
On the Design of a Register Queue Based
Processor Architecture (FaRM-rq)

Ben A. Abderazek, Soichi Shigeta, Tsutomu Yoshinaga, and Masahiro Sowa

Graduate School of Information Systems
The University of Electro-Communications

1-5-1 Chofugaoka, Chofu-shi, 182-8585 Tokyo, Japan
{ben,shigeta,yosinaga,sowa}@is.uec.ac.jp

http://www.sowa.is.uec.ac.jp

Abstract. We propose in this paper a processor architecture that sup-
ports multi instructions set through run time functional assignment al-
gorithm (RUNFA). The above processor, which is named Functional As-
signment Register Microprocessor (FaRM-rq) supports queue and regis-
ter based instruction set architecture and functions into different modes:
(1) R-mode (FRM) - when switched for register based instructions sup-
port, and (2) Q-mode (FQM) - when switched for Queue based instruc-
tions support. The entities share a common data path and may operate
independently though not in parallel.
In FRM mode, the machine’s shared storage unit (SSU) behaves as a
conventional register file. However, in FQM mode, the system organizes
the SSU access as a first-in-first-out latches, thus accesses concentrate
around a small window and the addressing of registers is implicit trough
the Queue head and tail pointers.
First, we present the novel aspects of the FaRM-rq1 architecture. Then,
we give the novel FQM fundamentals and the principles underlying the
architecture.

1 Introduction

As demand for increased performance in microprocessor continues, new architec-
tures are required to meet this demand. Implementations of existing architecture
are quickly reaching their limits as increases in current superscalar Out-of-Order
issue are bounded by circuit complexity[9,14,16], and performance increase, due
to technology improvement, are approaching their limit.

From another hand, the motivation for the design of a new architecture gen-
erally arises from the technological development, which changed gradually the
architecture parameters traditionally used in the computer architecture. With
these growing changes and challenges, the computer architects are faced with
answering the question what functionality has to be put on a single processor
chip, giving an extra performance edge. Furthermore, as we enter into an era
1 The above architecture embraces multiprogramming languages and will combine the

best features of Queue , Register and Stack models of computing.

M. Guo and L.T.Yang (Eds.): ISPA 2003, LNCS 2745, pp. 248–262, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

On the Design of a Register Queue Based Processor Architecture (FaRM-rq) 249

of continued demand for simple, faster and compatible processors, it becomes
extremely unpractical and costly to develop a separate processor for each type
of application.

Queue based architectures ideas were first proposed by Sowa et al. [1,8,15,
17] and Bruno[7,11]. These processors use FIFO data structure as the underly-
ing mechanism for results and operand manipulations; that is, at the execution
stage, each instruction removes the required number of operands from the front
of an operand Queue (OPQ), performs some computations and stores the result
back into the tail of the OPQ. However, for several reasons, theses architectures
(Queue based) did not enjoy the success of the conventional Register based
(Load/Store) processors. One major reason is that, when the Queue computing
model was proposed more than two decades ago, neither Stack based architecture
nor Queue computing model seemed to be important paradigms in the foresee-
able future. But, things have changed since then: Internet, Embedded, and home
network applications are becoming very attractive nowadays.

To this end, and in order to meet the demanding requirements of compat-
ibility and high hardware usability relative to single instruction set processor,
we have decided to combine the advantages of a novel Queue based architecture
with the ones of register-based (load/store) architecture[3,14].
Our proposed architecture will integrate, then, multi executions models in a sin-
gle shared processor through run time assignment algorithm (RUNFA) without
considerable additionel hardware complexity.
The above project, which started a couple of years ago at Sowa Laboratory[6], is
named functional assignment register microprocessor (FaRM). It features simple
pipeline, compact Queue based instruction set architecture, and is targeted for
new class of terminals requiring small memory footprints and short programs
run-times.
The rest of this paper is organized as follow: section two gives the related work.
In section three, we give the FQM architecture and computing fundamental.
System architecture description is given in section four. Finally, we give our
concluding remarks and future work in the last section

2 Previous Work

Queues are well known to computer architecture designers as first-in-first-out
data structures. As an attempt to improve overall processor performance, design-
ers have used these structures as matching devices to interface two subsystems
with different duty ycles[4].

Queues data structures have also a number of other interesting properties
that make them useful in supporting processor design’s functions efficiently. They
were proposed to support instructions’ operands and results manipulations in a
Queue computing environment. Historically, the idea is traced back to more than
two decades. Sowa [1,8,15,18] investigated the design constraints of a superscalar
processor architecture based on Queue computation model. Bruno [7,11] also
investigated a so called indexed Queue machine architecture that uses Queue

250 B.A. Abderazek et al.

Fig. 1. The Shared Storage Unit as viewed by FQM and FRM modes

as the underlying mechanism for operands and results manipulations. At the
execution stage of the above architecture, each instruction removes the required
number of operands from the front of the Queue, performs some computations
and stores the result back into the Queue at a specified offsets. A major problem
with the above architecture is that it requires the relocation of a potentially
large number of operands. Also there is a possiblility that the result stored by
one instruction may overwrite that of an earlier one.

3 FQM Function Overview

The proposed FQM has operations in its instructions set which implicitly refer-
ences an operand Queue (OPQ), just as SEM has operations, which implicitly
references an operand stack. Each instruction removes the required number of
operands from the head of the OPQ, performs some computations, and returns
the result to the tail of the OPQ, which is implemented as a circular Queue. The
OPQ occupies continuous storage locations and can be dynamically extended.
A special register, named Queue head (QH) pointer, holds the address of the
first operand in the OPQ. Operands are retrieved from the front of the OPQ by
reading the location indicated by the QH pointer. Immediately after retrieving
an operand, the QH pointer is automatically adjusted so that it points to the
next operand. Results are returned to the tail of the OPQ indicated by a Queue
tail (QT) pointer.

On the Design of a Register Queue Based Processor Architecture (FaRM-rq) 251

Fig. 2. FQM Computing Fundamental. The arithmetic operations correspond to the
internal nodes of the parse tree and the fetch operations correspond to the leaf node of
the parse tree. Note that in FQM mode, instructions [I1,I2, I3, I4] can be first executed
in parallel, then [I5, I6] can be simultaneously proceeded . This leads to about 50%
speedup.

3.1 FQM’s Queue Manipulation

The Queue manipulation is assured by a Shared Storage Control Unit (SSCU)
and is the the backbone of the SSU unit. It performs basically the following four
tasks:

1. Checks the data validity bit (DVB) for each OPQ entry
2. Controls the QH, QT and a life Queue head (LQH). The LQH is used to avoid

overwriting (Queue overflow) life data within the OPQ. For each returned
result , the SSCU compares the QT pointer value to the LQH pointer value
and returns the comparison result to FaRM-rq’s issue unit (IU). The issue
unit’s hardware uses the above value to issue secure instructions in parallel.

3. Handles the OPQ overflow and underflow
4. Allocates new logical Queue for each context switch.

252 B.A. Abderazek et al.

ldw addr(d0) ; assume that "d" is in the location &(addr + d0)
ldw addr(d1) ; assume that "e" is in the location &(addr + d1)
ldw addr(d3) ; assume that "b" is in the location &(addr + d3)
ldw addr(d2) ; assume that "c" is in the location &(addr + d2)
add;
ldw addr(d3) ;assume that "f" is in the location &(addr + d3)
mul
div
add
stw

(a) Assembly code for h= b*c + (d+e)/f

OPQ_{s0}:--
OPQ_{s1}:d
OPQ_{s2}:d,e
OPQ_{s3}:d,e,b
OPQ_{s4}:d,e,b,c
OPQ_{s5}:b,c,d+e
OPQ_{s6}:b,c,d+e,f
OPQ_{s7}:d+e,f,b*d
OPQ_{s8}:b*c,(d+e)/f
OPQ_{s9}:b*c+(d+e)/f
OPQ_{s10}:--

(b) Queue Contents at each cycle

 Fig. 3. Sample Queue Instructions Sequence

3.2 FQM’s Instructions Generation

The FQM instructions sequence generation can be obtained by traversing a given
parse (binary) tree in a new traversal called level-Order-Scan-Tree (LOST)[3].
The LOST traversal is done by visiting the nodes of a parse tree from the deepest
to the shallowest levels and from left to right within each level in the tree. In[3,
14] we showed that the FQM’s instructions generation can be used to evaluate
an arbitrary expression and the instructions sequence for an arbitrary arithmetic
expression can be derived efficiently from the parse tree for that expression.
A simple example to demonstrate the basic FQM instruction generations is given
in Fig. 2. The (*) is a multiply operator, (+) is an addition operator, and (/) is
a division operator.
The OPQ contents after each instruction processing is shown in Fig. 2(b). The
mul mnemonic is a multiply operation, add is an addition operations and div is
a division operations. Notice in the above example that instructions I1, I2, I3
and I4 can be executed in parallel. Instructions I5 and I6 can be also executed
in parallel when their operands are available at the OPQ.
In FQM mode, independent instructions are dynamically detected and executed
in parallel (discussed later).

3.3 FQM Sample Instructions Sequence

The complete mathematical theory for the FQM’s instructions sequence gener-
ation can be found in[3,14]. We showed in the above mathematical theory that
the FQM instructions sequence can be easily and correctly generated from a

On the Design of a Register Queue Based Processor Architecture (FaRM-rq) 253

Instruction Fetch
Unit (IFU)

Functional
Assignment Unit

(FAU)

Decode and
(DU)

Shared
Storage

Unit
(SSU)

64x32

Shared
Storage

Control Unit
(SSCU)

Issue and Resolution
Unit (IRU)

ALU

Address Multiplexer

D
A

T
A

/A
D

D
R

E
SS

 B
U

S

D
A

TA
/A

D
D

R
E

S
S

 B
U

S

FRM Control unit FQM Control Unit

FaRM-rq core

Fig. 4. System Architecture Basic Block Diagram

parse tree. It was also proved in that the FQM can be used to evaluate any
given expression.
Consider the simple example shown in Fig. 3 (a). In this example, the instruc-
tions flow is obtained by traversing the corresponding parse tree using a new
traversal called level-order-scan-tree[5]. The OPQ contents at each cycle is given
in Fig. 3 (b). Note that the front of the OPQ is on the left. However, in the case
of stack execution model, the top of the operand stack is on the left.
Also an important difference between the stack execution model and the FQM
model is the order of operands for dyadic operators. In the stack model, the
left operand of a dyadic operator is pushed first, followed by the right operand.
Similarly, on the FQM mode the left operand of a dyadic operator is enqueued
first followed by the right operand.

4 FaRM-rq Architectural Overview

As illustrated in Fig. 4, the architecture has a shared storage unit (SSU)
consisting of 64 32-bit registers. The machine functions in two different modes
and has five pipeline stages. During the first stage, instructions are read from

254 B.A. Abderazek et al.

the instruction memory (Instruction fetch stage). At the second stage, instruc-
tions are decoded and assignment of functional unit and storage locations is
performed. Instructions are issued in the third stage (Issue). IN FQM mode, the
issue hardware must check the OPQ and memory dependencies. The algorithm
to check a so called Safe-Issue is as follow:
Assume that I1, I2, · · · , In−1, In are instructions which reside in the issue buffer
within the issue unit.
Assume that: LQH1, LQH2, · · · , LQHn−1, LQHn are the corresponding LQH
values of I1, I2, · · · , In−1, In.
Assume that: QT1, QT2, · · · , QTn−1, QTn are the corresponding QT values of
I1, I2, · · · , In−1, In

if QT1 < all(LQH2, · · · , LQHn) =⇒ Issue
if QT2 < LQH1 and LQH2 ¡ all (LQH3, · · · , LQHn) =⇒ Issue
. . .
if QTi < all(LQH1, · · · , LQHi−1) and QTi < all(LQHi+1, · · · , LQHn) =⇒ Issue
For all inverse cases =⇒ Wait

In the fourth stage, instructions are executed (Execute) and the sast stage,
the SSU unit is updated and data memory access takes place (write Back).

4.1 Programming Models

The FaRM-rq system works in two different modes and with two programming
models: (1) R-mode (FRM): to support conventional register based binary ap-
plications and (2) Q-mode (FQM): to support the novel Queue based binary
applications. The processor has two control units, one data path, and a mode
bit which keeps track of which control unit is to be in operation. The two modes
communicate through the SSU unit. A schematic of the two mode views is illus-
trated in Fig. 1. In FQM mode, each instruction removes the required number
of operands from the head of the OPQ, performs a computation and stores its
result at the tail of the OPQ.

In FRM, the SSU behaves as a conventional register file. However, in FQM,
the system organizes the SSU access as a FIFO latches, thus accesses concentrate
around a small window and the addressing of registers is implicit trough the
Queue head and tail pointers.

4.2 The SSU Design Considerations

In R-mode, the SSU unit is seen as a conventional register file with N registers.
The program counter and other special purpose registers are included in the
register file. However, in FQM mode, the SSU unit is seen as a circular Queue
with N/2 elements as illustrated in Fig. 5.The other N/2 elements are used as
storage registers for internal functions.

After reset, the kernel will boot in FRM mode. Upon finishing the initializa-
tion phase, it switches to FQM mode and executes the Queue programs until

On the Design of a Register Queue Based Processor Architecture (FaRM-rq) 255

0

63

0
63

O
pe

ra
nd

 Q
ue

ue
 (

O
PQ

)

program counter
mode register
queue head pointer
queue tail pointer
life queue head pointer
inturrupt return address
subroutine return address
address registers r0~r3
data registers d0~d3
Condition Code Regiter0
Condition Code Regiter1
stack pointer
inturrupt cause register

0

63 PC
MDR
QHP
QTP
LQH
IRA
SCRA
a0 ~a3
d0~d3
CCR0
CCR1
SP
ICR

Circular Queue

Fig. 5. SSU Unit when Viewed by the Queue Control Unit (QCU)

(1) an interrupt occurs, (2) an unrecognized instruction occurs or (3) the spe-
cial designated Queue binary for switching to RQM mode occurs. The FaRM-rq
processor continues , then, excution until a ”switchover” instruction clears the
mode register (MDR) defining the mode operation.

The FQM’s operand Queue is implemented as a circular Queue . When the
operand Queue is full, the SSCU continues to use the program memory as stor-
age.

4.3 The SSU Design Trends

Area: The area of the SSU is the product of the number of entries (registers)
R, the number of bits per entry, b, and the size of an entry cell. The layout of
a register cell, given in Fig. 6 (a), shows that each cell is (w + p)(h + p) girds:
(w + p) wire track wide, (h + p) wire track high, p word-line in one dimension, p
bit-lines in the other, and wh grids for the storage cell, power, and ground. Each
port requires one wire track for a bit-line to access the data.

Delay: As with a general register file, the delay of the SSU is composed of
wire-propagation delay (WPD) and fan propagation delay (FPD). The WPD is
the minimum time of flight across a wire, which grows linearly with distance,
assuming optimally spaced repeaters. The fan-in/fan-out delay is the minimum
drive delay of a lumped capacitive load using a buffer chain, which grows loga-
rithmically with capacitance[13]. As shown in Fig. 6 (b), to access a register cell
within the SSU unit, a signal must traverse a word-line of length (w + p)bR1/2

256 B.A. Abderazek et al.

Fig. 6. Queue Design Trends:(a) Register Cell Access, (b) Register Cell Schematic

and then a bit-line of (h + p)bR1/2, resulting in a delay that is proportional to
pR1/2. The access time is dominated by the fan-out of the word-line and the
fan-in of the bit-line, which is a function of the number of entries within the
SSU unit.

4.4 FAU Mechanism

The functional assignment unit (FAU), which is the backbone component of the
FaRM-rq architecture, is shown in Fig. 7. The FAU mainly consists of the fol-
lowing components:
Binary File Decoder (BFD): The BFD major role is to determine the type of
the file being fetched.
Mode Analysis: The mode Analysis unit’s major role is set/reset the mode reg-
ister (MDR) in the mode switch unit, which is responsible for switching between
modes and also finding the appropriate execution model for a binary or a part
of binary application.

On the Design of a Register Queue Based Processor Architecture (FaRM-rq) 257

FRM/FSM Binary

FQM Binary

Mode Analysis

Queue Computation

Single Analysis

Functional
Assignmnet

MDR
Mode Switch

 I
ss

ue
 B

uf
fe

r

FAU

Decode Buffer

Fig. 7. Functional Assignment Mechanism

Queue Computation (QCU): The QCU calculates sequentially the QH and QT
pointers for each instruction. The calculated values are used later by the issue
unit hardware.
Functional Assignment (FA): The FA major function is to allocate functional
units and operands locations in the SSU. It contains also the storage manager
unit (SAU). The SAU also handles the overflow and the underflow of the OPQ.

5 FQM Instruction Set Architecture

All the instructions are byte addressed and provide access for bytes, half words,
words, and double words. Bellow we will discuss the Instructions set design
onsiderations for the FQM mode, which is our major concern in this paper.

5.1 Memory Type Instructions (M-Type)

The M-type, shown in Fig. 8, consists of all load and store operations. When
data must be obtained from/sent to memory, the M-type instructions are needed.
The op field is 6-bit and is used for operation coding. The d field is 2-bit and is
used to select one of four data registers. The addr field is 8-bit offset.
For load instructions (i.e. lw) the contents of the d registers are added to the 8-bit
offset to form the 32-bit address of the memory word. The word is loaded from
memory to a Queue entry within the OPQ pointed by the Queue tail pointer
(QT). In Fig. 9 (b), the memory instruction would be decoded as load the 8 bit
byte at memory location [contents of d0] + 0x52 into the Queue tail pointed by
the Queue tail (QT) pointer.

258 B.A. Abderazek et al.

Op Code d/a addr/value/target
M-type

Offset added to base address (+/- 128)
(7 bits magnitude + sign bit)Define Operation

Base address in memory

6 bits 2 bits 8 bits

Fig. 8. Memory instructions (M-type) format

The store instruction has exactly the same format as load, and use the same
memory calculation method to form memory addresses. However, for store in-
structions the data to be stored are found from the head of the operand Queue
(OPQ) indicated by the Queue head (QH) pointer. In Fig. 9(a), the memory in-
struction would be decoded as store the 32 bit word of the OPQ entry indicated
by the QH at memory location [contents of d1] + 0x53.
Memory Address Extension: In M-type instructions, the offset is only 8-
bits wide; that is the address space range (from the base address) is only 128
memory slots. This may not be large enough for real applications. To cope with
this address ”shortage”, we adopted the idea proposed by Sowa[15]. In the above
idea, the compiler uses static optimizations techniques and automatically inserts
(when needed) a convey instruction before each load or store instruction. The
convey instruction is simply an instruction which forwards its operand (offset)
to the consecutive load or store offset field. That is, when a convey instruction
is inserted before a load or store instruction, the processor combines the con-
vey instruction offset with the current load or store instruction offset and the

Offset = + 53H(= +83)Op Code = "stw"

Base addess is in d1 (=d1)

 101100 01 01010011

Offset = + 52H (= +82)Op Code = "ldb"

Base addess is in d0 (=d0)

 100000 00 01010010

(a)

(b)

Fig. 9. Load and Store instructions internal coding example

On the Design of a Register Queue Based Processor Architecture (FaRM-rq) 259

data register to find the effective address. The convey instruction untilizations
is illustrated in Fig. 10.

; address space extension
covop 25H ; convey 25H address (offset)
ldb 12H(d0) ; load data from mem[25H(12H(d0)]
..
..
..
..
addp 4 ;
stw 24H(d1) ; store word at mem(24h(d1))

Fig. 10. Address space extention

5.2 Data/Address Register Instructions

The instruction set are designed with four data registers (d0∼d3) and four ad-
dress (a0∼a4)) registers. These registers are used as base addresses for mem-
ory and control instructions respectively. The control instructions, which will
be described later, consist of jump, loop, call, and interrupt instructions. The
data/address registers are general purpose; that is they are visible to the pro-
grammer. These registers are 32-bits wide. Therefore, to set or reset one 32-bits
address register, four instructions (sethh, sethl, setlh, setll) are needed. It may
seam that the it set/reset operations are costly since four instructions are needed
to set one address or data register. However, from our preliminary evaluations,
operations on these registers occur not so often within a give application. Fig-
ure 11 is an example showing how data register d0 is set with setxx instructions.
Note that these instructions have the same format as M-type instructions. The
data/address registers can be also incremented or decremented by the inc in-
struction. The syntax is: inc a, value. This type of instructions belongs to the
I-type instructions shown in Fig. 12. Note that the range of the value operand
is:−8, −7, · · · , < value ¡ +1, +2, · · · , +8. The I-type instruction also consists of
swi (software interrupt) and setr (set register) instructions.

5.3 Control Instructions (C-Type)

The control instructions consist of move, branch, jump, loop, call,interrupt, and
barrier instructions.

The jump,loop and call instructions have the same format as the previously
defined M-type instructions. They all use a register as a base address register
and an offset target of eight bits. As with memory instructions, target addresses
of these instructions can be extended to sixteen bits by convey instruction. The
C-type shown in Fig. 13also has other control instruction with only one operand.

260 B.A. Abderazek et al.

5.4 Transfer Instructions

The FQM supports four types of control flow (transfer) change: (1) Barrier-
Branch, (2) Jump, (3) Procedure call and (4) Procedure return. As illustrated
in Fig. 13, the target address (t) of these instructions is always explicitly spec-
ified in the instruction. Because the explicit target (displacement) value, which
will be added to the fetch counter to find the real target address (RTA), is only
8-bits the convey instruction’s offset can be combined with the transfer instruc-
tions’ explicit target to extend the RTA space.
Branch Instruction: The branch instructions belong to the C-type. To avoid
having too much work per instruction, the branch instruction resolution is di-
vided into tasks (1) whether the branch in taken (with comparison instruction)
and (2) the branch target address (address calculation). One of the most notice-
able properties of the FQM branches is that a large number of the comparisons
are simple tests, and a large number are comparison with zero. According to the
type of the condition the comparison instruction compares two entries obtained
from the head of the OPQ and insert the result (true/false) to a condition code

Fig. 11. Address register setting example

Fig. 12. I-type Instruction Format

 Op Code t/f/n
C-type

t: Target adderess
f: action value
n: Queue action counterDefine Operation

8 bits 8 bits

Fig. 13. C-type Instruction Format

On the Design of a Register Queue Based Processor Architecture (FaRM-rq) 261

(CC), which is automatically checked by the branch instruction. In our imple-
mentation, branches are also barrier instructions. That is, all instruction preced-
ing the branch instructions should complete execution before new instructions
(branch successor instructions) can be issued.
Barrier Instructions: This type consists of halt, barrier, SerialOn, and Seri-
alOff instructions. These instructions are designed to control the execution and
the process type of instructions.
Queue Control Instruction (QCI): The QCI consists of stpqh (stop Queue head),
stplgh (stop life Queue head autqh (automatic Queue head), and autlqh (auto-
matic life Queue head). These instruction are designed to control the life of data
within the (OPQ).

5.5 Producer Order Instructions (P-Type)

This type (P-type) consists of about 70% of the total instructions in FQM ex-
ecution. The P-type consists of all single and double word computing, logical,
compare, and conversion instructions. The format of the P-type instruction is
illustrated in the Fig. 5.5. We have to note that both integer and floating-point
operations are supported.

 Op Code nP-type

n: entry number from
 the QHDefine Operation

9 bits 7 bits

Fig. 14. P-type Instruction Format

6 Conclusions

We have proposed a hybrid processor architecture that supports Register and
Queue based instructions set in a shared resources single processor core. Our
hybrid architecture addresses important design challenges by featuring two pro-
gramming models: (1) R-mode (when switched for register based instructions
support), and (2) Q-mode (when switched for Queue based instructions sup-
port). We have also presented the novel aspects of the FaRM-rq architecture as
well as the novel FQM mode architecture.

The FaRM-rq architecture is expected to increase the processor resources
usability, relative to single instruction set processor and also to support the novel
Queue architecture, which is targeted for a new class of terminals requiring small
memory footprints and short programs run-times.

Our feature work is to investigate the parallelism exploitation and pipelining
techniques within the FQM mode. In order to evaluate the real performance and
the initial physical estimate of the proposed architecture, real evaluation will
take place via several layers of simulation, ranging from high-level models, to
logic level models.

262 B.A. Abderazek et al.

References

1. Okamoto S., Suzuki A., Maeda A., Sowa M.: Design of a Superscalar Processor
Based on Queue Machine Computation Model. IEEE PACRIM99, (1999) 151–154

2. Sohi G.: Instructions Issue logic for high-performance, interruptible, Multiple Func-
tional Unit, Pipelined Computer. IEEE Trans. on Computers, vol.39, No.3,(1990)
349–359

3. Abderazek B. A., Kirilka N., Sowa M.: FARM-Queue Mode: On a Practical Queue
Execution model. Proc. of the Int. Conf. on Circuits and Systems, Computers and
Communications, Tokushima, (2001) 939–944

4. Michael K. M., Harvey G.C.: Processor Implementations Using Queues. IEEE,
Micro, (1995) 58–66

5. Philip K.: Stack Computers, the new Wave. Mountain View Press (1989)
6. Sowa Laboratory: http://www.sowa.is.uec.ac.jp
7. Bruno R., Carla V.: Data Flow on Queue Machines. 12th Int. IEEE Symposium

on Computer Architecture,(1995) 342–351
8. Suzuki H., Shusuke O., Maeda A., Sowa M.: Implementation and evaluation of a

Superscalar Processor Based on Queue Machine Computation Model. IPSJ SIG,
Vol.99, No. 21 (1999) 91–96

9. Smith J. E., Sohi G. S.: The microarchitecture of Superscalar processors. Proceed-
ings of the IEEE, vol. 83, (no. 12), (1995) 1609–1624

10. Silc J., Robic B., Ungerer T.: Processor Architecture: From Dataflow to Superscalar
and Beyond. Springer-Verlag, Berlin, Heidelberg, New York (1999)

11. Periss B. R.: Data Flow on a Queue Machine. Doctoral thesis, Department of
Electrical Engineering, University of Toronto, Toronto (1987)

12. Palacharia, Joupi N. P, Smith J.E: Complexity-Effective Superscalar Processor.
Ph.D. dissertation, Univ. of Wisconsin (1998)

13. Abderazek B.A., Sowa M.: DRA: Dynamic Register Allocator Mechanism for
FaRM Microprocessor. The 3rd International Workshop on Advanced Parallel Pro-
cessing Technologies, IWAPPT99, (1999) 131–136

14. Abderazek B.A.: Dynamic Instructions Issue Algorithm and a Queue Execution
Model Toward the Design of a Hybrid Processor Architecture. PhD. Thesis, IS
Graduate School, Univ. of Electro-Communications, (2002)

15. Sowa M.: Fundamental of Queue machine. The Univ. of Electro-Communications,
Sowa Laboratory, Technical Reports SLL30305, (2003)

16. Radhakrishnan R., Talla D., John L. K.: Allowing for ILP in an Embedded Java
Processor. Proceedings of IEEE/ACM International Symposium on Computer Ar-
chitecture, Vancouver, CA, (2000) 294–305

17. Sowa M.: Queue Processor Instruction Set Design. The Univ. of Electro-
Communications, Sowa laboratory, Technical Report SLL97301, (1997)

18. Sowa M., Abderazek B.A, Shigeta S., Nikolova K., D. Yoshinaga T. Proposal and
Design of a Parallel Queue Processor Architecture (PQP), 14th IASTED Int. Conf.
on Parallel and Distributed Computing and System, Cambridge, USA, (2002) 554–
560

	Introduction
	Previous Work
	FQM Function Overview
	FQM's Queue Manipulation
	FQM's Instructions Generation
	FQM Sample Instructions Sequence

	FaRM-rq Architectural Overview
	Programming Models
	The SSU Design Considerations
	The SSU Design Trends
	FAU Mechanism

	FQM Instruction Set Architecture
	Memory Type Instructions (M-Type)
	Data/Address Register Instructions
	Control Instructions (C-Type)
	Transfer Instructions
	Producer Order Instructions (P-Type)

	Conclusions

