Finite-range midrise scalar quantization function QB with
saturation level G and quantization interval ∆ = 2−B+1G.

included signal noise n ∈ RN that we will discuss in more detail in Chapter 4 and will be assumed
to be zero unless otherwise noted. Since in a well-designed hardware system the primary source
of measurement noise derives from quantization and for clarity of exposition, we will also assume
‖e‖2 = 02 for the remaining chapters.

In practice, quantizers have a finite dynamic range, dictated by hardware constraints such as
the voltage limits of the devices and the finite number of bits per measurement of the quantized
representation. Thus, a finite-range quantizer represents a symmetric range of values |g| < G,
where G > 0 is known as the saturation level [63]. Values of g between −G and G will not saturate,
thus, the quantization interval is defined by these parameters as ∆ = 2−B+1G. In this chapter,
without loss of generality we assume a midrise B-bit uniform quantizer, i.e., the quantization levels
are qk = ∆/2 + k∆, where k = −2B−1, . . . , 2B−1 − 1. Note that if |g| ≤ G, then we have that
|g −QB (g) | ≤ ∆/2, but if |g| > G then |g −QB (g) | = |g| − (G−∆/2). Figure 2.1(a) depicts the
mapping performed by a midrise quantizer with interval ∆ and Figure 2.1(b) depicts a finite range
variant with saturation level G.

The quantizer induces two forms of error on the measurement: quantization and saturation (or
clipping) error. The former is due to the finite precision of the quantizer and the latter is due
to the finite range of the quantizer. One way to account for quantization error is to treat it as
bounded noise and employ robust reconstruction algorithms. Alternatively, we might try to reduce
the error by choosing the most efficient quantizer for the distribution of the measurements. Several
reconstruction techniques that specifically address CS quantization have also been proposed [34, 64–
69]. Saturation error is usually avoided by scaling the measurements such that few or no saturations
occur. We will see shortly that in CS there are alternative techniques for dealing with saturations.

2The general trends presented in this thesis remain unchanged when ‖e‖2 > 0, unless otherwise noted.
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2.2 Dynamic Range of CS-Based Acquisition Systems

We begin our analysis by first providing a rigorous and general definition of dynamic range.
Roughly, we define the dynamic range as the ratio of the maximum to the minimum signal power
levels that can be handled with “full fidelity”.3 In order to make this notion precise, as previously
stated, we will ignore the effects of any noise or nonlinearities from the other ADC components and
examine only the impact of quantization. This is a fair assumption, since a key goal in the design
of an ADC is that the quantizer be the only component that limits the device’s dynamic range.

Our definition of dynamic range has two properties that aid us in the analysis of CS systems: (i)
the dynamic range does not depend on a stochastic quantization error model, and (ii) any reduction
of quantization error yields a corresponding improvement in dynamic range, i.e., the dynamic range
of the quantizer effectively determines the dynamic range of the system. With this definition in
hand, we examine quantization in both conventional and CS systems and provide lower bounds on
the dynamic range of each. Our key finding in this section will be that, all things being equal, the
dynamic range of a CS acquisition system is generally no worse than that of a conventional system.
Thus, since CS enables lower sampling rates for sparse signals, we can employ a higher-resolution
ADC and attain a larger dynamic range.

2.2.1 A deterministic approach to dynamic range

To formulate our definition of dynamic range, we first analyze the error induced by the quantization
of x. For a given x, we define the reconstruction SNR (RSNR) as

RSNR =
‖x‖22
‖x̂− x‖22

, (2.2)

where x̂ is the output of our CS reconstruction algorithm and the signal-to-quantization noise ratio
(SQNR) of the quantizer as

SQNR(x) =
‖x‖22

‖x−QB (x)‖22
. (2.3)

We make the dependence of the SQNR on x explicit, since our definition of dynamic range will be
based on how the scaling of x affects the SQNR. First, however, we establish a practical bound on
the best SQNR attainable for a given G, ∆, and x.

Lemma 1. Let x ∈ RN be arbitrary. There always exists a β > 0 such that

SQNR(βx) ≥ 1

γ(x)2

Å
2G

∆

ã2

, (2.4)

where

γ(x) =
‖x‖∞

‖x‖2 /
√
N
. (2.5)

3In this section we are analyzing the CS-based receiver’s dynamic range as a system. This should not be confused
with the dynamic range of a signal, which in our framework could be quantified as the ratio of the largest to smallest
entry in x.

15



CHAPTER 2. QUANTIZATION AND DYNAMIC RANGE IN COMPRESSIVE SENSING

The proof of this lemma can be found in Appendix A.1.

The quantity γ in (2.5) is known as the peak-to-average ratio (PAR) of x. Also known as the
crest factor or loading factor [70], it is a measure of the ratio between a signal’s “average energy”
to its peak.

While the expression in (2.4) may look foreign to some, this bound is similar to standard results
for peak SQNR. Recall that 2G/∆ = 2B. Thus, if we express (2.4) in dB, then we observe that by
setting β appropriately we can obtain

SQNR(βx) ≥ 20B log10(2)− 20 log10(γ(x)) & 6.02B − 20 log10(γ(x)). (2.6)

This corresponds to the well-known result that the peak SQNR grows by approximately 6dB per
quantizer bit [70]. Furthermore, although the SQNR bound in (2.6) provides only a lower bound on
the SQNR, it generally agrees with the results in the literature that assume probabilistic models on
the signal x and/or the quantization noise. For example, a more conventional probabilistic analysis
would assume that the quantization noise has a uniform distribution. In this case, one can derive
the expression

SQNR(βx) ≈ 6.02B − 20 log10(γ(x)) + 4.77,

where the additive constant 4.77 reflects the improvement made possible over our worst-case bound
by placing a uniform distribution on the quantization noise [70]. For our purposes below, a lower
bound on the SQNR is sufficient. We view the deterministic nature of our bound as a strength
allowing us to avoid any questionable assumptions concerning the quantization noise distribution.
It is important to note that by considering only the deterministic, worst-case error as in (2.6), the
resulting expressions will generally differ from more standard results based on uniformly distributed
quantization noise by 4.77dB.

We now show how we can use the SQNR to offer a concrete definition for dynamic range.
Specifically, suppose that we are given a target SQNR C to achieve.4 We aim to identify the
range of scalings β of a given signal x for which SQNR(βx) ≥ C. More formally, we can always
ensure that SQNR(βx) ≥ C for all β ∈

î
βmin
C (x), βmax

C (x)
ó
, where βmin

C (x) and βmax
C (x) are scalars

satisfying

βmin
C (x) ≤ G/ ‖x‖∞ ≤ β

max
C (x). (2.7)

In words, βmax
C (x) and βmin

C (x) define a range of scalings over which we achieve the desired SQNR
C.

We define the dynamic range of a conventional acquisition system as

DRC(x) :=

Ç
βmax
C (x)

βmin
C (x)

å2

. (2.8)

4In our analysis we consider C ∈
(
1, (2G/∆)2/γ(x)2

]
to ensure that our definition leads to a meaningful notion of

dynamic range. Specifically, once we fix ∆ and G, there is an upper limit on the SQNR we can hope to achieve, and
for C beyond that limit the dynamic range will be ill-defined. Similarly, if we set C = 1 then one can easily achieve
infinite dynamic range by quantizing all signals to zero. However, for the range of C considered we can always set
β = G/ ‖x‖∞ will satisfy SQNR(βx) ≥ C (see the proof of Lemma 1).
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Hence, the dynamic range of a conventional ADC is the ratio of the maximum input scaling to the
minimum input scaling of x such that for both scalings the SQNR is at least C.

At first sight, (2.8) may appear to be a rather complicated way of describing what is at heart
an elementary concept — dynamic range is often simply quantified as the ratio of the largest to
smallest quantization levels. However, the strength of this definition is that it can easily be extended
to quantify the dynamic range of a CS-based ADC in which the measurement and reconstruction
processes obscure the impact of finite-range quantization on the final RSNR as given by (2.2).
Specifically, given an input signal x we apply a reconstruction algorithm to the quantized CS
measurements QB (y) = QB (Φx) to obtain a reconstruction x̂. We wish to understand the impact
of this quantization on the resulting RSNR of x̂. While it might not otherwise be immediately
apparent, (2.8) suggests a natural way to extend the definition of dynamic range to the CS setting
by simply replacing RSNR with SQNR, i.e., defining βmin

C (x) and βmax
C (x) by considering the range

of scalars β such that RSNR(βx) ≥ C. Note that for a conventional ADC, since RSNR = SQNR,
the definition remains unchanged from (2.8). We now analyze the dynamic range of a conventional
acquisition system in Section 2.2.2 and then extend this analysis to the CS setting in Section 2.2.3.

2.2.2 Dynamic range of a conventional ADC

We now provide a simple bound on the dynamic range DRC(x) for a conventional ADC.

Theorem 2. The dynamic range of a quantizer as defined by (2.8) is bounded by

DRC(x) ≥ 1

Cγ(x)2 − 1

ÇÅ
2G

∆

ã2

− 1

å
, (2.9)

where γ(x) is defined as in (2.5).

The proof of this Theorem can be found in Appendix A.2.

For large B, the “−1” term in (2.9) will be negligible, and so by expressing (2.9) in dB we
obtain

DRC(x) & 6.02B − 10 log10

Ä
Cγ(x)2 − 1

ä
. (2.10)

This coincides with the familiar rule of thumb that just like the SQNR in (2.6), ADC dynamic range
increases by 6dB per quantizer bit [70]. Note, however, that we again have an additive constant
that here depends both on the targeted SQNR C as well as the PAR γ(x). This is again expected,
since a more ambitious required SQNR is more difficult to achieve and since a signal with higher
PAR is harder to quantize, which both lead to a more limited dynamic range. We revisit the issue
of PAR below in Section 2.2.4.

In summary, our definition of dynamic range (2.8) yields a reasonable expression (2.9) for a
conventional ADC that coincides with the traditional “folk wisdom” on dynamic range.

2.2.3 Dynamic range of a CS-based acquisition system

Thus far we have proposed a rigorous and general definition of dynamic range and analyzed a
conventional ADC in this context. We now extend the dynamic range analysis to the CS case. Our
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argument proceeds by first showing that we can always relate RSNR(βx) to SQNR(βy) and then
relate SQNR(βy) to SQNR(βx). This allows us to argue that whenever SQNR(βx) > C, we have
that RSNR(βx) > C ′ for some C ′. In other words, whenever we can achieve a certain SQNR C
by directly quantizing x, a CS-based system can also achieve the RSNR C ′ (where C ′ is typically
comparable to C). Thus, the dynamic range of these systems will be essentially the same. We
begin by relating RSNR(βx) to SQNR(βy).

Lemma 2. Suppose that y = Φx, where x is K-sparse and Φ satisfies the RIP of order K with
constant δ. Let x̂ denote the output of applying a reconstruction algorithm to the quantized mea-
surements QB (y) which satisfies a reconstruction guarantee like that given in Theorem 1, i.e.,

‖x̂− x‖22 ≤ κ
2
1 ‖QB (y)− y‖22 . (2.11)

Then

RSNR(βx) ≥ SQNR(βy)

(1 + δ)κ2
1

. (2.12)

Proof. Without loss of generality, suppose that β = 1. From the RIP we have that

‖x‖22 ≥
‖Φx‖22
1 + δ

.

Combining this with (2.11), we obtain the bound

RSNR(x) =
‖x‖22
‖x̂− x‖22

≥ ‖y‖22
(1 + δ)κ2

1 ‖QB (y)− y‖22
=

SQNR(y)

(1 + δ)κ2
1

,

which completes the proof. �

In words, the RSNR(βx) is lower bounded by a constant multiple of the SQNR(βy). This means
that we can expect the RSNR to follow the same trend as the SQNR of the measurements. Thus,
we can restrict our analysis and comparisons to the measurement SQNR.

We next aim to compare SQNR(βy) here to SQNR(βx) from Section 2.2.1. The following lemma
shows that we can bound SQNR(βy) in a manner similar to how Lemma 1 bounds SQNR(βx).

Lemma 3. Suppose that y = Φx, where x is K-sparse and Φ satisfies the RIP of order K with
constant δ. Then there exists a β such that

SQNR(βy) ≥ (1− δ)N
M

‖x‖2∞
‖y‖2∞

1

γ(x)2

Å
2G

∆

ã2

.

Proof. We begin by noting that from Lemma 1 we have that for β = G/ ‖y‖∞ we have that

SQNR(βy) ≥
Ç
‖y‖22 /M
‖y‖2∞

åÅ
2G

∆

ã2

.

18



2.2. DYNAMIC RANGE OF CS-BASED ACQUISITION SYSTEMS

Since Φ satisfies the RIP we have that

‖y‖22 ≥ (1− δ) ‖x‖22 .

Thus we have that

‖y‖22 /M
‖y‖2∞

≥ (1− δ) ‖x‖22
‖y‖2∞

= (1− δ)N
M

‖x‖2∞
‖y‖2∞

Ç
‖x‖22 /N
‖x‖2∞

å
= (1− δ)N

M

‖x‖2∞
‖y‖2∞

1

γ(x)2
,

which establishes the lemma. �

Thus, CS has the same 6dB per quantier bit behavior as in (2.6) with

SQNR(βy) & 6.02B − 20 log10(γ(x)) + 20 log10

Ñ»
(1− δ)NM ‖x‖∞
‖y‖∞

é
, (2.13)

the only difference being an additional additive constant that we will analyze in more detail in
Section 2.2.4.

We are now ready to compute the dynamic range of the CS acquisition system. We retain the
same definition of dynamic range as in (2.8), but with βmax

C (x) and βmin
C (x) defined by substituting

the SQNR constraint with the requirement that RSNR(βx) ≥ C. In this setting, we can repeat the
same analysis as in Theorem 2 to obtain

DRC(x) ≥ 1

C ′γ(x)2 − 1

ÇÅ
2G

∆

ã2

− 1

å
,

where

C ′ =
1− δ

(1 + δ)κ2
1

N

M

‖x‖2∞
‖y‖2∞

.

Thus, when measured in dB the dynamic range is affected by CS only through an additive constant.

In practice, we can take significant advantage of the fact that, all things being equal, a CS
system has the same dynamic range as a conventional Nyquist ADC. Moreover, because the ADC
employed in a CS-based system operates at a significantly lower rate than would be required in
a conventional system, a slower quantizer with higher bit-depth can be employed [7]. If the gain
in effective bits is large, then the 6dB per bit improvement in dynamic range will dominate the
additive constant and result in a substantial increase in the CS system’s dynamic range as compared
to a conventional ADC. We explore this idea empirically in Section 2.4.

2.2.4 Impact of CS on the PAR

We conclude this section on dynamic range with one last note regarding the mollifying effect of a CS
acquistion system on the PAR. All of our expressions for the SQNR or RSNR as well as the dynamic
range of a system depend in some way on the PAR of the signal x or the measurements y, depending
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on the context. In practice, the PAR has a significant impact on the resulting expressions. However,
the PAR of a signal x can vary widely in the range

1 ≤ γ(x) ≤
√
N, (2.14)

which follows from standard norm inequalities. As an example, combining (2.14) with the lower
bound on the SQNR of a conventional ADC in (2.6) means that in the best case (which corresponds
to an all-constant vector x) the bound in (2.6) reduces to 6dB per bit growth in SQNR with no
offset, whereas in the worst case (which corresponds to a K = 1 sparse x) we incur an additive
penalty of −10 log10(N) dB. As the dimension N grows this penalty can become large, reflecting
the fact that as the number of samples grows it becomes possible to construct a signal that has ever
larger PAR. This translates to a similarly wide range of possible values for the additive penalty in
the bound on dynamic range in (2.10).

Our aim here is to understand how CS impacts PAR. Clearly, we expect the PAR of the CS
measurements y to differ from that of the signal x since each measurement typically consists of a
weighted sum of the entries of x. Intuitively, such measurements have the potential to average out
some of the “spikes” in x resulting in a potentially improved PAR. This appears in the analysis
in the expression for SQNR(βy) in (2.13), which shows that SQNR(βy) can be improved over
SQNR(βx) in (2.6) if N

M ‖x‖
2
∞ / ‖y‖

2
∞ is somewhat larger than 1.

In the worst-case, the quantity N
M ‖x‖

2
∞ / ‖y‖

2
∞ can be a great deal smaller than 1; however, on

average we are likely to do significantly better. As an illustration, we describe what can be said
when Φ is a matrix with i.i.d. ±1/

√
M (Rademacher) entries.

We begin with the worst-case. By combining the the Cauchy-Schwartz inequality with standard
`p-norm inequalities, we have that for all j, |yj | ≤ N

M ‖x‖∞ . Thus we obtain

N

M

‖x‖2∞
‖y‖2∞

≥ M

N
.

Hence, in the worst-case

20 log10

Ñ»
(1− δ)NM ‖x‖∞
‖y‖∞

é
≈ −10 log10

Å
N

M

ã
,

which corresponds to an SQNR loss of 3dB per octave increase in the subsampling factor. However,
this bound will be achieved only when x is both constant magnitude and has elements with signs
exactly matching one of the (randomly chosen) rows of Φ — a highly unlikely scenario. Furthermore,
this bound makes no use of the “dithering” effect promoted by the randomized measurements; a
grave omission indeed. Towards this end, we next consider a probabilistic bound to see that we
can typically obtain better performance.

Lemma 4. Suppose that Φ is chosen with i.i.d. entries with variance 1/M drawn according to any
strictly sub-Gaussian distribution. Then

N

M

‖x‖2∞
‖y‖2∞

≥ γ(x)2

4 log(M)
(2.15)
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with probability at least 1− 2/M .

Proof. By combining the union bound (over M measurements) with standard tail bounds on a
strictly sub-Gaussian distribution, we obtain

P (‖y‖∞ > t) ≤ 2M exp

Ç
− Mt2

2 ‖x‖22

å
.

Thus, the probability that (2.15) does not hold is bounded by

2M exp

(
−

4M N
M log(M) ‖x‖2∞
2γ(x)2 ‖x‖22

)
= 2M exp

Ç
−2 log(M) ‖x‖2∞
γ(x)2 ‖x‖22 /N

å
= 2 exp (log(M)− 2 log(M)) =

2

M
,

which establishes the lemma. �

Thus, in practice we expect our bound for SQNR(y) in (2.13) to differ from our bound for
SQNR(x) in (2.6) only by a factor of γ(x)2/4 log(M). Recalling our bound on γ(x) we have that

1

4 log(M)
≤ γ(x)2

4 log(M)
≤ N

4 log(M)
.

Hence, for x with small PAR, we can expect a potential loss in SQNR when compared to direct
quantization of x, while for x with moderate or large PAR we can actually expect a significant
improvement.

Finally, we can use Lemma 4 to approximate (2.13) with high probability as

SQNR(βy) & 6.02B − 20 log10

Ä
4 log(M)/

√
1− δ

ä
,

which implies that CS allows us to essentially eliminate the negative impact of high PAR signals.
This is because the randomized measurement procedure of CS will, with high probability, produce
measurements having a PAR that is completely independent of the input signal’s PAR. For high
PAR signals, this results in a substantial improvement.

2.3 Liberating Dynamic Range via Democracy

As previously explained, the limited dynamic range of the system is induced by both the precision
and the finite range of the quantizer. An example of how limited dynamic range presents a design
challenge in practice is as follows. Error due to saturation is typically considered more detrimental
than the error due to quantization. Thus the näıve approach to dealing with saturation is to scale
down the amplitude of the signal or its measurements so that saturation never or very rarely occurs.
This is the approach pursued in many conventional sensor systems; a typical rule of thumb used with
communication system ADCs suggests that one reduce the signal amplitude until only 63 in one
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million samples saturates [32]. Unfortunately, scaling down the signal amplitude proportionately
scales up the amount of quantization noise.

Fortunately, we can exploit the so-called democracy property exhibited by many CS systems.
Roughly, this property explains that each measurement contains about the same amount of infor-
mation as any other measurement. Said another way, it is possible to reconstruct sparse signals
from any subset of measurements, subject to only a small penalty in reconstruction error. This
means that if a measurement saturates with significant error, we may incur less reconstruction error
by simply discarding it.

In [34, 71], the authors demonstrated that indeed rejecting saturated measurements can lead
to improved performance. Interestingly, these results concluded that the best performance in these
systems is achieved when the quantizer range is set low enough to induce a significantly non-zero
saturation rate. This is due to the fact that as the quantizer range G decreases (and thus saturation
rate increases), the error due to quantization on the remaining measurements decreases since the
quantization interval decreases, as expressed by ∆ = 2−B+1G. Furthermore, the authors found
that the amount of saturation allowed is determined by the sparsity of signal. The implication is
clear: the dynamic range of these democratic systems is limited by the complexity of the signal,
not the range of the quantizer.

In this section we review the democracy property and some of its implications. We review
two reconstruction approaches for dealing with saturation. We then discuss how these approaches
lead to increased dynamic range. The approaches detailed in this section will provide significant
motivation the ideas and methods found in the next chapter.

We briefly establish some notation that will prove useful for the remainder of this chapter. Let
Γ ⊂ {1, 2, , . . . ,M}. By ΦΓ we mean the |Γ|×M matrix obtained by selecting the rows of Φ indexed
by Γ. Alternatively, if Λ ⊂ {1, 2, . . . , N}, then we use ΦΛ to indicate the M × |Λ| matrix obtained
by selecting the columns of Φ indexed by Λ. Denote the vector of unsaturated measurements as yU

of length M. The matrix ΦU is created by selecting the rows of Φ corresponding to the elements
of yU .

2.3.1 The democratic caucus of random matrices

We begin by establishing a strong notion of the democratic property of a matrix Φ as in [34, 35, 46].

Definition 1. Let Φ be an M ×N matrix, and let M ≤ M be given. The matrix Φ is (M,K, δ)-
democratic if, for all Γ such that |Γ| ≥M, the matrix ΦΓ satisfies the RIP of order K with constant
δ.

In words, this definition explains that for any RIP matrix Φ, any subset of rows of Φ will satisfy
the RIP, with perhaps a different constant δ.

It is possible to show that certain randomly generated matrices will be (M,K, δ)-democratic.
The following theorem restates a result of [34, 35, 46] for democratic Gaussian matrices, but the
analysis can be extended (with different constants) to the more general class of sub-Gaussian
matrices (see methods in [46]).
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Theorem 3. Let Φ be an M ×N matrix with elements φij drawn according to N (0, 1/M) and let
M ≤M , K <M, and δ ∈ (0, 1) be given. Define D = M −M. If

M = C1(K +D) log

Å
N +M

K +D

ã
, (2.16)

then with probability exceeding 1− 3e−C2M we have that Φ is (M,K, δ/(1− δ))-democratic, where
C1 is arbitrary and C2 = (δ/8)2 − log(42e/δ)/C1.

Observe that we require roughly O(D log(N)) additional measurements to ensure that Φ is
(M,K, δ)-democratic compared to the number of measurements required to simply ensure that Φ
satisfies the RIP of order K (recall that D = M −M). This seems intuitive; if we wish to be robust
to the loss of any D measurements while retaining the RIP of order K, then we should expect to
take at least D additional measurements.

Theorem 3 further guarantees the graceful degradation of CS recovery due to loss of measure-
ments. Specifically, the theorem implies that recovery from any subset of CS measurements is
stable to the loss of a potentially larger number of measurements than anticipated. To see this,
suppose that an M × N matrix Φ is (M − D,K, δ)-democratic, but consider the situation where
D + D measurements are dropped. It is clear from the proof of Theorem 3 that if D < K, then
the resulting matrix ΦΓ will satisfy the RIP of order K −D with constant δ. Thus, from [72], if we
define K = (K −D)/2, then the signal recovery error is bounded by

‖x− x̂‖2 ≤ C3
‖x− xK‖1√

K
, (2.17)

where xK denotes the best K-term approximation of x and C3 is an absolute constant depending on
Φ that can be bounded using the constants derived in Theorem 3. Thus, if D is small enough, then
the additional error incurred by dropping too many measurements will also be relatively small.

This property and its implications are key to enabling the rejection of saturated measurements.

2.3.2 Saturation rejection signal recovery

A simple and intuitive way to handle saturated measurements is to simply discard them and then
run a standard CS recovery algorithm [71]. Using, for instance, (BPDN) for reconstruction yields
the program:

x̂← argmin
x∈RN

‖x‖1 s.t. ‖ΦUx− yU‖2 < ε. (2.18)

Since the democracy property implies that any M×N submatrix of Φ has RIP, it immediately
follows from Theorem 1 that the saturation rejection program (2.18) yields a signal estimate with
the stability guarantee (1.5). By the same argument, it is straightforward to demonstrate that other
algorithms such as CoSaMP applied to ΦU and yU will achieve performance given by Theorem A
in [29], as long as they rely on the RIP for performance guarantees.
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2.3.3 Saturation rejection signal processing

Saturation rejection is also useful in conjunction with processing and inference techniques that work
directly on the compressive measurements. For example, in the smashed filter for signal detection
and classification the key calculation is the inner product 〈Φx,Φv〉 between the compressive mea-
surements of a test signal x and a target template signal v [73]. If x and v are sparse then, thanks to
the RIP, this low-dimensional inner product can be used as a proxy for the inner product between
x, and v; that is 〈Φx,Φv〉 ≈ 〈x, v〉. Unfortunately, if any of the elements of Φx or Φv are saturated,
then the approximation no longer holds and the performance of the smashed filter deteriorates.

Consider QB(Φx) and QB(Φv) and let Γx and Γv be the supports of the measurements that do
not saturate on each vector, respectively. Then we have that for Γ = Γx ∩ Γv that ‖QB(ΦΓx) −
ΦΓx‖∞ ≤ ∆/2 and ‖QB(ΦΓv)− ΦΓv‖∞ ≤ ∆/2. Thus, it is straightforward to show that

∣∣∣〈QB(ΦΓx),QB(ΦΓv)〉 − 〈ΦΓx,ΦΓv〉
∣∣∣ ≤ ∆2

4
+

∆

2

∣∣∣∣∣∑
n

(ΦΓx)n

∣∣∣∣∣+ ∆

2

∣∣∣∣∣∑
n

(ΦΓv)n

∣∣∣∣∣ . (2.19)

Furthermore, the two sums in (2.19) are likely to concentrate around zero. The democracy of Φ
furthermore implies that 〈ΦΓx,ΦΓv〉 ≈ 〈x, v〉. Thus, discarding the corresponding entries of Φx
and Φv when one of them saturates makes considerable practical sense.

2.3.4 Saturation consistency signal recovery via convex optimization

Clearly saturation rejection discards potentially useful signal information, since we know that satu-
rated measurements are large (we just do not know how large). It is possible to augment a standard
convex optimization-based CS recovery algorithm with a set of inequality constraints that enforce
signal consistency with the saturated measurements. By consistency we mean that the magnitudes
of the values of Φx̂ corresponding to the saturated measurements are larger than G−∆, i.e., they
are consistent with what we observed.

More specifically, let S+ and S− correspond be the index sets of the positive saturated mea-
surements and negative saturated measurements, respectively. Define the matrix ΦS as

ΦS :=

ñ
ΦS+

−ΦS−

ô
. (2.20)

We estimate x̂ via the program

x̂← argmin
x∈RN

‖x‖1 s.t. ‖ΦUx− yU‖2 < ε (2.21a)

and ΦSx ≥ (G−∆) · 1, (2.21b)

where 1 denotes an (M−M)×1 vector of ones. In words, we seek the x with the minimum `1 norm
such that the measurements that do not saturate have bounded `2 error and the measurements
that do saturate are consistent with the saturation constraint. The program (2.21) obeys the
same reconstruction error bounds as (2.18) [34]. Alternative regularization terms that impose the
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consistency requirement on the unsaturated quantized measurements can be used on yU , such as
those proposed in [64, 65], or alternative techniques for the unsaturated quantized measurements
can be used such as those proposed in [66].

In addition to the convex optimization program (2.21), the authors in [34] proposed a greedy
algorithm, saturation consistent CoSaMP (SC-CoSaMP) to impose saturation consistency during
reconstruction. Some of our simulations will make use of this algorithm since it is fast and has
been shown empirically to improve performance from finite range quantized measurements.

We note that a saturation rejection algorithm and a saturation consistency algorithm will not
necessarily yield the same signal estimate. This is because the solution from the rejection approach
may not lie in the feasible set of solutions of the consistency approach (2.21). However, the reverse
is true. The solution to the consistent approach does lie in the feasible set of solutions of the
rejection approach. While we do not provide a detailed analysis that compares the performance of
these two algorithm classes, one should expect that the consistency approach will outperform the
rejection approach in general, since it incorporates additional information about the signal.

2.4 Experimental Performance of CS Dynamic Range

In this section, we conduct an experiment that demonstrates how the dynamic range of a CS system
can be increased. We are interested in demonstrating two main points: i) as we decrease the sample
rate of a system, we can apply a higher bit-depth quantizer. This should improve performance even
though the number of measurements is fewer; and ii) the saturation consistent approach that utilizes
the democracy of CS systems can be used to increase the performance further, by extending the
dynamic range of the system.

Any improvement in the SQNR of the CS measurements will translate to an improved dynamic
range. Thus, in our experiments, we compute the average RSNR obtained after recovery from
quantized CS measurements as a proxy for the dynamic range. Furthermore, we make use of the
trends outlined in [7] that show that the number of bits per measurement grows according to
B = λ − 10 log 10(M)/2.3 where λ is a constant that determines the bit-depth of a Nyquist-rate
sampler. The number of bits per measurements then grows linearly with the octaves of subsampling,
with slope of about 1.3. This relationship between sample rate and bit-depth is fundamental to
understanding the dynamic range benefits of CS systems.

Our experiment proceeds as follows and is depicted in Figure 2.2. The signal to be acquired
consists of a single 3.1 kHz-wide unmodulated voice signal single-side-band-upconverted to a fre-
quency within the 1 MHz input bandwidth of the receiver. The signals are noise-free so that we
can isolate the impact of quantization noise. Additionally, we employ an ideal random demodula-
tor [18] (discussed in Chapter 5) to measure the signals. Performance is measured as a function
of the subsampling factor N/M . In each trial we generate a single voice-like signal and compute
measurements with the CS receiver. The measurements are further quantized utilizing the full
scale of the quantizer in the oracle and conventional CoSaMP cases. In the saturation consistent
case, the scale of the signal (and thus measurements) is tuned to maximize the RSNR performance.
This optimal performance occurs when a significant number of measurements have saturated. The
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Figure 2.2: RSNR for an environment consisting of a noise-free single unmodulated voice channel and
quantized measurements starting at a bit-depth of 4 bits per measurement when log2(N/M) = 0. We
increased the bit-depth as a function of the sample rate according to the trends outlined in [7]. We see
a marked improvement in RSNR as a direct result of the sampling rate being decreased. We see further
improvement when the gain is tuned to maximize the performance of a saturation consistent algorithm,
SC-CoSaMP. Interestingly, the best saturation consistent CS performance occurs when no subsampling has
been performed, but when significantly many measurements saturate (even though the quantizer precision
is at its lowest). This suggests that it may be beneficial to sample at a high rate and increase the dynamic
range by exploiting the democratic nature of CS systems, rather than applying a higher bit-depth quantizer
at a lower rate.

measurements were quantized to 4 bits each, and then recovered using CoSaMP (solid line), the
oracle recovery algorithm (dashed line), and SC-CoSaMP (dash-dotted). We report the average
RSNR for each subsampling factor.

From this experiment we see that in both the oracle and conventional CS cases, the RSNR grows
significantly, achieving a 20dB gain at 4 octaves of subsampling over Nyquist sampling. Conven-
tional CS performance then decreases as we move to an undersampled regime where CS recovery
is no longer sustainable (too few measurements for the given sparsity). The oracle performance
continues to improve as subsampling is further increased. This experiment highlights the very real
benefit of reduced sampling rates; easing the sampling rate requirements can allow us to use higher
fidelity hardware components, such as high bit-depth quantizers.

The saturation consistent case provides further insight. When the number of measurements
is decimated, even by half (log2(N/M) = 1), the saturation consistent approach achieves about
a 5dB to 10dB gain over the conventional CS approach, but follows the same performance trend.
However, when there is no decimation, the saturation consistent algorithm exhibits a 40dB gain
over conventional CS and the oracle. Indeed the SC-CoSaMP performance at the Nyquist rate is
as good as the oracle performance at more than 6 octaves of decimation (i.e., better than using an
ADC that is 26 times as slow). The implication of this result is that it might be better to take
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many measurements and drive up the gain such that most of them saturate, rather than attempting
to reduce the sampling rate and applying a higher bit-depth quantizer. Abusing the quantizer by
saturating most of the measurements leads to the theme of the following chapters– can we saturate
all of the measurements? Can we expand CS methods to include scenarios where we drive up the
sampling rate and drive down the bit-depth of the quantizer?
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CHAPTER 3

Single Bit Compressive Sensing

3.1 Supersaturated Sensing

O
ne question that arises from the previous chapter is how many measurements can saturate
in practice? The saturation rejection reconstruction approach of Section 2.3.2 will fail
when the number of non-saturated measurements is too few; unfortunately the constants
for the democratic property of random matrices are not tight enough to predict the

precise number of measurements at which this transition occurs. It has been shown that the
saturation consistent reconstruction approach of Section 2.3.4 can achieve reasonable performance
in the face of significantly more saturation than in the rejection approach; however, even this
technique appears to fail when too many measurements have saturated [34].

In this chapter,1 we consider the most extreme case when all measurements have saturated,
i.e., the measurements are supersaturated. We ask the question: is signal reconstruction possible in
this regime? In supersaturated sensing, the measurements take the value G or −G and information
about the true scale of the signal is lost. Indeed, we are only able maintain a single bit of information
about each measurement and a lower bound on the signal energy. In fact, if we intend to operate
only in the supersaturated regime, the quantizer can be reduced to a simple comparator that tests
if values are above or below zero, enabling extremely simple, efficient, and fast quantization.

It is not obvious that the signs of the CS measurements retain enough information for signal
reconstruction. For instance, as just explained, we have lost information about the scaling of the
signal. Nonetheless, there has been recent empirical evidence that signal reconstruction is possible
from just the signs of the measurements, via the 1-bit compressive sensing framework established

1This chapter includes work done in collaboration with Laurent Jacques, Petros Boufounos, Zaiwen Wen, Wotao
Yin, and Richard Baraniuk [74, 75].
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in [33, 39, 76]. This framework suggests that signals can be reconstructed, up to a scale factor,
from only the signs of their CS measurements.

The primary contribution of this chapter is a rigorous analysis of the 1-bit CS framework. We
provide two flavors of results. First, we determine the best achievable performance of this 1-bit
CS framework. We further demonstrate that if the elements of measurement system Φ are drawn
randomly from Gaussian distribution or its rows are drawn uniformly from the unit sphere, then
it is possible to pose a reconstruction formulation that will have bounded error on the order of
the optimal lower bound. Second, we provide conditions on the measurement system that enable
us to characterize the reconstruction performance even when some of the measurement signs have
changed (e.g., due to noise in the measurements). In other words, we derive the conditions under
which robust reconstruction from 1-bit measurements can be achieved. We do so by demonstrating
that 1-bit CS systems can be stable embeddings of sparse signals, in similar fashion to the RIP
systems of conventional CS. We apply these stable embedding results to the cases where we have
noisy measurements and signals that are not strictly sparse. Our guarantees demonstrate that the
1-bit CS framework is on sound footing.

To develop robust reconstruction guarantees, we propose a new tool, the binary ε-stable em-
bedding (BεSE), to characterize 1-bit CS systems. The BεSE implies that the normalized angle
between any sparse vectors on the unit sphere is close to the normalized Hamming distance be-
tween their 1-bit measurements. We demonstrate that again the quantized measurements from
Gaussian measurement matrices exhibit this property when M ≥ CεK logN (where Cε is some
constant). Thus remarkably, there exist systems such that the BεSE holds when both the number
of measurements M is smaller than the dimension of the signal N and the measurement bit-depth
is at minimum.

As a complement to our theoretical analysis, we introduce two algorithms to solve the non-
convex reconstruction problem originally posed in this context, as well as several new convex for-
mulations of the reconstruction problem. We present extensive numerical simulations to prove the
validity of this framework and these algorithms. Finally, we demonstrate that the 1-bit recon-
struction algorithms can be extended to perform consistent reconstruction of multibit quantized
measurements with arbitrary numbers of saturations. We thusly provide a complete solution for
handling finite range quantized measurements.

This chapter is organized as follows. In Section 3.2 we formally summarize the 1-bit CS frame-
work. In Section 3.3 we describe some additional benefits of 1-bit quantized measurements beyond
those described above. In Section 3.4 we provide reconstruction bounds on the performance from
noiseless measurements and demonstrate that a large class of measurements matrices will yield such
performance. In Section 3.5, we introduce the BεSE property that ensures robust recovery guaran-
tees. We then prove that such mappings exist and give an example of a class of these matrices. This
section also provides reconstruction bounds for noisy measurements and compressible signals. In
Section 3.6 we demonstrate how the 1-bit framework can be extended to handle multibit quantized
measurements as well as an arbitrarily large or small number of saturations. In Section 3.7 we
introduce two new algorithms for solving the reconstruction problem and also pose some convex
formulations. In Section 4.2 we perform numerical simulations to validate and characterize the
ideas presented in this chapter. We conclude by reviewing some alternative 1-bit frameworks in
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Section 3.9.

3.2 The 1-bit CS framework

We briefly describe the 1-bit CS framework proposed in [39]. Measurements of a signal x ∈ RN are
computed via

ys = A(x) := sign (Φx). (3.1)

Thus, the measurement operator A(·) is a mapping from RN to the Boolean cube2 BM := {−1, 1}M .
At best, we hope to recover signals x ∈ Σ∗K := {x ∈ SN−1 : ‖x‖0 ≤ K} where SN−1 := {x ∈ RN :
‖x‖2 = 1} is the unit hyper-sphere of dimension N . We restrict our attention to sparse signals
on the unit sphere since, as previously mentioned, the scale of the signal has been lost during
the quantization process. To reconstruct, we enforce consistency on the signs of the estimate’s
measurements, i.e., that A(x̂) = A(x). Specifically, we define a general non-linear reconstruction
algorithm ∆1bit(ys,Φ,K) such that, for x̂ = ∆1bit(ys,Φ,K), the solution x̂ is

(i) sparse, i.e., satisfies ‖x̂‖0 ≤ K = ‖x‖0; and

(ii) consistent, i.e., satisfies A(x̂) = ys = A(x).

With (`0-min) from CS as a guide, one candidate program for reconstruction is of course

x̂← argmin
x∈SN−1

‖x‖0 s.t. ys = sign (Φx). (`0-min1B)

Although the parameter K is not explicit in (`0-min1B), the property (i) above holds because x is
a feasible point of the constraint.

Since (`0-min1B) is computationally intractable, [39] proposes a relaxation that replaces the
objective with the `1-norm and enforces consistency via a linear convex constraint. Specifically, let
the matrix Y have the elements of ys along the diagonal and zero elsewhere. Then we can try to
solve

x̂← min
x∈SN−1

‖x‖1 s.t. Y Φx ≥ 0 and ‖x‖2 = 1, (`1-min1B)

rather than (`0-min1B). The `1 objective favors sparse solutions while the first constraint enforces
consistency between the 1-bit quantized measurements and the solution. However, (`1-min1B)
remains non-convex due to the the unit-sphere requirement. Be that as it may, an algorithm has
been developed for the relaxation, as well as a greedy algorithm inspired by the same ideas [39, 76].
The program (`1-min1B) can also be posed in a convex way as will be discussed in Section 3.7.3,
but for the sake of theory we proceed with the unit energy constraint.

Figure 3.1 depicts the geometry of the components of (`1-min1B) in two dimensions. The
hyperplanes (lines) ϕ1 and ϕ2 correspond to the first and second rows of Φ, respectively. In
this figure they are drawn to be perfectly orthogonal but in general this may not be the case.

2Generally, the M -dimensional Boolean cube is defined as {0, 1}M . Without loss of generality, we use {−1, 1}M
instead.
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Figure 3.1: The geometry of the components of the 1-bit CS reconstruction formualtion in two dimensions.
The hyperplanes (lines) ϕ1 and ϕ2 correspond to the first and second rows of Φ, respectively. The green
shaded region between the planes denotes the feasible region. The circle denotes the unit sphere. The red
dot denotes the sparsest feasible solution on the unit sphere.

Indeed, if these rows were drawn randomly from a Gaussian distribution, they will be approximately
orthogonal. Furthermore, in this example we choose Φ to be square to clearly depict the relevant
concepts in two dimensions. The green shaded region depicts the feasible region, i.e., the set where
all x satisfy Y Φx ≥ 0, and thus have measurement signs that are consistent with the diagonal of
Y . The unit sphere is represented by the circle labelled ‖x‖2 = 1 and thus the only unit norm
sparse solution in the feasible region lies at [0, 1], denoted by the red dot. The key feature of this
picture is that each row of Φ defines some hyperplane and each measurement sign determines on
which side of the hyperplane the solution lies. The feasible region can be though of as a “cone3”
and our goal during reconstruction is to find the sparsest solution within that region. A major goal
of this chapter is to show that all sparse unit norm solutions in this cone are within some small
error tolerance of each other.

3.3 Immediate Benefits of 1-bit CS

There are several benefits to obtaining 1-bit quantized measurements. First, efficient hardware
quantizers can be built to operate at high speeds, since the quantizer can be a simple comparator
that merely tests if a measurement is above or below zero. Indeed, as previously discussed there
is an inverse relationship between sample rate and quantization bit-depth, such that the sample
rate increases exponentially as the bit-depth is decreased linearly. Second, it has been shown that

3This is not a true cone in the geometrical sense.
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the program (`1-min1B) can be used to recover signals with gross non-linearities applied to the
measurements [33]. In particular, suppose a non-linearity f(·) is applied to the measurements. If
the f(·) preserves the sign of the measurements, then clearly (`1-min1B) can be still be used to
recover x with the same performance as using the non-linearity-free measurements. Additionally,
if we assume that the non-linearity preserves the relationship

f(xi) < f(xi+1) if xi < xi+1,

then the program
x̂← ∆1bit(sign(diff(f(Φx))), DΦ,K), (3.2)

can be used to recover x with similar guarantees as (`1-min1B), where D is a difference matrix
with 1’s along the diagonal and −1’s along the first sub-diagonal, with diff(x) = xi+1 − xi, for i =
1, . . . , N − 1 [33].

3.4 Noiseless Reconstruction Performance

3.4.1 Reconstruction performance lower bounds

In this section, we seek to provide guarantees on the reconstruction error from 1-bit CS measure-
ments. Before analyzing this performance from a specific mapping A with the consistent sparse
reconstruction algorithm ∆1bit(ys,Φ,K), it is instructive to determine the best achievable perfor-
mance from measurements acquired using any mapping. Thus, in this section we seek a lower
bound on the reconstruction error.

We develop the lower bound on the reconstruction error based on how well the quantizer exploits
the available measurement bits. A distinction we make in this section is that of measurement bits,
which is the number of bits acquired by the measurement system, versus information bits, which
represent the true amount of information carried in the measurement bits. Our analysis follows
similar ideas to that in [77, 78], adapted to sign measurements.

We first examine how 1-bit quantization operates on the measurements. Specifically, we consider
the orthants of the measurement space. An orthant in RM is the set of vectors such that all the
vector’s coefficients have the same sign pattern

Os = {x | signx = s},

where s is a vector of ±1. Any M -dimensional space is partitioned to 2M orthants. Figure 3.2(a)
shows the 8 orthants of R3 as an example. Since 1-bit quantization only preserves the signs of the
measurements, it encodes in which measurement space orthant the measurements lie. Thus, each
available quantization point corresponds to an orthant in the measurement space. Any unquan-
tized measurement vector Φx that lies in an orthant of the measurement space will quantize to
the corresponding quantization point of that orthant and cannot be distinguished from any other
measurement vector in the same orthant. To obtain a lower bound on the reconstruction error,
we begin by bounding the number of quantization points (or equivalently the number of orthants)
that are used to encode the signal.
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(a) (b)

Figure 3.2: (a) The 8 orthants in R3. (b) Intersection of orthants by a 2-dimensional subspace. At most 6
of the 8 available orthants are intersected.

While there are generally 2M orthants in the measurement space, the space formed by measuring
all sparse signals occupies a small subset of the available orthants. We determine the number of
available orthants that can be intersected by the measurements in the following lemma:

Lemma 5. Let x ∈ S :=
⋃L
i=1 Si belong to a union of L subspaces Si ⊂ RN of dimension K, and

let M 1-bit measurements ys be acquired via the mapping A : RN → BM as defined in (3.1). Then
the measurements ys can effectively use at most L

(M
K

)
2K quantization points, i.e., carry at most

K log2(eLM/K) information bits.

Proof. A K-dimensional subspace in an M dimensional space cannot lie in all the 2M available
octants. For example, as shown in Fig. 3.2(b), a 2-dimensional subspace of a 3-dimensional space
can intersect at most 6 of the available octants. In Appendix B.1, we demonstrate that one arbitrary
K-dimensional subspace in an M -dimensional space intersects at most

(M
K

)
2K orthants of the 2M

available. Since Φ is a linear operator, any K-dimensional subspace Si in the signal space RN is
mapped through Φ to a subspace S ′i = ΦSi ⊂ RM that is also at most K-dimensional and therefore
follows the same bound. Thus, if the signal of interest belongs in a union S :=

⋃L
i=1 Si of L such

K-dimensional subspaces, then Φx ∈ S ′ :=
⋃L
i=1 S ′i, and it follows that at most L

(M
K

)
2K orthants

are intersected. This means that at most L
(M
K

)
2K effective quantization points can be used, i.e.,

at most K log2(eLM/K) information bits can be obtained. �

Since K-sparse signals in any basis Ψ ∈ RN×N belong to a union of at most
(N
K

)
subspaces

in RN , using Lemma 5 we can obtain the following corollary.

Corollary 1. Let x = Ψα ∈ RN be K-sparse in a certain basis Ψ ∈ RN×N , i.e., α ∈ ΣK . Then
the measurements ys = A(x) can effectively use at most

(N
K

)(M
K

)
2K 1-bit quantization points, i.e,

carry at most 2K log2(e
√
NM/K) information bits.

The set of signals of interest to be encoded is the set of unit-norm K-sparse signals Σ∗K . Since
unit-norm signals of a K-dimensional subspace form a K-dimensional unit sphere in that subspace,
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Σ∗K is a union of
(N
K

)
such unit spheres. The Q =

(N
K

)(M
K

)
2K available quantization points partition

Σ∗K into Q smaller sets, each of which contains all the signals that quantize the same point.

To develop the lower bound on the reconstruction error we examine the optimal such partition,
with respect to the worst-case error, given the number of quantization points used. The mea-
surement and reconstruction process maps each signal in Σ∗K to a finite set of quantized signals
Q ⊂ Σ∗K , |Q| = Q. At best this map ensures that the worst case reconstruction error is minimized,
i.e.,

εopt = max
x∈Σ∗K

min
q∈Q
‖x− q‖2, (3.3)

where εopt denotes the worst-case quantization error and q each of the available quantization points.
The optimal lower bound is achieved by designing Q to minimize (3.3) without considering whether
the measurement and reconstruction process actually achieve this design. Thus, designing the set
Q becomes a set covering problem.

Using this intuition and Lemma 5, Appendix B.2 proves the following statement about a set of
unit-norm signals in a union of L, K-dimensional subspaces, specifically x ∈ Σ∗K .

Theorem 4. Let the mapping A : RN → BM and measurements ys be defined as in (3.1) and let
x ∈ Σ∗K . Then the estimate from the reconstruction algorithm ∆1bit(ys,Φ,K) has error defined by
(3.3) of at least

εopt ≥
K

2eM
= Ω

Å
K

M

ã
.

Thus, the worst-case error cannot decay at a rate faster than Ω(1/M) as a function of the number
measurements, no matter what reconstruction algorithm is used. The bound in the theorem is
independent of L, but similarly to the relation between Lemma 5 and Corollary 1, K-sparse signals
are a special case with L =

(N
K

)
.

This result assumes noiseless acquisition and provides no guarantees of robustness and noise
resiliency. This is in line with existing results on scalar quantization in oversampled representations
and CS that state that the distortion due to scalar quantization of noiseless measurements cannot
decrease faster than the inverse of the measurement rate [77–81]. To improve the rate vs. distortion
trade-off, alternative quantization methods must be used, such as Sigma-Delta quantization [82–88]
or non-monotonic scalar quantization [89].

Theorem 4 bounds the best possible performance of a consistent reconstruction over all possible
mappings A. However, it is straightforward to construct mappings A that do not behave as the
lower bound suggests. In the next section we identify one class of matrices such that the mapping A
admits an almost optimal upper bound on the reconstruction error from a general algorithm ∆1bit.

3.4.2 Achievable performance via random projections

In this section we describe a class of matrices Φ such that the consistent sparse reconstruction
algorithm ∆1bit(ys,Φ,K) can indeed achieve error decay rates of optimal order, described by The-
orem 4, with the number of measurements growing linear in the sparsity K and logarithmically
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in the dimension N , as is required in conventional CS. We first focus our analysis on Gaussian
matrices, i.e., Φ such that each element φi,j is randomly drawn i.i.d. from the standard Gaussian
distribution, N (0, 1). We use the short notation Φ ∼ NM×N (0, 1) for characterizing such matrices,
and we write ϕ ∼ NN×1(0, 1) for describing equivalent random vectors in RN (e.g., the rows of Φ).
For these matrices Φ, we prove the following in Appendix B.3.

Theorem 5. Let Φ be matrix generated as Φ ∼ NM×N (0, 1), and let the mapping A : RN → BM
be defined as in (3.1). Fix 0 ≤ η ≤ 1 and εo > 0. If the number of measurements is

M ≥ 1
εo

Ä
2K log(N) + 4K log(16

εo
) + log 1

η

ä
, (3.4)

then for all x, s ∈ Σ∗K we have that

‖x− s‖2 > εo ⇒ A(x) 6= A(s), (3.5)

or equivalently

A(x) = A(s) ⇒ ‖x− s‖2 ≤ εo,

with probability higher than 1− η.

The Theorem demonstrates that if we use Gaussian matrices in the mapping A, then, given
a fixed probability level η, the reconstruction algorithm ∆1bit(ys,Φ,K) will recover signals with
optimal error order

εo = O
ÄÄ

K
M

ä1−α
logN

ä
,

for arbitrarily small α > 0; the presence of the log(1/ε0) term in (3.4) prevents us from setting α = 0.

A similar result has been very recently shown for sign measurements of non-sparse signals
in the context of quantization using frame permutations [90]. Specifically, it has been shown
that reconstruction from sign measurements of signals can be achieved (almost surely) with a
O((1/M)1−α) error rate decay for arbitrarily small α > 0. Our main contribution here is extending
this result to K-sparse vectors in RN . Our results, in addition to introducing the almost linear
dependence on K, also show that if the signal is sparse then we pay a logarithmic penalty in
N . This is consistent with results in CS, but seems not to be necessary from the lower bound
in the previous section. We will see in Section 4.2 that for Gaussian matrices, the optimal error
behavior is empirically exhibited on average. Finally, we note that for a constant ε0, the number
of measurements required to guarantee (3.5) is M = O(K logN/K), nearly the same as order in
conventional CS.

We note a few minor extensions of the Theorem. We can multiply the rows of Φ with a positive
scalar without changing the signs of the measurements. By normalizing the rows of the Gaussian
matrix, we obtain a matrix with rows drawn uniformly from the unit `2 sphere in RN . It is thus
straightforward to extend the Theorem to such matrices with such rows as well. Furthermore, note
that these projections are “universal,” meaning that the theorem remains valid for sparse signals
in Ψ, i.e., for x, s belonging to Σ∗Ψ,K := {u = Ψα ∈ RN : α ∈ Σ∗K}. This is true since for any

orthonormal basis Ψ ∈ RN×N , Φ′ = ΦΨ ∼ NM×N (0, 1) when Φ ∼ NM×N (0, 1).
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We can also view the binary measurements as a hash or a sketch of the signal. With this
interpretation of the result we guarantee with high probability that no sparse vectors with Euclidean
distance greater than εo will “hash” to the same binary measurements. In fact, similar results play a
key role in locality sensitive hashing (LSH), a technique that aims to efficiently perform approximate
nearest neighbors searches from quantized projections [91–94]. Most LSH results examine the
performance on point-clouds of a discrete number of signals instead of the infinite subspaces that
we explore in this chapter. Furthermore, the primary goal of the LSH is to preserve the structure
of the nearest neighbors with high probability. Instead, in this chapter we are concerned with the
ability to reconstruct the signal from the hash, as well as the robustness of this reconstruction to
measurement noise and signal model mismatch. To enable these properties, we require a property
of the mapping A that preserves the structure (geometry) of the entire signal set. Thus, in the next
section we seek an embedding property of A that preserves geometry for the set of sparse signals
and thus ensures robust reconstruction.

3.5 Robust 1-bit CS via Binary Stable Embeddings

3.5.1 Binary ε-stable embeddings

In this section we establish an embedding property for the 1-bit CS mapping A that ensures
that the sparse signal geometry is preserved in the measurements, analogous to the RIP for real-
valued measurements. This robustness property enables us to upper bound the reconstruction
performance even when some measurement signs have been changed due to noise. Conventional
CS achieves robustness via the δ-stable embeddings of sparse vectors (1.4) discussed in Section 1.2.
This embedding is a restricted quasi-isometry between the metric spaces (RN , dX) and (RM , dY ),
where the distance metrics dX and dY are the `2-norm in dimensions N and M , respectively, and
the domain is restricted to sparse signals.4 We seek a similar definition for our embedding; however,
now the signals and measurements lie in the different spaces SN−1 and BM , respectively. Thus, we
first consider appropriate distance metrics in these spaces.

The Hamming distance is the natural distance for counting the number of unequal bits between
two measurement vectors. Specifically, for y, v ∈ BM we define the normalized Hamming distance
as

dH(y, v) =
1

M

M∑
i=1

yi ⊕ vi,

where ⊕ is the XOR operation such that a ⊕ b equals 0 if a = b and 1 otherwise. The distance is
normalized such that dH ∈ [0, 1]. In the signal space we only consider unit-norm vectors, thus, a
natural distance is the angle formed by any two of these vectors. Specifically, for x, s ∈ SN−1, we
consider

dS(x, s) :=
1

π
arccos〈x, s〉.

4A function A : X → Y is called a quasi-isometry between metric spaces (X, dX) and (Y, dY ) if there exists
C > 0 and D ≥ 0 such that 1

C
dX(x, s) − D ≤ dY (A(x), A(s)) ≤ CdX(x, s) + D for x, s ∈ X, and E > 0 such that

dY (y,A(x)) < E for all y ∈ Y [95]. Since D = 0 for δ-stable embeddings, they are also called bi-Lipschitz mappings.
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As with the Hamming distance, we normalize the true angle arccos〈x, y〉 such that dS ∈ [0, 1]. Note
that since both vectors have the same norm, the inner product 〈x, s〉 can easily be mapped to the
`2-distance using the polarization identity.

Using these distance metrics we define the binary stable embedding.

Definition 2 (Binary ε-Stable Embedding). Let ε ∈ (0, 1). A mapping A : RN → BM is a binary
ε-stable embedding (BεSE) of order K for sparse vectors if

dS(x, s)− ε ≤ dH(A(x), A(s)) ≤ dS(x, s) + ε

for all x, s ∈ SN−1 with x± s ∈ ΣK .

Our definition describes a specific quasi-isometry between the two metric spaces (SN−1, dS)
and (BM , dH), restricted to sparse vectors. While this mirrors the form of the δ-stable embedding
for sparse vectors, one important difference is that the sensitivity term ε is additive, rather than
multiplicative, and thus the BεSE is not bi-Lipschitz. This is a necessary side-effect of the loss of
information due to quantization.

A stated in the next Lemma, the BεSE enables robustness guarantees on any reconstruction
algorithm extracting a sparse signal x̂ from the mapping A(x).

Lemma 6. Let A : RN → BM be a BεSE of order 2K for sparse vectors and let x ∈ Σ∗K . A sparse,
unit norm estimate x̂ of x with Hamming error dH

Ä
A(x), A(x̂)

ä
from any reconstruction algorithm

has angular error bounded by

dS(x, x̂) ≤ dH
Ä
A(x), A(x̂)

ä
+ ε.

Proof. If x̂ is K-sparse (‖x̂‖0 ≤ K) and unit norm, then the result follows from the lower bound in
Definition 2. �

In other words, the reconstruction error is bounded by a small quantity more than the Hamming
error. Thus, if an algorithm returns a unit norm sparse solution with measurements that are not
consistent (i.e., dH(A(x), A(x̂)) > 0), as is the case with several algorithms [39, 75, 76], then the
the worst-case angular reconstruction error is close to Hamming distance between the estimate’s
measurements’ signs and the original measurements’ signs. Section 4.2 verifies this behavior with
simulation results. Furthermore, in Section 3.5.3 we use the BεSE property to guarantee that if
measurements are corrupted by noise or if signals are not exactly sparse, then the reconstruction
error is bounded.

Note that if A is a BεSE, then the angular error of any ∆1bit(ys,Φ,K) algorithm is bounded by ε
since in that case dH

Ä
A(x), A(x̂)

ä
= 0. As we have seen earlier this is to be expected because, unlike

conventional noiseless CS, quantization fundamentally introduces uncertainty and exact recovery
cannot be guaranteed. This is an obvious consequence of the mapping of the infinite set Σ∗K to a
discrete set of quantized values.

We next identify a class of matrices Φ for which A is a BεSE.
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3.5.2 Binary ε-stable embeddings via random projections

As is the case for conventional CS systems with RIP, designing a Φ for 1-bit CS such that A has has
the BεSE property is a computationally intractable task. Fortunately, an overwhleming number
of “good” matrices do exist. Specifically we again focus our analysis on Gaussian matrices, i.e.,
Φ ∼ NM×N (0, 1) such that each element φi,j is randomly drawn i.i.d. from N (0, 1), as in as in
Section 3.4.2. As motivation that this choice of Φ will indeed enable robustness, we begin with a
classical concentration of measure result for binary measurements from a Gaussian matrix.

Lemma 7. Let Φ be a matrix generated as Φ ∼ NM×N (0, 1), and let the mapping A : RN → BM
be defined as in (3.1). Fix ε > 0. For any x, s ∈ SN−1, we have

P
( ∣∣∣ dHÄA(x), A(s)

ä
− dS(x, s)

∣∣∣ ≤ ε
)
≥ 1− 2 e−2ε2M , (3.6)

where the probability is with respect to the generation of Φ.

Proof. This lemma is a simple consequence of Lemma 3.2 in [96] which shows that, for one mea-
surement, P[Aj(x) 6= Aj(s)] = dS(x, s). The result then follows by applying Hoeffding’s inequality
to the binomial random variable MdH

Ä
A(x), A(s)

ä
with M trials. �

In words, Lemma 7 implies that the Hamming distance between two binary measurement vectors
A(x), A(s) tends to the angle between the signals x and s as the number of measurements M
increases. In [96] this fact is used in the context of randomized rounding for max-cut problems;
however, this property has also been used in similar contexts as ours with regards to preservation
of inner products from binary measurements [97, 98].

The expression (3.6) indeed looks similar to the definition of the BεSE, however, it only holds
for a fixed pair of arbitrary (not necessarily sparse) signals, chosen prior to drawing Φ. Our goal
is to extend (3.6) to cover the entire set of sparse signals. Indeed, concentration results similar to
Lemma 7, although expressed in terms of norms, have been used to demonstrate the RIP [45]. These
techniques usually demonstrate that the cardinality of the space of all sparse signals is sufficiently
small, such that the concentration result can be applied to demonstrate that distances are preserved
with relatively few measurements.

Unfortunately, due to the non-linearity of A we cannot immediately apply Lemma 7 using the
same procedure as in [45]. To briefly summarize, [45] proceeds by covering the set of all K-sparse
signals ΣK with a finite set of points (with covering radius δ > 0). A concentration inequality is
then applied to this set of points. Since any sparse signal lies in a δ-neighborhood of at least one
such point, the concentration property can be extended from the finite set to ΣK by bounding the
distance between the measurements of the points within the δ-neighborhood. Such an approach
cannot be used to extend (3.6) to ΣK , because the severe discontinuity of our mapping does not
permit us to characterize the measurements A(x+ s) using A(x) and A(s) and obtain a bound on
the distance between measurements of signals in a δ-neighborhood.

To resolve this issue, we extend Lemma 7 to include all points within Euclidean balls around
the vectors x and s inside the (sub) sphere Σ∗(T ) = {u ∈ SN−1 : suppu ⊂ T} for some fixed
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support set T ⊂ {1, · · · , N} of size |T | = D. Define the δ-ball Bδ(x) := {a ∈ SN−1 : ‖x− a‖2 < δ}
to be the ball of Euclidean distance δ around x, and let B∗δ (x) = Bδ(x) ∩ Σ∗(T ).

Lemma 8. Given T ⊂ {1, · · · , N} of size |T | = D, let Φ be a matrix generated as Φ ∼ NM×N (0, 1),
and let the mapping A : RN → BM be defined as in (3.1). Fix ε > 0 and 0 ≤ δ ≤ 1. For any
x, s ∈ Σ∗(T ), we have

P
( ∣∣∣ dHÄA(u), A(v)

ä
− dS(x, s)

∣∣∣ ≤ ε+
»

π
2D δ

)
≥ 1− 2 e−2ε2M

for all u ∈ B∗δ (x) and v ∈ B∗δ (s).

The proof of this result is given in Appendix B.4.

In words, if the width δ is sufficiently small, then the Hamming distance between the 1-bit
measurements A(u), A(v) of any points u, v within the balls B∗δ (x), B∗δ (s), respectively, will be
close to the angle between the centers of the balls.

Lemma 8 is key for providing a similar argument to that in [45]. We now simply need to count
the number of pairs of K-sparse signals that are euclidean distance δ apart. The Lemma can
then be invoked to demonstrate that the angles between all of these pairs will be approximately
preserved by our mapping.5 Thus, with Lemma 8 under our belt, we demonstrate in Appendix B.5
the following result.

Theorem 6. Let Φ be a matrix generated as Φ ∼ NM×N (0, 1) and let the mapping A : RN → BM
be defined as in (3.1). Fix 0 ≤ η ≤ 1 and ε > 0. If the number of measurements is

M ≥ 4
ε2

Ä
K log(N) + 2K log(50

ε ) + log( 2
η )
ä
, (3.7)

then with probability exceeding 1− η, the mapping A is a BεSE of order K for sparse vectors.

By choosing Φ ∼ NM×N (0, 1) with M = O(K logN), with high probability we ensure that the
mapping A is a BεSE. Additionally, from (3.7) we find that the error decreases as

ε = O
Ä
(K/M)(1−α)/2 (logN)1/2

ä
, (3.8)

for arbitrarily small α > 0. Unfortunately, this decay is at a slower rate (roughly by a factor of»
K/M) than the lower bound on the error given in Section 3.4.1. This error rate results from

an application of the Chernoff-Hoeffding inequality in the proof of Theorem 6. An open question
is whether it is possible to obtain a tighter bound (with optimal error rate) for this robustness
property.

As mentioned in Section 3.3, it may be advantageous to reconstruct a signal from the signs of the
differences of the measurements. As suggested by (3.2), in this case we interested in applying the
sparse consistent reconstruction algorithm to the measurement matrix DΦ, where D is a difference
matrix and Φ is the original measurement matrix. When Φ is a Gaussian matrix, this is indeed
possible with the number of measurements on the same order as before, as explained by the following
Corollary.

5 We note that the covering argument in the proof of Theorem 5 also employs δ-balls in similar fashion but only
considers the probability that dH = 0, rather than the concentration inequality.
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Corollary 2. Let Φ be a matrix generated as Φ ∼ NM×N (0, 1), let D be an M − 1×M difference
matrix, and let the mapping A : RN → BM be defined as in (3.1) with the matrix DΦ instead of Φ.
Fix 0 ≤ η ≤ 1 and ε > 0. If the number of measurements is

M ≥ 8
ε2

Ä
K log(N) + 2K log(50

ε ) + log( 2
η )
ä
, (3.9)

then with probability exceeding 1− η, the mapping A is a BεSE of order K for sparse vectors.

Proof. Let the (M − 1)/2 ×M matrix E be obtained by selecting every other row of the matrix
D. Then the matrix EΦ has i.i.d. Gaussian entries, since it is obtained by summing disjoint sets of
independent Gaussian entries in Φ. Note that the entries of EΦ will no longer have unit variance
but are still zero mean, i.e., they are just scaled Gaussians. As previously discussed, scaling the
entries of Φ has no effect on BεSE property (or its probability of occurance). Thus, if given the
signs of the measurements from DΦ, we can perform reconstruction with a subset of measurements
and EΦ. To obtain the final result, we note that we have half as many valid measurements as in
Theorem 6. �

Note that the only difference between (3.9) and (3.7) is that the minimum number of required
measurements is now double of what was required in Theorem 6, and thus is on the same order as
in (3.8). This is because there are half as many independent measurements in this case.

Besides robustness to non-linearities as discussed in Section 3.3, this technique can also be
used for 1-bit quantization of measurements that are all positive, such as those acquired by the
single-pixel-camera [19].

As with Theorem 5, Gaussian matrices provide a universal mapping, i.e., the result remains
valid for sparse signals in a basis Ψ ∈ RN×N . Moreover, Theorem 6 can also be extended to rows
of Φ that are drawn uniformly on the sphere, since the rows of Φ in Theorem 6 can be normalized
without affecting the outcome of the proof. Note that by normalizing the Gaussian rows of Φ, is is
as if they had been drawn from a uniform distribution of unit-norm signals.

We have now established a large class of robust BεSEs: 1-bit quantized Gaussian projections. We
now make use of this robustness by considering an example where the measurements are corrupted
by Gaussian noise.

3.5.3 Noisy measurements and compressible signals

In practice, hardware systems may be inaccurate when taking measurements; this is often modeled
by additive noise. The mapping A is robust to noise in an unusual way. After quantization, the
measurements can only take the values −1 or 1. Thus, we can analyze the reconstruction perfor-
mance from corrupted measurements by considering how many measurements flip their signs. For
example, we analyze the specific case of Gaussian noise on the measurements prior to quantization,
i.e.,

An(x) := sign (Φx+ n), (3.10)
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where n ∈ RM has i.i.d. elements ni ∼ N (0, σ2). In this case, we demonstrate, via the following
lemma, a bound on the Hamming distance between the corrupted and ideal measurements with
the BεSE from Theorem 6 (see Appendix B.6).

Lemma 9. Let Φ be a matrix generated as Φ ∼ NM×N (0, 1), let the mapping A : RN → BM be
defined as in (3.1), and let An : RN → BM be defined as in (3.10). Let n ∈ RM be a Gaussian
random vector with i.i.d. components ni ∼ N (0, σ2). Fix γ > 0. Then for any x ∈ RN , we have

E
Ä
dH
Ä
An(x), A(x)

ä ä
≤ e(σ, ‖x‖2),

P
Ä
dH
Ä
An(x), A(x)

ä
> e(σ, ‖x‖2) + γ

ä
≤ e−2Mγ2

,

where e(σ, ‖x‖2) = 1
2

σ√
‖x‖22+σ2

≤ 1
2

σ
‖x‖2 .

If x̂n is the estimate from a sparse consistent reconstruction algorithm ∆1bit(An(x),Φ,K) from
the measurements An(x), then it immediately follows from Lemma 9 and Theorem 6 that

dS(x̂n, x) ≤ dH
Ä
An(x), A(x)

ä
+ ε ≤ 1

2
σ
‖x‖2 + γ + ε, (3.11)

with high probability (depending on M and γ). Given alternative noise distributions, e.g., Poisson
noise, a similar analysis can be carried out to determine the likely number of sign flips and thus
provide a bound on the error due to noise.

Another practical consideration is that real signals are not always strictly K-sparse. Indeed,
it may be the case that signals are compressible; i.e., they can be closely approximated by a K-
sparse signal. Lemma 9 can be extended to compressible signals. To do this, we consider the small
coefficients, i.e., the “tail” of the residual of a best K-term approximation of x, to be a source
of Gaussian noise on the measurements and then apply Lemma 9. This is possible due to our
particular Gaussian choice of Φ and the fact that for binary measurements, we are only concerned
with the number of measurements that change sign.

Corollary 3. Let Φ be a matrix generated as Φ ∼ NM×N (0, 1) and let the mapping A : RN → BM
be defined as in (3.1). Furthermore, let Φ have RIP constant δK . Let γ > 0. Then for any x ∈ SN−1

we have

E
Ä
dH
Ä
A(x), A(xK)

ä ä
≤ 1

2
‖x−xK‖2
‖x‖2 ,

P
(
dH
Ä
A(x), A(xK)

ä
> 1

2
‖x−xK‖2
‖x‖2 + γ

)
≤ e−2Mγ2

,

where xK is the best K-term approximation of x.

The proof is given in Appendix B.7. In similar fashion to (3.11), this result implies that with
high probability (depending on M and γ), the angular reconstruction error of x̂ = ∆1bit(A(x),Φ,K)
for any signal x (sparse or compressible) is bounded as

dS(x̂, x) ≤ 1

2

‖x− xK‖2
‖x‖2

+ γ + ε,
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Much like conventional CS results, the reconstruction error on the order of the best K-term ap-
proximation error of the signal.

Thus far we have demonstrated a lower bound on the reconstruction error from 1-bit measure-
ments (Theorem 5) and introduced a condition on the mapping A that enables stable reconstruction
in noiseless, noisy, and compressible settings (Definition 2). We have furthermore demonstrated
that a large class of random matrices—specifically matrices with coefficients draw from a Gaus-
sian distribution and matrices with rows drawn uniformly from the unit sphere—provide good
mappings (Theorem 6). We now demonstrate how the above ideas can be extended to perform
saturation-agnostic (and multi-bit) reconstruction.

3.6 Saturation-Agnostic Sensing

It is possible to use the sparse consistent reconstruction algorithm ∆1bit(ys,Φ,K) to recover mea-
surements that have been quantized at bit depths higher than one and with arbitrary numbers of
saturation events. To do this, we extend the idea that signals can be recovered from the signs of
the pair-wise differences of the measurements as in Corollary 2. However, instead of considering
only the relationship between any two consecutive pairs, we consider the unique relationships be-
tween all pairs of measurements. We can represent this by an overdetermined difference matrix

DM ∈ {−1, 0, 1}(
M
2 )×M . For example, for M = 4 we would have the 6× 4 matrix

DM =



1 -1 0 0
1 0 -1 0
1 0 0 -1
0 1 -1 0
0 1 0 -1
0 0 1 -1

 , (3.12)

and the measurements y = [1,−4, 3, 6]T would quantize to [1,−1,−1,−1,−1,−1]T = sign(DMy).
Thus, we can perform the following procedure:

1. Acquire real-valued measurements;

2. Quantize the measurements (this may induce an unknown amount of saturation);

3. Apply DM to the quantized, saturated measurements and compute the resulting signs.

We can then perform reconstruction via ∆1bit(sign(DMy), DMΦ,K). A similar idea has been
proposed for quantization of frame coefficients in a non-CS context [99]. This can also be thought
of as a specific application of some of the ideas presented in [33].

The key benefits of this technique are that it i) provides a simple way to perform consistent6

reconstruction from multi-bit quantized measurements; and ii) is agnostic to the number of satu-
rations. Indeed, when all measurements saturate, this technique reduces to the signed differences

6In this case consistency is defined in terms of the signs of the differences of the measurements, not the absolute
quantization intervals in which the measurements lie.
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reconstruction problem with guarantees given in Corollary 2 and problem formulation given by
(3.2), i.e., for all practical purposes it is equivalent to the 1-bit CS case. It is thus expected that we
can maintain robust reconstruction performance regardless of how many measurements saturate.
We will see empirical validation of this idea in Section 4.2. This may be useful in situations where
the saturation rate may be hard to control or the gains of the input signals are unpredictable.

3.7 1-bit CS Reconstruction Algorithms

3.7.1 Trust, but Verify: Restricted-step shrinkage (RSS)

Background on trust-region algorithms

One approach to solving optimization problems like (`1-min1B) and (3.2) is to adapt standard
CS optimization algorithms to seek a solution on the sphere. However, since these algorithms
are intended to solve convex problems and the sphere constraint is non-convex, computational
performance may suffer. In particular, the choice of an appropriate step-size is elusive. Common
methods for choosing adaptive step-sizes, such as Barzilai-Borwein (BB) steps, do not necessarily
perform well with a unit sphere constraint, since they were designed for unconstrained convex
optimization [100]. In addition, to enforce the sphere constraint, many approaches must introduce
an additional step that renormalizes intermediate solutions. It is not obvious that such approaches
will converge.

The methods used in this section are inspired by a particular class of restricted step-size algo-
rithms called trust-region methods [101]. Given the unconstrained nonlinear programming problem

min
x∈RN

f(x), (3.13)

trust-region methods compute the next trial point iteratively by finding the minimizer of the ap-
proximation ms(x) of f(x) within a trust-region defined by a ball centered at the current point xs

with radius ∆s;7 that is,
min
x∈RN

ms(x) s.t. ‖x− xs‖2 ≤ ∆s. (3.14)

The size of the trust-region ∆s is increased or decreased automatically according to the perfor-
mance of the model (3.14) during previous iterations. These methods choose step directions and
lengths simultaneously, and they have been proven to be reliable for solving difficult non-convex
problems [101]. Additionally, these algorithms often have provable convergence guarantees. These
algorithms can also be used for constrained optimization, for example, by linearizing the constraints
and applying a conventional constrained optimization technique. For more details on trust region
methods and their adaptation for constrained optimization, we refer the reader to [101, 102].

To motivate the use of trust-region methods in 1-bit CS, consider the following simple example
program:

min
x∈S1

‖x‖1 s.t. x1 ≤ x2 and ‖x‖2 = 1. (3.15)

7In this section ∆s refers to the trust region radius, not the quantization width or 1-bit reconstruction algorithm.
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(a) successful iteration example (b) failure iteration example

Figure 3.3: Example scenarios of trust region algorithm iterations to solve (3.15). The goal is find an x with
the minimum `1-norm such that x has unit `2-norm and x1 ≤ x2. The shaded region denotes the feasible
constraint region and the iteration number is denoted by s, with initial point xs. The light dashed circle
denotes trust region at iteration s and the dark dashed circle denotes trust region at iteration s + 1. ws

and ws+1 denote steps taken before projecting onto the unit circle. (a) During a successful iteration, the
trial point falls within the feasible region and thus is accepted, denoted by xs+1, and the radius of the trust
region is enlarged. (b) During a failure iteration, the trust region radius is too large and the trial point falls
outside the feasible region. In this case, the trust region radius is reduced and a new trial step is taken from
the initial point xs.

The behavior of the method can be best explained by examining both a successful iteration and
a failure iteration of the algorithm applied to (3.15). Examples of these cases are depicted in
Figure 3.3. The first constraint is depicted by the shaded area. The initial point is denoted by
xs, where s is the iteration number. The algorithm will take a step in a direction specified by an
approximation ms(x) (not depicted) to point w and then project the result onto the unit sphere.
The light dashed sphere depicts the trust region at iteration s while the dark dashed sphere depicts
the trust region at iteration s+ 1. Depending on the success of the trial point, the trust region will
expand or contract.

During a successful iteration, as depicted in Figure 3.3(a), the algorithm takes a step to point
ws and projects the point onto the sphere. This is depicted by the red dashed line. Since the result
is within the feasible region, the point is accepted and denoted by xs+1. The trust region radius is
expanded and the procedure repeats. During a failure iteration, as depicted in Figure 3.3(b), the
trust region radius is too large and the trial point on the circle is not within the feasible region.
Thus, we do not accept this trial point and take a new step from the initial point xs, this time with
a smaller trust region radius. In this example, the new step results in a feasible point.

The program (3.14) is generally not solvable in closed form. This includes the case studied in
this section where f(x) is the `1-norm. However, by relaxing the problem, a closed form optimal
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solution can often be obtained, resulting in lower cost computation at each iteration. In this section,
rather than solving (3.14), we iteratively solve a sequence of problems of the form

min
x∈SN−1

ms(x) +
λs

2
‖x− xs‖22, (3.16)

where the parameter λs essentially plays a role like the trust-region radius ∆s in model (3.14). In
fact, the solutions of (3.14) and (3.16) are the same under some properly chosen λs and ∆s. We
will show that our adaptation of this algorithm indeed also has guaranteed convergence, as with
conventional trust region algorithms.

The restricted step shrinkage algorithm for 1-bit CS

In this section, we derive an algorithm for the generalized formulation of (`1-min1B) and (3.2)

min
x∈SN−1

‖x‖1 s.t. Ax ≥ b and ‖x‖2 = 1. (3.17)

Our strategy is as follows. First, using the augmented Lagrangian framework, we formulate an
algorithm that solves (3.17) and denote it as RSS-outer. We choose the augmented Lagrangian
framework since many state-of-the-art CS reconstruction algorithms are formulated this way [26,
103, 104]. Second, a step within RSS-outer requires that we solve a non-convex subproblem of the
form

min
x∈SN−1

ζµ(x) = ‖x‖1 + µf(x) s.t. ‖x‖2 = 1, (3.18)

where f(x) : RN → R is differentiable and µ > 0. We solve (3.18) with a trust-region-like subrou-
tine, denoted as RSS-inner. The total procedure obtained by combining RSS-outer and RSS-inner
is called the RSS algorithm.

The RSS-inner subroutine is the main contribution of this section. Thus, we choose to describe
RSS-inner in terms of the general program (3.18). Algorithm frameworks other than the augmented
Lagrangian can be used to formulate an algorithm for (3.17), and in some cases may employ the
RSS-inner subroutine. As an example, the quadratic penalty formulation to this problem is given in
Appendix C.1. This formulation is simpler to implement, but does not perform as fast in practice.

For the remainder of this section, we will use the following terms. A stationary point of an
optimization problem is a point that satisfies the Karush-Kuhn-Tucker (KKT) first-order optimality
conditions [102]. By convergence we mean that an algorithm converges to a stationary point of the
objective from any starting point, but not necessarily to a global minimizer of the objective. We
say a point x is a cluster point of sequence {xs}s∈N if for any ε > 0 there exist an infinite number
of points of {xs} lying in the ε-ball of x. Note that the sequence {xs} may not converge. A feasible
solution is a solution such that all constraints are satisfied. The subgradient ∂f of function f(x) at
point x0 is defined as any vector z such that

f(x)− f(x0) ≥ z(x− x0). (3.19)
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Algorithm 3: RSS-outer

S0 Initialize
Given initial solution x0

Choose initial step-size µ0 and κ > 0
Set iteration s := 0, Lagrangian multiplier λ0 = 0

while not converged do
S1 Compute next estimate (via RSS-inner)

Set xs+1 = minL(x, λs, µs) s.t. ‖x‖2 = 1,
where the objective is given by (3.21).

S2 Update multiplier and µ
Set λs+1 := max

{
λs − µs(Axs+1 − b), 0

}
Set µs+1 := κµs

S3 Update iteration count
Set s := s+ 1

Augmented Lagrangian formulation of (3.17) (RSS-outer) We first formulate an al-
gorithm to solve (3.17) using augmented Lagrangian framework. Starting from λ0 = 0, at each
iteration s we solve the Lagrangian function

min
x∈SN−1

L(x, λs, µs) s.t. ‖x‖2 = 1, (3.20)

for xs+1, where λ ∈ RM and µ > 0. We then set µs+1 := κµs, with κ > 0, and updates the
Lagrangian multipliers λs+1 according to

λs+1 := max
¶
λs − µs(Axs+1 − b), 0

©
.

The augmented Lagrangian function for (3.17) is

L(x, λ, µ) := ‖x‖1 +
m∑
i=1

ρ((Ax− b)i, λi, µ), (3.21)

where

ρ(t, σ, µ) :=

−σt+ 1
2µt

2, if t− σ
µ ≤ 0,

− 1
2µσ

2, otherwise.
(3.22)

Thus, the intermediate problem (3.20) is of the form of (3.18) and will be solved with RSS-inner.
The complete augmented Lagrangian procedure, and how it relies on the RSS-inner subroutine is
summarized in Algorithim 3.

Restricted-step subroutine to solve (3.18) (RSS-inner) The RSS-inner subroutine finds
the solution to the subproblem (3.18) and proceeds as follows. We begin with an initial signal
estimate x0 and an initial step-size τ0. At iteration s, from the point xs, we compute a smooth
approximation ms(x) to the original objective function ζµ(x) in (3.18). The approximation is
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formed by adding the first-order Taylor expansion of µf(x) and a proximal term with respect to
xs to the `1-norm of x

ms(x) = ‖x‖1 + µf(xs) + µ (gs)> (x− xs) +
τ s

2
‖x− xs‖22,

where the step size τ s > 0 and gs is the gradient of f(x). Next, we find the optimal solution to the
smoothed approximation

zs := arg min
x∈Rn

ms(x) s.t. ‖x‖2 = 1. (3.23)

The relationship between the optimal solution zs of the subproblem (3.23) and its subgradient
∂‖zs‖1, together with the norm constraint, implies that zs can be expressed explicitly. In fact, zs

can be expressed in terms of the shrinkage (“soft threshold”) operator, defined for any α ∈ RN , as

S(α, T ) := sgn(α)�max {|α| − T, 0} , (3.24)

where � denotes the element-wise product between two vectors and | · | denotes the magnitude of
each element in the vector. This is demonstrated in the following Lemma.

Lemma 10. Suppose that xs is not a stationary point of ζµ.

1. If Ss := S (τ sxs − µgs, 1) 6= 0, then the closed-form solution of the subproblem (3.23) is

zs =
Ss

‖Ss‖2
. (3.25)

2. If |τ sxsi − µgsi | < 1 for i = 1, . . . , n, then zsi = 0 for all i except that zsi = sgn(τ si x
s − µgsi ),

where i = arg maxk=1,...,n |τ sxsk − µgsk| (select only one i if there are multiple solutions).

3. Otherwise, the optimal Lagrangian multiplier λ with respect to ‖x‖2 = 1 satisfies τ s − λ = 0,
|τ sxs−µgs| ≤ 1, and the set {i | |τ sxsi −µgsi | = 1} is not empty and the closed-form solutions
of the subproblem (3.23) satisfy ‖zs‖2 = 1 and

zsi ∈ (0,+∞), if τ sxsi − µgsi = 1,

zsi ∈ (−∞, 0), if τ sxsi − µgsi = −1,

zsi = 0, otherwise.

(3.26)

The proof of this Lemma can be found in Appendix C.2. The Lemma implies that the next
trial point zs can be computed in closed form via the ratio (3.25).

We now present our strategy for choosing the step-size τ s and updating the new iterate xs+1

from zs. We first calculate the difference between the actual reduction of the objective function
ζµ(x) and predicted reduction

δ(xs, zs) = ‖xs‖1 − ‖zs‖1 − µ(gs)>(zs − xs)
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Algorithm 4: RSS-inner (subroutine)

S0 Initialize
Given initial solution x0 and initial step-size τ0

Choose 0 < η1 ≤ η2 < 1 and 0 < γ1 ≤ γ2 < 1 < γ3

Set iteration s := 0
while not converged do

S1 Compute step
Compute a new trial point zs via (3.25)
Compute the ratio rs via (3.27)

S2 Accept or reject the trial point
If rs ≥ η1, then set xs+1 = zs

otherwise, set xs+1 = xs

S3 Adapt step-size
Update τ s according to (3.28)

S4 Update iteration count
Set s := s+ 1

and then compute the ratio

rs =
ζµ(xs)− ζµ(zs)

δ(xs, zs)
(3.27)

to decide whether to accept the trial point zs as well as if the step-size should be updated. Specifi-
cally, if rs ≥ η1 > 0, then the iteration was successful and we set xs+1 = zs; otherwise, the iteration
was not successful and we set xs+1 = xs. Finally, the step-size τ s is updated as

τ s+1 ∈


[γ1τ

s, γ2τ
s], if rs ≥ η2,

[γ2τ
s, τ s], if rs ∈ [η1, η2),

[γ3τ
s, τmax], if rs ≤ η1,

(3.28)

where 0 < η1 ≤ η2 < 1 and 0 < γ1 ≤ γ2 < 1 < γ3. The parameters η1, η2, γ1, γ2, γ3 determine
how aggressively the step-size is increased when an iteration is successful and how aggressively it
is decreased when an iteration was unsuccessful. In practice, the performance of RSS-inner is not
sensitive to the actual values of the parameters.

The complete RSS-inner procedure to solve subproblem (3.18) is summarized in Algorithm 4.

Convergence We next demonstrate that the RSS algorithm converges. Recall that by conver-
gence we mean that the algorithm will converge to a stationary point of (3.18). Before proceeding,
we first note that there exists λ ∈ R such that the first-order optimality conditions of (3.18) hold;
that is,

p+ µg(x)− λx = 0, ‖x‖2 = 1, p ∈ ∂‖x‖1, (3.29)

where g(x) = ∇f(x). In addition, we make the following assumption on g(x),
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Assumption 1. The gradient g(x) of f(x) is Lipschitz continuous with constant L:

‖g(x)− g(y)‖2 ≤ L‖x− y‖2.

Note that this assumption is valid for the objective function in (3.18).

We are now ready to establish convergence of the RSS-inner algorithm.

Theorem 7. Suppose that for (3.18) S (τ sxs − µgs) 6= 0 for every iteration. If the RSS-inner
algorithm has finitely many successful iterations, then it converges to a stationary point. If the
RSS-inner algorithm has infinitely many successful iterations, then there exists at least one cluster
point of the sequence {xs} and every cluster point is a stationary point.

To prove this, we first demonstrate that an iteration is successful if the step size at that iteration
is sufficiently large. The remainder of the proof is by contradiction, by checking how much the
objective function value of (3.18) decreases, for the successful iterations. The detailed proof can
be found in Appendix C.2. The convergence of RSS-outer follows from the standard theory for
non-smooth optimization [102].

In summary, in this section our goal was to solve (3.17). To do this, we formulated an algo-
rithm for (3.17) using the augmented Lagrangian framework as given by Algorithm 3. Within the
algorithm, we must solve the subproblem (3.20). Because (3.20) is of the form (3.18), it can be
efficiently solved by the RSS-inner subroutine, as given by Algorithm 4, with provable convergence.

3.7.2 Binary iterative hard thresholding (BIHT)

Problem formulation and algorithm definition

We now introduce a simple first-order algorithm for the reconstruction of sparse signals from 1-
bit compressive measurements. Our algorithm, Binary Iterative Hard Thresholding (BIHT), is a
simple modification of IHT, the real-valued algorithm from which is takes its name [30]. The IHT
algorithm has recently been extended to handle measurement non-linearities [105]; however, these
results do not apply to quantized measurements since quantization does not satisfy the requirements
in [105].

We briefly recall that the IHT algorithm consists of two steps that can interpreted as follows.
The first step can be thought of as a gradient descent to reduce the least squares objective ‖y −
Φx‖22/2. Thus, at iteration s, IHT proceeds by setting as+1 = xs + ΦT (y − Φxs). The second step
imposes a sparse signal model by projecting as+1 onto the “`0 ball”, i.e., selecting the K largest in
magnitude elements. Thus, IHT for CS can be thought of as trying to solve the problem

x̂← argmin
x∈RN

1
2‖y − Φx‖22 s.t. ‖x‖0 = K. (3.30)

The BIHT algorithm simply modifies the first step of IHT to instead minimize a consistency-
enforcing objective. Specifically, given an initial estimate x0 = 0 and 1-bit measurements ys, at
iteration s BIHT computes

as+1 = xs +
τ

2
ΦT
Ä
ys −A(xs)

ä
, (3.31)
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Algorithm 5: Binary Iterative Hard Thresholding (BIHT)

S0 Initialize
Set initial solution x0 := 0
Set iteration s := 0

while not converged do
S1 Update estimate (note that this is quite different from IHT proper)

as+1 := xs + 1
M ΦT

Ä
ys −A(xs)

ä
S2 Hard threshold and project onto unit sphere

xs+1 := U
Ä
ηK(as+1)

ä
S3 Update iteration count

Set s := s+ 1

xs+1 = ηK(as+1), (3.32)

where A is defined as in (3.1), τ is a scalar that controls gradient descent step-size, and the function
ηK(v) computes the best K-term approximation of v by thresholding. Once the algorithm has
terminated (either consistency is achieved or a maximum number of iterations have been reached),
we then normalize the final estimate to project it onto the unit sphere. Section 3.7.2 discusses
several variations of this algorithm, each with different properties. A quick summary is given in
Algorithm 5.

The key to understanding BIHT lies in the formulation of the objective. The following Lemma
shows that the term ΦT

Ä
ys − A(xs)

ä
in (3.31) is in fact the negative subgradient of a convex

objective J . Let [·]− denote the negative function, i.e., ([u]−)i = [ui]− with [ui]− = ui if ui < 0
and 0 else, and u� v denote the Hadamard product, i.e., (u� v)i = uivi for two vectors u and v.

Lemma 11. The quantity 1
2 ΦT

Ä
A(x) − ys

ä
in (3.31) is a subgradient of the convex one-sided

`1-norm
J (x) = ‖[ys � (Φx)]−‖1,

Thus, BIHT aims to decrease J at each step (3.31).

Proof. We first note that J is convex. We can write J (x) =
∑
i Ji(x) with each convex function

Ji given by

Ji(x; ys,Φ) =

{
|〈ϕi, x〉|, if Ai(x) (ys)i < 0,

0, else,

where ϕi denotes a row of Φ and Ai(x) = sign 〈ϕi, x〉. Moreover, if 〈ϕi, x〉 6= 0, then the gradient
of Ji is

∇Ji(x; ys,Φ) = 1
2(Ai(x)− (ys)i)ϕi =

{
Ai(x)ϕi if (ys)iAi(x) < 0,

0, else

while if 〈ϕi, x〉 = 0, then the gradient is replaced by the subdifferential set

∇Ji(x; ys,Φ) =
¶
ξ
2(Ai(x)− (ys)i)ϕi : ξ ∈ [0, 1]

©
3 1

2(Ai(x)− (ys)i)ϕi.
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Thus, by summing over i we conclude that 1
2 ΦT

Ä
A(x)− ys

ä
∈ ∇J(x; ys,Φ). �

Consequently, the BIHT algorithm can be thought of as trying to solve the problem:

x∗ = argmin
x

τ ‖[ys � (Φx)]−‖1 s.t. ‖x‖0 = K, ‖x‖2 = 1.

Observe that since ys � (Φx) simply scales the elements of Φx by the signs ys, minimizing the
one-sided `1 objective enforces a positivity requirement,

ys � (Φx) ≥ 0, (3.33)

that, when satisfied, implies consistency.

Previous 1-bit CS algorithms (such as the RSS algorithm of the previous section) have used a
one-sided `2-norm to impose consistency [33, 39, 75, 76]. Specifically, they have applyied a constraint
or objective that takes the form ‖[ys� (Φx)]−‖22/2. Both the one-sided `1 and `2 functions imply a
consistent solution when they evaluate to zero, and thus, both approaches are capable of enforcing
consistency. However, the choice of the `1 vs. `2 penalty term makes a significant difference in
performance depending on the noise conditions. We explore this difference in the experiments in
Section 4.2.

BIHT shifts

Several modifications can be made to the BIHT algorithm that may improve certain performance
aspects, such as consistency, reconstruction error, or convergence speed. We believe that such
variations exhibit interesting and useful properties that should be mentioned.

Projection onto sphere at each iteration. We can enforce that every intermediate solution
have unit `2 norm. To do this, we modify the “impose signal model” step (3.32) by normalizing
after choosing the best K-term approximation, i.e., we compute

xs+1 = U
Ä
ηK(as+1)

ä
, (3.34)

where U(v) = v/‖v‖2. While this step is necessary for previous algorithms such as [39, 75, 76], it
is in general not necessary in the BIHT case.

If we choose to impose the projection, Φ must be appropriately normalized or, equivalently,
the step size of the gradient descent must be carefully chosen. Otherwise, the algorithm will
not converge. Empirically, we have found that for a Gaussian matrix, an appropriate scaling is
1/(
√
M‖Φ‖2), where the 1/‖Φ‖2 controls the amplification of the estimate from ΦT in the gradient

descent step (3.31) and the 1/
√
M ensures that ‖ys − A(xs)‖2 ≤ 2. Similar gradient step scaling

requirements have been imposed in the conventional IHT algorithm and other sparse recovery
algorithms as well (e.g., [25]).

Minimizing hinge loss. The one-sided `1-norm is related to the hinge-loss function in the
machine learning literature, which is known for its robustness to outliers [106]. Binary classification
algorithms seek to enforce the same consistency function as in (3.33) by minimizing a function
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∑
[κ − ys � (Φx)]+, where [·]+ sets negative elements to zero. When κ > 0, the objective is

both convex and has a non-trivial solution. Further connections and interpretations are discussed
in Section 4.2. Thus, rather than minimizing the one-sided `1 norm, we can instead minimize
the hinge-loss. The hinge-loss can be interpreted as ensuring that the minimum value that an
unquantized measurement (Φx)i can take is bounded away form zero, i.e., |(Φx)i| ≥ κ. This
requirement is similar to the sphere constraint in that it avoids a trivial solution; however, will
perform differently than the sphere constraint. In this case, in the gradient descent step (3.31), we
instead compute

as+1 = xs − τΨT (sign(Ψxs − κ)− 1)/2

where Ψ = (ys � Φ) scales the rows of Φ by the signs of ys. Again, the step size must be chosen
appropriately, this time as Cκ/‖Φ‖2, where Cκ is a parameter that depends on κ.

Minimizing other one-sided objectives. In general, any function R(x) =
∑Ri(xi), where

Ri is continuous and has a negative gradient for xi ≤ 0 and is 0 for xi > 0, can be used to enforce
consistency. To employ such functions, we simply compute the gradient of R and apply it in (3.31).

As an example, the previously mentioned one-sided `2-norm has been used to enforce consistency
in several algorithms. We can use it in BIHT by computing

as = xs + τΦT [ys � Φxs]+

in (3.31). We compare and contrast the behavior of the one-sided `1 and `2 norms in Section 4.2.

As another example, in similar fashion to the Huber norm [107], we can combine the `1 and `2
functions in a piecewise fashion. One potentially useful objective is

∑Ri(x), where Ri is defined
as follows:

Ri(x) =


0, xi ≥ 0,
|xi|, −1

2 ≤ xi < 0,
x2
i + 1

4 , xi < −1
2 .

(3.35)

While similar, this is not exactly a one-sided Huber norm. In a one-sided Huber-norm, the square
(`2) term would be applied to values near zero and the magnitude (`1) term would be applied to
values significantly less than zero, the reverse of what we propose here.

This objective can provide different robustness properties or convergence rates than the previ-
ously mentioned objectives. Specifically, during each iteration it may allow us to take advantage of
the shallow gradient of the one-sided `2 cost for large numbers of measurement sign discrepancies
and the steeper gradient of the one-sided `1 cost when most measurements have the correct sign.
This objective can be applied in BIHT as with the other objectives, by computing its gradient and
plugging it into (3.31).

3.7.3 Convex 1-bit reconstruction formulations

The world is flat: From hyperspheres to hyperplanes

The RSS and BIHT algorithms adhere closely to the theoretical 1-bit framework (Sections 3.2–3.5)
in that they attempt to find a solution that lies on the unit sphere. As previously described, this
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(a) (b)

Figure 3.4: The geometry of the convex reconstruction formulation in two dimensions. The hyperplanes
(lines) ϕ1 and ϕ2 correspond to the first and second rows of Φ, respectively. The green shaded region between
the planes denotes the feasible region. The circle denotes the unit sphere. The red solid line denotes the
centroid vector ω of the feasible region and the dashed red line denotes the constraint ωTx = 1. In this case
the plane lies tangent to the sphere since the solution and the centroid are the same. The red dot denotes the
optimal solution before normalization. (a) ω is the centroid, and (b) ω is an approximation to the centroid.

problem is not convex and therefore at best we can hope to prove that the algorithm converges to
some local minimum as in the RSS algorithm, but not guarantee that we have found a feasible (i.e.,
consistent) solution. In these algorithms, we can only check if the solution is feasible.

However, it is possible to formulate the 1-bit reconstruction problem as a convex program. The
key insight is that we want to find any non-trivial sparse solution inside the feasible region and the
solution does not necessarily have to live on the unit sphere, since any non-trivial solution can be
normalized. One convex approach would then choose a hyperplane that cuts through the feasible
region. For example, we can solve

x̂← min
x∈RN

‖x‖1 s.t. Y Φx ≥ 0 and ωTx = 1, (`1-min1B,LP)

where ω is the centroid of the hyperplanes defined by the rows of Φ. We may also choose ω to
be an approximation to the vector, obtained by summing the rows of Φ, i.e., ω =

∑
ϕi. This is a

linear program (LP).8

The presence of the linear constraint ωTx = 1 in (`1-min1B,LP) ensures that we avoid a trivial
solution. The constraint furthermore defines a plane of possible solutions. Figure 3.4 depicts
the geometry of the components of (`1-min1B,LP) formulation in two dimensions. Specifically, the
elements of the diagram are the same as in Figure 3.1 with the addition of the vector ω (which is

8During the final preparation of this manuscript a similar program was proposed and analyzed [108].
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Figure 3.5: The geometry of the hinge-loss inspired reconstruction formulation in two dimensions. The
hyperplanes (lines) ϕ1 and ϕ2 correspond to the first and second rows of Φ, respectively. The green shaded
region between the planes denotes the region of consistent solutions. The circle denotes the unit sphere.
The dark gray shaded region denotes the feasible region. Note that the feasible region does not include the
trivial solution. The red dot denotes the optimal solution before normalization.

exact in (a) and approximated in (b)), denoted by the solid red line and the hyperplane ωTx = 1
denoted by the dashed red line. In this example, due to the orientation of the vectors ϕ1 and ϕ2,
the true centroid ω aligns with the x2-axis exactly. Since the centroid is on the same axis as the
sparsest solution, the plane lies tangent to the unit sphere, i.e., ωTx = xTx = ‖x‖22 = 1. In general
this need not be the case. To see this, suppose we could only approximate ω, as in Figure 3.4(b).
Because it is convex, this program is guaranteed to return a feasible, and thus consistent solution.

If the LP returns a strictly sparse solution, then it can be normalized (projected onto the unit
sphere) and thus if Φ is a BεSE, then we can guarantee stable recovery by Lemma 6. However, this
program solves for the minimum `1-norm and thus will not necessarily return a strictly K-sparse
solution.

Doors opened by the hinge-loss

As we saw in the introduction of the BIHT algorithm, we can use the hinge-loss or square-loss
to enforce consistency. This can be applied as a constraint in a convex optimization problem.
Specifically, the hinge loss reconstruction would be formulated as

x̂← min
x∈RN

‖x‖1 s.t. Y Φx− κ ≥ 0 (3.36)
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for κ > 0, or the relaxation

x̂← min
x∈RN

‖x‖1 + λ
∑

[κ− ys · (Φx)+]. (`1-min1B,hinge)

with λ > 0. Similarly the square-loss would be formulated as

x̂← min
x∈RN

‖x‖1 +
λ

2

∑
(κ− ys · (Φx)+)2. (`1-min1B,square)

These programs are convex and return non-trivial solutions.

We can interpret these programs as making the assumption that the minimum amplitude of the
true measurements Φx was greater than κ. To illustrate this, Figure 3.5 depicts geometry of the
hinge-loss inspired formulation in two dimensions. We see from the figure that the addition of the
term κ is akin to “lifting” the feasible region away from the intersection with the trivial solution
(the origin). In practice the minimum amplitude assumption is not precisely true, however, if there
is noise present on the measurement before quantization, it may be a reasonable assumption that
measurements below the noise floor had quantized to the wrong values anyway. Thus, by tweaking
κ we can adjust the tolerance to noise before quantization.

3.8 Empirical Verification

In this section we explore the performance of the RSS and BIHT algorithms and compare them
to the performance of previous algorithms for 1-bit CS. We also explore the performance of the
convex formulations as well as the multi-bit formulations decribed earlier.

The experimental setup is as follows. For each data point, we draw a length-N , K-sparse signal
with the non-zero entries drawn uniformly at random on the unit sphere, and we draw a new
M × N matrix Φ with each entry φij ∼ N (0, 1). We then compute the binary measurements ys
according to (3.1). Reconstruction of x̂ is performed from ys with three algorithms: matching sign
pursuit (MSP) [76], restricted-step shrinkage (RSS), and BIHT; the algorithms will be depicted
by dashed, dotted, and triangle lines, respectively. Each reconstruction in this setup is repeated
for 1000 trials and with a fixed N = 1000 and K = 10 unless otherwise noted. Furthermore, we
perform the trials for M/N within the range [0, 2]. Note that when M/N > 1, we are acquiring
more measurements than the ambient dimension of the signal. While the M/N > 1 regime is
not interesting in conventional CS, it may be very practical in 1-bit systems that can acquire sign
measurements at extremely high, super-Nyquist rates.

Average error. We begin by measuring the average reconstruction angular error εsim over the
1000 trials. The results of this are depicted in Figure 3.6. We display the results of this experiment
three different ways: i) the true angular error in Figure 3.6(a), which we denote as εsim, to demon-
strate typical values achieved, ii) the signal-to-noise ratio (SNR)9 in Figure 3.6(b), to demonstrate
that the performance of these techniques is practical (since the angular error is unintuitive to most

9We define the reconstruction SNR in decibels as SNR(x) := 10 log10(‖x‖22/‖x− x̂‖22). Note that this metric uses
the standard euclidean error and not angular error.
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Figure 3.6: Average reconstruction angular error εsim vs. M/N , plotted three ways. (a) Angular error
εsim, (b) SNR in decibels, and (c) Inverse angular error ε−1

sim. The plot demonstrates that BIHT yields
a considerable improvement in reconstruction error, achieving an SNR as high as 40dB when M/N = 2.
Furthermore, we see that the error behaves according εsim = O (1/M), implying that on average we achieve
the optimal performance rate given in Theorem 4.

observers), and iii) the inverse of the angular error squared, i.e., ε−1
sim in Figure 3.6(c), to compare

with the performance predicted by Theorem 5.

We begin by comparing the performance of the algorithms. While the angular error of each
algorithm appears to follow the same trend, BIHT obtains smaller error (or higher SNR) than the
others, significantly so when M/N is greater than 0.35. The discrepancy in performance could
be due to difference in the algorithms themselves, or perhaps, differences in their formulations for
enforcing consistency. This is explored later in this section.

We now consider the actual performance trend. We see from Figure 3.6(c) that, above M/N =
0.35 each line appears fairly linear, albeit with a different slope, implying that with all other
variables fixed, εsim = O (1/M). This is on the order of the optimal performance as given by the
bound given in Theorem 4 and predicted by Theorem 5 for Gaussian matrices.

Misses and false alarms. We dig a little deeper into the source of errors by examining the
reconstruction “misses,” i.e., those coefficients that were identified as zero that are non-zero in the
true signal, as well as the “false-alarms”, i.e., those coefficients that were identified as non-zero that
are zero in the true signal. The results are depicted in Figure 3.7(a) and (b), respectively. In both
cases, BIHT outperforms the other algorithms, although it is very close to the RSS algorithm in
the number of misses. While both RSS and MSP have significantly more false-alarms than BIHT,
by design, MSP can return at most K non-zero coefficients and thus cannot have more than K
false alarms. Meanwhile, the RSS algorithm may have many coefficients that are significantly close
to zero but are numerically counted as non-zeros.
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Figure 3.7: Reconstructed signal coefficient (a) misses, and (b) false-alarms. The MSP algorithm is most
likely to miss a coefficient, while RSS and BIHT perform comparably. The RSS algorithm returns a large
number of coefficients that are close to zero and thus performs poorly in the false-alarms metric. Both BIHT
and MSP are restricted to have at most K false alarms by design.

Consistency. We also expose the relationship between the Hamming distance dH(A(x), A(x̂))
between the measurements of the true and reconstructed signal and the angular error of the true
and reconstructed signal. Figure 3.8 depicts the Hamming distance vs. angular error for three
different values of M/N . The particularly striking result is that BIHT returns significantly more
consistent reconstructions than the two other algorithms. This is clear from the fact that most of
the red (plus) points lie on the y-axis while the majority of blue (dot) or green (triangle) points
do not. We find that, even in significantly “under-sampled” regimes like M/N = 0.1, where the
BεSE is unlikely to hold, BIHT is likely to return a consistent solution (albeit with high variance
of angular errors). We also find that in “over-sampled” regimes such as M/N = 1.7, the range of
angular errors on the y-axis is small.

We can infer an interesting performance trend from Figures 3.8(b) and (c), where the BεSE
property may hold. Since the RSS and MSP algorithms often do not return a consistent solution,
we can visualize the relationship between angular error and hamming error. Specifically, on average
the angular reconstruction error is a linear function of hamming error, εH = dH(A(x), A(x̂)), as
similarly expressed by the reconstruction error bound provided by BεSE. Furthermore, if we let
ε1000 be the largest angular error (with consistent measurements) over 1000 trials, then we can
suggest an empirical upper bound for BIHT of ε1000 + εH . This upper bound is denoted by the
dashed line in Figures 3.8(b) and (c).

One-sided `1 vs. one-sided `2 objectives. As demonstrated in Figures 3.6 and 3.8, the
BIHT algorithm achieves significantly improved performance over MSP and RSS in both angular
error and Hamming error (consistency). A significant difference between these algorithms and
BIHT is that MSP and RSS seek to impose consistency via a one-sided `2-norm, as described in
Section 3.7.2. Minimizing either the one-sided `1 or one-sided `2 objectives will enforce consistency
on the measurements of the solution; however, the behavior of these two terms appears to be
significantly different, according to the previously discussed experiments.

To test the hypothesis that this term is the key differentiator between the algorithms, we im-
plemented BIHT-`2, a one-sided `2 variation of the BIHT algorithm that enabled a fair comparison
of the one-sided objectives (see Section 3.7.2 for details). We compared both the angular error and
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Figure 3.8: Reconstruction angular error εsim vs. measurement Hamming error εH . BIHT returns a con-
sistent solution in most trials, even when the number of measurements is too low to permit a small angular
error (see (a) M/N = 0.1). For larger M/N regimes, we see a linear relationship εsim ≈ C + εH between
the average angular error εsim and the hamming error εH where C is constant (see (b) and (c)). The BεSE
formulation in Definition 2 predicts that the angular error is bounded by the hamming error εH in addition
to an offset ε. The dashed line εU1000 + εH denotes the empirical upper bound for 1000 trials.

Hamming error performance of BIHT and BIHT-`2. Furthermore, we implemented oracle assisted
variations of these algorithms where the true support of the signal is given a priori, i.e., ηK in (3.32)
is replaced by an operator that always selects the true support, and thus the algorithm only needs
to estimate the correct coefficient values. The oracle assisted case can be thought of as a “best
performance” bound for these algorithms. Using these algorithms, we perform the same experiment
detailed at the beginning of the section.

The results are depicted in Figure 3.9. The angular error behavior of BIHT-`2 is very similar to
that of MSP and RSS and underperforms when compared to BIHT. We see the same situation with
regards to Hamming error: BIHT finds consistent solutions for the majority of trials, but BIHT-`2
does not. Thus, the results of this simulation suggest that the one-sided term plays a significant
role in the quality of the solution obtained.

One way to explain the performance discrepancy between the two objectives comes from observ-
ing the deep connection between our reconstruction problem and binary classification. As explained
previously, in the classification context, the one-sided `1 objective is similar to the hinge-loss, and
furthermore, the one-sided `2 objective is similar to the so-called square-loss. Previous results in
machine learning have shown that for typical convex loss functions, the minimizer of the hinge loss
has the tightest bound between expected risk and the Bayes optimal solution [109] and good error
rates, especially when considering robustness to outliers [109, 110]. Thus, the hinge loss is often
considered superior to the square loss for binary classification.10 One might suspect that since the
one-sided `1-objective is very similar to the hinge loss, it too should outperform other objectives in
our context. Understanding why in our context, the geometry of the `1 and `2 objectives results in

10Additional “well-behaved” loss functions (e.g., the Huber-ized hinge loss) have been proposed [56] and a host of
classification algorithms related to this problem exist [56, 110–113], both of which may prove useful in the 1-bit CS
framework in the future.
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Figure 3.9: Enforcing consistency: One-sided `1 vs. one-sided `2 BIHT. When BIHT attempts to minimize
a one-sided `2 instead of a one-sided `1 objective, the performance significantly decreases. We find this to be
the case even when an oracle provides the true signal support a priori. Note: (c) is simply a zoomed version
(b).

different performance is an interesting open problem.

We probed the one-sided `1/`2 objectives further by testing the two versions of BIHT on noisy
measurements. We flipped a number of measurement signs at random in each trial. For this
experiment, N = M = 1000 and K = 10 are fixed, and we performed 100 trials. We varied the
number of sign flips between 0% and 5% of the measurements. The results of the experiment are
depicted in Figure 3.10. We see that for both the angular error in Figure 3.10(a) and Hamming
error in Figure 3.10(b), that the one-sided `1 objective performs better when there are only a few
errors and the one-sided `2 objective performs better when there are significantly more errors. This
is expected since the `1 objective promotes sparse errors. This experiment implies that BIHT-`2
(and the other one-sided `2-based algorithms) may be more useful when the measurements contain
significant noise that might cause a large number of sign flips, such as Gaussian noise.

Performance with a fixed bit-budget. In some applications we are interested in reducing
the total number of bits acquired due to storage or communication costs. Thus, given a fixed total
number of bits, an interesting question is how well 1-it CS performs in comparison to conventional
CS quantization schemes and algorithms. For the sake of brevity, we give a simple comparison here
between the 1-bit techniques and uniform quantization with Basis Pursuit DeNoising (BPDN) [72]
reconstruction. While BPDN is not the optimal reconstruction technique for quantized measure-
ments, it (and its variants such as the LASSO [56]) is considered a benchmark technique for
reconstruction from measurements with noise and furthermore, is widely used in practice.
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Figure 3.10: Enforcing consistency with noise: One-sided `1 vs. one-sided `2 BIHT. When BIHT attempts
to minimize a one-sided `2 instead of the one-sided `1 objective, the algorithm is more robust to flips of
measurement signs. *Note that the Hamming error in (b) is measured with regard to the noisy measurements,
e.g., a Hamming error of zero means that we reconstructed the signs of the noisy measurements exactly.

The experiment proceeds as follows. Given a total number of bits and a (uniform) quantization
bit-depth B (i.e., number of bits per measurement), we choose the number of measurements as
M = total bits/B, N = 2000, and the sparsity K = 20. The remainder of the experiment proceeds
as described earlier (in terms of drawing matrices and signals). For bit depth greater than 1, we
reconstruct using BPDN with an optimal choice of noise parameter and we scale the quantizer to
such that signal can take full advantage of its dynamic range.

The results of this experiment are depicted in Figure 3.11. We see a common trend in each line:
lackluster performance until “sufficient” measurements are acquired, then a slow but steady increase
in performance as additional measurement are added, until a performance plateau is reached. Thus,
since lower bit-depth implies that a larger number of measurements will be used, 1-bit CS reaches
the performance plateau earlier than in the multi-bit case (indeed, the transition point is achieved
at a higher number of total bits as the bit-depth is increased). This enables significantly improved
performance when the rate is severely constrained and higher bit-rates per measurements would sig-
nificantly reduce the number of available measurements. For higher bit-rates, as expected from the
analysis in [78], using fewer measurements with refined quantization achieves better performance.

It is also important to note that, regardless of trend, the BIHT algorithm performs strictly better
than BPDN with 4 bits per measurement and uniform quantization for the parameters tested here.
This gain is consistent with similar gains observed in [39, 76]. A more thorough comparison of
additional CS quantization techniques with 1-bit CS is a subject for future study.

Comparison to quantized Nyquist samples. In our next experiment, we compare the
performance of the 1-bit CS technique to the performance of a conventional uniform quantizer
applied to uniform Nyquist-rate samples. Specifically, in each trial we draw a new Nyquist-sampled
signal in the same way as in our previous experiments and with fixed N = 2000 and K = 20;
however, now the signals are sparse in the discrete cosine transform (DCT) domain. We consider
four reconstruction experiments. First, we quantize the Nyquist-rate signal with a bit-depth of β
bits per sample (and optimal quantizer scale) and perform linear reconstruction (i.e., we just use
the quantized samples as sample values). Second, we apply BPDN to the quantized Nyquist-rate
samples with optimal choice of noise parameter, thus denoising the signal using a sparsity model.

60



3.8. EMPIRICAL VERIFICATION

0 500 1000 1500 2000
−10

0

10

20

30

40

50

60

Total Bits

R
S

N
R

 

 

1B−BIHT

CS B=2

CS B=4

CS B=6

CS B=8

CS B=10

CS B=12

Figure 3.11: Comparison of BIHT to conventional CS multibit uniform scalar quantization (multibit re-
constructions performed using BPDN [72]). BIHT is competitive with standard CS working with multibit
measurements when the total number of bits is severely constrained. In particular, the BIHT algorithm
performs strictly better than CS with 4 bits per measurement.

Third, we draw a new Gaussian matrix with M = N , quantize the measurements to β bits, again
at optimal quantizer scale, and reconstruct using BPDN. Fourth, we draw a new Gaussian matrix
with M = βN and compute measurements, quantize to one bit per measurement by maintaining
their sign, and perform reconstruction with BIHT. Note that the same total number of bits is used
in each experiment.

Figure 3.12 depicts the average SNR obtained by performing 100 of the above trials. The lin-
ear, BPDN, Gaussian measurements with BPDN, and BIHT reconstructions are depicted by solid,
dashed, dash-circled, and dash-dotted lines, respectively. The linear reconstruction has a slope of
6.02dB/bit-depth, exhibiting a well-known trade-off for conventional uniform quantization. The
BPDN reconstruction (without projections) follows the same trend, but obtains an SNR that is at
least 10dB higher than the linear reconstruction. This is because BPDN imposes the sparse signal
model to denoise the signal. We see about the same performance with the Gaussian projections
at M = N , although it performs slightly worse than without projections since the Gaussian mea-
surements require a slightly larger quantizer range. Similarly to the results in Fig. 3.11, in low
Nyquist bit-depth regimes (β < 6), 1-bit CS achieves a significantly higher SNR than the other two
techniques. When 6 < β < 8, 1-bit CS is competitive with the BPDN scenario. This simulation
demonstrates that for a fixed number of bits, 1-bit CS is competitive to conventional sampling with
uniform quantization, especially in low bit-depth regimes.

Comparison of BIHT, BIHT-`2, RSS, and the LP. In our next experiment, we compare
the performance of several 1-bit CS reconstruction algorithms for a fixed bit budget. Specifically, we
compare the BIHT, BIHT-`2, and RSS algorithms with the convex (`1-min1B,LP) formulation. The
LP formulation was implemented using MATLAB’s built-in LP solver. Additionally, we include
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Figure 3.12: Comparison of uniformly quantized Nyquist-rate samples with linear reconstruction (solid)
and BPDN denoising (dashed), CS with M = N and BPDN reconstruction (dash-circle), and 1-bit quantized
CS measurements with BIHT reconstruction (dash-dotted). Nyquist samples were quantized with bit-depth
β ∈ [2, 10] and 1-bit CS used M = βN measurements; the same number of bits is used in each reconstruction.
The Nyquist-rate lines have the classical 6.02dB/bit-depth slope, as expected. For a fixed number of bits,
1-bit CS does not follow this slope and outperforms conventional quantization when β < 6.

the performance when the true signal support is known a priori for both BIHT and the LP. Our
choice of extending these two algorithms will become clear shortly.

We choose the number of measurements as M = total bits, N = 2000, and the sparsity K = 20.
The experiment proceeds in the same fashion as in Figure 3.11, however, now we only consider 1-bit
measurements and performance across different algorithms. The BIHT, BIHT-`2, RSS algorithms,
and LP are denoted by solid (black), dotted triangle (black), dash-dotted (blue), and dashed (red)
lines, respectively. The known support enhanced variations of the algorithms are marked with
circles.

As in the previous noiseless experiments, we find that BIHT significantly outperforms the other
non-oracle-assisted algorithms, in this case, when the total number of bits is greater than 400. As
a general trend, beyond 500 total bits, we find that in order of decreasing performance we have the
LP, RSS, and BIHT-`2.

Since the LP formulation and BIHT performed the best, we compared them when the support
is known a priori. Doing so measurements the best performance we can hope to achieve with these
algorithms (in similar fashion to the oracle-assisted reconstruction of Section 1.2). These additional
experiments are denoted by the lines with hollow circles on them. Although both algorithms perform
with the same general trend, we see that even when the support is known, BIHT still outperforms
the convex program. Also note that the convex program will always return a consistent solution
and that BIHT returns a consistent solution most of the time. Thus, we can draw the conclusion
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Figure 3.13: Comparison of BIHT, BIHT-`2, RSS, and the convex LP formulation (`1-min1B,LP) for a fixed
bit budget (and fixed N = 2000, K = 20). In the noiseless setting even when the supports are known, the
BIHT algorithms outperforms all other methods and LP performs second best.

that in the noiseless case, on average, BIHT provides a solution closer to the true solution inside
the feasible region than does the LP, and that perhaps consistency isn’t everything. It could be
possible that the improved performance of BIHT in this case has to do with the distribution of the
signals that were drawn in these experiments.

Comparison of BIHT, BIHT-`2, RSS, and the LP in noise. We also compare the
performance with noisy measurements between the different algorithms and formulations proposed
earlier. We performed an experiment where in each trial, we add zero-mean Gaussian noise e to
the measurements before quantization, i.e.,

ys = sign(Φx+ e). (3.37)

We use the parameters N = 1000, K = 10, M = 2N and scale the noise so that the measurement
SNR varies between 0 dB and 40 dB. Once the measurements are quantized, we perform recon-
struction. The same algorithms are compared as in the previous experiment and again, the LP was
implemented using MATLAB’s built-in tools.

Figure 3.14 depicts the results of this experiment. As we have seen before, the BIHT algorithm
performs best when the noise is very low (and the SNR is very high). However, below 30dB the other
algorithms start to outperform BIHT. We also see that BIHT-`2 generally performs better than
RSS but the two algorithms perform about the same when we only keep the K largest returned RSS
coefficients (recall that RSS generally does not return a sparse solution). The RSS, LP, and BIHT-
`2 algorithms perform similarly because they employ similar formulations to enforce consistency,
similar to that of the square-loss. Intuitively, the one-sided `1 consistency formulation should bias
toward sparse sign error and thus it makes sense that it performs better in lower noise scenarios.

Saturation-agnostic reconstruction. In our final experiment in this section, we explore the
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Figure 3.14: Reconstruction SNR as a function of measurement SNR (before quantization). Reconstructions
performed with BIHT, BIHT-`2, RSS, and the LP for fixed N = 1000, K = 10, M = 2N and measurement
SNR between 0 dB and 40 dB. The BIHT algorithm outperforms the others in the high SNR regime (greater
than 30dB) but underperforms in lower SNR regimes. The RSS algorithm achieves competitive performance
to the BIHT-`2 algorithm when only the K largest coefficients are saved. The convex algorithm does not
appear to outperform the RSS algorithm, despite its potentially nice properties.

benefits of saturation-agnostic reconstruction via the 1-bit algorithms, as explained in Section 3.6.
We are interested in testing this technique in the context of measurement saturation as explained
in the introduction to this chapter. Specifically, we are interested in demonstrating that signal
reconstruction is possible for an arbitrary amount of saturation via a single consistent formulation.

The setup of the experiment is as follows. In each trial we generate an length N = 1000, K = 10
sparse unit-norm signal. We also draw a new M ×N Gaussian measurement matrix with variance
1/M , for fixed M = N/2. After computing measurements, we apply a 4-bit quantizer with finite
range G, as described in Section 2.1. We vary G between 0 and 0.07. We perform reconstruction
with two algorithms: i) the saturation-agnostic reconstruction formulation of Section 3.6 with
the BIHT algorithm, and ii) the greedy saturation consistent CoSaMP (SC-CoSaMP) used in the
democratic method and detailed in Chapter 2. SC-CoSaMP is known to break down when too
much saturation is incurred on the measurements. We chose the BIHT algorithm to implement the
saturation-agnostic approach since it produced the best noiseless reconstruction performance in the
previous experiments. Results are expressed in RSNR and reflect the average over 100 trials. We
chose the signal to have unit norm for the sake of comparison but this is not required in general.

Figure 3.15 depicts the results of this experiment. The dashed (blue) line depicts the average
reconstruction performance obtained by the multibit technique and the solid (black) line depicts the
performance obtained when applying SC-CoSaMP. For large quantizer range G, little saturation
occurs and the SC-CoSaMP algorithm slightly outperforms the BIHT algorithm. However, this may
be due to the differences in the algorithms and not the formulation itself. When G is decreased
significantly, in this case below 0.02, the SC-CoSaMP algorithm drops steeply in performance,
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Figure 3.15: Saturation-agnostic sensing in action. A 4-bit quantizer with finite range G was applied to
CS measurements as described in Section 2.1. The saturation-agnostic curve corresponds to the technique
described in Section 3.6 and the saturation consistent curve was generated with the SC-CoSaMP, noted in
Chapter 2. This simulation demonstrates that the saturation-agnostic formulation can achieve a significantly
non-zero SNR in regimes where most measurements are saturated, in fact, even when all measurements have
saturated. This technique provides robust performance when the saturation level cannot be controlled.

eventually obtaining an SNR of 0 when G = 0. However, the multibit BIHT algorithm, although it
moderately decreases in performance around the same G = 0.02, maintains a significantly non-zero
SNR, even at G = 0. Indeed, G = 0 corresponds to the “supersaturated” case, i.e., 1-bit CS.

The conclusion of this experiment, and indeed this chapter, is that we are in fact able to stably
recover signals regardless of saturation level (or even bit-depth). The algorithm is agnostic to the
number of saturations and provides reasonable performance where previous algorithms fail.

3.9 A Note on Alternative 1-Bit Frameworks

Two alternative approaches have been introduced to acquire 1-bit measurements and recover sparse
signals. In [114], the authors propose a convolution-based imaging system with 1-bit measurements.
Reconstruction is performed using total variation (TV) minimization and a gradient descent algo-
rithm. In addition, the authors introduce a convex regularization parameter that simultaneously
enforces both sign consistency and non-zero signal norm. In [98], the authors propose both non-
adaptive and adaptive 1-bit sensing schemes. The non-adaptive scheme, which most closely relates
to the framework presented here, relies on knowledge of the dynamic range of the signal, as well as
an assumption about the distribution of the values of the nonzero coefficients.
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CHAPTER 4

Regime Change

W
e now return to the multibit scalar quantizer (2.1) from Chapter 2:

yQ = QB(Φ(x+ n) + e), (4.1)

where the signal noise is denoted by n ∈ RN , and QB : R → A is a B-bit scalar quantization
function (applied element-wise in (2.1)) that maps real-valued CS measurements to the discrete
alphabet A with |A| = 2B.

Since the quantizer is scalar, we can write the bit-budget constraint as

B = MB. (4.2)

This fixed bit-budget B = MB and the signal noise n impose a competing performance tradeoff as
a function of M . On the one hand, since B = B/M , we can increase the bit-depth as we decrease
the number of measurements, thereby increasing the precision of each measurement. On the other
hand, signal noise is amplified due to noise folding as we decrease the number of measurements,
thereby decreasing the precision of each measurement [36]. Thus, we find ourselves in somewhat of
a conundrum: as we take fewer measurements we can allocate more bits per measurement (good),
but noise folding increases the risk of wasting these bits on already imprecise measurements (bad).

We can gain more insight into this conundrum through a back-of-the-envelope calculation of
the optimal total acquisition error, which comprises the expected mean-squared distortion due to
a scalar quantizer for Gaussian measurements O(‖x‖222−2B) and the expected reconstruction error
due to measurement noise O

Ä
N
M σ

2
n

ä
. Equating these noise levels to minimize the total mean square

error (MSE) leads to

B ≈ 1

2
log2

Ç
‖x‖22
σ2
n

M

N

å
.
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This expression can also be found using classical rate-distortion bounds in terms of the signal-to-
noise ratio (SNR) [115, 116]. Imposing the fixed bit-budget B = B/M and rearranging terms, we
find that the MSE is minimized when

log2

Ç
‖x‖22
Nσ2

n

å
≈ 2B

M
− log2 (M) . (4.3)

The term on the left is the logarithm of the SNR of the input signal. For fixed B and N , (4.3) implies
that there are two operational regimes that correspond roughly to “high” input SNR and “low”
input SNR. At high input SNR, the MSE is minimized by taking a small number of measurements
M with large bit-depth; we call this the measurement compression (MC) regime. At low input
SNR, the MSE is minimized by taking a large number of measurements M with small bit-depth;
we call this the quantization compression (QC) regime. The exact SNR at which the transition
between the two regimes occurs is a function of the total bit-budget.

In this chapter,1 we argue for the distinction between the MC and QC regimes in two ways.
First, we formalize the back-of-the-envelope calculation in (4.3) by analyzing the reconstruction
MSE that results from the combined effects of quantization and signal noise folding. Specifically
we provide an upper bound on this MSE for an optimal non-uniform scalar quantizer that roughly
predicts the trends of the optimal bit-depth for different signal noise powers and bit-budgets.
Second, we provide a suite of simulations for a specific setup frequently encountered in practice:
the acquisition of sparse signals from uniformly quantized measurements. Surprisingly, at certain
practical SNRs, our simulations suggest that a 1-bit quantizer (using the reconstruction techniques
developed in [74]) exhibits better performance than larger bit-depth quantizers.

4.1 Analysis of Quantized CS Systems with Signal Noise

In this section we derive a new upper bound on the oracle-assisted reconstruction error due to
both noise and quantization, making the back of the envelope calculation (4.3) more rigorous. This
bound enables us to argue that, for a fixed bit-budget B = MB, it may be better to quantize to
fewer bits per measurement B than take fewer measurements M . The following theorem is proved
in Appendix D.

Theorem 8. Suppose that yQ = QB(Φ(x + n)). Let the signal x ∈ RN be sparse with support
Ω ∈ {1, . . . , N} and |Ω| = K, where the elements Ω are chosen uniformly at random and the
amplitudes of the non-zero coefficients are drawn according to xj ∈ Ω ∼ N (0, σ2

x). Let the signal
noise n ∈ RM be a random, white, zero-mean vector with variance σ2

n. Furthermore, let the M ×N
matrix Φ satisfy the RIP of order K with constant δ, ΦΦT = N

M IM , and M < N . Choose QB
to be the optimal scalar quantizer with B > 1 that minimizes the MSE for the distribution of the
measurements Φ(x + n). Then for a fixed bit-budget of B = MB, the MSE of the oracle-assisted
reconstruction estimate x̂ satisfies

E
Ä
‖x− x̂‖22

ä
≤ 2K

B(1− δ)
Ä
Kσ2

xB2−2B +Nσ2
nB
Ä
1 + 2−2B

ää
+

K

(1− δ)

Å
B

B
− 1

ã
S, (4.4)

1This chapter includes work done in collaboration with Richard Baraniuk [117].
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where S = maxi 6=j |E(QB(Φx+ Φn)iQB(Φx+ Φn)j)| is the correlation between the quantized mea-
surements.

Each component of the bound (4.4) is fairly intuitive. The term Kσ2
xB2−2B reflects the error

due to quantizing the measurements. The term Nσ2
nB
Ä
2−2B + 1

ä
reflects both the error due to

measured signal noise as well as the quantization of that noise. The reconstruction error is effectively
proportional to these two terms. The final term

Ä
B
B − 1

ä
S reflects an additional error due to the

correlation between the quantized measurements. In many CS scenarios we expect this term to
be close to zero, and furthermore for large B it has been shown that this term can be accurately
approximated as zero [118]. Thus, choosing the optimal B primarily comes down to balancing the
terms inside the parentheses.

The bound in (4.4) applies to strictly sparse signals immersed in signal noise. However, it may
also be of interest to consider so-called compressible signals, i.e., signals that are not strictly sparse
but that can be reasonably approximated by retaining their K largest magnitude coefficients. For
such signals, the “tail” part of the signal that we do no expect to recover, i.e., the subset of the
smallest N − K entries, is also subject to noise folding. Theorem 8 can be extended to handle
compressible signals by inflating the second term to account for the additional correlation between
the quantized measurements. The general performance trends will be similar to sparse signals in
noise; i.e., signals that are “less compressible” will induce the same regime as signals with low input
SNR.

The bound in (4.4) is pessimistic, since we do not take into account the benefits accrued by
increasing the number of measurements, for instance by improving the RIP constants of Φ. Fur-
thermore, when the quantization error is large enough to dominate the measurement noise, the
measurement noise terms may not play an active role in the true behavior of the system. Again,
this is not reflected by the bound. Finally, the bound does not apply to 1-bit quantization or the
case where M > N .

To use the bound (4.4) to support our argument that there are both MC and QC regimes in CS,
we examine the behavior of the oracle-assisted reconstruction error as a function of the bit-depth
B (or equivalently the number of measurements M since B = MB). Since the solution for the
optimal B cannot be computed in closed form without resorting to tabulated functions, we evaluate
the bound over some interesting parameters. The evaluation of the bound is depicted in Figure 4.1,
where plots (a)–(d) correspond to input signal-to-noise ratios (ISNRs) of 35dB, 20dB, 10dB, and
5dB, respectively. We define the input SNR (ISNR) in dB as

ISNR := 10 log10

Ç
E(‖x‖22)

E(‖n‖22)

å
. (4.5)

where E(‖x‖22) = Kσ2
x and E(‖n‖22) = Nσ2

n.

Since we are primarily concerned with the performance trend of (4.4) as a function of B and
the ISNR, we make a few simplifications when plotting the bound. First, we only evaluate the term
inside the parenthesis; this term is proportional to the error on the measurements and does not
depend on the RIP constant, the sparsity K, or the correlation between the quantization errors.
Second, by only evaluating the term inside the parenthesis in (4.4), we do not take into account
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(a) ISNR = 35dB, optimal bit-depth = 7 (b) ISNR = 20dB, optimal bit-depth = 5

2 4 6 8 10 12
0.5

1

1.5

2

2.5

E
x
p

e
c
te

d
 E

rr
o

r

B (bit−depth)
2 4 6 8 10 12

0

2

4

6

8

E
x
p

e
c
te

d
 E

rr
o

r

B (bit−depth)
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Figure 4.1: Upper bound on the oracle-assisted reconstruction error as a function of bit-depth B and ISNR.
The term inside the parenthesis in the bound (4.4) was computed. Black dots denote the minimum point
on each curve.

the effect of M on the RIP constants (δ decreases as M increases). The minimum error point in
each curve is denoted by a solid black dot.

The message from Figure 4.1 is clear. The tradeoff between the number of measurements M
and bit-depth B empirically follows a convex curve, i.e., the error not only increases when B is too
small, but the error also increases when B is too large. In other words, more bits per measurement
is not necessarily optimal. Furthermore, as expected, the minimum reconstruction error occurs
for smaller B as the ISNR decreases. For the high ISNR of 35dB, the bound is minimized at a
bit-depth of approximately 7 bits per measurement. The is an example of the MC regime, where
larger bit-depths and thus lower M yield the best performance. For the low ISNR of 10dB, the
bound is minimized at a bit-depth of approximately 2 bits per measurement. This is an example
of the QC regime, where larger bit-depths and thus higher M yield the best performance.

4.2 Experiments

In the previous section we have argued that the QC regime exists by deriving an upper bound
on the oracle-assisted reconstruction error. In this section we perform a suite of simulations to
empirically study for which input noise levels and bit-budgets this regime will occur in practical
systems. Specifically our simulations i) validate the theoretical result in Theorem 8, ii) demonstrate
the performance achieved in practice when combining quantization and signal noise, and finally iii)
prove the existence of the QC regime. A surprising additional result emerges from the simulations:
when nontrivial signal noise is present, 1-bit CS systems perform competitively with, if not better
than conventional CS with uniform multibit quantization.
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4.2.1 Setup

Our simulations were performed using canonically (identity) sparse signals x.2 The signals were
measured with i.i.d. Gaussian matrices, i.e., y = Φ(x+n) with Φ ∼ NM×N (0, 1/M). The measure-
ments were quantized uniformly with quantization interval ∆ = G2−B+1, where G is the dynamic
range of the quantizer. In all simulations, we chose G = ‖Φx‖∞ to maximize the range of the
quantizer and ensure that for any noiseless measurement |(Φx)i −QB((Φx)i)| ≤ ∆/2.

In each trial we drew a new M × N sensing matrix Φ and a new signal x. The non-zero co-
efficients of x were chosen according to a Gaussian distribution, and their positions were chosen
at random. We additionally added Gaussian noise to x to obtain the desired ISNR. For B > 1,
reconstruction of the estimate x̂ was performed using the oracle-assisted reconstruction algorithm
(1.10) for Section 4.2.2 and (BPDN) with an oracle value of ε = ‖y − QB(y)‖2 for the remaining
subsections. For B = 1, reconstruction was performed using both the binary iterative hard thresh-
olding (BIHT-`1) and BIHT-`2 algorithms; the former generally performs better in lower noise
scenarios and the latter performs better in higher noise scenarios [74]. We report the reconstruction
SNR (RSNR)

RSNR := 10 log10

Ç
‖x‖22
‖x− x̂‖22

å
(4.6)

in dB unless otherwise noted. Recall that the number of measurements and bit-depth are
constrained by B = MB. We average our results over 100 trials for each parameter tuple
(N,K,B, B, ISNR).

4.2.2 Oracle-assisted reconstruction

We begin by validating the message from Theorem 8, i.e., we examine the solution to the oracle-
assisted reconstruction algorithm to see how the empirical performance relates to the bound (4.4).
Our goal is to compare the performance of our simulations to the theory-based plots in Figure 4.1.
The experiments were performed as described previously with the oracle-assisted reconstruction
algorithm. We plot the reconstruction error ‖x − x̂‖22 for bit-depths between 2 and 12 for a fixed
bit-budget B = 3N . We compared bit-depths of 2 and higher, since (4.4) does not hold for lower bit-
depths. Furthermore, unlike the statement of Theorem 8, recall that we used a uniform quantizer
and not an optimal quantizer for the Gaussian measurements. Figures 4.2(a)–(d) depict the results
for ISNR = 35dB, 20dB, 10dB, and, 5dB, respectively.

The plots generally follow the same trends as in Figure 4.1; however the minimum error occurs
for a slightly higher bit-depth in each case. The plots demonstrate that, as claimed in Section 4.1,
the best performance is obtained for smaller bit-depths as the ISNR decreases.

4.2.3 Reconstruction performance as a function of B

We next explore the performance achieved using practical algorithms instead of oracle-assisted
reconstruction. The experiments were performed as explained previously, for N = 1000 and K =

2The results of simulations did not change when the signals were DCT-sparse.
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(a) ISNR = 35dB, optimal bit-depth = 8 (b) ISNR = 20dB, optimal bit-depth = 6
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Figure 4.2: Oracle-assisted reconstruction error (compare to the analytical upper bound plotted in Fig-
ure 4.1) for N = 1000, K = 10, and B = 3N . As predicted by (4.4), the minimum reconstruction error
(denoted by black dots) is achieved by smaller bit-depths as the ISNR decreases.

10, bit-depths B = 1, 2, 4, 6, 8, 10, 12, and for bit-budgets B ∈ [N/2, 7N ], with the BPDN and
BIHT algorithms. Figures 4.3(a)–(d) depict the experiment for the input ISNR = 35, 20, 10, 5dB,
respectively.

In the high ISNR regime of 35dB, bit-depths of B = 1, 6, 8, 10, and 12 obtain similar RSNRs of
around 35dB, while smaller bit-depths result in poorer performance. This is to be expected; since
when the signal noise is fairly small, we will generally do better by using more bits per measurement.

The performance of BIHT in this case is consistent with previous results showing that the 1-bit
techniques can outperform even 4-bit uniformly quantized CS measurements with BPDN recovery.
This trend starts to reverse for lower signal ISNRs. Indeed for ISNRs of 10dB and 5dB, we see
that 2 and 4 bit-depth quantization outperforms larger bit-depths for all budgets. Strikingly, the
best performance for input SNRs of 20dB, 10dB, and 5dB is achieved by acquiring just 1 bit per
measurement and reconstructing with the BIHT-`2 algorithm.

In addition to the simulations presented here, we also performed the similar simulations with
N = 1000 and K = 60. We found that all of the curves in Figure 4.3 dropped in SNR by roughly the
same constant (that depends on K). The relationship between the 1-bit curves and the others was
about the same for B = 2N and lower. For B > 2N , the 1-bit reconstructions still outperformed
the others; however the performance disparity was not as great as for K = 10.

These simulations demonstrate two points. First, they verify that the intuition provided by the
upper bound (4.4) is indeed correct: for lower ISNRs it is beneficial to choose smaller bit-depths
B and more measurements M . This validates the distinction between the QC and MC regimes.
Second, the 1-bit CS setup performs significantly better than the multi-bit setup for low ISNRs
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Figure 4.3: Reconstruction performance as a function of total bits, for different ISNRs. Plots depict RSNR
for different bit-depths B for different ISNR with parameters N = 1000 and K = 10, and reconstruction via
BPDN. The figure demonstrates that as the ISNR is decreased, smaller bit-depths achieve better performance.
Additionally, 1-bit CS techniques perform competitively with or better than BPDN for all ISNRs tested.

and is competitive with the multi-bit setup for moderate ISNRs. There are several reasons for
this. When the quantization error dominates the measurement noise, the reconstruction error is
primarily due to the quantization error only. This case arises when B is small; i.e., we can likely
satisfy QB(x + n) = QB(x) for increasing values of |ni| as B decreases. Furthermore, in this case
consistent reconstruction of the 1-bit algorithms may have an advantage. Consistency could be
presumably added to multibit reconstruction to improve performance but this is a topic left for
future research.
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Figure 4.4: Maximum RSNR given a fixed bit-budget B for parameters N = 1000, K = 10. The left side
of each plot corresponds to the QC regime, while the right side corresponds to the MC regime. The solid
line (blue) corresponds to the number of measurements M , while the dashed line (green) corresponds to the
bit-depth B.

4.2.4 Reconstruction performance as a function of ISNR

In this set of experiments, we varied the ISNR between 5dB and 45dB and searched for the (M,B)
pair that maximized the RSNR, for a fixed bit-budget B and parameters N = 1000 and K = 10.
As demonstrated by the previous experiment, the RSNR will not be the same for each bit-budget.

Figures 4.4(a)–(c) depict the results of this experiment for B = N , 2N , and 5N , respectively.
The left axis and solid line (blue) corresponds to the number of measurements M , while the right
axis and dashed line (green) corresponds to the bit-depth B. As always, we have that B = MB.
The QC regime is represented on the left side of the plots (low ISNR), while the MC regime is
represented on the right side of the plots (high ISNR). For example, for a bit-budget of B = 2N ,
if the ISNR is 30dB, then we are operating in the MC regime and should set the bit-depth to
approximately 7, resulting in the measurement ratio of approximately M/N = 0.29. However, for
the same bit-budget, if the ISNR is 15dB, then we are operating in the QC regime and should set
the bit-depth to 1, resulting in a measurement ratio of M/N = 2.

In each plot in Figure 4.4 there is a sharp transition between optimal bit-depth being high
(B ≥ 5) and low (B ≤ 2). This transition is centered at the ISNRs 19dB, 23dB, and 38dB, for
the bit-budgets B = N , 2N , and 5N , respectively. This implies that the transition occurs at
higher ISNRs for higher bit-budgets. Thus, we infer that, for higher bit-budgets B, it is better to
choose low B, even when the input ISNR is fairly high. The bottom line then is that, for moderate
ISNR, the MC regime can be assumed when the bit-budget B is small, while the QC regime can
be assumed when the bit-budget is large.

4.3 Relationship to Oversampled ADCs

Choosing a low bit-depth quantizer to reduce hardware complexity while driving up the sampling
rate, as is recommended for the QC regime, is not a new idea. Indeed, this same principle is the
motivational force behind sigma-delta ADCs [77, 82, 84, 85] and other non-CS oversampled ADC
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architectures [81, 119, 120]. However, the ideas presented here differ significantly from previous
oversampled ADC architectures in the following ways: i) CS is compressive: Small bit-depth CS
systems are expected to be used in cases where the bit-budget is significantly lower than in a
conventional oversampled ADC system. The use of sparse signal models enables compression, i.e.,
a reduction in the total number of acquired bits, as opposed to just efficient sampling. ii) CS is non-
adaptive: As described earlier, CS measurement systems are non-adaptive, meaning they do not
depend on the input signal. This is true even for the 1-bit CS case. Almost all previous oversampled
ADCs require some kind of feedback during quantization to produce stable representations. These
differences place low bit-depth CS systems in a unique class of their own. In a few words, CS, like
physics has “plenty of room at the bottom [121].”
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CHAPTER 5

Compressive Sensing Architectures

A
central question of the CS framework is how do we design a good sensing system. As
previously explained in Section 1.2 from an analysis perspective, a variety of different
conditions on Φ can be used to ensure that robust signal recovery is possible [16, 21, 42,
44, 122]. From a practical perspective, we wish to design a physical sampling system

for which, when modeled by Φ, the aforementioned conditions are provably satisfied. To this
end, several hardware architectures have been proposed that theoretically enable CS to be used in
practical settings with analog signals. Examples include the random demodulator, random filtering,
and random convolution for time-varying signals [18, 47, 48, 123], and several compressive imaging
architectures [19, 124, 125]. Other compressive frameworks exist that have yielded similar types
of architectures, for instance for multi-band signal acquisition [49, 126] or within the finite rate
of innovation area [127, 128]. In this chapter,1 we introduce two new practical CS acquisition
architectures. We first motivate our new designs.

Beyond theoretical requirements, the aim of most CS-ADCs is to exploit the fact that fewer
measurements are required to represent the signal, for instance, by reducing the sampling rate of
a conventional ADC. This is often achieved through analog hardware that preconditions the signal
before it is sampled at a sub-Nyquist rate by a conventional ADC.

One such architecture that exemplifies this philosophy is the random demodulator (RD) [18,
21, 130, 131]. Figure 5.1 depicts the block diagram of the random demodulator. The four key
components are a pseudo-random ±1 “chipping sequence” p(t) operating at the Nyquist rate or
higher, a low pass filter, often represented by an ideal integrator with reset, a low-rate ADC, and a
quantizer. An input analog signal x(t) is modulated by the chipping sequence, i.e., preconditioned,
and integrated. The output of the integrator is sampled, and the integrator is reset after each

1This chapter includes work done in collaboration with J. P. Slavinsky, Mark Davenport, and Richard Baraniuk [20,
129]

75



CHAPTER 5. COMPRESSIVE SENSING ARCHITECTURES

Figure 5.1: The random demodulator (RD) [18]. The analog signal x(t) is “preconditioned” i.e., modulated
by a ±1 square-waveform p(t) that is determined by a pseudo random sequence. The result is integrated
and sampled at a sub-Nyquist rate by a conventional ADC.

Signal

Chipping
Sequence

Data Collection

RD

PRD/

continuous integration

instantaneous samples
CMUX

Figure 5.2: Waveforms at preconditioning stages in the RD and polyphase random demodulator (PRD).
The analog signal x(t) is modulated by a non-ideal analog square-wave. The RD then integrates the entire
result before sampling and quantization. The CMUX and PRD integrate only instantaneous samples of the
modulated signal before quantization.

sample. The output measurements from the ADC are then quantized.

There are additional desirable properties that CS-ADCs must have if we wish to execute them
in practice:

1. precise calibration with computational models;

2. few additional sources of hardware noise; and

3. efficient computational implementation of recovery.

As we will discuss in this chapter, these requirements preclude the use of certain kinds of analog
components, such as analog filters, that are commonly found in current designs for wideband signal
acquisition, such as the RD [18, 49, 130, 131].

We briefly describe two instances in which analog filtering hinders the RD. i) In practice the
integrator is implemented by an analog low pass filter. The impulse response of this filter must
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be accurately modeled in the discrete implementation of Φ. Precise calibration of this model with
physical hardware is time consuming and can vary significantly between devices due to temperature
and other operating conditions. ii) As shown in Figure 5.2, the rise and fall times of p(t) fluctuate
significantly away from the ideal square waveform. These fluctuations are integrated into the RD
measurements. Such non-idealities are extremely difficult to calibrate for, and largely behave as a
source of noise in the system [132].

In this chapter, we introduce two new CS-ADC architectures, namely the compressive multi-
plexer (CMUX) and the polyphase random demodulator (PRD), for wideband signal acquisition
that addresses these practical considerations.

5.1 The Random Demodulator (RD)

The random demodulator (RD) was originally proposed in [18] and further studied in [21, 130,
131, 133]. Its primary goal is to acquire a wideband signal x(t) while reducing the hardware costs
associated with a high-rate Nyquist ADC. We refer the reader to Figure 5.1 for a diagram and
detailed description of the RD. We briefly review how the RD fits into the previously described CS
framework, the kinds of signals it aims to acquire, and further improvements to its design.

The RD can be thought of as integrating short time windows of a pseudo-randomly modulated
signal. That is, each measurement ym before quantization can be written as

ym =

∫ (m+1)/M

m/M
(p(t) + n(t))x(t)dt, m = 0, . . . ,M − 1, (5.1)

where M is the measurement rate of the RD S/H, p(t) is the ideal square-waveform

p(t)|(n+1)/N
t=n/N = pn ∈ {−1, 1}, (5.2)

according to the “chipping sequence” p, n(t) is the error associated with practical chipping se-
quences, and N is the Nyquist rate for x(t). For the purposes of this chapter, we consider a fixed
time window of T seconds. We denote N = NT to be the number of Nyquist samples in the time
window and M =MT to be the number of CS measurements in the time window.

For a fixed time window T , we can rewrite (5.1) as

ym =

(m+1)N/M∑
n=mN/M

pnxn + em, (5.3)

where

em =

∫ (m+1)/M

m/M
n(t)x(t)dt (5.4)

since, for bandlimited x(t), xn =
∫ (n+1)/N
n/N x(t)dt are simply the Nyquist samples x of the signal

x(t). For an example of N = 6, M = 3, and a sequence p = [−1, 1,−1,−1, 1,−1], if the square
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wave-form is ideal, i.e., n(t) = 0, then we have the discrete measurement matrix

Φ =

 −1 1 0 0 0 0
0 0 −1 −1 0 0
0 0 0 0 1 −1

 (5.5)

such that y = Φx.

The most immediate way to apply the RD to the CS framework is via the so-called discrete
multi-tone signal model. In this case, the signal x as composed of a linear combination of pure
tones. Specifically, suppose that F is the N ×N DFT matrix with elements

fn,ω =
1√
N

exp {−2πiωn/N} , (5.6)

where n ∈ [0, N − 1] and ω = 0,±1, . . . ,±N/2 − 1. We call F the sparsity basis. The observed
signal is then represented as x = F s and we solve for a sparse s from the underdetermined matrix
ΦF .

In [18] it was shown that the program (BPDN) applied to recover s with ideal ΦF will observe
similar robustness guarantees as described earlier if the number of measurements satisfies

M ≥ CK log6N, (5.7)

with high probability depending on N and statistical properties of the chipping sequence. Further
results were later shown for Φ with other sparsity bases, using analysis based on coherence [21].

A oft-noted drawback of the DFT-based model is that if the signal contains a tone that is not
perfectly “on-grid,” i.e., not one of the columns of the DFT matrix, then the signal will not be
truly sparse. To remedy this, several algorithms have been proposed to recover non-integral tones,
enhancing the richness of the discrete multi-tone model [22].

Finally, we mention one recent notable modification of the RD. In [133], the authors apply run-
length limited (RLL) codes to generate the chipping sequence. These codes enable a potentially
slower maximum chipping rate than the conventional RD since the sequences avoid consecutive
sign changes.

5.1.1 Drawbacks of the RD

A non-ideal chipping waveform alone presents a serious problem for the RD. The measurement
error em in (5.4) is dependent on the input signal and thus, if n(t) were modelled as random, then
it will still be correlated to the input. However, in practice n(t) is likely to be dependent on the
waveform p(t), and thus the measurement error is dependent on both the input signal and the
chipping sequence that determines the measurement matrix Φ. Furthermore, we have that

‖e‖22 ≤ ‖x‖22
∫ N

1
n(t)dt, (5.8)
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Figure 5.3: (a) CMUX system diagram. Each of the J channels is spread by a different chipping sequence,

and then summed and sampled. (b) CMUX equivalent system. The sampling operation is moved to the

front of the system for the sake of analysis.

implying that, in the worst case, the measurement error can have more energy than the input
signal itself. Luckily this case only occurs when n(t) = νx(t), ν ∈ R, which should be unlikely in
an appropriately designed system.

To make matters worse, in practice the integrator will be implemented as a low pass filter, in
which case the rows of the matrix (5.5) should be the modulated, sampled impulse response of the
filter. Accurate models of the filter impulse response can be difficult to obtain in practice, hard
to calibrate for because such devices fluctuate under different temperatures, and computationally
inefficient.

5.2 The Compressive Multiplexer (CMUX)

We now introduce the CMUX for acquisition of multi-channel signals [20]. By multi-channel signals
we mean that we have multiple disjoint sections of a signal that we wish to measure simultaneously.
Each section of the signal alone may not be sparse, our only requirement is that the total signal
formed by appending each of the channels to each other is sparse. As an example, consider multiple
(potentially discontiguous) channels in the RF spectrum. We may find that some channels contain
no energy while others do. Our goal is to measure each of these channels together and recover the
signals that are present.

The CMUX acquires J independent signal channels, each of bandwidth W/2 Hz, into a single
stream of samples running at the Nyquist rate (W Hz) of any one channel. As shown in Fig-
ure 5.3(a), each channel is first mixed down to baseband to obtain xj(t) and then modulated by a
pseudo-random ±1 chipping sequence pj(t) with chipping frequency W Hz. The spread channels
are then summed and sampled once per chip by a single ADC. It is important to note that the
summation occurs over the channels and not over time (in contrast to previous systems [18, 47, 49]).

Without loss of generality, the CMUX can be written as a W × JW matrix Φ, formed by
concatenating diagonal W ×W submatrices Φj , j = 1, · · · , J . For the sake of analysis, we will
consider the elements along the diagonals to be ±1 Rademacher variables. As an example, let J = 3
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Algorithm 6: Trivial Reconstruction

S1 Demodulate channel i
Set x̂i = Φiy

and W = 3. Then the Φ matrix might look like

Φ =

 −1 0 0
0 1 0
0 0 −1︸ ︷︷ ︸

Φ1

1 0 0
0 1 0
0 0 −1︸ ︷︷ ︸

Φ2

1 0 0
0 −1 0
0 0 −1︸ ︷︷ ︸

Φ3

 (5.9)

We consider signals that are jointly sparse over the combined bandwidth of the spectrum chan-
nels. The sparsity basis Ψ for this model is a JW × JW block diagonal matrix with W ×W DFT
bases along the diagonal. Thus, we aim to recover a K-sparse vector α ∈ RJW such that y = Aα,
where A is the union of orthonormal bases

A = [Φ1F ,Φ2F , · · · ,ΦJF ], (5.10)

and where F is the W ×W unitary DFT matrix2. For the remainder of this section, the subscript
j denotes the submatrix (or subvector) corresponding to channel j and the subscript \j denotes
the submatrix (or subvector) corresponding to all channels except for j.

It has recently been demonstrated by Romberg that A of this form satisfy the RIP [134]. We
present a modified version of the statement of the theorem (as suggested in [134]) for completeness:

Theorem 9 (Theorem 3.1 in [134]). Let A be defined as in (5.10), and fix δ ∈ (0, 1). Then there
exists C0 such that when

W ≥ C1K log4(JW ) (5.11)

A satisfies the RIP of order K as in (1.3) with probability 1− C2
0/δC

2
1 , where C0 is constant.

Note that the constant C0 is the same as that in [134], and improved bounds on the probability
may be obtained [135]. It is clear from this statement that for the total bandwidth N = JW , the
number of possible channels can be upper bounded as J ≤ N

K
1

C1 log4 N
.

5.2.1 Custom CMUX reconstruction algorithms

Trivial reconstruction We can trivially produce an approximate recovery of any input channel
i by multiplying that channel’s chipping sequence against the output samples, i.e., x̂i = Φiy. It is
clear from

x̂i = Φiy = Φi

Ñ∑
j

Φjxj

é
= xi +

∑
i 6=j

ΦiΦjxj , (5.12)

2Note that this is not the same A as in Chapter 3.

80



5.2. THE COMPRESSIVE MULTIPLEXER (CMUX)

Algorithm 7: Block Coordinate Relaxation (BCR) [136]

S0 Initialize
Set r = y
Set initial estimate α = 0

while not converged do
S1 Choose a new block

Block index j ∈ {1, · · · , J}
S2 Subtract current estimate contribution (except from current block)

Compute r = y −A\jα\j
S3 Update the current block coefficients

Via soft-thresholding αj = S(ATj r), where S(z) = z(|z| − λ)+/|z|

that this approach yields the original channel xj , plus a noise term that is the sum of the other
channels spread by a new ±1 sequence ΦiΦj . Note that exact recovery is achieved when all non-
zero coefficients are in a single channel and there are no noise sources. Furthermore, the trivial
reconstruction can either be used by algorithms resilient to noise (correlation routines, PLLs, etc.).
This one step algorithm is summarized in Algorithm 6.

Block coordinate relaxation (BCR) The trivial reconstruction technique can be extended to
perform joint reconstruction of all channels. One approach would be to approximate one channel as
above, transform and threshold to keep the largest coefficients, subtract that channel’s contributions
from the measurements, and repeat this process with the other channels. Indeed, this is roughly
the procedure of block coordinate relaxation (BCR) [136].

BCR provably solves the (LASSO) program when A is a union of orthonormal bases. We
initialize by setting r = y and the initial estimate α = 0. The remaining steps are as follows: i)
Choose a new block j ∈ {1, · · · , J}. ii) Subtract the contribution of the current estimate (except
from current block) from the measurements to update the residual, r = y − A\jα\j . iii) Update
the current block coefficients by soft-thresholding the DFT coefficients of the trivial reconstruction,
αj = S(ATj r), where S(z) = z(|z| − λ)+/|z|, element-wise. The BCR algorithm is summarized in
Algorithm 7.

Note that for the CMUX, BCR uses exactly J FFTs and one soft-threshold operation of dimen-
sion W per iteration. Most other CS algorithms compute AT (y−Ax) in each iteration; thus these
algorithms will require at least twice as many FFTs per iteration. Furthermore, the total number
of iterations in BCR can be reduced by adaptively adjusting λ [137].

The soft-thresholding step of BCR projects the current channel estimate onto the `1-ball, thus
“sparsely approximating” or “denoising” the channel estimate. We can extend this algorithm to
recover non-integral frequencies, i.e., those oustide of the set of frequencies defined by the length-W
DFT, by employing spectral CS [22] or BPDN-analysis [138] in place of soft-thresholding.
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+

−

Figure 5.4: Passive Averager CMUX (PA-CMUX) for J = 3.

5.2.2 The passive averager: A CMUX hardware concept

A major goal in implementing randomized CS hardware is to reduce the possible sources of hardware
noise (i.e., achieve a simple design) so that it does not obscure the benefits achieved through sample
rate reduction. To this end, we propose the Passive Averager CMUX (PA-CMUX).

As depicted in Figure 5.4, the PA-CMUX uses a single linear feedback shift register (LFSR)
to generate the chipping sequence, J analog switches, two banks of resistors, and a single-channel
ADC to achieve the chipping sequence multiply and the instantaneous sum. The J uncorrelated
chipping sequences are formed from delays of a single chipping sequence. Depending on the sign of
the chipping sequence applied to it, each input signal xj(t) is routed by an analog switch to either
a “+1” or “−1” bank of resistors. Each resistor bank consists of J resistors of nominally the same
resistance; in practice, discrete resistors are unnecessary as each switch has a controlled output
impedance.

Using Kirchoff’s voltage and current laws, the voltage output from each bank, V+1, V−1, equals
the average of the voltages that are fed into the bank, hence, inducing passive averaging. These
voltages can be written as

V+1[n] =

∑
j∈Pn,+1

xj [n]

|Pn,+1|
, V−1[n] =

∑
j∈Pn,−1

xj [n]

|Pn,−1|
,

where Pn,+1 and Pn,−1 are the sets of channel indices being routed to the +1 bank or −1 bank
at sample index n, respectively. Thus, we must rescale these voltages to obtain equivalent CMUX
samples:

y[n] = |Pn,+1|V+1[n]− |Pn,−1|V−1[n].

While this could be achieved with two ADCs and gain components, we can also invert the averaging
scale factors not during measurement, but during reconstruction. We simply compute the difference
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of the two averages, y[n] = V+1[n] − V−1[n], and apply the averaging weights in Φ during recon-
struction. The system designer can also calibrate the system by measuring the actual resistances
along each signal pathway; these non-ideal values turn our averages into weighted averages.

The PA-CMUX relies on the fact that a single-channel ADC natively computes the difference
between two voltages. In a typical setup, one of these voltages would be ground. However, in the
PA-CMUX we can use it to compute the difference between the two averages.

5.2.3 Comparison with random demodulator

The CMUX compares favorably against the RD [18] on a number of fronts. CMUX computational
models are more accurate and easier to calibrate due to absence of the analog filter. Additionally,
since summation is performed over the channels and does not take place over time, the summation
hardware is simpler. We refer the reader to Figure 5.2 for a depiction comparing the integration
schemes in the RD and the CMUX. Additionally, this sampling characteristic translates to relax-
ing the requirements on individual CMUX hardware components between samples (e.g. switching
times); the RD’s integrator enforces strict time-oriented performance requirements. The ability to
bandpass sample significantly reduces the chipping and sampling frequencies for the CMUX as op-
posed to the RD. Even when ignoring the bandpass sampling issue, the CMUX’s chipping sequences
operate at a lower rate than the RD for the same total bandwidth. As power requirements for these
components typically rise with the square of the frequency, a meaningful savings is achieved.

The multi-channel nature of the CMUX also brings benefits. The CMUX can grow its total
bandwidth by adding channels without increasing the chipping and sampling rates. In RF sce-
narios, splitting the CMUX’s target bandwidth across multiple RF tuners matches the fact that
commercially-available tuners don’t produce arbitrarily large bandwidths. And with access to mul-
tiple independent tuners, the CMUX can also allocate its bandwidth capacity where it is needed
in the spectrum. The CMUX can also turn off unoccupied channels to improve performance; at an
extreme, the CMUX reverts to a Nyquist sampler when all but one input channel is disabled.

There are of course some disadvantages. The CMUX undersampling factor is restricted more
than in the RD. This factor is fixed at J−Joff , where Joff is the number of disabled input channels.
Also, non-idealities inherent to the RF tuners (or equivalent) means that signals can fall out of
coverage at channel edges.

5.3 The Polyphase Random Demodulator (PRD)

We can add additional components to the CMUX to extend its behavior to be the same as the
RD. A key insight to our design is that while ADC comprises both a sample-and-hold (S/H) step
(discretization in time) and a quantization step (discretization in amplitude), the former requires
significantly simpler hardware and consumes less power than the latter. Additionally, S/H can
be performed with high precision at high speeds while quantization cannot [7]. Our PRD design
employs a bank of parallel S/H components at an early stage, enabling precise preconditioning of
discrete-time analog-valued signals and then employs a single quantizer that operates at a sub-
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Figure 5.5: The polyphase random demodulator (PRD). J Sample-and-hold (S/H) circuits sample the signal
x(t) at time ts. The outputs of the S/H circuits are each modulated by a different pseudo-random “chipping
sequence” (analog waveform) pj(t), combined, and quantized by a single quantizer. All components operate
at the sub-Nyquist rate of N/J where N is the Nyquist rate of x(t).

Nyquist rate.

We briefly describe the new architecture, depicted in Figure 5.5. The signal analog x(t) is
input into a bank of J S/H “rails” (previously called channels in the CMUX context). Each
S/H circuit samples the signal at a rate of N/J Hz, where N Hz is the Nyquist rate for x(t).
Furthermore, the j-th rail’s S/H circuit is delayed by j/N from the sampling rate clock, where
j = 0, · · · , J − 1 corresponds to each rail. For a given rail, each held value is scaled by +1 or −1,
according to a pseudo-random “chipping” sequence pj(t). In practice pj(t) is an analog waveform
that approximates a square wave. The rails are then summed together and the result is quantized,
again at a rate of N/J Hz.

As an example, for N = 6 Nyquist samples in a time window and J = 2 S/H rails, the resulting
Φ matrix might look like

Φ =

 −1 1 0 0 0 0
0 0 −1 −1 0 0
0 0 0 0 1 −1

 . (5.13)

Thus, the computational model Φ of the PRD is identical to that of the RD with an ideal square-
wave and ideal integrator, and thus satisfies the theoretical guarantees of [18, 21].

Note that starting from the first column, every J-th column corresponds to the first S/H rail
(and similarly, starting from the second column, every J-th columns corresponds to the second
S/H rail). Since the summation is taken across the rails at a given time instant, the PRD avoids
integrating non-ideal fluctuations in the waveforms of the chipping sequences. Because of this, the
calibration process only requires that we look at the scalings of the outputs of each rail, a significant
improvement over previous designs. Furthermore, since no analog filter is used, we do not need to
model an impulse response, leading to both accurate software modeling and significant speedups
in recovery computations.
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Figure 5.7: Power spectral density of one 12 kHz-wide signal.

5.4 Simulations

5.4.1 Exactly sparse recovery (CMUX)

We wish to characterize the maximum number of channels required for exact recovery of sparse
signals in simulation and compare this with the theoretical bound in Section 5.2. We fix N =
JW = 5000 and vary K/N between 0 and 0.3. We perform 1000 reconstructions using SPGL1 [28]
for each choice of J and record the maximum J such that 90% of the reconstructions yielded exact
recovery.

Figure 5.6 demonstrates the results of this experiment. The dashed line depicts the experimental
performance for an ideal CMUX given by (5.9); the dash-dotted line depicts the performance of the
PA-CMUX given in Section 5.2.2 with resistors deviating randomly up to 20% from their intended
values. The solid depicts the curve J = N/(K log(N/K)) exactly, the best possible performance
for a CS system, (note that this is better than the bound given in Section 5.2). This simulation
demonstrates that in both cases, typical CMUX behavior is close to an ideal CS system thus appears
to outperform the theoretical guarantees.

5.4.2 Practical RF example (CMUX)

In this example we simulate two FM modulated voice signals, each approximately 12 kHz wide.
The voice signals live in two different 400 kHz wide channels. There are 5 total input channels,
making the total observed bandwidth 2 MHz. All channels have noise such that the voice signals
have an SNR of 30 dB.

PSDs of the signal in one channel are shown in Figure 5.7. The original signal is depicted by solid
lines, the trivial recovery is depicted by a dash-dotted line, and the CS recovery is performed with
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Figure 5.9: Reconstruction performance of RD vs. the PRD. The RD significantly degrades as a function
of the chipping waveform p(t) SNR, while the PRD is not affected for the parameters tested.

BCR as described earlier. The plot demonstrates that the largest energy portion of the spectrum
can be recovered, even by the trivial method. However, the BCR recovery is significantly more
accurate and has a lower noise floor than even the original signal (due to its sparse approximation
feature).

5.4.3 Effects of a non-ideal modulator waveform (PRD)

To demonstrate the power of the PRD design over the RD, we conducted a simple experiment
highlighting only the effects of a non-ideal chipping waveform. The experiment was performed
as follows. We chose a length N = 5000 signal x that was K = 50 sparse in the discrete cosine
transform (DCT) domain. We oversampled this signal by R = 100 times to simulate an analog
waveform x(t). Similarly, we generated a chipping sequence of length 5000 and oversampled this
signal by R as well (obtaining a square wave p(t) at the high rate). We then simulated a non-ideal
square wave by applying a causal low pass filter to band-limit the wave. An example non-ideal p(t)
is given in Fig. 5.8. Finally, we compute the measurements that both the RD and the PRD would
produce given x(t) and p(t) with 10 times undersampling (i.e., J = 10 rails). For the PRD, we chose
the “instantaneous” sample point to be at the center of the square-wave. Reconstruction of x̂ was
performed using SPGL1 [28] and results are reported in terms of SNR(z, ẑ) := 20 log10(‖z‖2/‖z −
ẑ‖2). To gauge the fidelity of the analog chipping sequence, we also report p(t) in terms of SNR.

The results of this experiment are depicted in Figure 5.9. There are two clear messages from this
example. First, even when the chipping sequence is ideal (p(t) SNR = ∞), the PRD outperforms
the RD. This is likely an artifact of the simulation since, integrating any R values that simulate
x(t) is not equivalent to the corresponding value in x. Second, the reconstruction performance of
the RD significantly degrades as SNR of p(t) decreases. In stark contrast, the performance of the
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PRD is seemingly not dependent on the the SNR of p(t) as simulated. This is because for the
parameters tested, the center of the chip is still ±1. This highlights the primary advantage of the
instantaneous sampling of the PRD.
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CHAPTER 6

Discussion

6.1 Summary

Q
uantization is the primary bottleneck in analog-to-digital conversion. Specifically, as the
bit-depth of the quantizer increases, the sampling rate of the ADC must decrease. In
this thesis we set out to exploit this relationship between sampling rates and quantizer
bit-depth. We demonstrated that while conventional CS dogma espouses that sampling

rates be decreased to ease the burden of the ADC, it is also possible to decrease the bit-depth for
the same purposes, and in some cases the latter approach will perform better than the former. To
review, we have shown the following facts.

We first verified that conventional CS does obtain increased the dynamic ranges versus conven-
tional ADCs. We introduced a deterministic definition of dynamic range and demonstrated that
it is meaningful. We further showed that CS systems effectively have the same dynamic range as
conventional sampling systems. Thus, since CS enables sampling at lower rates, a high bit-depth
quantizer can be employed to increase the overall dynamic range of the system. Our results are
general for any CS systems that have the RIP.

We next demonstrated that it is possible to quantize CS measurements to only a single bit,
representing their signs. In this case the quantizer is reduced to a simple comparator enabling
extremely fast sampling speeds. To develop robust reconstruction guarantees we introduced the
binary ε-stable embedding property of 1-bit CS systems. This property explains that Hamming
distances between the binary measurements are approximately the same as angular distances be-
tween the input vectors. We proved that random matrices, specifically those with elements drawn
from a Gaussian distribution and those drawn with rows uniformly from the unit sphere, enable
this property. We further developed two new algorithms to solve the reconstruction problem and
demonstrated their feasibility in simulation. Finally, we connected the 1-bit CS to the context of
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saturation and dynamic range in CS systems and introduced a method for saturation-agnostic CS.

We next showed that in some situations it may be more beneficial to compress via the quantizer
and sample at slightly higher rates. In particular we found two fundamental CS regimes, the
measurement compression (MC) regime and the quantization compression (QC) regime . The
former is defined by scenarios where measurements are expensive and input signal noise is low. The
latter is defined by scenarios where sampling rates are cheap, the quantization process is expensive,
and there is high input signal noise. A key realization is that the inverse relationship between
sampling rate and quantizer bit-depth enables the development of practical hardware systems that
take advantage of the QC regime.

Finally, we developed two new CS architectures for practical signal acquisition. In particular
we developed the compressive multiplexer (CMUX) for multichannel signal acquisition and a new
random demodulator, the polyphase random demodulator (PRD). The latter architecture explicitly
takes advantage of the fact that the quantizer is the main bottleneck in CS systems; the sample-
and-hold hardware is separated from the quantizer and thus discrete-in-time measurements (but
not in amplitude) are manipulated via analog “pre-processing” before finally being digitized.

6.2 Open Questions and Future Directions

The research contained in this volume open several interesting questions that may be useful to
answer in the future.

6.2.1 Does the RIP of a matrix imply the BεSE for that matrix?

Matrices that have the RIP have been studied extensively since its introduction in CS. Thus, an
obvious desire would be for many of these sensing systems to also be used as 1-bit CS systems.
While it may be true that many of them can, we can point to at least two counterexamples of
matrices that have the RIP but not the BεSE.

The most trivial example is the identity matrix. To see this consider the length-N vectors
x = [1, 0, . . . , 0]T and s = [

√
1− ν2, ν, 0, · · · , 0]T and let Φ = IN be the N ×N identity matrix. By

definition, the identity matrix satisfies the RIP since it is an exact isometry; indeed, it is square
and thus not even compressive. Furthermore, it is clear that Φx = x and Φs = s. Without loss of
generality, define sign(0) = 1. Then note the following relationship

dH(A(x), A(s)) =

®
0, 0 ≤ ν ≤ 1,

1/N, −1 ≤ ν < 0.
(6.1)

In words, the Hamming distance between the measurements of the sparse signals only depends
on the sign of the second element of s, meaning that a large number of angles between x and s
will yield the same Hamming distance. Indeed, it is also possible to construct many orthogonal
vectors to x satisfying the same relationship. In fact, even if s were designed to be parallel to x,
the Hamming distance of the measurements would only depend on the relative direction.
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Figure 6.1: (a) Reconstruction SNR as a function of sparsity 1-bit quantized Nyquist samples of a DCT-
sparse signal. (b) Reconstruction SNR as a function of sparsity from 1-bit quantized Nyquist samples
measured with an N ×N Gaussian matrix. The plots demonstrate that the average reconstruction between
the two scenarios is similar, suggesting that the DCT matrix provides something like a weak average-case
BεSE.

A second example is matrices with ±1 entries, such as those with entries drawn from the
Rademacher distribution, i.e., +1 or −1 with probability 1/2. The Rademacher distribution is
subGaussian and thus can be shown to have the RIP with high probability [46]. In this case
suppose that we choose x = [cos(ν), 0, . . . , 0]T and s = [cos(ν), sin(ν), 0, · · · , 0]T . Then for the
hamming distance between sign(Φx) and sign(Φs) to be non-zero, the column sin(ν)φ2 must have
elements at least as big as cos(ν). Thus, if ν < π/4 and thus sin(ν) < cos(ν), we have

dH(A(x), A(s)) = 0, (6.2)

for any ±1 matrix. This relationship will be true no matter how large we increase M , meaning
that the precision of the signals preserved by this mapping cannot be increased. We have found in
simulation that indeed Rademacher matrices do not support good performance of reconstruction
of canonically sparse signals.1

6.2.2 Does the Fourier basis provide a BεSE?

Although the identity matrix does not provide a BεSE, it may be possible that other orthonormal
bases do. For example, recent simulations suggest that if the N × N DFT matrix may indeed
provide a BεSE or some weaker notion of this property with a randomized signal model.

To test this hypothesis, we performed an experiment where we generated DCT-sparse signals
(i.e., Φ is the DCT basis, the signal we wish to recover x is sparse) and quantized to 1-bit per Nyquist
sample. We then performed reconstruction using the 1-bit CS algorithms described in Chapter 3.

1A nearly identical example was discussed in [108] which appeared during the final preparation of this manuscript.
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The results of this experiment are depicted in Figure 6.1(a). For comparison we provide the same
experiment but with an N ×N Gaussian matrix Φ in Figure 6.1(b).

This simulation suggests that we achieve the same performance as if we had used a Gaussian
measurement system, however by quantizing the Nyquist samples directly. This implies that for
some classes of signals, we maybe be able to perform 1-bit quantization directly. Indeed, approach-
ing this problem from the 1-bit CS perspective may yield theoretical guarantees for previous 1-bit
ADC architectures such as some of those in [120].
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APPENDIX A

Dynamic Range

A.1 Lemma 1

Proof. Begin by taking β = G/ ‖x‖∞. Observe that

‖βx‖∞ = β ‖x‖∞ = G,

and thus no entries of βx exceed the saturation level G. Hence, we can bound the quantization
error as

‖βx−QB (βx)‖22 ≤ N
Å

∆

2

ã2

. (A.1)

We also have that

‖βx‖22 = β2 ‖x‖22 =
G2 ‖x‖22
‖x‖2∞

. (A.2)

Combining (A.1) and (A.2), we obtain that

SQNR(βx) =
‖βx‖22

‖βx−QB (βx)‖22
≥ G2 ‖x‖22 / ‖x‖

2
∞

N (∆/2)2 ,

which simplifies to yield the desired result. �

A.2 Theorem 2

Proof. We begin by considering βmin
C (x). Recall that for all scalings β < G/ ‖x‖∞ we have that

‖βx‖∞ < G, so that there are no saturations. Thus we can bound the SQNR as

SQNR(βx) ≥ β2 ‖x‖22
N(∆/2)2

.

92



A.2. THEOREM 2

Thus, if we ensure that

β2 ‖x‖22
N(∆/2)2

≥ C

then we also guarantee that SQNR(βx) ≥ C. This will occur provided that

β2 ≥ CN

‖x‖22
(∆/2)2.

Thus we can set

βmin
C (x) =

√
CN

‖x‖22
(∆/2)2.

We now turn to βmax
C (x). Since we are now considering β > G/ ‖x‖∞, there will be at least one

entry of x that takes a value greater than G and thus saturates. Furthermore, the saturated value
is guaranteed to have error greater than ∆/2 since our quantizer represents a maximum value of
G−∆/2. Thus, we observe that the total quantization error is less than the error of a signal where
each element takes the value of the maximum saturated measurement. If we define G = G−∆/2
then we have that

SQNR(βx) ≥ β2 ‖x‖22
N(β‖x‖∞ −G)2

. (A.3)

By design, we have that β‖x‖∞ > G, and henceÄ
β‖x‖∞ −G

ä2
= β2‖x‖2∞ − 2Gβ‖x‖∞ +G

2

≤ β2‖x‖2∞ − 2GG+G
2

= β2‖x‖2∞ −G2 + (∆/2)2.

From this we observe that

β2 ‖x‖22
N(β‖x‖∞ −G)2

≥ β2 ‖x‖22
N(β2‖x‖2∞ −G2 + (∆/2)2)

,

and so from (A.3) we have that if

β2 ‖x‖22
N(β2‖x‖2∞ −G2 + (∆/2)2)

> C

then SQNR(βx) > C. By rearranging, we see that this will occur provided that

β2 <
CN

‖x‖22

Ç
G2 − (∆/2)2

Cγ(x)2 − 1

å
.

Thus we can set

βmax
C (x)2 =

CN

‖x‖22

Ç
G2 − (∆/2)2

Cγ(x)2 − 1

å
.
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Combining our expressions for βmin
C (x) and βmax

C (x) we obtain

DRC(x) ≥
Ç
βmax
C (x)

βmin
C (x)

å2

=
1

Cγ(x)2 − 1

ÇÅ
2G

∆

ã2

− 1

å
,

which simplifies to establish (2.9). �
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Binary Stable Embeddings

B.1 Lemma 5: Intersections of Orthants by Subspaces

In this section, we demonstrate that while there are 2M available quantization points provided by
1-bit measurements, a K sparse signal will not use all of them. To understand how effectively
the quantization bits are used, we first need to investigate how the K-dimensional subspaces pro-
jected from the N -dimensional K-sparse signal spaces intersect orthants in the M -dimensional
measurement space.

An orthant in M dimensions is a set of points in RM that all have the same sign pattern:

Os = {x | signx = s},

where s is a vector of ±1. Each orthant has M boundaries of dimension M − 1, defined as the
subspace with a coordinate set to 0:

Bi = {x | (x)i = 0}.

We split each boundary into 2M−1 faces, defined as the set

Fi,s = {x | (x)i = 0 and sign (x)j = (s)j for all i 6= j} ,

where s is the sign vector of a bordering orthant, and i is the boundary in which the face lies.
Each face borders two orthants. Note that the faces are M − 1 dimensional orthants in the M − 1
dimensional boundary subspace. The geometry of the problem in R3 is summarized in Figure B.1(a).

We use I(M,K) to denote the maximum number of orthants in M dimensions intersected by
a K-dimensional subspaces (with I(M, 1) = 2). We upper bound I(M,K) using an inductive
argument that relies on the following two lemmas:
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(a) (b)

Figure B.1: (a) The geometry of orthants in R3. (b) The geometry of spherical caps.

Lemma 12. If a K-dimensional subspace S ⊂ RM is not the subset of a boundary Bi, then the
subspace and boundary do intersect and their intersection is a K − 1 dimensional subspace of Bi.

Proof. We count the dimensions of the relevant spaces. If S is not a subset of Bi, then it equals the
direct sum S = (S ∩Bi)⊕W, where W ⊂ RM is also not a subspace of Bi. Since dimBi = M − 1,
dimW ≤ 1, and dimS ∩Bi = K − 1 follows. �

Lemma 13. For K > 1, a K-dimensional subspace that intersects an orthant also non-trivially
intersects at least K faces bordering that orthant.

Proof. Consider a K-subspace S, a point p ∈ S interior to the orthant Osign p, and a vector x1 ∈ S
non-parallel to p. The following iterative procedure can be used to prove the result:

1. Starting from 0, grow a until the set p ± axl intersects a boundary Bi, say at a = al. It
is straightforward to show that as a grows, a boundary will be intersected. The point of
intersection is in the face Fi,sign p. The set {p± axl|a ∈ (0, al)} is in the orthant Osign p.

2. Determine a vector xl+1 ∈ S parallel to all the boundaries already intersected and not parallel
to p, set l = l + 1 and iterate from step 1.

A vector can always be found in step 2 for the first K iterations since S is K dimensional. The
vector is parallel to all the boundaries intersected in the previous iterations and therefore p ±
axl always intersects a boundary not intersected before. Therefore, at least K distinct faces are
intersected. �

Lemmas 12 and 13 lead to the main result in this section. Lemma 5 in Section 3.4.1 follows
trivially.

Lemma 14. The number of orthants intersected by a K-dimensional subspace S in an M dimen-
sional space V is upper bounded by

I(M,K) ≤
Ç
M

K

å
2K .
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Proof. The main intuition is that since the faces on each boundary are equivalent to orthants in
the lower dimensional subspace of the boundary, the maximum number of faces intersected at each
boundary is a problem of dimension I(M − 1,K − 1).

If S is contained in one of the boundaries in V, the number of orthants of V intersected is
at most I(M − 1,K). Since I(M,K) is non-decreasing in M and K, we can ignore this case in
determining the upper bound.

If S is not contained in one of the boundaries then Lemma 12 shows that the intersection of S
with any boundary Bi is a K − 1 dimensional subspace in Bi. To count the faces of Bi intersected
by S we use the observation in the definition of faces above, that each face is also an orthant of Bi.
Therefore, the maximum number of faces of Bi intersected is a recursion of the same problem in
lower dimensions, i.e., is upper bounded by I(M − 1,K − 1). Since there are M boundaries in V,
it follows that the number of faces in V intersected by S is upper bounded by M · I(M − 1,K − 1).

Using Lemma 13 we know that for an orthant to be intersected, at least K faces adjacent to
it should be intersected. Since each face is adjacent to two orthants, the total number of orthants
intersected cannot be greater than twice the number of faces intersected divided by K:

I(M,K) ≤ 2M · I(M − 1,K − 1)

K
. (B.1)

The result follows by induction. �

A tighter achievable bound is also known [139, 140]:

I(M,K) ≤ 2
K−1∑
l=0

Ç
M − 1

l

å
(B.2)

≤ 2K

Ç
M − 1

K − 1

å
if K ≤ M − 1

2
.

Although (B.2) is tighter and achieved with a subspace in a general configuration, it leads to
expressions on the same asymptotical order of our main results. We use (B.1) for the remainder of
this chapter because of its simpler form.

B.2 Theorem 4: Distributing Signals to Quantization Points

To prove Theorem 4 we consider how the available quantization points optimally cover the set of
signals of interest. We consider unit norm signals that belong in a union of L subspaces, each of
dimension K. Thus the set of interest is the union of L unit spheres of K dimensions.

First we need to understand how to measure the sets of signals of interest. We denote the unit
sphere in K dimensions—which is the surface of the K-dimensional unit ball—using SK−1, and the
rotationally invariant area measure on the sphere using σ(·). Thus the area of the whole sphere is
equal to σ(SK−1). If subspaces intersect, the area of the sphere inside the intersection has measure
zero. Therefore, the total surface area of all L spheres is LSK−1.

97



APPENDIX B. BINARY STABLE EMBEDDINGS

The most efficient cover of this area is achieved if every point covers a spherical cap of radius
r, denoted using C(r). The geometry of the problem is demonstrated in Figure B.1(b). From [141]
the surface area of a spherical cap of radius r satisfies

σ(C(r)) ≤ rKσ(SK−1),

For L
(M
K

)
2K points to cover the area Lσ(SK−1) we require

L

Ç
M

K

å
2Kσ(C(r)) ≥ Lσ(SK−1)⇒

Å
Me2r

K

ãK
≥ 1

⇒ r ≥ K

2eM
= Ω (K/M) ,

using the bound
(M
K

)
≤ (eM/K)K . Incidentally, this proof gives an obvious solution to a Grassma-

nian covering problem of 1-dimensional subspaces in K dimensional spaces. Although Grassmanian
packing problems have been examined in the literature (e.g., in the context of frame theory [142]),
to our knowledge, the Grassmanian covering problem has not been posed or attempted.

B.3 Theorem 5: Optimal Performance via Gaussian Projections

To prove Theorem 5, we follow the procedure given in [89, Theorem 3.3]. We begin by restricting
our analysis to the support set T ⊂ {1, · · · , N} with |T | ≤ D ≤ N , and thus we consider vectors
that lie on the (sub) sphere Σ∗(T ) = {x : suppx ⊂ T, ‖x‖2 = 1} ⊂ RN . We remind the reader that
Bδ(x) := {a ∈ SN−1 : ‖x−a‖2 < δ} is the ball of unit norm vectors of Euclidean distance δ around
x, and we write B∗δ (x) = Bδ(x) ∩ Σ∗(T ) as in Section 3.5.2.

Given a vector ϕ ∼ NN×1(0, 1) and two distinct points p and q in Qδ, we have that

P
î
∀u ∈ B∗δ (p),∀v ∈ B∗δ (q) : signϕTu 6= signϕT v

ó
≥ dS(p, q) −

»
π
2D δ,

from Lemma 15 (given in Section B.4). When εo > 2δ, we have the relationship

π dS(p, q) ≥ 2 sin(
π

2
dS(p, q)) = ‖p− q‖2 ≥ ‖u− v‖2 − 2δ > εo − 2δ,

and thus

P
î
∀u ∈ B∗δ (p), ∀v ∈ B∗δ (q) : signϕTu 6= signϕT v | ‖u− v‖2 > εo

ó
≥ εo

π − ( 2
π +
»

π
2D) δ.

By setting δ = πεo/(4 + π
√

2πD) (and reversing the inequality), we obtain

P
î
∃u ∈ B∗δ (p),∃v ∈ B∗δ (q) : sign (ϕTu) = sign (ϕT v) | ‖u− v‖2 > εo

ó
≤ 1− εo

2 .

Thus, for M different random vectors ϕi arranged in Φ = (ϕ1, · · · , ϕM )T ∼ NM×N (0, 1), and for
the associated mapping A defined in (3.1), we have that

P
î
∃u ∈ B∗δ (p), ∃v ∈ B∗δ (q) : A(u) = A(v) | ‖u− v‖2 > εo

ó
≤ (1− εo

2 )M .
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In words, we have found a bound on the probability that two vectors’ measurements are consistent,
even if their euclidean distance is greater than εo, but only for vectors in the restricted (sub) sphere
Σ∗(T ). Now we seek to cover the rest of the space Σ∗K (unit norm K-sparse signals).

Given a radius δ > 0, the sphere Σ∗(T ) can be covered with a finite set Qδ ⊂ Σ∗(T ) of no more
than (3/δ)D points such that, for any w ∈ Σ∗(T ), there exists a q ∈ Qδ with w ∈ B∗δ (q) [45]. Since

there are no more than
(|Qδ|

2

)
≤ (|Qδ|)2 ≤ (3/δ)2D pairs of distinct points in Qδ, we find

P
î
∃u, v ∈ Σ∗(T ) : dH(A(u), A(v)) = 0 | ‖u− v‖2 > εo

ó
≤
Ä

1
πεo

(12 + 3π
√

2πD)
ä2D

(1− εo
2 )M .

To obtain the final bound, we observe that any pair of unit K-sparse vectors x and s in Σ∗K
belongs to some Σ∗(T ) with T = suppx ∪ supp s and |T | ≤ 2K. There are no more than

( N
2K

)
≤

(N/2K)2K of such sets T , and thus setting D = 2K above yields

P
î
∃u, v ∈ Σ∗K : dH(A(u), A(v)) = 0 | ‖u− v‖2 > εo

ó
≤ ( N2K )2K ( 1

πεo
(12 + 6π

√
πK))4K (1− εo

2 )M

≤ exp
î
2K log( N2K ) + 4K log( 1

πεo
(12 + 6π

√
πK))−M εo

2

ó
,

where the second inequality follows from 1 − εo
2 ≤ exp εo

2 . By upper bounding this probability by
η and solving for M , we obtain

M ≥ 1
εo

Ä
2K log N

2K + 4K log( 1
πεo

(12 + 6π
√
πK)) + log 1

η

ä
.

Since K ≥ 1, we have that 1
π (12 + 6π

√
πK) < 12

√
πK < 16

√
2K, and thus the previous relation is

then satisfied when

M ≥ 1
εo

Ä
2K log N

2K + 4K log( 1
εo

(16
√

2K)) + log 1
η

ä
= 1

εo

Ä
2K log N

2 + 4K log( 1
εo

(16
√

2)) + log 1
η

ä
= 1

εo

Ä
2K logN + 4K log(16

εo
) + log 1

η

ä
.

B.4 Lemma 8: Concentration of Measure for δ-Balls

Proving Lemma 8 amounts to showing that, for some fixed ε > 0 and 0 ≤ δ ≤ 1, given a Gaussian
matrix Φ ∈ RM×D, the mapping A : RD → BM defined as A(u) = sign (Φu), and for some
x, s ∈ SD−1, we have

P
( ∣∣∣ dHÄA(u), A(v)

ä
− dS(x, s)

∣∣∣ ≤ ε+
»

π
2D δ

)
≥ 1− 2 e−2ε2M , ∀u ∈ B∗δ (x), ∀v ∈ B∗δ (s),

where the balls Bδ are also restricted to RD.

Given u ∈ B∗δ (x) and v ∈ B∗δ (s), the quantity MdH
Ä
A(u), A(v)

ä
is the sum

∑
iAi(u) ⊕ Ai(v),

where Ai(u) stands for the ith component of A(u). For one index 1 ≤ i ≤M

Ai(u)⊕Ai(v) ≤ Z+
i := max

¶
Ai(p)⊕Ai(q) : p ∈ B∗δ (x), q ∈ B∗δ (s)

©
,

Ai(u)⊕Ai(v) ≥ Z−i := min
¶
Ai(p)⊕Ai(q) : p ∈ B∗δ (x), q ∈ B∗δ (s)

©
,
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and therefore

Z− :=
M∑
i=1

Z−i ≤ M dH
Ä
A(u), A(v)

ä
≤

M∑
i=1

Z+
i =: Z+.

Of course, the occurrence of Z+
i = 0 (Z−i = 1) means that all vector pairs taken separately in

B∗δ (x) and B∗δ (s) have consistent (or respectively, inconsistent) measurements on the ith sensing
component Ai. More precisely, since ϕi ∼ NN×1(0, 1), Z±i are binary random variables such that
P[Z+

i = 1] = 1 − p0 and P[Z−i = 1] = p1 independently of i, where the probabilities p0 and p1 are
defined by

p0(dS(x, s), δ) = P[Z+
i = 0] = P

î
∀p ∈ B∗δ (x), ∀q ∈ B∗δ (s), Ai(u) = Ai(v)

ó
,

p1(dS(x, s), δ) = P
î
∀p ∈ B∗δ (x), ∀q ∈ B∗δ (s), Ai(u) 6= Ai(v)

ó
.

In summary, Z+ and Z− are binomially distributed with M trials and probability of success
1− p0 and p1, respectively. Furthermore, we have that EZ+ = M (1− p0) and EZ− = M p1, thus
by the Chernoff-Hoeffding inequality,

P
î
Z+ > M (1− p0) +Mε

ó
≤ e−2Mε2 ,

P
î
Z− < M p1 −Mε

ó
≤ e−2Mε2 .

This indicates that with a probability higher than 1− 2e−2Mε2 , we have

p1 − ε ≤ dH
Ä
A(u), A(v)

ä
≤ (1− p0) + ε.

The final result follows by lower bounding p0 and p1 as in Lemma 15.

Lemma 15. Given 0 ≤ δ < 1 and two unit vectors x, s ∈ SD−1, we have

p0 = P
î
∀u ∈ Bδ(x), ∀v ∈ Bδ(s), sign 〈ϕ, u〉 = sign 〈ϕ, v〉

ó
≥ 1 − dS(x, s) −

»
π
2D δ, (B.3)

p1 = P
î
∀u ∈ Bδ(x), ∀v ∈ Bδ(s), sign 〈ϕ, u〉 6= sign 〈ϕ, v〉

ó
≥ dS(x, s) −

»
π
2D δ. (B.4)

Proof of Lemma 15. We begin by introducing some useful properties of Gaussian vector distribu-
tion. If ϕ ∼ ND×1(0, 1), the probability that ϕ ∈ A ⊂ RD is simply the measure µ of A with
respect to the standard Gaussian density γ(ϕ) = 1

(2π)D/2
e−‖ϕ‖

2/2, i.e.,

P[ϕ ∈ A ] = µ(A) =

∫
A

dDϕ γ(ϕ),

with µ(RD) = 1. It may be easier to perform this integration over a hyper-spherical set of co-
ordinates. Specifically, we let any vector ϕ be represented by the values (r, φ1, · · · , φD−1) where
r ∈ R+ stands for the vector length, φ1, · · · , φD−2 ∈ [0, π] corresponds to the vector angles in each
dimension, and φD−1 ∈ [0, 2π] being the angle of ϕ in the “xs” plane. This is possible since γ is
rotionally invariant and thus we may assume the “xs” plane is spanned by the canonical vectors
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eD = x and eD−1 in the canonical basis {e1, · · · , eD} of RD, with e1 = (x ∧ s) / ‖x ∧ s‖2 and
eD−1 = eD ∧ e1.

The change of coordinates is then defined as ϕ1 = r cosφ1, ϕ2 = r sinφ1 cosφ2, ..., ϕD−1 =
r sinφ1 · · · sinφD−2 cosφD−1, and ϕD = r sinφ1 · · · sinφD−2 sinφD−1, while, conversely, r = ‖ϕ‖2,
tanφ1 = (ϕ2

D+· · ·+ϕ2
2)1/2/ϕ1, ..., tanφD−2 = (ϕ2

D+ϕ2
D−1)1/2 /ϕD−2, and tanφD−1 = ϕD /ϕD−1.1

We now seek a lower bound on p1. Computing this probability amounts to estimating

p1 = P[ ∀u ∈ Bδ(x), ∀v ∈ Bδ(s), 〈ϕ, u〉〈ϕ, v〉 ≤ 0 ] = µ(Wδ),

where Wδ = {ϕ : 〈ϕ, u〉〈ϕ, v〉 ≤ 0, ∀u ∈ Bδ(x), ∀v ∈ Bδ(s)} is the set of all vectors ϕ such that
its inner product with u and v result in different signs. Note that if Bδ(x) ∩ Bδ(s) is not empty,
then we have p1 = 0 since for w ∈ Bδ(x) ∩ Bδ(s), we have 〈ϕ,w〉2. This term cannot be negative
and thus Wδ = {ϕ : 〈ϕ,w〉 = 0}, which has measure zero with respect to µ. In order to avoid
this trouble, we must choose dS(x, s) ≥ 4

π arcsin δ/2. Furthermore, since arcsinλ ≤ π
2λ for any

0 ≤ λ ≤ 1, this occurs if dS(x, s) ≥ δ.
The remainder of the proof is devoted to finding an appropriate way to integrate the set Wδ.

To this end, we begin by demonstrating that estimating p1 can be simplified with the following
equivalence (proved just after the completion of the proof of Lemma 15).

Lemma 16. The set Wδ ⊂ RD is equal to the set

V−δ = {ϕ : 〈ϕ, x〉〈ϕ, s〉 ≤ 0, ‖x − PΠ(ϕ) x‖ ≥ δ, ‖s − PΠ(ϕ) s‖ ≥ δ},

where PΠ(ϕ) is the orthogonal projection on the plane Π(ϕ) = {u ∈ RD : 〈ϕ, u〉 = 0}.

Using the hyper spherical coordinate system developed earlier, membership in V−δ can be ex-
pressed as

ϕ = (r, φ1, · · · , φD−1) ∈ V−δ ⇔


tanφD−1 ∈ [0, tan θ],

sinφ1 · · · sinφD−2 | sinφD−1| ≥ δ,

sinφ1 · · · sinφD−2 | sin(φD−1 − θ)| ≥ δ.

(R1)

(R2)

(R3)

Indeed, requirement (R1) enforces 〈ϕ, x〉〈ϕ, s〉 ≤ 0, while (R2) and (R3) are direct translations
of the requirements that ‖x − PΠ(ϕ) x‖ = |〈ϕ̂, x = eD〉| ≥ δ and ‖s − PΠ(ϕ) s‖ = |〈ϕ̂, y =

− sin θ eD + cos θ eD−1〉| ≥ δ, with ϕ̂ = 1
‖ϕ‖ϕ.

We are now ready to integrate to find p1:

p1 = µ(V−δ ) = 1
(2π)D/2

∫
R+

dr rD−1e−r
2/2

ñÄ ∫ π

0
dφ1 sinD−2 φ1

ä
· · ·
Ä ∫ π

0
dφD−2 sinφD−2

ä ô
· · ·î ∫

[0,θ]∪ [π,π+θ]
dφD−1 χg(δ,ϕ)(φD−1)χg(δ,ϕ)(φD−1 − θ)

ó
,

1This change of coordinates can be very convenient. For instance, the proof of Lemma 7 relies on the computation
P[Ai(x) 6= Ai(s)] = µ(A = {ϕ : φD−1 ∈ [0, π dS(x, s)]∪ [π, π+ π dS(x, s)]}) = dS(x, s), since for (almost) all ϕ ∈ A, x
and s live in the two different subvolumes determined by the plane {u : 〈ϕ, u〉 = 0} [96, 97].
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with χλ(φ) = 1 if | sinφ | ≥ λ and 0 else, for some λ ∈ [0, 1], and g(δ, ϕ) = δ/(sinφ1 · · · sinφD−2).

However, ∫
[0,θ]∪ [π,π+θ]

dφ χλ(φ)χλ(φ− θ) = 2θ − 4 arcsinλ ≥ 2θ − 2πλ,

since λ ≤ arcsinλ ≤ π
2λ for any λ ∈ [0, 1]. Consequently,

µ(V−δ ) ≥ 1
(2π)D/2

∫
R+

dr rD−1e−r
2/2 · · ·ñÄ ∫ π

0
dφ1 sinD−2 φ1

ä
· · ·
Ä ∫ π

0
dφD−2 sinφD−2

ä ôÄ
2θ − 2πδ

(sinφ1 ··· sinφD−2)

ä
=

θ

π
− π δ ID−3 ID−4 · · · I0

ID−2 ID−3 ID−4 · · · I0
=

θ

π
− π δ

ID−2
,

with In =
∫ π

0 dφ sinn φ and knowing that (2π)D/2 = 2(ID−2 · · · I0)
∫
R+

dr rD−1e−r
2/2.

Using the fact that In =
√
π Γ(n+1

2 )/Γ(n2 +1) ≥
√
π/
»

n
2 + 1

4 , we obtain ID−2 ≥
√
π√

D
2
− 3

4

≥
»

2π
D ,

and thus
p1 ≥ dS(x, s) −

»
π
2D δ.

If we want a meaningful bound for p1 ≥ 0, then we must have dS(x, s) ≥
»

π
2d δ ≥ δ. Therefore, as

soon as the lower bound is positive, the aforementioned condition dS(x, s) ≥ δ always holds.

The lower bound for p0 is obtained similarly. It is straightforward to show that p0 = µ(V+
δ ),

with V+
δ = {ϕ : 〈ϕ, x〉〈ϕ, s〉 > 0, ‖x − PΠ(ϕ) x‖ ≥ δ, ‖y − PΠ(ϕ) s‖ ≥ δ}. Lower bounding µ(V+

δ ) as

for µ(V+
δ ), the only difference occurring with the integral on φD−2 given by∫

[θ,π]∪ [π+θ,2π]
dφD−1 χg(δ,ϕ)(φD−1)χg(δ,ϕ)(φD−1 − θ) · · ·

= 2π − 2θ − 4 arcsin g(δ, ϕ) ≥ 2(π − θ)− 2πg(δ, ϕ).

Therefore, the lower bound of p0 amounts to change θ → π− θ in the one of p1, which provides the
result. �

Proof of Lemma 16. If δ = 0, there is nothing to prove. Therefore δ > 0 and if ϕ∗ belongs to either
Vδ or Wδ, we must have 〈ϕ, x〉〈ϕ, s〉 < 0. It is also sufficient to work on the restriction of Vδ and
Wδ to unit vectors.

(i) Vδ ⊂ Wδ: By contradiction, let us assume that ϕ∗ ∈ Vδ but ϕ∗ /∈ Wδ. Without any loss of
generality, 〈ϕ∗, x〉 > 0 and 〈ϕ∗, s〉 < 0. Since ϕ∗ /∈ Wδ, there exist two vectors u∗ ∈ Bδ(x) and
v∗ ∈ Bδ(y) such that 〈ϕ∗, u∗〉〈ϕ∗, v∗〉 > 0. If 〈ϕ∗, u∗〉 > 0 and 〈ϕ∗, v∗〉 > 0, then, since 〈ϕ∗, s〉 < 0
and by continuity of the inner product, there exist a λ ∈ (0, 1) such that 〈ϕ∗, s(λ)〉 = 0 with
s(λ) = y + λ(v∗ − s). Therefore, s(λ) ∈ Π(ϕ) and, by definition of the orthogonal projection,
‖s − PΠϕ s‖ ≤ ‖s − s(λ)‖ ≤ λδ < δ which is a contradiction. If 〈ϕ∗, u∗〉 < 0 and 〈ϕ∗, v∗〉 < 0, we
apply the same reasoning on x and u∗. Therefore, Vδ ⊂ Wδ.
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(ii) Wδ ⊂ Vδ: If ϕ∗ ∈ Wδ with ϕ∗ /∈ Vδ, we have either ‖x − PΠ(ϕ∗) x‖ < δ or ‖s − PΠ(ϕ∗) s‖ < δ.
Let us say that ‖x − PΠ(ϕ∗) x‖ < δ. Then, for w = x + δ (PΠ(ϕ∗) x− x)/‖PΠ(ϕ∗) x− x‖ ∈ B∗δ (x),

〈ϕ∗, x〉〈ϕ∗, w〉 = (〈ϕ∗, x〉)2
Ä
1 − δ/‖PΠ(ϕ∗) x − x‖

ä
+ δ 〈ϕ∗,PΠ(ϕ∗) x〉 < 0. However, ϕ∗ ∈ Wδ and

〈ϕ∗, x〉〈ϕ∗, s〉 < 0, leading to 〈ϕ∗, w〉〈ϕ∗, s〉 > 0, which is a contradiction. �

B.5 Theorem 6: Gaussian Matrices Provide BεSEs

The strategy for proving Theorem 6 will be to count the number of pairs of K-sparse signals
that are Euclidean distance δ apart. We will then apply the concentration results of Lemma 8
to demonstrate that the angles between these pairs are approximately preserved. We specifically
proceed by focusing on a single K-dimensional subspace (intersected with the unit sphere) and then
by applying a union bound to account for all possible subspaces.

Let T ⊂ {1, . . . , N} be an index set of size |T | = K, Σ∗(T ) = {w ∈ RN : suppw ⊂ T, ‖w‖2 = 1}
be the sphere of unit vectors with support T . We first use again the fact that the sphere Σ∗(T )
can be δ-covered by a finite set of points QT,δ. That is, for any w ∈ Σ∗(T ), there exists a q ∈ QT,δ
such that w ∈ B∗δ (q) = Bδ(q) ∩ Σ∗T = {w′ ∈ Σ∗T : ‖w′ − q‖2 ≤ δ} [45]. Note that the size of QT,δ is
bounded by |QT,δ| ≤ Cδ = (3/δ)K .

Let ΦT be the matrix formed by the columns of Φ indexed by T and note that ΦTw = Φw.
Since ε ≥ 0 is given, then for all pairs of points x, y ∈ QT,δ, we have

P
( ∣∣∣ dHÄA(p), A(q)

ä
− dS(x, y)

∣∣∣ ≤ ε+
»

π
2K δ

)
≥ 1 − 2 (3

δ )2K e−2ε2M , (B.5)

for all p ∈ B∗δ (x) and q ∈ B∗δ (y). This follows from Lemma 8 with D = K, since ΦT is a Gaussian
matrix and by invoking the union bound, since there are

(Cδ
2

)
≤ C2

δ = (3/δ)2K such pairs x, y.

The bound (B.5) can be extended to all possible index sets T of size K via the union bound.
Specifically, for all T ⊂ {1, · · · , N} and all pairs of points x, y ∈ QT,δ, we have

P
(∣∣∣ dHÄA(p), A(q)

ä
− dS(x, y)

∣∣∣ ≤ ε+
»

π
2K δ

)
≥ 1 − 2 ( eNK )K (3

δ )2K e−2ε2M (B.6)

for all p ∈ B∗δ (x) and q ∈ B∗δ (y), since there are no more than
(N
K

)
≤ (eN/K)K possible T .

To summarize, for any points on the sphere u, v ∈ SN−1 with |suppu ∪ supp v| ≤ K, there
exists an index set T of size K such that u, v ∈ Σ∗(T ) and from (B.6) there exists two points x, y ∈
QT,δ such that u ∈ B∗δ (x) and v ∈ B∗δ (y) with a probability exceeding 1 − 2 ( eNK )K (3

δ )2K e−2ε2M .
Furthermore, when this occurs we have∣∣∣ dHÄA(u), A(v)

ä
− dS(x, y)

∣∣∣ ≤ ε+
»

π
2K δ. (B.7)

To obtain our final bound, consider that u ∈ B∗δ (x) implies that π dS(u, x) ≤ 2 arcsin δ/2 ≤ πδ/2,
and dS(v, y) can be similarly bounded. Thus, dS(u, v) ≥ dS(x, y) − δ and dS(u, v) ≤ dS(x, y) + δ,
and (B.7) becomes ∣∣∣ dHÄA(u), A(v)

ä
− dS(u, v)

∣∣∣ ≤ ε+ (1 +
»

π
2K) δ. (B.8)
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By bounding the probability of failure as 2 ( eNK )K (3
δ )2K e−2ε2M ≤ η, where 0 < η < 1, and setting

ε = (1 +
»

π
2K) δ, solving for M , we obtain

M ≥ 4
ε2

Ä
K log(9eN

K ) + 2K log(2(1+
√

2πK)
ε ) + log( 2

η )
ä
.

Since K ≥ 1, we have that 2(1 +
√

2πK) < 4
√

2πK, and thus the previous relation is satisfied if

M ≥ 4
ε2

Ä
K log(9eN

K ) + 2K log(4
√

2πK
ε ) + log( 2

η )
ä
,

= 4
ε2

Ä
K log(9eN) + 2K log(4

√
2π
ε ) + log( 2

η )
ä
,

= 4
ε2

Ä
K log(N) + 2K log(12

√
2πe
ε ) + log( 2

η )
ä
,

which can be further simplified to M ≥ 4
ε2

Ä
K log(N) + 2K log(50

ε ) + log( 2
η )
ä
.

B.6 Lemma 9: Stability with Measurement Noise

In Lemma 9, since Φ ∼ NM×N (0, 1), each yi = (Φx)i follows a Gaussian distribution N (0, ‖x‖22),
and furthermore, since we have independent additive noise, zi = yi + ni = (Φx)i + ni follows the
Gaussian distribution N (0, ‖x‖22 + σ2).

We begin by bounding the probability that any noisy measurement zi has a different sign than
the original corresponding measurement yi, i.e., we bound p0 = P(ziyi < 0). This quantity is
interesting since M dH

Ä
An(x), A(x)

ä
follows a Binomial distribution with M trials and probability

of success p0 and thus we also have E
Ä
dH
Ä
An(x), A(x)

ää
= p0.

To solve for the bound, we compute

p0 =

∫
R

du P(ziyi < 0 | yi = u ) fyi(u) =

∫
R

du P(u2 + uni < 0) g(u; ‖x‖2),

with the pdf fyi(t) = g(t;σ′) = 1√
2πt

exp(−t2/2σ′2). This leads to

p0 =

∫ ∞
0

du P(ni < −u) g(u; ‖x‖2) +

∫ 0

−∞
du P(ni > −u) g(u; ‖x‖2)

=

∫ ∞
0

du 2Q(u/σ) g(u; ‖x‖2) ≤
∫ ∞

0
du e−

u2

2σ2 g(u; ‖x‖2)

= 1√
2π‖x‖2

∫ ∞
0

du e
−1

2 (
(‖x‖22+σ2)u2

σ2‖x‖2
2

)
= 1

2

σ»
‖x‖22 + σ2

,

where Q(u) =
∫∞
u dt g(t; 1) denotes the tail integral of the standard Gaussian distribution which is

bounded by Q(t) ≤ 1
2e
−t2/2 for t ≥ 0 (see for instance [143, Eq. (13.48)]).
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Thus, we have p0 ≤ e(σ, ‖x‖2) = 1
2

σ√
‖x‖22+σ2

and, by applying the Chernoff-Hoeffding inequality

to the distribution of dH
Ä
An(x), A(x)

ä
,

P
î
M dH

Ä
An(x), A(x)

ä
> M e(σ, ‖x‖2) +Mε

ó
≤ P

î
M dH

Ä
An(x), A(x)

ä
> M p0 +Mε

ó
≤ e−2Mε2 ,

which proves the lemma.

B.7 Corollary 3: Stability with Compressible Signals

The proof of Corollary 3 is as follows. Since x = xK + (x − xK) then Φx = ΦxK + n where n =
Φ(x−xK) is a random Gaussian vector. Thus A(x) = An(xK) where An is defined as in Lemma 9.
The vector n is also independent of ΦxK since the supports of xK and (x−xK) are disjoint. Finally,
the variance σ of each i.i.d. component ni of n is ‖x− xK‖22, thus the result follows from Lemma 9

with the bound e(σ, ‖xK‖2) = 1
2

σ√
‖xK‖22+σ2

= ‖x−xK‖2
2‖x‖2 since ‖x‖22 = ‖xK‖22 + ‖x− xK‖22.
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APPENDIX C

The RSS Algorithm

C.1 Quadratic Penalty Framework

The quadratic penalty framework can also make use of the RSS-inner subroutine to solve (3.17).
This framework has been is used by FPC and gradient projection for sparse reconstruction (GPSR)
to solve conventional CS reconstruction problems [27]. This approach proceeds by iteratively min-
imizing a sequence of penalty functions:

min
x∈RN

‖x‖1 +
µs

2
‖min{Ax− b, 0}‖22 s.t. ‖x‖2 = 1, (C.1)

where µs > 0 is the penalty parameter, and we increase µs → +∞ by setting µs+1 := κµs with
κ > 1. In fact, (C.1) often only needs to be solved once for some values of µs = µ, as is done in
practice with FPC and GPSR.

It is then straightforward to see that (C.1) is of the form (3.18) and can be solved by the
RSS-inner subroutine.

C.2 Convergence Proof of Algorithm 4

Before proving Lemma 10 from Section 3.7.1-B, we introduce an additional Lemma 17 that provides
bounds on the reduction of the first-order approximation ms(x). We then present a proof that
demonstrates both Lemmas.

Lemma 17. Suppose that xs is not a stationary point of (3.18). Denote by ds := zs − xs the
search direction computed at xs ∈ RN . Then the predicted reduction satisfies δ(xs, zs) ≥ τs

2 ‖d
s‖22.

106



C.2. CONVERGENCE PROOF OF ALGORITHM 4

In particular, if S(τ sxs−µgs) 6= 0, the reduction of the objective function of the subproblem (3.23)
satisfies

ms(x
s)−ms(z

s) ≥ 1

2
‖Ss‖2‖ds‖22. (C.2)

Proof of Lemmas 10 and 17: The corresponding first-order optimality conditions of (3.23) are

p+ µgs + τ s(zs − xs)− λzs = 0, λ ∈ R, ‖zs‖2 = 1, (C.3)

where p ∈ ∂‖zs‖1. Given any feasible solution x with ‖x‖2 = 1, we have

ms(x)−ms(z
s)

= ‖x‖1 − ‖zs‖1 + (µgs + τ s(zs − x))> (x− zs)

+
τ s

2
‖x− zs‖22

= ‖x‖1 − ‖zs‖1 + (λzs − p)> (x− zs) +
τ s

2
‖x− zs‖22

= ‖x‖1 − p>x+ (λzs)>x− λ+
τ s

2
‖x− zs‖22

= ‖x‖1 − p>x+
τ s − λ

2
‖x− zs‖22 (C.4)

≥ τ s − λ
2
‖x− zs‖22, (C.5)

where the first equality follows from the Taylor expansion of the smooth terms of ms(x), the
second equality comes from (C.3), the third equality uses p>zs = ‖zs‖1 and ‖zs‖2 = 1, and the fact
‖x‖1 = max

q∈[−1,1]
q>x gives the last inequality.

It follows from (C.3) that (τ s − λ)zs := τ sxs − µgs − p. We now discuss the following cases:

1. τ s − λ > 0 and S(τ sxs − µgs) 6= 0. It can be verified that τ s − λ = ‖S‖2, and zs = Ss
‖Ss‖2 is a

global minimizer. Substituting x = xs into (C.5) gives (C.2).

2. τ s − λ > 0 and |τ sxs − µgs| ≤ 1. Without loss of generality, we can assume that there exists
a component zsi > 0. Then pi = 1 and τ sxs − µgs − 1 ≤ 0 which contradicts (τ s − λ)zsi > 0.

3. τ s−λ < 0. Suppose that zs has at least two nonzero components. Without loss of generality,
we can assume that there exits a component zsi > 0. Let x̄i = zsi + ε with ε > 0 and
x̄j = zsj for all other j 6= i. It is obvious that x = x̄

‖x̄‖2 is feasible, x 6= zs and p ∈ ∂‖x‖1.

Hence ‖x‖1 − p>x = 0 and (C.4) implies that ms(x) < ms(z
s), which contradicts the fact

ms(x) ≥ ms(z
s). Therefore, the solution zs only has one nonzero element and its value must

be either −1 or 1. Note that

ms(x) = ‖x‖1 + (µgs − τ sxs)>x+ constant.

It can be verified that zsi = sgn(τ si x
s−µgsi ), where i = arg maxk=1,...,n |τ sxsk−µgsk| (select only

one i if there are multiple solutions); otherwise zsi = 0. In fact, the set {i | |τ sxsi − µgsi | = 1}
is empty.
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4. τ s − λ = 0. Then we must have |τ sxs − µgs| ≤ 1, p /∈ ∂‖xs‖1, the set {i | |τ sxsi − µgsi | = 1} is
not empty and the closed-form solution of the subproblem (3.23) is given by (3.26).

�

The next lemma shows that iteration s will be successful for a sufficient large τ s, hence, the
number of unsuccessful iterations between two successful iterations cannot be infinity.

Lemma 18. Suppose that ‖ds‖2 > 0 and τ s ≥ τ̄ := 2µL
1−η2

. Then the s-th iteration is a very

successful iteration which satisfies τ s+1 ≤ τ s.

Proof: Using the definition of rs, Lemma 17 and Assumption 1, we obtain

|rs − 1| =

∣∣∣∣∣ζµ(xk)− ζµ(zs)− δ(xs, zs)
δ(xs, zs)

∣∣∣∣∣
=

∣∣∣∣∣µf(xs) + µ(gs)>ds − µf(zs)

δ(xs, zs)

∣∣∣∣∣
≤ 2µ‖g(xs + ξds)− g(xs)‖2 ‖ds‖2

τ s‖ds‖22
, (ξ ∈ (0, 1))

≤ 2µL

τ s
≤ 1− η2.

Therefore, rs ≥ η2 and the s-th iteration is very successful. The rule (3.28) ensures that τ s+1 ≤ τ s.
�

The following lemma gives a useful alternative characterization of stationarity.

Lemma 19. For any successful iteration k with τs < +∞, the point xs is a stationary point of
(3.18) if only if ds = 0.

Proof: Suppose that ds 6= 0. Since iteration k is successful, Lemma 17 and the ratio (3.27)
testing show that the function value at zs is smaller than that of xs, implying that xs is not a
stationary point. Conversely, if ds = 0, then it follows from (C.3) and xs = zs that

p+ µgs − λxs = 0, λ ∈ R, ‖xs‖2 = 1,

which are the first-order optimality conditions of (3.18). �

We are now ready to prove Theorem 7.

C.2.1 Proof of Theorem 7

If Algorithm 4 has finitely many successful iterations, then for sufficiently large s, the iteration is
unsuccessful. Thus, the sequence {τ s} converges to +∞. Suppose that s0 is the index of the last
successful iteration and ‖ds‖2 > 0 for s > s0. It follows from Lemma 18 that there must exist a
very successful iteration of index s larger than s0, which is a contradiction to the assumption.

Suppose that Algorithm 4 has infinitely many successful iterations. Since an unsuccessful iterate
in the sequence {xs} remains the same and makes no progress, it can be substituted by the same
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successful iterate. The substituted sequence which only consists of different successful iterates is
still denoted by the same notation {xs}. Since the sequence satisfying ‖xs‖ = 1 lies in a compact
set, there exists at least one cluster point x∗ such that ‖x∗‖ = 1.

Suppose that the cluster point x∗ is not a stationary point. According to Lemma 18, there exits
a constant τ̃ such that τ s ≤ τ̃ < +∞ for all s. Hence, there exists a subsequence {xsi} approaches
x∗ and lim

si→∞
τ si = t∗ ≥ 0. Since x∗ is not a stationary point, by Lemma 19, d∗ 6= 0 and

δ(x∗, x∗ + d∗) = ‖x∗‖1 − ‖x∗ + d∗‖1 − µ(g∗)>d∗ = ε > 0.

Using the fact that the shrinkage operator is non-expansive, i.e.,

‖S(x)− S(y)‖2 ≤ ‖x− y‖2,

we obtain

‖Ssi − S∗‖2
= ‖S(τ sixsi − µg(xki))− S(τ∗x∗ − µg(x∗))‖2
≤ ‖τ sixsi − τ∗x∗ − µ(g(xsi − g(x∗))‖2
≤ |τ∗|‖xsi − x∗‖2 + |τ si − τ∗|‖xsi‖2 + µM‖xsi − x∗‖2,

which implies that lim
si→∞

Ssi = S∗ and lim
si→∞

dsi = d∗. Note that g(x) and ‖x‖1 are continuous. For

si large enough, we have therefore that

δ(xsi , xsi + dsi) = ‖xsi‖1 − ‖xsi + dsi‖1 − µ(gsi)>dsi ≥ ε

2
.

It follows from the acceptance rule for successful iterations (3.28) that

ζµ(xsi)− ζµ(xsi+1) ≥ η1δ(x
s, xsi + dsi) ≥ η1ε

2
. (C.6)

However, since the series with positive terms

∞∑
i=1

ζµ(xsi)− ζµ(xsi+1) ≤
∞∑
s=s1

ζµ(xsi)− ζµ(xsi+1)

= ζµ(xs1)− ζµ(x∗) < +∞

is convergent, we have
lim
si→∞

ζµ(xsi)− ζµ(xsi+1) = 0,

which contradicts (C.6) and completes the proof. �
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Regime Change: Proof of Theorem 8

We first extend the upper bound of Theorem 4.1 in [38] on the oracle-assisted reconstruction error
to account for correlated measurement noise.

Lemma 20. Suppose that y = Φx+z, where z ∈ RM is a zero-mean, random vector with covariance
matrix Σ = E(zzT ), and that x is K-sparse. Furthermore, suppose that Φ satisfies the RIP of order
K with constant δ. Then the estimate x̂ provided by the oracle-assisted reconstruction algorithm
(1.10) satisfies

E
Ä
‖x− x̂‖22

ä
≤ K

1− δ
λmax(Σ), (D.1)

where λmax(Σ) is the largest eigenvalue of Σ.

Proof. For a fixed support set Ω ∈ {1, . . . , N} with |Ω| = K, the RIP ensures that ΦΩ is full rank,
and thus the oracle estimate satisfies

x̂|Ω = x|Ω + Φ†Ωz. (D.2)

We seek to estimate E
Ä
‖Φ†Ωz‖22

ä
.

For any K ×M matrix A we have that

E
Ä
‖Az‖22

ä
= E(Tr(Az(Az)T )) = E(Tr(AzzTAT ))

= Tr(AE(zzT )AT ) = Tr(AΣAT )

=
K∑
j=1

λj(AΣAT ), (D.3)
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where λj(AΣAT ) denotes the j-th eigenvalue of AΣAT , and (D.3) follows since AΣAT is a K ×K
matrix. Lemma 8.2 of [38] explains that the eigenvalues of this matrix can be upper bounded as

λmax(AΣAT ) ≤ λmax(AAT )λmax(Σ)

≤ smax(A)2λmax(Σ), (D.4)

where smax(A) denotes the maximum singular value of A.

Thus, to obtain the final bound, we combine (D.3) with (D.4) and substitute A = Φ†Ω, yielding

E
Ä
‖Φ†Ωz‖

2
2

ä
≤ Ksmax(Φ†Ω)2λmax(Σ)

≤ K

1− δ
λmax(Σ), (D.5)

since we have that smax(Φ†Ω)2 ≤ 1
1−δ from Lemma 8.1 of [38]. �

We next demonstrate that, by choosing a signal model with random values and supports, the
noiseless measurements Φx are identically distributed and uncorrelated.

Lemma 21. Let x ∈ RN be a sparse signal with support Ω ∈ {1, . . . , N} and |Ω| = K, where the
elements Ω are chosen uniformly at random and the amplitudes of the non-zero coefficients are
drawn according to xj ∈ Ω ∼ N (0, σ2

x). Furthermore, let the M ×N matrix Φ satisfy ΦΦT = N
M IM .

Then the vector Φx is distributed as a mixture of Gaussians with

E((Φx)i) = 0, E((Φx)(Φx)T ) =
K

M
σ2
xIM , (D.6)

i.e., the elements (Φx)i of Φx are zero-mean uncorrelated variables.

Proof. For a fixed support Ω, each element (Φx)i is Gaussian distributed with mean zero since
it is the sum of K zero-mean Gaussian variables. Furthermore, the distribution of (Φx)i over all
possible supports is the sum of the distribution for each fixed support, scaled by the probability
that they occur. Thus, (Φx)i is a mixture of Gaussians with E((Φx)i) = 0.

To derive the variance of the elements and also show that they are uncorrelated, we first examine
E(xxT ). The off-diagonal elements are zero, i.e., E(xixj)i 6=j = 0, since the elements of x are
uncorrelated, by definition. Furthermore, the variance of the diagonal elements can be computed
as

E(x2
i ) = σ2

xP(i ∈ Ω) =
K

N
σ2
x,

since the K non-zero support locations are chosen uniformly, any location j is chosen with proba-
bility K/N . Thus, E(xxT ) = K

N σ
2
xIN . We next compute the correlation of the measurements Φx

to obtain

E(Φx(Φx)T ) = ΦE(xxT )ΦT

=
K

N
σ2
xΦΦT =

K

M
σ2
xIM , (D.7)

which concludes the proof. �
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Proof of Theorem 8. Denote the error between the noiseless ideal measurements and yQ by

z := Φx−QB(Φx+ Φn). (D.8)

Our goal is to determine a bound on the variance σ2
zi of each element zi of z. We begin by rewriting

the norm squared of z as

z2
i = [(Φx)i −QB(Φx+ Φn)i)]

2

= [(Φx+ Φn)i −QB(Φx+ Φn)i − (Φn)i]
2

≤ 2[(Φx+ Φn)i −QB(Φx+ Φn)i]
2 + 2(Φn)2

i , (D.9)

where the index i denotes individual elements of the respective vector.

We now seek an upper bound on the expected value of each of the quantities in (D.9). We begin
with the second term in (D.9). From the definition of Φ, we have that the elements of Φn have
variance

σ2
Φn = E((Φn)2

i ) =
N

M
σ2
n, (D.10)

and furthermore are uncorrelated, as was reviewed in Section 1.2.

To bound the first term in (D.9), we note that the optimal scalar quantizer of rate B for a
Gaussian variable g with variance σ2 has MSE given by E(g − QB(g))2 = σ22−2B. Furthermore,
the MSE of an optimal quantizer of rate B for any variable with variance σ2 is upper bounded by
that of a Gaussian variable. Our goal is to apply this quantization bound to (Φx + Φn)i. Since
(Φx)i and (Φn)i are zero mean and independent of each other, then we immediately have that
E
(
(Φx+ Φn)2

i

)
= K

M σ
2
x + N

M σ
2
n, where the first term follows from Lemma 21, and the second term

follows from (D.10). Thus, we can bound the first term in (D.9) as

E
Ä
[(Φx+ Φn)i −QB(Φx+ Φn)i]

2
ä
≤ E

Ä
(Φx+ Φn)2

i

ä
2−2B

≤ K

M
σ2
x2−2B +

N

M
σ2
n2−2B. (D.11)

Combining (D.10) and (D.11) as in (D.9) yields

σ2
zi ≤ 2

K

M
σ2
x2−2B + 2

N

M
σ2
n

Ä
1 + 2−2B

ä
. (D.12)

We have thus far established an upper bound on the variance σ2
zi of the error zi of each mea-

surement. We next obtain a bound on the eigenvalues of the covariance matrix Σ = E(zzT ). The
off-diagonal elements of Σ can be written as

E(zizj)i 6=j = E((Φx)i(Φx)j))− E((Φx)iQB(Φx+ Φn)j)

−E((Φx)jQB(Φx+ Φn)i) + E(QB(Φx+ Φn)iQB(Φx+ Φn)j)

= −E(QB(Φx+ Φn)iQB(Φx+ Φn)j), (D.13)

since E((Φx)i(Φx)j)) = 0 by design and, for an optimal scalar quantizer, we have that E(QB(Φx+
Φn)iQB(Φx+Φn)j) = E((Φx)jQB(Φx+Φn)i) [118]. Thus, the matrix Σ has σ2

zi along its diagonal
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and S for all other entries. We next apply Gershgorin’s circle theorem, which explains that any
eigenvalue is upper bounded by the diagonal entry plus the sum of the magnitudes of the off-diagonal
entries of each row of Σ. Thus, we have

λmax(Σ) ≤ σ2
zi + (M − 1)S, (D.14)

where S = maxi 6=j |E(zizj)|.
To obtain the final bound, we combine to (D.12) with (D.14) and apply the upper bound in

Lemma 20. We express the bound with the substitution M = B/B. �
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