
How to Integrate Precedence Constraintsand Shared Resources in Real-TimeSchedulingMarco Spuri�Scuola Superiore \S.Anna"via Carducci, 40 - 56100 Pisa (Italy)E-mail: spuri@pegasus.sssup.itJohn A. StankovicyDepartment of Computer ScienceUniversity of MassachusettsAmherst, MA 01003E-mail: stankovic@cs.umass.eduAbstractFormal results for precedence constrained, real-time scheduling ofunit time tasks are extended to arbitrary timed tasks with preemp-tion. An exact characterisation of the EDF-like schedulers that can beused to transparently enforce precedence constraints among tasks isshown. These extended results are then integrated with a well-knownprotocol that handles real-time scheduling of tasks with shared re-sources, but does not consider precedence constraints. This results inschedulability formulas for task sets which allow preemption, sharedresources, and precedence constraints, and a practical algorithm formany real-time uniprocessor systems.�This work has been supported in part by the IRI of Italy under a research grant.yThis work has been written while this author was visiting and supported by the ScuolaSuperiore \S.Anna" of Pisa, and also supported, in part, by NSF under grants IRI 9208920and CDA 8922572, and by ONR under grant N00014-92-J-1048.1

1 IntroductionIn many hard real-time systems, due to the strict deadlines that must bemet, communications among tasks are implemented in a completely deter-ministic manner. The usual approach followed to achieve this, is to modelcommunication requirements as precedence constraints among tasks, that is,if a task Ti has to communicate the result of its computation to another taskTj, we introduce the pair (Ti; Tj) in a partial order �, and we schedule thetasks in such a way that if Ti � Tj the execution of Ti precedes the executionof Tj.Good examples of this modeling can be found in the MARS operatingsystem [8, 9], in which the basic concept of a real-time transaction is describedexactly in this way, and in Mok's kernelized monitor [12], in which a rendez-vous construct is used to handle similar situations. In both cases, sharedresources among tasks are also considered. However, in the former workthe whole schedule is statically generated, that is, is produced in advancebefore the system can run. The schedule is then stored in a table that, atrun-time, is consulted by a dispatcher to actually schedule the tasks withoutany other computational e�ort. In the latter, instead, even if generated abit more dynamically, the schedule is basically nonpreemptive, or at least wecan say the preemption points are chosen very carefully, since the processoris assigned in quantums of time of �xed length equal to the size of the largestcritical section.Because preemptive systems are generally much more e�cient than non-preemptive ones, our goal is to present a simple technique with a formal basisfor integrating precedence constraints and shared resources in the task modelof dynamic uniprocessor systems, in which preemption is allowed.Few protocols that handle shared resources have appeared so far [13, 3,1, 14]. Both the Priority Ceiling Protocol [13, 3] and the Stack ResourcePolicy [1] will be considered in this paper. They are both well studied andcharacterised with respect to su�cient conditions for the schedulability of aset of tasks. However, they have been described using a simple independenttask model, while we believe a more complex model including precedenceconstraints would be valuable.Viceversa, several papers dealing with precedence constraints, but notwith shared resources have appeared. Blazewicz [2] shows the optimalityof a preemptive earliest deadline �rst (EDF) scheduler assuming the release2

times and the deadlines are modi�ed according to the partial order amongthe tasks. The same technique is used by Garey at al. [6] to optimallyschedule unit-time tasks. In [4], Chetto et al. show su�cient conditions forthe EDF schedulability of a set of tasks, assuming the release times and thedeadlines are modi�ed as above.Our main contributions are: an exact characterisation of EDF-like sched-ulers that can be used to correctly schedule precedence constrained tasks,and showing how preemptive algorithms, even those that deal with sharedresources, can be easily extended to deal with precedence constraints too.We do this by inventing the notion of quasi{normality, which is an extensionto [6]. Furthermore, while the formal results are general, we also presenta straightforward application of these results to the Priority Ceiling Proto-col (PCP) and the Stack Resource Policy (SRP), developing schedulabilityformulas that are valid when the SRP is extended to handle both sharedresources and precedence constraints.The paper is organized as follows. In section 2 a brief description of thePCP and the SRP protocols is given. In section 3 the general results onprecedence constrained tasks scheduling are presented. In section 4, as anexample, we apply the general results to the PCP and the SRP. Finally, insection 5 we conclude with a brief summary.2 Protocols Handling Shared ResourcesIn [13], Sha et al. introduce the Priority Ceiling Protocol (PCP), an allocationpolicy for shared resources which works with a Rate Monotonic scheduler [11].Chen and Lin [3] extend the utilization of the protocol to an EDF (earliestdeadline �rst) scheduler.The main goal of these protocols, as other similar protocols, is to boundthe usually uncontrolled priority inversion, a situation in which a higherpriority task is blocked by lower priority tasks for an inde�nite period oftime (a block can occur if a task tries to enter a critical section alreadylocked by some other task). Finding a bound to priority inversion allowsus to evaluate the worst case blocking times eventually experienced by thetasks, so that they can be accounted for in the schedulability guaranteeingformulas. In other words, this means we can evaluate the worst case loss ofperformance due to blocking. 3

The key ideas behind the PCP is to prevent multiple priority inversionsby means of early blocking of tasks that could cause priority inversion, andto minimize as much as possible the length of the same priority inversionby allowing a temporary rise of the priority of the blocking task. Followingthe description given in [3] the PCP has two parts, which de�ne the priorityceiling of a semaphore and the handling of lock requests:\Ceiling Protocol. At any time, the priority ceiling of a semaphore S, c(S), isequal to the original priority of the highest priority task that currentlylocks or will lock the semaphore.Locking Protocol. A task Tj requesting to lock a semaphore S can get thelock only if prj > c(SH), where prj is the priority of Tj and SH isthe semaphore with the highest priority ceiling among the semaphorescurrently locked by tasks other than Tj. Otherwise, Tj waits and thetask Tl which has the lock on SH inherits the priority of Tj until itunlocks SH ."Furthermore, assuming an EDF priority assignment, a task receives a higherpriority, the earlier is its deadline.Note that a task can be blocked even if the critical section it requests isfree, when there are other critical sections already locked. This is necessaryto prevent a high priority task from being blocked two or more times if itwants to enter several critical sections.The protocol has been shown to have the following properties:� A task can be blocked at most once before it enters its �rst criticalsection.� The PCP prevents the occurrence of deadlocks.Of course, the former property is used to evaluate the worst case blockingtimes of the tasks. In particular, the schedulability formula of Liu and Lay-land [11] has been extended by Chen and Lin [3] to obtain the followingcondition.Theorem 2.1 A set of n periodic tasks can be scheduled by EDF using thedynamic priority ceiling protocol if the following condition is satis�ed:nXi=1 ci + bipi � 1;4

where ci is the worst case execution time, bi is the worst case blocking lengthand pi is the period of the task Ti. 2Baker [1] describes a similar protocol, the Stack Resource Policy (SRP),that handles a more general situation in which multiunit resources, bothstatic and dynamic priority schemes, and sharing of runtime stacks are allallowed. The protocol relies on the following two conditions:(2.1) \To prevent deadlocks, a task should not be permitted to start untilthe resources currently available are su�cient to meet its maximumrequirements.(2.2) To prevent multiple priority inversion, a task should not be permittedto start until the resources currently available are su�cient to meet themaximum requirement of any single task that might preempt it."The key idea is that when a task needs a resource which is not available,it is blocked at the time it attempts to preempt, rather than later, when itactually may need the shared resource. The main advantages of this earlierblocking are to save unnecessary context switches and the possibility of asimple and e�cient implementation of the SRP by means of a stack.The SRP has been shown to have properties similar to those of thePCP. Furthermore, assuming n tasks ordered by increasing relative dead-lines, Baker [1] develops a tighter formula for a su�cient schedulability con-dition (a task, periodic or sporadic, has a relative deadline d if whenever it isreleased at time t it must be completed before time t + d; of course it mustbe d � p).Theorem 2.2 A set of n tasks (periodic and sporadic) is schedulable by EDFscheduling with SRP semaphore locking if8k = 1; : : : ; n kXi=1 cidi!+ bkdk � 1: 2In the rest of this paper we will assume an implementation of the SRP inwhich priorities are assigned to tasks using an EDF rule.5

3 Basis For Precedence Constraints { Quasi-NormalityA nice analytical result concerning the integration of precedence constraintsand real-time scheduling can be found in [6]. In this paper, Garey et al.describe a scheduling algorithm for unit-time tasks with arbitrary releasetimes and deadlines, and precedence constraints using the concept of nor-mality. Here we extend their idea to more general dynamic systems usingpreemptive EDF schedulers without unit time constraints.In the following we will use ri and di to denote the release time and thedeadline, respectively, of the task Ti. According to the current practice, atask Ti is ready at time t (that is, may be processed at time t) if ri � t.Similarly, we say the release time and the deadline are satis�ed (that is, theschedule is feasible) if the start time of the task is greater than or equal toits release time, and its completion time is less than or equal to its deadline.De�nition 3.1 Given a partial order � on the tasks, we say the releasetimes and the deadlines are consistent with the partial order ifTi � Tj) ri � rj and di < dj.Note that the idea behind the consistency with a partial order is to enforcea precedence constraint by using an earlier deadline.The following de�nition formalizes the concept of a preemptive EDFschedule.De�nition 3.2 Given any schedule of a task set, we say it is normal (withrespect to EDF) if for all portions �i and �j of two tasks Ti and Tj, respec-tively, s�j < s�i) dj � di or ri > s�j ,where s� is the start time of the portion �.What this de�nition says is that at any time among all those tasks eligible toexecute (a task Ti is eligible for execution only if the current time t is greaterthan or equal to the release time ri), we always schedule the task with theearliest deadline. 6

T

T

Priority InversionCritical Section

i

j

t

tFigure 1: Example of a not normal schedule produced by PCP and SRP.In [6] Garey et al. show that we can use the consistency of release timesand deadlines to integrate precedence constraints into our task model; justuse an algorithm that produces normal schedules. This result is proven onlyfor unit-time tasks. We now extend their result to tasks of arbitrary lengthand running on a preemptive system.Lemma 3.1 If the release times and deadlines are consistent with a partialorder, then any normal schedule that satis�es the release times and deadlinesmust also obey the partial order.Proof. Consider any normal one-processor schedule and suppose that Ti �Tj but that sj < fi, where fi is the completion time of Ti. The last expressionimplies that there are two portions �j and �i of Tj and Ti, respectively, suchthat s�j < s�i . Since the schedule is normal, this means that dj � di orri > s�j (recall that for the feasibility assumption we have s�j � sj � rj).However by the consistency assumption we have ri � rj and di < dj, hencein both cases we have a contradiction. 2Now the question is whether we can extend this result in order to handle themore general situation in which we have shared resources among tasks too.Unfortunately, a direct generalization to an EDF-like scheduling algorithm,using some protocol like PCP or SRP, does not hold. In fact, in both cases theproduced schedules are not necessarily normal (see Figure 1 for an example).The motivation is very simple: even if bounded, all these protocols allowpriority inversion, that is during the evolution of the system there may bea lower priority task blocking another higher priority one. In this case thecondition for the schedule to be normal is violated.Hence our conclusion is that as long as shared resources are used, the7

normality must be weakened in some way. That is, we want a less restrict-ing policy, with respect to scheduling decisions, but that still preserves theproperty of normality shown in Lemma 3.1.De�nition 3.3 Given any schedule of a task set, we say it is quasi{normal(with respect to EDF) if for all portions �i and �j of two tasks Ti and Tj,respectively, ri � rj and s�j < s�i) dj � di.In other words, the de�nition establishes that in a quasi{normal schedule thedecision of preempting a task is left to the scheduler (recall that in a normalschedule whenever there is an eligible task with an earlier deadline you areforced to preempt). However, if the scheduler chooses to preempt a task Tiand assigns the processor to a task Tj, the deadline of Tj must be earlierthan the deadline of Ti (without loss of generality we can assume that taskswith equal deadlines are scheduled in FIFO order). So with quasi{normalitywe give more freedom to the scheduler (so that it can obey shared resourcerequirements) and we obtain a bit weaker condition, as established by thefollowing lemma.Lemma 3.2 If a feasible schedule is normal then it is also quasi{normal.Proof. Consider two portions �i and �j of the tasks Ti and Tj, respectively,with ri � rj. If s�j < s�i, for the normality of the schedule we have dj � dior ri > s�j . Since the schedule is feasible s�j � rj, hence we cannot haveri > �j. It follows that dj � di, that is the schedule is quasi{normal. 2Note that the opposite is not true (see again �gure 1 for an example of aquasi{normal but not normal schedule).At this point we are able to generalize the result of Lemma 3.1.Theorem 3.1 Given a set of tasks with release times and deadlines consis-tent with a partial order �, any feasible schedule (i.e. that satis�es both therelease times and the deadlines) obeys the partial order � if and only if isquasi{normal.Proof. \If". Consider any quasi{normal schedule and suppose that Ti � Tj,but sj < fi, where sj is the start time of Tj. By the consistency assumption8

we have ri � rj and di < dj. Being that the schedule is quasi{normal, wehave also dj � di, a contradiction.\Only if". Suppose now that the schedule obeys the partial order � andthat there are two portions �i and �j of the tasks Ti and Tj, respectively,with ri � rj, whose start times are s�j < s�i . If the condition of quasi{normality is violated, we have dj > di. This means that the release timesand the deadlines of Ti and Tj are consistent with a partial order in whichTi precedes Tj. Hence, even if � does not contain the relation Ti � Tj, wecan force it without changing the problem. But this is a contradiction to thefact that a portion of Tj precedes a portion of Ti in the given schedule. 24 Integration of Shared Resources andPrecedenceIn this section we show how the PCP and the SRP can be used with anextended task model, in which precedence constraints between tasks canbe speci�ed, as well as shared resources. We start by showing that quasi{normality is the essential property of a certain EDF schedulers class (we saythe scheduler uses an EDF priority assignment if it gives higher priorities totasks with earlier deadlines). This, together with the results shown in theprevious section, gives us an analytical basis for our extended protocol.Theorem 4.1 Any schedule produced by a policy or protocol that uses anEDF priority assignment, is quasi{normal if and only if at any time t theexecuting task is in the setSt = fTj : rj � t and prj � pri 8Ti with ri � rjg,where prj is the priority of task Tj.Proof. \If". Consider two tasks Ti and Tj, with ri � rj and s�j < s�i . Attime t = s�j , by assumption prj � pri, i.e., dj � di. Hence the schedule isquasi{normal.\Only if". At any time t consider the executing task Tj. Let Rt be the setof all tasks with release time less than or equal to rj, i.e., for any task Ti 2 Rtwe have ri � rj. Being Ti still present in the system, at least a portion �iwill be executed later than the portion �j of Tj currently executing, that is,9

s�j < s�i . For the quasi{normality of the schedule we have dj � di. Hence Tjis in St. 2Note that in case of priority inversion the condition for the schedule to bequasi{normal is not violated, since the blocking task, even if it does not havethe highest priority in the system, is in St. Furthermore, whenever a taskhas entered St, it does not leave the set until it completes its execution. Thislets us to prove the condition of Theorem 4.1 only testing it at the beginningof each task execution.Theorem 4.1 states a general result that together with Theorem 3.1 letsus always model precedence constraints among tasks by just enforcing con-sistency with respect to De�nition 3.1, even in complex systems with sharedresources. In what follows we show how these considerations can be appliedto a couple of well-known protocols, like the PCP and the SRP (note thatthe results will not change even considering a simpler protocol as the PriorityInheritance Protocol [13]).Corollary 4.1 Any schedule produced by the PCP, used with an EDF pri-ority assignment, is quasi{normal.Proof. It is su�cient to prove that at any time the executing task is in Stand then applying Theorem 4.1 we have the result. The condition is alwaystrue whenever a task begins its execution, because at this time the task hasthe highest priority in the system (each task executes at a priority di�erentfrom its original one only if it is blocking a higher priority task, but thiscannot occur at the beginning of its execution). From that instant on thetask will always be in St, until it completes its execution. 2Note that some form of priority inheritance, by lower priority tasks blockinghigher priority ones, is necessary. Otherwise, we could have a situation likethat shown in Figure 2, in which quasi{normality and a precedence constraintare violated, because the medium priority task, which is not in St, is allowedto start when the higher blocks. So, by deadline modi�cation and some formof inheritance we can obtain the integration of precedence constraints andshared resources.Corollary 4.2 Any schedule produced by the SRP, used with an EDF prior-ity assignment, is quasi{normal. 10

T

T

T

1

2

3

Critical Section

t

t

t

needs CS

prec. constr. violated

misses deadline

Figure 2: A situation in which an EDF scheduler without priority inheritanceviolates quasi{normality and precedence constraints.Proof. Again, it is su�cient to prove that at any time the executing task isin St and then applying Theorem 4.1 we have the result. For the de�nition ofthe SRP, each task execution request is blocked from starting execution untilit is the oldest highest priority pending request, and both the conditions 2.1and 2.2 are veri�ed. Hence the condition above is always true whenever atask begins its execution. The same task will leave the set S t only at the endof its computation. 2Note that even in this case we have a form of priority inheritance, that is,\an executing task holding a resource resists preemption as though it inheritsthe priority of any task that might need that resource" [1].Finally, we show that consistency can be used with the PCP or the SRPand an EDF priority assignment to enforce precedence constraints.Corollary 4.3 1 If the release times and the deadlines are consistent with apartial order, any schedule produced by both the PCP and the SRP, used withan EDF priority assignment, obeys the partial order.Proof. Follows directly from Corollary 4.1, Corollary 4.2 and from Theo-rem 3.1. 2Corollary 4.3 allows us to extend our programming model with a partial order1Note that there is a way of showing this result directly, using the properties of priorityinheritance and deadline modi�cation, as pointed out by Chia Shen in an informal corre-spondence with us, but here we obtain it as a simple consequence of the general resultsshown above. 11

among tasks, we only need to use a consistent assignment for release timesand deadlines. The resulting protocol will consist in two basic steps:1. modify at run{time release times and deadlines in accordance with thegiven partial order and2. execute one of the known protocols (PCP or SRP).We assume that our system is a uniprocessor and allows preemption.Priorities are assigned to tasks according to the EDF algorithm (that is, anearlier deadline stands for a higher priority) and accesses to shared resourcesare controlled by the SRP (the same extended model with a slightly di�erentanalysis can be used with the PCP). The activities of the system are modelledby means of processes. We de�ne a process Pi (periodic or sporadic) as a6-tuple (Ti;Gi; Pi; Di; Ci; �i), where:� Ti is a set of tasks that form the process,� Gi is a directed acyclic graph that models a partial order among tasksin Ti (there is an arc from node j to node k if and only if Tj � Tk),� Pi is the period of the process (if the process is sporadic it is the mini-mum interval of time between two successive execution requests of thesame process),� Di is the relative deadline of the process,� Ci is its worst case computation time, that is, Ci = PTj2Ti cj, and� �i is a function that represents the maximum shared resource require-ments of each task in Ti.Furthermore, we assume the processes arrive dynamically in the system, andare dynamically scheduled.In order to make use of the previous results, we have to enforce theconsistency of the release times and the deadlines with the partial order.We can use a technique similar to those which have already appeared inseveral papers [2, 6, 12, 4]. Two di�erent assignments of deadlines to tasksare proposed in this paper. They both guarantee consistency with the givenpartial order, but they have a di�erent impact in terms of schedulability12

analysis. In the �rst solution, we start by assigning o�-line to each task ofthe process Pi a relative deadline equal to Di, that is,dj Di 8Tj 2 Tiand then we modify the deadlines by processing the tasks in reverse topolog-ical order:1. If all tasks in Ti have been processed, halt.2. Let Tj be a task not already processed and whose immediate successors,if any, have been processed.3. Process task Tj assigning:dj min(fdjg [fdk � ck : Tj �Gi Tkg);where ck is the worst case computation time of the task Tk, and go tostep 1.Note that this can be done in O (Pni=1mi + ni), where mi is the number ofarcs in Gi, ni is the number of tasks in Ti and n is the number of processesin the system.Then at run-time, whenever a request of execution for the process Piarrives at time t, we only have to assignr�j t; d�j t + dj 8Tj 2 Ti;where d�j is the absolute deadline of task Tj.Now, considering that each task Tj can be blocked if it makes use ofshared resources, we have to estimate, as usual, the value bj of its worst caseblocking time. Hence, assuming we have ordered all the tasks in the systemby increasing relative deadlines, we can use the formula proposed by Baker[1] to check the schedulability of the whole set:8k = 1; : : : ; N 0@ kXj=1 cjdj1A+ bkdk � 1;where N = Pni=1 j Ti j. Note that in this approach the schedulability check isperformed on a task basis using the modi�ed deadlines without considering13

the process as a whole. If the schedulability test is positive, the formulaworks correctly. However, if the test is negative, it is pessimistic because ofthe following anomaly. When modifying deadlines of tasks on a per processbasis, it is possible that tasks from di�erent processes are interleaved. Thismeans that a task from a process with a late deadline might execute beforetasks from a process with an earlier deadline, possibly causing unnecessarymissed deadlines.We can get a tighter set of conditions using an alternative deadline as-signment. We always start by assigning to each task of the process Pi arelative deadline equal to Di. We then modify these deadlines according tothe following argument: make the tasks within a process consistent with thegiven partial order, and ensure that deadlines of tasks pertaining to di�erentprocesses are not interleaved. In e�ect, this approach uses EDF schedulingfor the process as a whole, and uses modi�ed deadlines to ensure the partialorder among the tasks of the process itself. This can be easily implementedas follows.We can avoid the mentioned interleaving assuming that the original dead-lines are expressed in terms of integer numbers. Then, it is quite simple to�nd for each process Pi a su�ciently small positive number �i < 1 such that,modifying the deadlines by processing the tasks in reverse topological orderas follows dj min(fdjg [fdk � �i : Tj �Gi Tkg);the smallest deadline of any task of this process is greater than Di � 1, andeven with equal deadlines between two or more processes there will not beinterleaving between the deadlines of their tasks.Now, during the estimation of the blocking times and the evaluation ofthe schedulability of the system, we can consider each process as a whole.That is, the blocking time of a process Pi is at mostBi = maxTj2Ti bj;and, assuming again that the processes are ordered by increasing relativedeadlines, the set of schedulability conditions becomes8k = 1; : : : ; n kXi=1 CiDi!+ BkDk � 1: (1)This formula is very similar to that proposed by Baker [1] in his schedulabilityanalysis of the SRP. However, this one is tighter and accounts for groups of14

tasks with precedence constraints. Note that even though processes consistof sets of tasks with precedence constraints, the internal details of a processare kept hidden in the schedulability conditions (1).5 ConclusionsPrevious results such as the PCP and SRP protocols have been very useful forreal-time systems. However, their use has been limited to situations withoutprecedence constraints. Similarly, formal results existed for showing how tomodify deadlines in a consistent manner so that a run time algorithm such asearliest deadline scheduling could be used without violating the precedenceconstraints.In this paper we have extended these formal results to more general dy-namic systems, in which more freedom is left to the scheduler, allowing, forinstance, priority inversion. As an application of these results, we have shownhow to simply extend the task model used by the SRP protocol. This pro-duces valuable results in that analytical formulas for the schedulability oftask sets subject to preemption, shared resources and precedence constraintsare obtained, and an algorithm that can be applied in more real-time systemsituations than previously is developed.6 AcknowledgementsWe would like to thank Krithi Ramamritham, Chia Shen, Fuxing Wang andMarco Di Natale for their valuable comments on this paper.References[1] T.P. Baker, \Stack-Based Scheduling of Realtime Processes," Journalof Real-Time Systems, 3, 1991.[2] J. Blazewicz, \Scheduling Dependent Tasks with Di�erent Arrival Timesto Meet Deadlines," in E. Gelembe, H. Beilner (eds), \Modelling andPerformance Evaluation of Computer Systems," North-Holland, Ams-terdam, 1976. 15

[3] M. Chen and K. Lin, \Dynamic Priority Ceilings: A Concurrency Con-trol Protocol for Real-Time Systems," Journal of Real-Time Systems, 2,1990.[4] H. Chetto, M. Silly and T. Bouchentouf, \Dynamic Scheduling of Real-Time Tasks under Precedence Constraints," Journal of Real-Time Sys-tems, 2, 1990.[5] M.L. Dertouzos, \Control Robotics: the Procedural Control of Phys-ical Processes," Information Processing 74, North-Holland PublishingCompany, 1974.[6] M.R. Garey, D.S. Johnson, B.B. Simons and R.E. Tarjan, \SchedulingUnit-Time Tasks with Arbitrary Release Times and Deadlines," SIAMJournal Comput., 10(2), May 1981.[7] J.R. Jackson, \Scheduling a Production Line to Minimize MaximumTardiness," Research Report 43, Management Science Research Project,University of California, Los Angeles, 1955.[8] H. Kopetz, A. Damm, C. Koza, M. Mulazzani, W. Schwabl, C. Senftand R. Zainlinger, \Distributed Fault-Tolerant Real-Time Systems: TheMars Approach," IEEE Micro, February 1989.[9] H. Kopetz, R. Zainlinger, G. Fohler, H. Kantz, P. Puschner and W.Sch�utz, \The Design of Real-Time Systems: From Speci�cation toImplementation and Veri�cation," Software Engineering Journal, May1991.[10] E.L. Lawler, \Recent Results in the Theory of Machine Scheduling,"Mathematical Programming: the State of the Art, A. Bachen et al.(eds.), Springer-Verlag, New York, 1983.[11] C.L. Liu and J.W. Layland, \Scheduling Algorithms for Multiprogram-ming in a Hard-Real-Time Environment," Journal of the ACM, 20(1),1973.[12] A.K. Mok, \Fundamental Design Problems of Distributed Systems forthe Hard-Real-Time Environment," Ph.D. Thesis, Department of Elec-trical Engineering and Computer Science, Massachusetts Institute ofTechnology, Cambridge, Massachusetts, May 1983.16

[13] L. Sha, R. Rajkumar and J.P. Lehoczky, \Priority Inheritance Proto-cols: An Approach to Real-Time Synchronization," IEEE Trans. onComputers, 39(9), 1990.[14] W. Zhao, K. Ramamritham and J. Stankovic, \Preemptive SchedulingUnder Time and Resource Constraints," IEEE Trans. on Computers,Vol. C-36, No. 8, pp. 949-960, August 1987.

17

