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Chapter 1IntroductionStatic dependent types are the basis of a new type system which allowstypes and values to be packaged together in �rst-class modules, permittingexible use of packaged types while retaining static decidability. Previoustype systems restrict the use of modules, restrict access to packaged types,or fail to provide static type checking. The use of static e�ect informationguarantees type soundness in the presence of side e�ects. Experience with animplementation of static dependent types in the FX programming language[Gi�ord, et al. 87] demonstrates their power. In particular, static dependenttypes can be used to implement types that are ordinarily built-in, and topermit FX to be its own linking language.1.1 MotivationProgrammers tackle the complexity of a problem by decomposing it intosmaller, more manageable subproblems. To support this process, program-ming languages usually provide some means to decompose programs intosmaller, more easily understood, program modules. Programmers may de-velop and test modules independently and then combine them into a com-plete system. Moreover, useful modules may often be shared among severalprograms, thus saving the e�ort of recoding solutions to solved problems.Modules usually provide tools of related functionality. For example, a set7



of matrix manipulation subroutines, e.g. for matrix inversion, transposition,gaussian elimination, might be grouped together in one module.The values in a module may implement an abstract behavior like stacks,process queues, or hash tables. In a typed language, the programmer wouldlike to de�ne a new data type which the module is said to implement. Toprevent users of the data type from violating internal invariants, the modulemay hide the de�nition of the abstract type and prevent access to values ofthat type except through the module. This allows module creation to bemore independent of module use.The components of a module usually have names to provide easy accessto them. It is for this reason that modules are sometimes called environments[MacQueen 84].De�nition 1 A module is a collection of related named data types and/orvalues.11.2 BackgroundA module system design represents a choice in the trade-o� between ex-pressive power and complexity. Most previous systems restrict the use ofmodules, usually requiring all modules to be de�ned at top-level at compiletime. The few systems which do allow �rst-class modules do not have sidee�ects and lack either exibility or decidability.1.2.1 Most Module Systems are Second-ClassLanguages like CLU [Liskov, et al. 81] and Ada [DoD 83] allow the pro-grammer to package a data type and a set of operations together into amodule which may be compiled separately and then used by other programs.However, they require that all references to modules be statically resolvable:module references must be manifest constants.1This is not the most general de�nition. There is no reason why modules may not alsocontain macros, for example. However, a more general de�nition would only add confusionarising from issues not relevant to the current project.8



Requiring module references to be manifest makes writing some programsmore di�cult. For example, there may be di�erent modules in a systemimplementing the same behavior, or abstraction, optimized for di�erent cases.For example, there may be two matrix implementations in a system, one forsparse and one for dense matrices. A programmer may need to use the matrixabstraction without knowing which implementation is more appropriate tothe data, which will not be available until run time. The most straight-forward approach is to write the code once, relying only on the existence ofsome matrix implementation, and choose the more e�cient one dynamically.This code can be packaged in a subroutine:P = (lambda (matrix-impl)...create and manipulate matrices using the data...)Then, the programmer can check the data and apply P to the appropriatemodule dynamically.(P (if (sparse? data) sparce-matrix-impl dense-matrix-impl))In most systems, modules may not be passed to subroutines as arguments.The result is that the code in the subroutine is duplicated for each case.De�nition 2 A value is �rst-class if it can be named, passed to subroutines,returned from subroutines, and stored in data structures.Most programming languages do not support �rst-class modules.Second-class modules have certain implementation advantages. Ada, forexample, uses the presence of static representation information to optimizeruntime representations of values, i.e., it unboxes them. However, this ne-cessitates recompiling all users of a module when the module changes | aviolation of abstraction principles. Second-class modules also avoid the prob-lem of maintaining type safety in the presence of side e�ects: it is easy forthe implementation to guarantee that there is no way to mutate a moduleimplementation.Unfortunately, second-class modules increase the intellectual overhead ofprogramming because they require a separate linking language to combine9



modules together. All the tools the programmer uses to write programs, e.g.subroutine abstraction, are unavailable for structuring large systems.2 ML[MacQueen 84] makes an e�ort to ameliorate this problem by making thelinking language mesh fairly well with the rest of the language, but it stillhas a separate linking language with separate rules governing its use.1.2.2 Weak Existential Types are InexibleResearch in the area of data abstraction has bene�tted from work in logic.In particular, investigators have imported the notions of type quanti�cationfrom [Girard 72] and [Martin-L�of 73].The SOL programming language [Mitchell and Plotkin 88] uses the no-tion of existential quanti�cation for abstract data types and allows values ofexistential type to be �rst-class.De�nition 3 An existential type packages types and values together into asingle module value. The type names are bound in an existential type and areaccessible in the types of the component values.For example, a module that implements stacks of integers would have thetype:(9 (intstack) ((mkstack : () ! intstack)(push : intstack � int ! intstack)(pop : intstack ! int � intstack)))Suppose intstackimpl is a module with the above type. In SOL, theprogrammer may use the module in an abstype construct:
2[Burstall and Lampson 84] makes the observation that �rst-class modules allow uni-form treatment of ordinary computation and module linking.10



abstype intstack with mkstack : () ! intstack,push : intstack � int ! intstackpop : intstack ! int � intstackis intstackimplin. . . code which uses stacks. . .endSOL does not allow the bound type variable of an abstype to appear freein the type of the abstype return value. Consequently, there is no way torefer to the type implemented by a module outside of an abstype.3But, one might like to return a stack from such an expression. Or, sincemodules are �rst-class, one may want to operate on any stack regardless ofwhich implementation created it. Consider the subroutine for reversing allthe elements of a stack:reverse-stack = (lambda (stack-impl a-stack);; Make a new stack. Pop the elements;; off the old stack and push them onto;; the new one. Return the new stack.)SOL does not provide any way to write the type of such a subroutinebecause the type of a-stack and the return type depend on stack-impl.De�nition 4 A module type is generally available if it can be extracted froma module anywhere in the program.4De�nition 5 An existential type system is weak if its module types are notgenerally available.3SOL also does not allow the bound type variable of an abstype to appear free in thetypes of any free variables in the abstype body. This restriction, however, has nothingto do with the exibility of the module system: it is intended to prevent capture. Alpha-renaming the program would eliminate the need for this restriction. See Section 3.1 for adiscussion of this issue.4The author is grateful to Jonathan Rees for suggesting the name generally available.11



Languages with second-class module systems, like CLU and Ada, have anadvantage in this regard: They force the programmer to name all modulesand provide their de�nitions at top-level. This way, all the types implementedby modules used by a program are available everywhere in the program.1.2.3 Strong Existential Types are UndecidableTo allow module types to be generally available, type expressions must beable to refer to values.De�nition 6 A dependent type is one containing a value expression.The Pebble programming language [Burstall and Lampson 84] providesthis facility by allowing types to be �rst-class values. This means that theprogrammer may refer to a type in a module by selecting it out as if it werea value.De�nition 7 An existential type system is strong if it allows types to betreated as �rst-class values.5Because a type can be the result of arbitrary computation in a strongexistential type system, type checking may fail to terminate. In addition,strong existential types are not truly abstract because the program enclosingthe module de�nition can select the representation type out of a moduleexplicitly. This is why Pebble uses a password mechanism in implementationsof abstract types. The implementation can check to see that values werenot manufactured elsewhere by checking the password. (See [Burstall andLampson 84, pp. 18{19].) This mechanism is ad hoc, and, in light of thecurrent proposal, unnecessary.5Usually, the de�nition of strong existential type states that the carrier of a module isa full-edged type. The de�nition given here makes use of the result of [Hook and Howe86] which shows that having strong existential types, in this sense, is equivalent to havingthe type : type axiom. [Meyer and Reinhold 86] shows that the type : type axiomimplies that the type system is undecidable.12



1.3 GoalsThe challenge is to design a language which simultaneously provides:� Type safety.� Data abstraction.� Multiple (recursive) abstractions.� Higher order abstractions.� First-class module implementations.� Safe interaction with side e�ects.� General availability of module types.� Static type checking.Many languages meet some of these goals: ML has multiple, recursive ab-stract types,6 simple type constructors, side e�ects, and static type checking.SOL does not have side e�ects but allows �rst-class modules. Pebble meetsall the goals except static type checking (though data abstraction relies onan ad hoc password scheme). Quest [Cardelli 89] has a complete system ofhigher order abstractions but does not have dependent subroutines and doesnot provide general availability.The following table presents a survey comparing some current languageswith our system of static dependent types (SDT) according to these goals.(All the given languages provide type safety and data abstraction.)CLU Ada ML SOL Quest Pebble SDTMult. ADTs � � � �Higher Order � � �1st Class Mods � � � �Side E�ects � � � � �Gen. Avail. � �Stat. Check. � � � � � �6An implementation of trees which exports abstractions for both node and tree is anexample of the use of multiple recursive types.13



1.4 The Proposal1.4.1 Static Dependent TypesDe�nition 8 A static dependent type (SDT) system provides general avail-ability of module types and preserves the separation of types and values.To preserve static type checking, a static dependent type system will notallow types to be the results of arbitrary computation and will not requirethe full evaluation of values in dependent types. Instead, there will be asingle type which may directly contain a value expression. The expressionin a dependent type will not be evaluated; it will be statically comparedto expressions in other dependent types (in this case using simple textualequality), and it will have variables replaced by their de�nitions wheneverthe dependent type is exported out of the scope of some of its free variables.Quest [Cardelli 89] attempted the same sort of trade-o�, but, becauseQuest has no way of restricting side e�ects, it restricts dependent types sothat only variables may appear in them. This means that the substitutionswhich allow dependent types to be meaningful when exported out of a scopecannot take place.1.4.2 FX is a Good Base LanguageAn e�ect system like the one in FX [Gi�ord, et al. 87], based on [Lucassen87], provides a means of specifying and enforcing constraints which guaranteetype safety in the presence of �rst-class modules, dependent types, and sidee�ects. The design of the static dependent type system will contain e�ectconstraints enforced by the e�ect system.Also, the FX kind system based on [McCracken 79] supports the notionof a description. A description is a type, an e�ect, a region of the store, or afunction from descriptions to descriptions. Thus, FX provides higher orderdescriptions. In fact, FX provides all the power of the second order typedlambda calculus. 14



1.5 Structure of the ThesisThe remainder of this thesis is organized as follows:� Chapter 2 gives the design of a simple system built on top of the FX-87kernel of Appendix A. The design is speci�ed as a grammar, staticsemantics, and informal dynamic semantics with examples.� Chapter 3 describes an implementation built into the FX-87 Interpreter[Jouvelot and Gi�ord 88] to test the utility and practicality of themodule system design.� Chapter 4 summarizes the results of the design and implementatione�orts and describes directions for current and future research.
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Chapter 2Static Dependent TypesThe FX-87 kernel described in Appendix A may be extended to support �rst-class modules and static dependent types (SDTs). The syntax descriptiongiven here shows only new or changed forms; other forms remain as givenin the appendix. Similarly, the static semantics provides only the new andchanged kinding and typing rules.For readability, examples will often leave out projections of polymorphicvalues onto type arguments. In all such cases, an implicit projection mecha-nism like the one in FX-87 could supply the missing arguments automatically.(In fact, the implementation described in Chapter 3 retains this mechanism.)The design presented here is one in a series of static dependent type sys-tems. The kernel idea, that there should be a static semantics for expressionsin dependent types is due to Mark Reinhold. He worked out a scheme in alanguage without side e�ects and without higher order descriptions. The au-thor generalized and implemented this system with higher order descriptions,e�ects, and regions. Then, the author, with Reinhold, extended the designto include multiple, mutually recursive abstractions and multiple, mutuallyrecursive values. The author implemented this system as well. We have alsocreated a design with transparent description bindings (descriptions whoserepresentations are deliberately exposed outside the module) for a new ver-sion of FX. This extended design, however, has not yet been implemented.
16



2.1 Syntax2.1.1 DescriptionsIf modules are �rst-class values, then they must have types. The modoftype gives the names and kinds of the abstractions exported by a moduleas well as the names and types of the values exported by a module. Thetypes in a modof type are in the scope of the abstraction names. Dependentsubroutine types bind the names of the formal parameters of the subroutine.Subsequent parameter types and the return type may refer to the precedingformal names.Texp = { Types. . .(modof ((id Kexp). . . ) ((id Texp). . . ))(subr Eexp ((id Texp). . . ) Texp)Dependent types (possibly higher order) arise from the presence of thedselect form. The expression, Exp, in a dselect must denote a module.The name, id, speci�es an abstraction name exported by the module.GDesc = { Generic descriptions. . .(dselect Exp id)2.1.2 ExpressionsThe new expressions allow one to construct modules (mod), to access thevalues and descriptions exported by a module (with), and to read valuesfrom a �le which must exist at compile time (input). The input expressionis the key to linking separately written modules.17



Exp = { Expressions. . .(mod ((id Kexp Dexp). . . ) ((id Texp Exp). . . ))(with Exp Exp)(input string-literal)2.1.3 Syntactic SugarDotted identi�ers provide a useful shorthand for referring to abstractions orvalues in a module.Dotted-id = { Dotted Identi�ersid j Dotted-id.idA dotted identi�er which is just an identi�er desugars to itself.If a dotted identi�er appears where a description is expected, then thefollowing desugaring takes place:Dotted-id:id) (dselect Dotted-id id)If a dotted identi�er appears where an expression is expected, then thefollowing desugaring takes place:Dotted-id:id) (with Dotted-id id)Overloading the dot notation is not a problem: the parser always knowswhether it expects a description or an expression. Dotted identi�ers areexpanded accordingly.The formal names in subroutine types are useful both for dependent sub-routines and for documentation. However, sometimes the name of a formalis really unimportant. For this reason, the old subroutine type syntax ofAppendix A may still be accepted. Such old subroutine types are equivalentto new ones with automatically generated formal names. (The chosen formalnames must not capture any free variables in the formal and return types.)18



2.2 Static SemanticsEach inference rule is given in a separate section together with motivation andexplanation. Each description ends with one or more programming examples.2.2.1 Kind Inference RulesModofA modof description, i.e., a module interface, is a type. Abstractions mayonly be types or (possibly higher order) type constructors. The rational forthis restriction appears with the mod typing rule on page 26.TK[ni=1idai :: �i] ` �j :: type (1 � j � m)FinallyType(�i) (1 � i � n)TK ` (modof ((ida1 �1) . . . (idan �n))((idv1 �1) . . . (idvm �m))) :: typeFinallyType has the recursive de�nition:FinallyType (type) = trueFinallyType ( (dfunc (�1 . . .) �) ) = FinallyType (�)For example, pair-type might be the interface of a module implementingmutable pairs:
19



pair-type �(modof ((pairof (dfunc (type type region) type)))((mk-pair (poly ((r region))(poly ((t1 type) (t2 type))(subr (alloc r) ((fst t1) (snd t2))(pairof t1 t2 r)))))(fst (poly ((r region))(poly ((t1 type) (t2 type))(subr (read r) ((p (pairof t1 t2 r))) t1))))(snd (poly ((r region))(poly ((t1 type) (t2 type))(subr (read r) ((p (pairof t1 t2 r))) t2))))(set-fst! (poly ((r region))(poly ((t1 type) (t2 type))(subr (write r) ((p (pairof t1 t2 r)) (x t1))unit))))(set-snd! (poly ((r region))(poly ((t1 type) (t2 type))(subr (write r) ((p (pairof t1 t2 r)) (x t2))unit))))))A module of this type must de�ne a type constructor (a description func-tion mapping two types and a region to a type), as well as polymorphicsubroutines for pair creation, destructuring, and mutation.DselectThe dselect form is an example of what is often called a witness operator: itallows the programmer to refer to an abstraction implemented by a module.Because a dselect description contains an expression, it is a dependentdescription. TK ` e : (modof ((ida1 �1) . . .)((idv1 �1) . . .))! �� v (maxeff (write �1) . . . (alloc �1) . . .) 8�iTK ` (dselect e idai) :: �i20



If the implementation of an abstraction used in a program could changedynamically while the syntactic type of a value remained the same, then thelanguage would no longer be type-safe. An earlier proposal of this systemrequired that the module expression in a dselect be pure. But this istoo restrictive. If the module expression only allocates and writes, there isno problem. Only if it reads mutable storage which another expression mayalter is it possible for an implementation to change dynamically.1 This looserrestriction is enforced in the preceding rule by the requirement that the e�ectof the module expression consist of zero or more write and alloc e�ects.Design Constraint 1 Value expressions occurring in descriptions must nothave read e�ects.The ability to articulate and enforce this e�ect restriction allows thissystem to do what other languages do not: to combine �rst-class modules,dependent types, and side e�ects in a type-safe language. The inabilityto express this property is what leads designers to restrict the use of, andselection from, modules. (See the comparisons to other languages in Chapter1.) The kernel language of Appendix A has the property that, though thetype-checking rules often require kind deductions, the kind-checking rulesnever require type deductions. The dselect kinding rule violates this prin-ciple. Will some programs create in�nite chains of deductions? Expressionswritten by programmers are always �nite and cannot contain themselves. Aslong as type-checking the expression in a dselect does not require infor-mation outside of the expression itself, the system will operate on smallerand smaller expressions and eventually terminate. But what informationfrom outside of an expression is needed to type-check the expression? Onlythe types of the free ordinary variables (in TK) are needed. Provided thatthese types are already known and kind-checked, the deduction will be �nite.Given the binding constructs of the kernel language, this is certainly true.The design of each binding construct introduced here respects this principle:21Pierre Jouvelot �rst made this observation.2The restrictions implied by this scheme may be overly conservative, but proofs of21



Design Constraint 2 Free ordinary variables in a description must alreadyhave their types kind-checked and in TK. Equivalently, whenever an ordinaryvariable is introduced, its type may not depend directly or indirectly on thethat variable.If pair-impl were a variable bound to a module with the above modoftype, then one may use the dselect form to extract the abstraction:(dselect pair-impl pairof) :: (dfunc type type region)Calling mk-pair to create a pair of integers in the region @foo wouldproduce a result of type:((dselect pair-impl pairof) int int @foo)One may abbreviate this type using dotted identi�er notation:(pair-impl.pairof int int @foo)SubrDependent subroutine types are binding constructs. Each formal name isavailable to the types of all later formals and to the return type. No formalname is available to its own type, however.TK ` � :: effectTK[ji=1idi : �i] ` �j+1 :: type (0 � j � n)TK ` (subr � ((id1 �1) . . . (idn �n)) �n+1) :: type
termination become much more complicated if the restrictions are relaxed. I have notbeen able to write any programs which make use of more relaxed rules: The programsthat exceed the limitations always seem to be untypable.22



Dependent subroutines are useful for writing programs that take both animplementation of an abstraction and an object of the abstract type:(subr (read @foo) ((m pair-type)(p ((dselect m pairof) int int @foo)))((dselect m pairof) int char @foo))Because of the parenthesized syntax of FX, such types are sometimesdi�cult to read. Using a more mathematical notation, this subroutine typemight be written:m:pair-type � p:(m.pairof int int @foo)�!(read @foo) (m.pairof int char @foo)Dependent subroutines are also useful for doing module linking. Chapter3 provides a practical example of this.2.2.2 Type and E�ect Inference RulesLambdaDependent subroutines require a new typing rule for lambda expressions sothat any formal name may be used in the type expressions of any followingformals and in the return type. No formal name is available to its owntype, however. Since abstractions are restricted to be (possibly higher order)type constructors, it does not matter whether or not the latent e�ect of thesubroutine is in the scope of the formals. There is no way to get a region ore�ect out of a dselect.TK[ji=1idi : �i] ` �j+1 :: type (0 � j � n)TK[ni=1idi : �i] ` e : �n+1 ! �TK ` (lambda ((id1 �1) . . . (idn �n)) e): (subr � ((id1 �1) . . . (idn �n)) �n+1)! pure 23



The subroutine pair-example is a dependent subroutine:pair-example �(lambda ((m pair-type) (p (m.pairof int int @foo)))((proj m.mk-pair @foo) (m.fst p) (int->char (m.snd p))))This subroutine takes a pair implementation and a pair created by thatimplementation. It returns a new pair consisting of the same �rst element asits argument pair and the character equivalent of the integer in the secondelement of the argument pair.ApplicationWhen a dependent subroutine is applied, the formal names appearing in thereturn type must be replaced by the argument expressions.TK ` e : (subr � ((id1 �1) . . . (idn �n)) �) ! �TK ` ei : [i�1j=1ej=idj]�i ! �i (1 � i � n)TK ` [ni=1ei=idi]� :: typeTK ` (e e1 . . .) : [ni=1ei=idi]� ! (maxeff � �1 . . .)Verifying the kind of the result type after substitution is a compact wayto check that any expression actually substituted into the result type hasan e�ect commensurate with Design Constraint 1. If one does not, then theresulting expression will not be well-kinded.Suppose pair-impl has type pair-type. Then the application:(pair-example pair-impl((proj pair-impl.mk-pair @foo) 3 0))has type (pair-impl.pairof int char @foo). Notice that pair-impl wassubstituted for the formal parameter m in the type of pair-example.
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LetThe let rule must change in the same way as the application rule. Thebindings of a let expression are opaque: Even if two identi�ers are bound totextually identical expressions, dselect descriptions from the two variablesare not interconvertible. This is a consequence of making the semantics oflet follow the semantics of lambda. One advantage of this arrangement isthat it allows a module-producing computation with read e�ects to be usedas long as the corresponding identi�er is not free in the type of the let body;i.e. the system enforces the same constraints as weak existential types in thepresence of reads.In accordance with Design Constraint 2 the types of the expressions boundby the let expression cannot depend on the names it binds.TK ` ei : �i ! �i (1 � i � n)TK[ni=1idi : �i] ` e : � ! �TK ` [ni=1ei=idi]� :: typeTK ` (let ((id1 e1) . . .) e) : [ni=1ei=idi]� ! (maxeff � �1 . . .)Verifying the kind of the result type after substitution is a compact wayto check that any expression actually substituted into the result type has ane�ect commensurate with Design Constraint 1.Suppose that mk-pair-impl is a subroutine which takes a string describ-ing which of several possible pair implementations the caller desires. Thenthe following let expression chooses one called "lambda-based" and uses itto call the pair-example subroutine de�ned above.(let ((pair-impl (mk-pair-impl "lambda-based")))(pair-example pair-impl((proj pair-impl.mk-pair @foo) 0 0)))The type of the above expression is:((dselect (mk-pair-impl "lambda-based") pairof) int char @foo)25



ModTo build a module, one speci�es a set of description bindings and a set ofvalue bindings:� A description binding is an identi�er (the abstraction name), a kind,and a description which is the abstraction's representation. The ab-straction de�nitions are mutually recursive.� A value binding is an identi�er (the �eld name), a type, and an expres-sion which is the �eld de�nition. Field de�nitions are also mutuallyrecursive. In accordance with Design Constraint 2, the types of thevalues are not in the scope of the �eld names.3TK1 = TK[ni=1idai :: �i]TK1 ` �i :: �i (1 � i � n)Immutable(�) 8� 2 FRC(�i) (1 � i � n)FinallyType (�i) (1 � i � n)TK1 ` �i :: type (1 � i � m)TK2 = TK1[ni=1up�idai : UpType(idai; �i; �i)]TK3 = TK2[ni=1down�idai : DownType(idai; �i; �i)]TK3[mi=1idvi : �i] ` ej : �j (1 � j � m)TK ` (mod ((ida1 �1 �1) . . . (idan �n �n))((idv1 �1 e1) . . . (idvm �m em))): (modof ((ida1 �1) . . . (idan �n))((idv1 �1) . . . (idvm �m)))! (maxeff �1 . . . �m)The de�nitions of UpType and DownType are given below.The mod typing rule embodies many important design decisions and isthe most complicate rule of the type system. It thus deserves a detaileddescription.3An implementation of a predecessor of this system failed to make this scope restrictionand could indeed be made to loop forever. 26



The use of TK1 in kind checking the representations allows the represen-tations to be mutually recursive. This recursion is di�erent from the recur-sion in the dletrec or pletrec forms of FX-87: there, recursion producedconceptually in�nite descriptions (though they can be �nitely represented).The recursion here is opaque in the sense that recursive references in thedescriptions are not substituted away. This supports the use of abstractionsinternally to the module by forcing the programmer to be aware of everyconversion between an abstract and concrete type.The Immutable predicate is de�ned in Appendix A. In FX, the onlyimmutable region is @=. FRC is a function which computes the free regionconstants of a description in the obvious way. Forbidding free mutable regionconstants in representations forces programmers to parameterize their muta-ble abstractions over any regions. This restriction is not intended merely toenforce a particular programming style. Embedding mutable regions in rep-resentations would hide the passage of mutable values through up and downcalls and would allow side e�ects on those values to be masked.4 This couldcause scheduling errors in parallel implementations [Hammel and Gi�ord 88]or cause optimizations like memoization and stack allocation of short-livedobjects to be applied unsafely in sequential implementations [Lucassen 87].Design Constraint 3 Abstraction boundaries must not hide side e�ects.The following module, if allowed, would turn the usual reference type,refof, with operations new, get, and set into an e�ect loophole. The sub-routines all have latent e�ect pure because the region @foo does not appearin the types of the free variables of the lambda bodies, nor does it appear inthe return types.
4For a de�nition of e�ect masking see page 57 of Appendix A.27



(mod ((t (refof int @foo)))((anew (subr pure ((x int)) t)(lambda ((x int))(up-t ((proj new @foo) x))))(aget (subr pure ((x t)) int)(lambda ((x t))((proj get @foo) (down-t x))))(aset (subr pure ((x t) (y int)) unit)(lambda ((x t) (y int))((proj set @foo) x y)))))An alternative to this restriction would be to eliminate the e�ect maskingrule. But this would eliminate opportunities for optimization. Disabling thee�ect masking rule just within the mod typing rule would be non-uniformand would still inhibit optimizations. (Recall that the mod expression is thesource of all recursion in the language.)Abstract e�ect constructors could be useful for specifying that operationsde�ned in some module do not interfere with any outside computations,regardless of accidental choice of region names. But if one can use this powerto change the apparent latent e�ect of subroutines, then an e�ect loopholeopens up. Determining how to add abstract e�ects in a safe and useful wayis the subject of current research.5In accordance with Design Constraint 2 the interface types are kindchecked in an environment where the abstraction names are available, butthe �eld names are not.There is a rich design space of mechanisms for converting between anabstract type and its concrete representation. Perhaps the simplest methodin a system with a fully speci�ed module signature is to allow abstract namesto be interconvertible with their representations throughout the module def-inition. The resulting modof type is then taken from the signature. Thisapproach is taken by Quest [Cardelli 89]. This system has two failings:
5The author and Pierre Jouvelot have investigated this issue and examined possibleapplications. 28



� The module writer cannot use the abstractions locally to enforce in-variants. This is especially important for large modules which de�nemultiple abstractions.� The modof type will be underspeci�ed if the explicit interface is omittedwhen type reconstruction is added to the language.6Another approach is to provide a form where the programmer speci�eswhat names are interconvertible with their representations within the formand what the result type should be. This is similar to the above idea, whereconversion happens everywhere, but the programmer can control the scopeand extent of the conversion. Such a form is very general, but unnecessarilycomplicated when the usual case is very simple.The option settled on in this design is to provide subroutines bound tonames derived from the abstraction names. The subroutines are polymor-phic if the abstraction is higher kinded. (See the de�nitions of UpType andDownType below.) Implicit projection often allows the programmer to ig-nore the fact that these subroutines are polymorphic. With such a scheme,the programmer only converts between the abstract and concrete types whennecessary, taking advantage of the abstraction internally whenever possible.Where additional special forms would complicate the static semantics withmore rules, subroutines do not. The semantics of these subroutines are verysimple: they are identity subroutines.UpType(�a; type; �r) =(subr pure ((x �from)) �a)UpType(�a; (dfunc (�1 . . .�n) �n+1); �r) =(poly ((x1 �1) . . . (xn �n))UpType( (�a x1 . . .xn); �n+1; (�r x1 . . .xn) ))DownType(�a; �; �r) =UpType(�r; �; �a)An implementation of complex numbers based on pairs and oating pointnumbers is a simple and useful example of a module. If ipairof represents6Type reconstruction issues are beyond the scope of this thesis, but it is a design goalof FX to allow as many declarations as possible to be omitted. For current results of theFX type reconstruction e�ort, see [O'Toole and Gi�ord 89, O'Toole 89].29



the type constructor of immutable pairs, and icons, icar, and icdr thecorresponding constructor and destructuring operations, then the followingmodule implements complex numbers:(mod ((complex (ipairof float float)))((origin (up-complex (icons 0.0 0.0)))(make-complex (lambda ((x float) (y float))(up-complex (icons x y))))(get-x (lambda ((c complex))(icar (down-complex c))))(get-y (lambda ((c complex))(icdr (down-complex c))))(get-rho (lambda ((c complex))(let ((c (down-complex c)))(sqrt(fl+ (fl* (icar c) (icar c))(fl* (icdr c) (icdr c)))))))(get-theta (lambda ((c complex))(let ((c (down-complex c)))(atan (fl/ (icar c) (icdr c))))))(= (lambda ((c1 complex) (c2 complex))(let ((c1 (down-complex c1))(c2 (down-complex c2)))(and (fl= (icar c1) (icar c2))(fl= (icdr c1) (icdr c2))))))(+ (lambda ((c1 complex) (c2 complex))(let ((c1 (down-complex c1))(c2 (down-complex c2)))(up-complex(icons (fl+ (icar c1) (icar c2))(fl+ (icdr c1) (icdr c2)))))))(- (lambda ((c1 complex) (c2 complex))(let ((c1 (down-complex c1))(c2 (down-complex c2)))(up-complex(icons (fl- (icar c1) (icar c2))(fl- (icdr c1) (icdr c2)))))))))30



WithThe expression in the body of a with form is evaluated in an environment inwhich the identi�ers exported by the module expression are bound to theirrespective abstractions and values.TK ` em : (modof ((ida1 �1) . . . (idan �n))((idv1 �1) . . . (idvm �m)))! �mTK[ida1 :: �1 . . .][idv1 : �1 . . .] ` e : � ! �� 0 = [mj=1(with em idvj)=idvj]�� 00 = [ni=1(dselect em idai)=idai]� 0TK ` � 00 :: typeTK ` (with em e) : � 00 ! (maxeff �m �)The type of the value returned from a with expression may contain ref-erences to the identi�ers exported by the module. Abstraction names arereplaced by appropriate dselects, and �eld names are replaced by withexpressions.Verifying the kind of the result type after substitution is a compact wayto check that any expression actually substituted into the result type has ane�ect commensurate with Design Constraint 1.Inside a with expression, the programmer may refer directly to the namesbound by a module. The with expression:(with pair-impl(the (pairof int bool @bar) ((proj mk-pair @bar) 0 #t)))has type (pair-impl.pairof int bool @bar).InputThe input form allows programs to be split into multiple �les. The �lenamed in an input form must exist at compile time. The only free variablesallowed in such a separate �le are those de�ned by the FX library. (See31



Section 3.6 for a description of the fx module.) � represents the empty typeand kind environment.� ` (with fx FS(string-literal)) : � ! �TK ` (input string-literal) : � ! �FS is the mapping from string literals to FX expressions represented bythe �le system. In order for this system to be type-safe, FS must be a func-tion: the �le system must be immutable. This is actually not a bad restric-tion: Chapter 3 demonstrates how this can be implemented on a standard�le system. (See page 40.)The program(let ((pair-impl (input "PSRG:FX;IMPL;PAIROF.FX")))(with pair-impl((proj mk-pair @baz) #t #f)))has type((dselect (input "PSRG:FX;IMPL;PAIROF.FX") pairof) bool bool @baz)See Section 3.6 for examples of linking using �le input and subroutines.2.3 Inclusion RulesThe following inclusion rules are either additions or changes to the inclusionrelation v de�ned in Appendix A. The rules can be thought of as de�ninga reduction semantics for descriptions with �, �, and � conversion. Becausethis language does not have the transparent recursive types of FX-87, thekinded system of descriptions corresponds to the simply typed lambda cal-culus [Berendregt 84], and all descriptions have normal forms modulo alpha-renaming. 32



The new subroutine type admits alpha-renaming:idi0 62 FV(�j) (1 � i � n) (2 � j � n + 1)� 0j = [ni=1idi0=idi]�j (2 � j � n + 1)(subr � ((id1 �1) . . . (idn �n)) �n+1) � (subr � ((id10 � 01) . . . (idn0 � 0n)) � 0n+1)The inclusion rule on subroutine types is the same as the old rule, thoughit may be used in conjunction with the above alpha-renaming rule.� v �0� 0i v �i (1 � i � n)� v � 0(subr � ((id1 �1) . . . (idn �n)) �) v (subr �0 ((id1 � 01) . . . (idn � 0n)) � 0)One may freely permute the �elds in a modof type:� is a permutation on [1; n]�0 is a permutation on [1; m](modof ((ida1 �1) . . . (idan �n))((idv1 �1) . . . (idvm �n)))v(modof ((ida�(1) ��(1)) . . . (ida�(n) ��(n)))((idv�0(1) ��0(1)) . . . (idv�0(m) ��0(m))))To get a subtype of a modof type, one may add new �elds and/or takesubtypes of the �elds. � 0i v �i (1 � i � n)(modof ((ida1 �1) . . . (idan �n) . . .)((idv1 � 01) . . . (idvm � 0n) . . .))v(modof ((ida1 �1) . . . (idan �n))((idv1 �1) . . . (idvm �n)))
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There is no proper inclusion on dselect forms, only equivalence.e � e0(dselect e id) � (dselect e0 id)The dselect equivalence rule requires that the � relation be de�nedon value expressions (elements of Exp). There are many choices for thede�nition: Equivalence on expressions could be de�ned as equivalence onthe values they compute (given a de�nition of equivalence on values). Butthis would require arbitrary, possibly non-terminating computation in thetype-checker. Equivalence could be based on a simpler sort of evaluationthat involves � and � conversion, and limited � substitutions (just in letexpressions, say). But this requires the programmer to understand yet athird sort of reduction (the other two being the reduction of standard valueexpression evaluation and the reduction implied by the inclusion rules ondescriptions). The simplest equivalence relation is textual equality. This willsu�ce for present purposes.7Note: substitutions into descriptions in the kind and type inference rulesapply to the expression in a dselect. Thus if the body of a let expressionhas a type (deselect x y) for an x bound to e by the let, then the type ofthe let is (deselect e y). Thus descriptions never contain liberated localidenti�ers.

7A formal de�nition of textual equality is straight-forward and tedious. It is thereforeomitted. 34



Chapter 3ImplementationImplementation experience shows that the SDT system described in Chapter2 can be implemented and that it is powerful enough to allow FX to be itsown linking language.In addition, the implementation has provided, and continues to provide,valuable feedback into the design process. Implementing and using SDTsclari�es the power, bene�ts, interactions, and limitations of language fea-tures. For example, experimentation exposed weaknesses in predecessorsto the up- and down- subroutines described on page 28. Implementationproblems exposed errors in the typing rules: the restrictions on free regionconstants in representations and the availability of module �eld names in�eld types are prominent examples.The FX-87 Interpreter described in [Jouvelot and Gi�ord 88] was thestarting point of this implementation. Modifying the implementation to sup-port the SDT system of Chapter 2 was quite straightforward. Kind, type,and e�ect checking for new and modi�ed forms is, for the most part, a directimplementation of the rules from the static semantics. For example, the codein the implementation which computes the kind of a modof form is:
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(define (kind-of-modof node tk-env dstore)(let ((abstractions (modof-abstractions node))(values (modof-values node)))(and(tst? (every? (lambda (bind) (kexp? (cadr bind)))abstractions)"Cannot kind-check abstraction bindings in MODOF")(tst? (every? (lambda (bind) (finally-type? (cadr bind)))abstractions)"Abstraction must be type or type constructor in MODOF")(tst? (every?(lambda (bind)(texp? (cadr bind)(add-tk-env tk-env abstractions *kind*)(add-dstore dstore(map (lambda (bind)`(,(car bind)(,(make-d-variable(car bind)),(make-d-variable(car bind)))))abstractions))))values)"Invalid type expression in MODOF")(make-kind-type))))The code checks that the abstraction bindings contain valid kinds whichmay be types or higher order type constructors. Then it checks that thetypes of the �elds are valid types when the abstractions bindings are in thetk-env (the analog of TK). If all goes well, then the kind of the modof formis type. (The purpose of the dstore is explained below.)In addition to the modi�cations to the interpreter, the implementationpackages all the built-in types, type constructors, and subroutines into anfx module. All user programs may assume that they are surrounded by(with fx . . . ).
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3.1 Alpha-RenamingIn the plambda rule of [Lucassen 87, p. 43] and of [Gi�ord, et al. 87, p.129], the bound description variables may not capture the free descriptionvariables in the types of the free ordinary variables of the body. This restric-tion naturally applies to plet expressions as well. The advent of dependentdescriptions requires that the restriction also be observed in dlambda anddlet expressions. However, with the assumption that there are no duplicatebindings in the type and kind environment (TK),1 the inference rules do notneed to enforce this restriction because the undesirable situation can neverarise.Within any invocation of the FX Interpreter, all programs are alpha-renamed. This guarantees that all programs observe the restriction on thetype and kind environment by eliminating all duplicate bindings.Alpha-renaming a variable consists of appending an integer to the end ofits name. So that alpha-renamed variables are readily distinguishable (fordebugging purposes), the @ character is placed between the name and thenumber. (The @ character may not appear in variable names in legal inputprograms.)The implementation creates a global environment for alpha-renamingwhen it is loaded. This alpha-env has two components: an environmentmapping identi�ers from the input program to the alpha-renamed identi�erswhich replace them (the pending environment) and a structure mappingidenti�ers to the number of times they have been introduced since systeminvocation (cur-nums). The pending environment consists of frames builtup in accordance with the lexical structure of the program. When variablesare introduced at the beginning of some lexical scope, the parser adds a newframe to the front of the pending environment mapping the identi�ers tonames computed from the information in cur-nums. Cur-nums is updatedwhenever a variable is introduced.Unfortunately, there is no way to know during the parse phase whatvariables are bound by a with expression: These variables come from the typeof the module expression, which is not known until the module expression is1This restriction is articulated in the kinding rule for description variables (AppendixA, page 55) and in the typing rule for ordinary variables (Appendix A, page 58).37



type checked. To �x this problem, the parser builds a with node where onlythe module expression has been parsed. (The lexical environment for themodule expression is apparent.) The unparsed text of the with expressionbody and the current alpha-env are placed in the node. When the type ofthe with node is computed, the parsing continues with appropriate identi�ersadded to the alpha-env. Identi�ers introduced in the body of the withexpression are still numbered properly since the cur-nums component of thealpha-env stored in the with node is updated by side e�ect.3.2 Representing DescriptionsThe implementation of [Jouvelot and Gi�ord 88] did not distinguish theabstract and concrete syntax of descriptions: Descriptions were representedin the implementation with the text used to write them in programs. Thishas disadvantages:� Code in the type checker relies unnecessarily on the concrete syntax ofthe language. Changes to the syntax then have wide ranging e�ects.� Error messages and other code which prints descriptions does not un-parse descriptions. This is of particular concern when dependent de-scriptions (dselect) appear in the language since these expressionswould naturally contain parse trees representing value expressions.Keeping the parse tree in a dselect description means that code whichdoes substitutions (see the next section) can use the same abstractionsas all other code which manipulates programs after the parse phase.� There is no clean way to associate particular information with descrip-tions, e.g., their kinds, without parse trees.Clearly there are ad hoc solutions to the last two problems, but all theproblems are cleanly solved by creating an abstract syntax for descriptionsand implementing a parse tree similar to the one for expressions beneath theabstraction. To do this, the present implementation contains a parser andan unparser for descriptions as well as all the appropriate accessor functionsfor the abstract nodes. All code in the implementation handling descriptionshad to be changed to use the abstractions.38



3.3 Supporting SubstitutionsThe dstore in the original implementation was a substitution environmentmapping description variables to their de�nitions. The de�nitions in thedstore were fully reduced: free variables were substituted away, � and �reductions were completed, and recursive types were represented with circularstructures.The new design does not have the transparent recursive descriptions ofFX-87: recursion in the description domain is only allowed through abstrac-tions in modules. Thus, descriptions in this language have normal forms.The new design requires that the actual text of the de�nition of everydescription and ordinary variable be kept. An occurrence of any variable ina dependent description can have its de�nition substituted for it when leavingthe scope of an application, let, etc. However, the fully reduced de�nitionsare also useful for cases where the substitution happens before something istype checked, e.g. in the plet rule.To accommodate these needs, the current implementation extends thedstore so that every variable maps to two things:� Its de�nition in normal form. (Because comparisons of expressions indescriptions rely on the expressions' textual de�nition. Therefore, thereis no need to store a anything here for ordinary variables.)� The full text of its de�nition.The FX-87 kind rules did not need to call the type checker and, in fact,did not need to do any substitutions of description variables. It thereforedid not need the dstore. Since the new kind checker does invoke the typechecker, the dstore has to be passed around in the kind checker. The onlyroutine which makes use of the dstore is kind-of-dselect, which needs itto invoke the type checker on a module expression.
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3.4 Input From Separate FilesThere are several ways to support the assumption made on page 32 that the�le system is immutable. The current system stamps every input expressionwith a tag derived from the universal time of the last �le update. This tag iscompared whenever two dependent descriptions containing input expressionsare compared.This is not enough by itself because a �le may hide the fact that it importsfrom another �le. It merely places the input inside an abstraction.There are several ways to handle this problem:� Allow only compiled �les in input expressions. In order for a �le tomake use of a new version of a �le it imports, it must be recompiled.This will alter the time of last update for the object �le.� Force the user to specify more information, e.g. a stamp in the form ofthe universal time of the last �le write, or a version number (assumingversion numbers are uncorruptible).� Infer the above sort of identifying information. The stamp assigned tothe input of a �le may be the max of its universal time stamp and thestamps of the �les it inputs.2� Compute a checksum for the input �le and the �les it inputs. Thismethod is probabalistic, but it permits a user to recompile a �le withoutfear that the entire system will need to be recompiled.The current implementation takes the �rst approach because it is the sim-plest. Speeding up the speed of compilation or adopting the last approachwould make interactive program development easier. Incremental compila-tion schemes for FX are the subject of current research.2This approach is inspired by the implementation of the sharing mechanism in ML[MacQueen 88].
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3.5 Run Time SupportA module is represented at run-time as a record with �elds corresponding tothe module's value bindings. The precise representation interacts with thechoice of subtyping rule for modof types. If there were no subtyping rule orif subtyping were only by pre�x, then modules could easily be implementedas vectors and �eld selections could be translated into vector references withconstant indices. If subtyping were only by �eld reordering (not by superset-ting), then �elds could be kept in a canonical order, alphabetical order say,and the same vector implementation would work.Using a vector implementation in the presence of the more general modofsubtyping rules of Chapter 2 implies generating additional code when match-ing two modof types requires subsetting. Assuming that �elds are stored insome canonical order, the code can either generate a structure for subsequentselections to indirect through, or the code can copy the vector to a smallervector. ML copies the module at run-time in a process called thinning [Mac-Queen 88].For simplicity, this implementation represents modules as association listseven though access time is proportional to the number of �elds in the module.The value bindings of a mod expression are already in the right form, andaccesses to module �elds just become assq expressions.Up- and down- subroutines simply compile to identity functions. It is arelatively simple matter, when programs are alpha-renamed, for an imple-mentation to detect when an up- or down- call refers to a coercion subroutinesupplied as part of the implementation of a mod expression. In such a case,the call can be removed. The only time the identity function really needsto exist is when the programmer passes it out of the module or into anothersubroutine.3.6 The fx ModuleAs an experiment to test the utility of SDTs, most of the built-in data typeswere removed from the FX-87 implementation. Instead, when the new FX41



system is loaded, it automatically inserts a de�nition of fx into the environ-ment whose value is the result of loading the fx module from a �le.The fx module is itself written in FX. It loads a set of modules, one foreach library type, and repackages them into one module. Here is part of itsde�nition:(let ((refof-mod (input "PSRG:FX;IMPL88;REFOF.FXBIN"))(int-mod (input "PSRG:FX;IMPL88;INT.FXBIN"))(char-mod (input "PSRG:FX;IMPL88;CHAR.FXBIN"))(string-mod (input "PSRG:FX;IMPL88;STRING.FXBIN"))...)(let* ((char-mod (char-mod int-mod))(string-mod (string-mod int-mod char-mod refof-mod))...)(mod((unit type refof-mod.unit)(refof (dfunc (type region) type)refof-mod.refof)(int type int-mod.int)...)((new(poly ((r region))(poly ((t type))(subr (alloc r) (t)(refof t r))))(plambda ((r region))(plambda ((t type))(lambda ((v t))(up-refof((proj (proj refof-mod.new r) t) v))))))...(set(poly ((r region))(poly ((t type))(subr (alloc r) ((refof t r) t)unit)))(plambda ((r region))(plambda ((t type))(lambda ((x (refof t r)) (v t))42



(up-unit ((proj (proj refof-mod.set r) t)(down-refof x) v))))))(= (subr pure (int int)bool)(lambda ((x int) (y int))(int-mod.= (down-int x) (down-int y))))...))))Notice that some modules are abstracted over others. In particular, thestring module is abstracted over both the integer and character modules.There are special provisions for constants of library types. The implemen-tation knows that there will be an fx module, and it assumes that the codegeneration of constants is compatible with the implementation. Therefore,it assigns the type fx.t to a constant of type t.3.7 Evaluation of the ImplementationIt may be possible to make the implementation much more e�cient by ex-ploiting sharing in type checker structures the way ML does [MacQueen 88].Substitutions currently take a fair amount of time. There is also a lot ofcomplexity in the implementation to support the circular structures repre-senting FX-87 recursive types. But all this mechanism is no longer necessarybecause there are no transparent recursive descriptions.SDTs seem to have enough power to express program modularity andsimplify program linking. However, writing the fx module and other sam-ple programs revealed several avenues for future improvement. Section 4.1discusses this further.
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Chapter 4Summary
4.1 Directions for Future Research4.1.1 Bounded Quanti�cationConsider the identity function on some type t. Its type is t ! t. If aprogrammer calls such a function with a value of type t0 v t, the result isstill of type t.1 The system does not provide a way to say that the returntype is the same as the input type, whatever that is.Bounded quanti�cation [Cardelli 85] allows one to express the idea that avalue's type is preserved. With universal bounded quanti�cation, a program-mer could write the identity function of type: 8t0 � t:t0 ! t0. Then, when theprogrammer projects this function onto a particular t0, the return type willbe t0. Quest and CLU (with where clauses) provide bounded quanti�cation.[Lucassen 87] discusses bounded quanti�cation in conjunction with FX.It seems a very useful feature, and adding it to FX with SDTs presents noproblem. Quest provides bounded quanti�cation in conjunction with exis-tential quanti�cation. This would also be no problem in the context of SDTs,but it is unclear that it provides any bene�t over the ability to do upwardtype coercions (as with the).1In fact, in a system with implicit subtyping at subroutine calls, the is just a syntacticsugar for a call to the polymorphic identity function.44



4.1.2 Transparent DescriptionsThe next version of FX will have a module system allowing the export ofabstraction, value, and transparent description bindings. These bindingsappear in the module and in the type. For example, the following modof typeexports an abstract type a, a transparent type t whose de�nition is given, avalue of the abstract type, and a subroutine which accepts an argument ofthe transparent type.(modof ((a type))((t (pairof a a @red)))((x a)(f (subr pure ((y t)) a))))Since module interface types are often quite long, shorthand names arevery useful. A good convention might be that the author of a module create aseparate �le which contains the module's interface packaged as a transparentbinding in another module. Then, programmers who want to specify theinterface type in the argument to a subroutine can load the interface �le andselect the transparent bindings out.(let ((interface (input "fx-interface.fx")))(lambda ((fx-impl interface.fx))...run FX programs...))The question arises whether the transparent descriptions should be re-cursive. If so, should they be similar to the recursive descriptions of FX-87?Should the abstractions be able to refer to the transparent names? Thereare a host of such questions currently under consideration.4.1.3 Local Bindings and SyntaxThe current system make no provision for local bindings. One can get thee�ect of local bindings by de�ning a module with all the �elds required andthen embed the module in a the form and coerce it to a type that excludesthe bindings which were intended to be local:45



(the (modof ((a type))((x a)))(mod ((a type int)(b type bool))((x a (up-a 3))(y b (up-b #t)))))This scheme is verbose and requires duplicated declaration information.One alternative is to provide bindings which are labeled as local explicitly.Then, those bindings do not appear in the type of the module. One must becareful that a local name does not appear free in a transparent de�nition orin a �eld type.(mod ((a type int)(local b type bool))((x a (up-a 3))(local y b (up-b #t))))Another approach is to provide an explicit export list where the program-mer provides a list of exported names. This approach assumes bindings arelocal unless speci�cally exported whereas the previous approach assumes theopposite. Two alternative syntaxes are:(mod ((a type int)(b type bool))((x a (up-a 3))(y b (up-b #t)))(exports a x)) (exports a x(mod ((a type int)(b type bool))((x a (up-a 3))(y b (up-b #t)))))The module syntax, as currently implemented, is currently too verbose.There are several approaches to a cleaner syntax. The interface types couldall be moved to a separate part of the module, so that the interface infor-mation is all together and the implementation information is all together.Perhaps the argument types to subroutines may be omitted since they ap-pear in the interface. The same should be true of kinds of polymorphicvalues. 46



These syntactic problems may lessen with the introduction of type recon-struction into FX [O'Toole and Gi�ord 89]. Type reconstruction allows thecompiler to deduce declarations omitted by the programmer.4.1.4 Opening ModulesOne problem, illustrated clearly by the fx module itself, is the way �eldsinherited from a module must be repackaged into a new module. An openform which makes all the names of a module available in some scope would bemost useful. There are quite a few design issues with such a facility: Do thenames shadow other names in the current environment? Is there an elegantway to do systematic renaming?It would also be useful to have a more general facility for converting thetypes of values to use abstract names. Currently, a subroutine which usesthe representation of some abstraction cannot be converted directly to a sub-routine using the abstraction. Instead, as in the fx module, the arguments(description and value) must be collected and converted to the representa-tion type, the subroutine must be called on the converted values, and theresult must be converted to the abstract type. This is unnecessary work. Inaddition, such convoluted code is error prone and adds extra subroutine callswhich may be di�cult for the compiler to open code.There may be a way to solve the above problem together with the problemof merging modules (a common operation). The form (extend a b) mightthe �elds of the modules a and b, changing the types of the �elds to reect there-exported abstractions. Problems of name clashes and renaming remain.4.1.5 SharingML has a mechanism for describing and enforcing sharing constraints. Thefollowing example comes from [MacQueen 88].signature SYMBOL = sig type symbol ... endsignature LEX =sig 47



structure Symbol : SYMBOLval next : unit -> Symbol.symbol...endsignature SYMBOLTABLE =sigstructure Symbol : SYMBOLtype varval bind : Symbol.symbol * var -> unit...endsignature PARSE_ARGS =sigstructure Lex : LEXstructure SymTab : SYMBOLTABLEsharing Lex.Symbol = SymTab.Symbolendfunctor Parse (A : PARSE_ARGS) =struct ... A.SymTab.bind(A.Lex.next(), v) ... endIn this example, the ML system guarantees that Lex.Symbol andSymTab.Symbol are the same structure. This will allow the module cre-ated by a call to Parse to pass the symbol values returned by Lex.next toSymTab.bind.The system presented in this thesis has no concise way to express shar-ing constraints. The programmer can abstract the LEX and SYMBOLTABLEmodules over their submodules (Symbol in this case). Then the PARSE_ARGSconstructor can take a Symbol module as an argument and explicitly pass itto the Lex SymTab modules. This is awkward and entails extra subroutinecalls which may be di�cult for the compiler to open code.The problem with the ML sharing mechanism is that it is based on aparticular ad hoc algorithm for assigning tags to structures. This is, in fact,the inspiration for the method of implementing input described in Chapter48



3. However, the programmer does not need to know about the tags in theimplementation of input: the implementation supports simple abstraction ofan immutable �le system articulated in the design. An approach to sharingbased on some higher level abstraction would be valuable.4.1.6 PersistenceOne important restriction of the system presented here is that the type ofa value in a �le must be known statically. This does not support persistenttyped values. Quest has some support for this in the form of automatictypes, and CLU provides the any type. An automatic value has its actualtype attached to its run time representation, and its exact type is not knownstatically. The programmer may convert any value to an automatic value butcan only access an automatic value through a case dispatch on its type (likea case discrimination for a tagged union type with the full generality of thetype system in the tag). The system tests to see if the type tag is equivalentto a type in the case expression at run time. This makes highly optimizedtype equivalence checking and type representation important. Adding such afacility to FX is not di�cult, but the implementation costs are not yet clear.One fairly simple way to get persistence is to put such tagged values in�les. Then, the language could supply the form (load T E) where T is atype and E is an expression which computes a string. At run time, the �lenamed in the string computed by E can be read, and its type tag can becompared dynamically with T. Computation proceeds only if the types areequivalent.4.2 SummaryStatic dependent types support a module system which is more exible thanother statically type checked systems. This exibility has proven both prac-tical and useful in an implementation built on the FX-87 Interpreter; in par-ticular, the module system provides a uniform way to build small programstructures and to link them together into a complete system. Static e�ectconstraints guarantee that the type system is sound in the presence of side49



e�ects. Though work remains to make the notation for modules more com-pact, the essential system of static dependent types is a promising approachto the construction of large systems.
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Appendix AAn FX-87 Kernel LanguageThe following kernel language is a subset of the FX-87 kernel and forms thebasis for the extensions described in the thesis. This language di�ers fromFX-87 in the following ways:� There are no mutable variables.� There is no implicit subtyping. Programmers must write the forms todo explicit upward type coercions.� There is a new does form for doing upward e�ect coercion; the nolonger performs e�ect coercions.� Recursion in both the description and value domains is accomplishedusing the module proposal in the thesis. This implies the demise oftransparent recursive descriptions (i.e., that recursive descriptions nolonger admit structural equality). They would be easy to add againand their design is orthogonal to the issues examined in the thesis.
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A.1 SyntaxA.1.1 KindsKexp = { Kinds (�)region j effect j type(dfunc (Kexp. . . ) Kexp)A.1.2 DescriptionsDexp = { Descriptions (�)Rexp j Eexp j Texp j HDescRexp = { Regions (�)@id(runion Rexp Rexp . . . )GDescEexp = { E�ects (�)pure(alloc Rexp)(read Rexp)(write Rexp)(maxeff Eexp. . . )GDescTexp = { Types (�)bool(subr Eexp (Texp. . . ) Texp)(poly ((var Kexp). . . ) Texp)GDesc 52



HDesc = { Higher order descriptions(dlambda ((id Kexp). . . ) Dexp)GDescGDesc = { Generic descriptionsid(HDesc Dexp. . . )(dlet ((id Dexp). . . ) Dexp)A.1.3 Value ExpressionsExp = { Expressions (e)id(lambda ((id Texp). . . ) Exp)(Exp Exp. . . )(let ((id Exp). . . ) Exp)(if Exp Exp Exp)(begin Exp Exp. . . )(plambda ((id Kexp). . . ) Exp)(proj Exp Dexp. . . )(plet ((id Dexp). . . ) Exp)(the Texp Exp)(does Eexp Exp)Literal
Literal = { Literals#t j #f
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A.2 Static SemanticsThe FX-87 kind inference rules use a kind assignment, and the type inferencerules use a type assignment. The kind and type environments introduce twodistinct namespaces which must be kept consistent in order to preserve thesingle namespace semantics of FX.1 Because of this problem, and becausekind inference in the dependent description system described in the thesisrequires both type assignment and kind assignment information, the rulesgiven here are written with a single environment (TK) for both sorts ofbindings.A.2.1 Kind Inference RulesThe following rules form an inductive de�nition of the has kind ( :: ) relation.There is an in�nite set of region constants which begin with an @. Theprogrammer chooses these names.There is one distinguished region @= which is the immutable region. Ref-erences stored in the mutable region may not be stored into.An expression with no side e�ects is said to be pure.The type of the true and false values is bool.TK ` @id :: regionTK ` pure :: effectTK ` bool :: typeThe type and kind environment (TK) maps bound description identi�ersto their kinds. The restriction that a given identi�er may not be rebound doesnot constrain programs if the implementation does global alpha-renaming.(See Section 3.) id 62 Domain(TK)TK[id :: �] ` id :: �1Pierre Jouvelot pointed out this shortcomming of the semantics in [Gi�ord, et al. 87].54



The runion region constructor forms the set union of the given regions.TK ` �i :: region (1 � i � n)TK ` (runion �1 �2 . . .) :: regionThe alloc form indicates an allocation and initialization of a location insome region of the store. TK ` � :: regionTK ` (alloc �) :: effectThe read form indicates a dereferencing of a location in some region ofthe store. TK ` � :: regionTK ` (read �) :: effectThe write form indicates a mutation of a location in some region of thestore. TK ` � :: regionMutable(�)TK ` (write �) :: effectThe Mutable predicate is true of every region except the immutable region@= and any region containing it. The Immutable predicate is the negation ofthe Mutable predicate. Immutable(�) i� @= v �Forbidding write e�ects on the immutable region prevents any referencestored there from being stored into. 55



The maxeff form represents the combination of a set of e�ects.TK ` �i :: effect (1 � i � n)TK ` (maxeff �1 . . .) :: effectThe type of a subroutine includes the e�ect incurred by an application ofa subroutine value with that type (the latent e�ect), as well as the types ofthe arguments and of the return value. (This rule will be replaced in section2.2.1.) TK ` � :: effectTK ` �i :: type (1 � i � n)TK ` � :: typeTK ` (subr � (�1 . . .) �) :: typeA poly form is the type of a value which is polymorphic over some de-scriptions whose kinds are given in the type.TK[ni=1idi :: �i] ` � :: typeTK ` (poly ((id1 �1) . . .) �) :: typeUsers may de�ne their own description functions (e.g., type and e�ectconstructors) with the dlambda form.TK[ni=1idi :: �i] ` � :: �TK ` (dlambda ((id1 �1) . . .) �) :: (dfunc (�1 . . .) �)Combinations in descriptions represent applications of description func-tions. TK ` � :: (dfunc(�1 . . .)�)TK ` �i :: �i (1 � i � n)TK ` (� �1 . . .) :: �56



The dlet form is a way to introduce local description synonyms. Theresult is the same as having written the de�nitions in place of the localnames in the body. (See the equivalence rule for dlet below.)TK ` �i :: �iTK[ni=1idi :: �i] ` � :: �TK ` (dlet ((id1 �1) . . .) �) :: �A.2.2 Type and E�ect Inference RulesThe has type ( : ) and the has e�ect ( ! ) relations hold up to descriptionequivalence (de�ned below in section A.2.3):2TK ` e : � ! �� � � 0 ^ � � �0TK ` e : � 0 ! �0Moreover, the ! relation is not unique because of e�ect masking :3 If aregion constant or region variable appears free in the e�ect of an expressionbut does not appear free in the type of any free variable of the expression,then any read or write e�ects on that region may be masked; furthermore,if the region constant or variable does not appear free in the type of theexpression, then any alloc e�ect on the region may be masked.Suppose the set of e�ect constants is extended by the distinguished regiono denoting a region with no locations. Any e�ects on o are interconvertiblewith pure, and (runion o �) is equivalent to �. The following rules providea formal de�nition of e�ect masking:2Pierre Jouvelot suggested the following rule as a compact formalization of thisproperty.3The following description of e�ect masking, including the inference rules, is adapted(by minor rewording and simple notational variations) from [Gi�ord, et al. 87, pp. 132{133]. 57



TK ` e : � ! �TK ` � :: region(id 2 FV(e) ) ^ (TK ` id : � 0) ) � 62 FV(� 0) [ FRC(� 0)TK ` e ! (maxeff [o=�]� (alloc �))TK ` e : � ! �TK ` � :: region(id 2 FV(e) ) ^ (TK ` id : � 0) ) � 62 FV(� 0) [ FRC(� 0)� 62 FV(�)TK ` e ! [o=�]�FV is the function which returns the set of free variables of an expressionor description. FRC is the function which returns the set of free regionconstants of an expression.This implies that an expression may have more than one e�ect. By con-vention, any assertion of the form e ! � in a premise of a typing rule willmean that � is the least e�ect of e under TK. The partial order under whichthe e�ect is least is the one de�ned by the description inclusion relation vgiven below in Section A.2.3.The kernel contains boolean constants for true and false:TK ` #t : bool ! pureTK ` #f : bool ! pureThe type and kind environment maps bound value identi�ers to theirtypes. Looking up a variable is always pure since there are no mutablevariables. id 62 Domain(TK)TK[id : � ] ` id : � ! pure58



The lambda form is the constructor of subroutine values. Notice that thelatent e�ect is encoded in the subroutine type. (This rule will be replaced insection 2.2.2.) TK ` �i :: type (1 � i � n)TK[ni=1idi : �i] ` e : � ! �TK ` (lambda ((id1 �1) . . .) e) : (subr � (�1 . . .) �) ! pureCombinations represent subroutine application. The type of an applica-tion is the return type of the subroutine. The e�ect of an application is thecombined e�ect of evaluating the subroutine value and all the arguments andthe latent e�ect of the subroutine.TK ` e : (subr �l (�1 . . .) �) ! �TK ` ei : �i ! �i (1 � i � n)TK ` (e e1 . . .) : � ! (maxeff �l �1 . . .)A let expression could be rewritten (with suitable typing information)as an application of a lambda expression. But since the argument types areeasily deducible from the let bindings, this form is included in the kernel.TK ` ei : �i ! �i (1 � i � n)TK[ni=1idi : �i] ` e : � ! �TK ` (let ((id1 e1) . . .) e) : � ! (maxeff � �1 . . .)The two arms of a conditional expression must have the same type.TK ` e : bool ! �TK ` e1 : � ! �1TK ` e2 : � ! �2TK ` (if e e1 e2) : � ! (maxeff � �1 �2)The begin form is for sequencing (side-e�ecting) expressions. The valueof a begin form is the value of the last expression in it.59



TK ` ei : �i ! �i (1 � i � n)TK ` (begin e1 e2 . . .) : �n ! (maxeff �1 . . .)Polymorphic values are created with the plambda form: an expressionmay be abstracted over a set of description arguments. Requiring the bodyof a plambda expression to be pure simpli�es the type system (because polytypes do not need a latent e�ect) and allows the value to evaluated once atthe point of de�nition. Projections are, then, zero cost.The rule given here is simpler than the corresponding rule from [Gi�ord,et al. 87, p. 129]. The condition is that free variables of the body ofa plambda may not contain free occurrences of any of the plambda-boundvariables. (For a thorough explanation of the restriction, see [McCracken 79,p. 20{21]) The restriction is no longer necessary because of the assumptionthat variable names may not be rebound in TK.TK[ni=1idi :: �i] ` e : � ! pureTK ` (plambda ((id1 �1) . . .) e) : (poly ((id1 �1) . . .) �) ! pureTo get an instantiation of a polymorphic value, one projects it onto a setof description arguments of the appropriate kinds.TK ` e : (poly ((id1 �1) . . .) �) ! �TK ` �i :: �i (1 � i � n)TK ` (proj e �1 . . .) : [ni=1�i=idi]� ! �Just as let allows local value bindings, plet allows local descriptionbindings. Like dlet, the bindings are transparent synonyms: it is just asthough the de�nitions had been used in the body in place of the local names.Thus, plet is not like an applied plambda.TK ` �i :: �i (1 � i � n)TK ` [ni=1�i=idi]e : � ! �TK ` (plet ((id1 �1) . . .) e) : � ! �60



A the expression asserts that an expression has a larger type.TK ` e : � 0 ! �0� 0 v �TK ` (the � e) : � ! �0A does expression asserts that an expression has a larger e�ect.TK ` e : � 0 ! �0�0 v �TK ` (does � e) : � 0 ! �Note that the the and does rules are the only typing rules which makeuse of the inclusion relation (de�ned below). This means that all coercionsmust be explicit.A.2.3 Description InclusionThe description inclusion relation (v) is the reexive-transitive closure ofthe following rules. Two descriptions are equivalent (�) if and only if eachis included in the other.The rule for inclusion on identi�ers might suggest that description inclu-sion is context-dependent; however, this is not true because programs areglobally alpha-renamed in the implementation described in the thesis. (SeeSection 3.1.) id v idRegion constants are equivalent if they have the same name. The im-mutable region is included in every other region.61



@id v @idThe runion operation is set union on regions. It is idempotent, commu-tative, and associative. (runion �) � �(runion �1 �2) � (runion �2 �1)(runion (runion �1 �2) �3) � (runion �1 (runion �2 �3))(runion � �) � �
Region inclusion is the same as set inclusion.8i 2 [1; n] 9j 2 [1; m]s.t.�i v �j(runion �1 �2 . . . �n) v (runion �01 �02 . . . �0m)E�ects form a lattice with pure as bottom element; pure denotes theabsence of all side-e�ects. pure v �alloc and read e�ects on immutable regions are equivalent to pure.Immutable(�)(alloc �) � pureImmutable(�)(read �) � pure62



Inclusion on primitive e�ects (alloc, read, write) is inherited from in-clusion on the regions over which the e�ects take place.�1 v �2(alloc �1) v (alloc �2)�1 v �2(read �1) v (read �2)�1 v �2(write �1) v (write �2)The maxeff operation on e�ects is also like set union. The empty maxeffis another name for pure. Like runion, maxeff is idempotent, commutative,and associative. (maxeff) � pure(maxeff �) � �(maxeff �1 �2) � (maxeff �2 �1)(maxeff (maxeff �1 �2) �3) � (maxeff �1 (maxeff �2 �3))(maxeff � �) � �
Inclusion on maxeffs is like inclusion on runion.8i 2 [1; n] 9j 2 [1; m] s.t. �i v �j(maxeff �1 . . . �n) v (maxeff �01 . . . �0m)Subroutine types are monotonic in their e�ect and return type compo-nents, but anti-monotonic in their argument type components.63



� v �0� 0i v �i (1 � i � n)� v � 0(subr � (�1 . . . �n) �) v (subr �0 (� 01 . . . � 0n) � 0)Bound variables in poly expressions may be alpha-renamed:idi0 62 FV(�) (1 � i � n)(poly ((id1 �1) . . . (idn �n)) �)�(poly ((id10 �1) . . . (idn0 �n)) [ni=1idi0=idi]�)If every projection of a polymorphic value is a subtype of every projectionof another polymorphic value, then the poly type of the �rst is a subtypeof the poly type of the second. Notice that this rule may be applied inconjunction with the above alpha-renaming rule.� v � 0(poly ((id1 �1) . . . (idn �n)) �) v (poly ((id1 �1) . . . (idn �n)) � 0)Bound variables in dlambda forms may be alpha-renamed:idi0 62 FV(�) (1 � i � n)(dlambda ((id1 �1) . . . (idn �n)) �)�(dlambda ((id10 �1) . . . (idn0 �n)) [ni=1idi0=idi]�)Description functions admit �-conversion.idi 62 FV(�) (1 � i � n)(dlambda ((id1 �1) . . . (idn �n)) (�id1 . . . idn)) � �64



If a description function always returns a subdescription of another de-scription function, then it is included in that description function. Noticethat this rule may be applied in conjunction with the above alpha-renamingrule. � v �0(dlambda ((id1 �1) . . . (idn �n)) �) v (dlambda ((id1 �1) . . . (idn �n)) �0)An applied description function is equivalent to its body with the argu-ments substituted for the formals.((dlambda ((id1 �1) . . . (idn �n)) �)�1 . . . �n) � [ni=1�i=idi]�An otherwise unreducible description application is equivalent to anotheri� all components are equivalent. There is no proper inclusion on descriptionapplications because there is no way to say whether a description function ismonotonic, anti-monotonic, or neither in an argument.�i � �0i (1 � i � n)(desc1 . . . �n) � (desc01 . . . �0n)dlet forms introduce local description abbreviations. The abbreviationsare transparent in the sense that they are equivalent to their de�nitions.(dlet ((id1 �1) . . .) �) � [ni=1�i=idi]�
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