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Protein recognition is one of the most challenging and intriguing pro-
blems in structural biology. Despite all the available structural, sequence
and biophysical information about protein–protein complexes, the phy-
sico-chemical patterns, if any, that make a protein surface likely to be
involved in protein–protein interactions, remain elusive. Here, we apply
protein docking simulations and analysis of the interaction energy land-
scapes to identify protein–protein interaction sites. The new protocol for
global docking based on multi-start global energy optimization of an all-
atom model of the ligand, with detailed receptor potentials and atomic
solvation parameters optimized in a training set of 24 complexes, explores
the conformational space around the whole receptor without restrictions.
The ensembles of the rigid-body docking solutions generated by the simu-
lations were subsequently used to project the docking energy landscapes
onto the protein surfaces. We found that highly populated low-energy
regions consistently corresponded to actual binding sites. The procedure
was validated on a test set of 21 known protein–protein complexes not
used in the training set. As much as 81% of the predicted high-propensity
patch residues were located correctly in the native interfaces. This
approach can guide the design of mutations on the surfaces of proteins,
provide geometrical details of a possible interaction, and help to annotate
protein surfaces in structural proteomics.
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Introduction

Protein–protein interactions (PPI) play a key role
in many biological processes such as signal trans-
duction, gene expression control, enzyme inhi-
bition, antibody–antigen recognition or even the
assembly of multi-domain proteins. In the cellular
context, these PPIs very often lead to the formation

of stable specific protein–protein complexes that
are essential to perform their biological functions.
Identification of protein–protein interactions can
be performed through a combination of exper-
imental and theoretical techniques, and several
protein interaction databases are being compiled.1

However, the exact location and geometry of the
interface poses a separate problem, which cannot
always be addressed with X-ray crystallography
or NMR studies. As a result, the demand for com-
puter modeling is growing, and a number of algor-
ithms that generate models of the macromolecular
complex based on the structures of individual sub-
units (docking methods) have been described.2 – 7

However, these docking procedures can only gen-
erate the near-native complex structure among a
number of alternative docked conformations
(false-positives), and some information about the
interacting surfaces (biological data, sequence and
structure homology) is frequently required to
single out the correct solution. The knowledge of
the approximate location of the binding interface
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on the protein surface can be of direct practical use
as well as help to improve the accuracy of the
docking models. Chemical and physical comple-
mentarity between the interacting surfaces is
essential, and the existence of “hot spots”, e.g. a
few residues that confer most of the binding
energy, has been reported.8 – 12 In this context, the
question arises of whether there are specific chemi-
cal and physical characteristics on the surfaces of
proteins that can be used to identify the PPI sites.
Different analyses of known protein–protein inter-
faces attempted to find specific characteristics that
differentiate PPI sites from the rest of the protein
surface.13 – 19 However, in hetero-complexes the PPI
site composition does not differ significantly from
the rest of the solvent-accessible surface.20 – 22 In
addition, the results of continuum electrostatic cal-
culations suggest that protein–protein interfaces
are naturally designed to exploit electrostatic and
hydrophobic forces in very different ways.23 Thus,
it appears difficult to find chemical or structural
patterns on the surface of proteins that unequivo-
cally define PPI sites, and very few computational
methods have been developed so far for their pre-
diction. A method based on residue interface pro-
pensities and physico-chemical analysis of surface
patches, presented a success rate of 54% on a data-
set of 59 complexes, which included homo-dimers,
hetero-complexes, and antibody–antigen com-
plexes (prediction was considered successful
when at least one of the three predicted patches
covered .50% of the real interface).24 More
recently, a neural network based on sequence pro-
files of neighboring residues and solvent-exposure
values was trained on a dataset of 615 protein–pro-
tein complex structures to predict interacting
regions.25 The method was tested on a set of 35
unbound proteins, where 70% of the predicted
interface residues were located correctly in the
interfaces. Unfortunately, results obtained from
neural networks are difficult to interpret in physi-
cal or phenomenological terms. The conformational
changes upon protein–protein association are
often limited to local movements, which suggests
that protein–protein association is driven by rigid-
body fit.21,26 – 28 Thus, the idea of analyzing the
rigid-body docking energy landscape in search of
protein recognition areas is highly attractive. The
possibility of low-resolution recognition in pro-
tein–protein association has been studied recently
using geometry-based rigid-body docking
simulations.29

In the present work, we use rigid-body docking
simulations, with a grid-based energy description
of the system, to analyze the existence of preferred
interaction sites on a protein surface. The soft inter-
action energy and the pseudo-Brownian confor-
mational sampling procedure used here were
tested previously and optimized on a benchmark
of known protein–protein complexes for which
the uncomplexed structures were determined.4

The energy function was shown to be sufficiently
accurate and tolerant to the induced fit to select

the near-native docked solution in most cases, and
the search procedure was able to explore
thoroughly the rotational and translational degrees
of freedom of the ligand in the vicinity of the bind-
ing site of the receptor (so called local docking).
Here, we address the more challenging task of
exploring the conformational space around the
whole receptor, and we show that the energy pro-
file for the ensemble of found docked poses can be
used to determine accurately interaction sites on
protein surfaces.

Results

Global rigid-body docking

Rigid-body docking simulations were applied to
a large dataset of protein–protein complexes
(Table 1) using the 3-D coordinates of the unbound
subunits. The method used here permits a com-
plete sampling of the whole receptor surface, with-
out any restriction, and is based on a previously
described multiple-start pseudo-Brownian Monte-
Carlo minimization procedure,4 which was
extended to sample entire surfaces for both pro-
teins and to adapt automatically the distribution
of starting points to the shape and size of the pro-
teins as described in Materials and Methods. The
modified procedure is capable of locating nearly
all distinct (farther than 4 Å of interface RMSD
apart) local minima of the grid energy function.
The number of conformations obtained from the
simulations depended on the size and shape of
the interacting molecules. For instance, a total of
5958 different conformations were obtained for the
complex chymotrypsin/APPI (PDB 1ca0), whereas
a total of 12,064 conformations were obtained for
the considerably larger complex Fab D44.1/lyso-
zyme (PDB 1mlc).

The RMSD/energy distributions of all docked
poses for some of the complexes are shown in
Figure 1(a). Despite the rather noisy distribution
of the individual energy values, the behavior of
the averaged energy for the solutions within a slid-
ing RMSD range suggests an overall dependence
of the energy on the proximity to the real structure,
which for some complexes points towards the
native solution (“funnel” shape).

Inclusion of a detailed solvation term and
optimization of the energy estimate on the
training set

To accelerate calculations, only surface charge
scaling (SChEM)30 and a crude hydrophobic con-
tact grid potential were used during the docking
simulations to account for the solvation effects. To
include the desolvation penalty of burying sol-
vent-exposed polar groups, as well as to improve
the precision of the hydrophobic energy calcu-
lation, the energy value for every docked pose
was recalculated after the simulations using an
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atomic solvent-accessible surface area (ASA)-based
solvation model (see Materials and Methods). We
had found that the atomic solvation parameters
(ASP) derived from vapor/water transfer energies
improved the local docking results.4 Here, we
extend and optimize this solvation model for the
“global docking” by using ASP derived from octa-
nol/water transfer energies (see Materials and
Methods), which better describe the burial of sol-
vent-exposed residues in the interface.31

The following energy function was used to re-
evaluate the set of conformations generated during

the docking simulations:

E ¼ aðEHvw þ ECvwÞ þ Eel þ bEhb þ gEpolar

þ dEar þ 1Eal ð1Þ

The coefficients (a, b, g, d, 1) assigned to each
energy term were optimized to obtain the best
possible ranking for the near-native solutions in
all complexes of the training set listed in Table 1
(the fitting procedure is detailed in Materials and
Methods). The same training set was previously

Table 1. Benchmark of protein–protein complexes used in this work

Receptor Ligand Complex Unbound receptor Unbound ligand

Parameterization set
Chymotrypsin APPI 1ca0 5cha 1aap
Chymotrypsin BPTI 1cbw 5cha 1bpi
Chymotrypsin Eglin C 1acb 5cha 1egl
Chymotrypsin Ovomucoid 1cho 5cha 1omu
Chymotrypsinogen HPTI 1cgi 1chg 1hpt
Kallikrein A BPTI 2kai 2pka 1bpi
Subtilisin BPN CI-2 2sni 2st1 2ci2
Subtilisin BPN SSI 2sic 2st1 3ssi
Subtilisin Carlsberg Eglin C 1cse 1sbc 1egl
Thermitase Eglin C 2tec 1thm 1egl
Trypsin (bovine) APPI 1taw 5ptp 1aap
Trypsin (bovine) BPTI 2ptc 5ptp 1bpi
Trypsin (rat) BPTI 3tgi 1ane 1bpi
Trypsin (rat) APPI 1brc 1bra 1aap
Acetylcholinesterase Fasciculin II 1fss 2ace 1fsc
a-amylase Tendamistat 1bvn 1pif 2ait
Barnase Barstar 1bgs 1a2p 1a19
Ribonuclease Sa Barstar 1ay7 1rge 1a19
TEM-1 b-lactamase BLIP TEM1a RETMa BLIPa

UDG UGI 1ugh 1akz 2ugi
Cytochrome c peroxidase Cytochrome c 2pcb 1ccp 1hrc
Cytochrome f Plastocyanin 2pcf 1ctm 1ag6
Fab D44.1 Lysozyme 1mlc 1mlb 1lza
Fv D1.3 Lysozyme 1vfb 1vfa 1lza

Test set
Ferredoxin-NADP þ reductase Ferredoxin 1ewy 1que 1fxa
Erythropoietin receptor Erythropoietin 1eer 1ern 1buy
HPr kinase HPr 1kkl 1jb1 1sph
VP6 (rotavirus) Fab VP6FABb 1qhd VP6FABc

Hemagglutinin Fab HC63 1ken 2viu 1kenc

a-amylase VHH Amd10 1kxv 1pif 1kxvc

a-amylase VHH Amb7 1kxt 1pif 1kxtc

a-amylase VHH Amd9 1kxq 1pif 1kxqc

TCR-b speA 1l0x 1bec 1b1z
Trypsin Soybean trypsin inhibitor 1avw 2ptn 1ba7
Ribonuclease inhibitor Ribonuclease A 1dfj 2bnh 7rsa
Trypsinogen PSTI 1tgs 2ptn 1hpt
Fab 5G9 Tissue factor 1ahw 1fgn 1boy
Hyhel-63 Fab Lysozyme 1dqj 1dqq 3lzt
IgG1 E8 Fab Cytochrome c 1wej 1qbl 1hrc
HIV-1 NEF FYN TK SH3 domain 1avz 1avv 1shf
RAS activating domain RAS 1wq1 1wer 5p21
Methylamine dehydrogenase Amicyanin 2mta 2bbk 1aan
Thrombin mutant Pancreatic trypsin inhibitor 1bth 2hnt 6pti
CDK2 Cyclin 1fin 1hcl 1vin
CDK2 KAP 1fq1 1b39 1fpz

The selection of protein–protein complexes is described elsewhere.4
a No coordinates deposited in PDB: the structures were kindly provided by the authors.57 – 59

b No coordinates deposited in PDB at the present time; the structure of the VP6/Fab complex was made available by the authors
(M. C. Vaney & F. Rey, unpublished results) to constitute target 2 in the recent CAPRI competition (http://capri.ebi.ac.uk).

c We used for the docking simulations the coordinates of the bound ligand in a random orientation, as provided by the CAPRI
organization (http://capri.ebi.ac.uk).
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Figure 1. (a) Distribution of the rigid-body docking poses for different complexes after the simulations, as re-evalu-
ated by equation (3) in Materials and Methods. (b) The same docking poses re-evaluated with the optimized energy
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used to benchmark the initial docking procedure.4

The non-solvation energy terms are described
elsewhere:4 EHvw and ECvw are the van der Waals
potentials pre-calculated for a hydrogen and a
heavy-atom probe, respectively, truncated at
þ1.0 kcal/mol (1 cal ¼ 4.184 J); Eel is the electro-
static potential with a distance-dependant dielec-
tric constant 1 ¼ 4r;32 and Ehb is the hydrogen-
bonding potential. The additional solvation term
was split into three components: Epolar includes
contributions only from polar atoms; Ear and Eal

include contributions from the aromatic and ali-
phatic atoms, respectively. Several parallel mini-
mization trajectories of the “amoeba” simplex
optimizer with different initial values converged
to the following weighting factor values: a ¼ 0.40;
b ¼ 2.43; g ¼ 2.30; d ¼ 6.26 and 1 ¼ 1.27. The ratio
between the van der Waals and electrostatics
weighting factors (ratio vdw/el ¼ 0.40) remained
similar to the ratio between the values used during
simulations (ratio vdw/el ¼ 0.46). The low weight-
ing of the van der Waals term can be explained by
(i) its higher intrinsic noise due to the high sensi-
tivity of this short-distance term to small devi-
ations in the structure; and/or (ii) a possible
double-counting due to the fact that the solvation
term (with parameters derived from octanol/
water transfer energies) already takes into account
the attractive component of the intermolecular van
der Waals (this would be the case assuming well-
packed interfaces; however, the van der Waals
term is still needed to account for clashes in the
rigid-body docking interfaces). The weight of the
hydrogen bonding potential with respect to the
electrostatics (ratio hb/el ¼ 2.43) approximately
doubled (weights used in simulations had the
ratio hb/el ¼ 1.17). This is as expected, since the
desolvation of hydrogen bond donors/acceptors is
now explicitly present and compensates, in part,
for the (bigger) energy gain from the hydrogen
bond formation. Interestingly, the factor for the
aromatic solvation component is considerably lar-
ger than the rest of the solvation terms (see more
in Discussion).

Figure 1 shows the energy/RMSD distributions
of all docking poses for some of the complexes of
the training set (1ca0, 2pcf and 1mlc), as re-evalu-
ated with both the original energy function
(equation (3) in Materials and Methods) and the
optimized one (equation (1) with the parameters
described above). The energy profiles become
much more funnel-shaped (i.e. conformations

closer to the real structure have significantly lower
relative energy values) when the solutions are
re-evaluated with the optimized energy function
and new solvation terms.

In order to demonstrate the general applicability
of the optimized parameters, we validated them
on a test set (Table 1) formed by complexes whose
structures (and those of their unbound subunits)
were available to us only after we compiled the
training set for benchmarking the docking method.
The test set included: the recently solved com-
plexes FNR/ferredoxin and erythropoietin (EPO)/
receptor (EPOR), the seven targets of the CAPRI
experiment†, and the unbound–unbound test
cases of the benchmark compiled by Chen et al.,33

none of which was used in our training set. As an
example, the effect of the new energy function on
the energy/RMSD profile for the docking of EPO
and EPOR is shown in Figure 1. As can be seen,
the relative energy values of the conformations in
the vicinity of the native complex structure also
improved with the new energy function. The
energy/RMSD profiles of the rest of complexes in
the test set (Table 1) became also more funnel-like
(not shown), which indicates that the optimized
parameters are applicable to complexes outside
the training set.

Distribution of docking poses in the training
set and in the test set

The energy/RMSD profile provides only a 1-D
representation of the 6-D rigid-body docking
energy landscape of the complex and requires
prior knowledge of the native structure. Visualiza-
tion of the spatial distribution of the docked poses
around the receptor can result in a more objective
and detailed picture. In Figure 2 we plot the pos-
itions of the center of mass of the ligand in all of
the rigid-body docking poses obtained for a rep-
resentation of complexes of the training set: a
protease–inhibitor (chymotrypsin/APPI; PDB
1ca0); an electron-transfer complex (cytochrome f/
plastocyanin; PDB 2pcf); and an antibody–antigen
(Fab/lysozyme; PDB 1mlc). In the same Figure is
shown a representation of complexes of the test
set: a protease-inhibitor (ribonuclease inhibitor/
ribonuclease A; PDB 1dfj); an electron-transfer
complex (FNR/ferredoxin; PDB 1ewy); and an
antibody–antigen (IgG1 E8 Fab/cytochrome c;
PDB 1wej). The dots have been colored from red
to blue, according to the energy values of the

function, as defined by equation (1). RMSD is calculated for the ligand interface Ca atoms (defined as those with at
least one atom at ,4 Å from any receptor atom) with respect to the native complex structure. The average energy
value for the docking poses within a sliding 5 Å RMSD range is represented as a continuous line. The complexes
chymotrypsin/APPI (PDB 1ca0); cytochrome f /plastocyanin (PDB 2pcf); and Fab/lysozyme (PDB 1mlc) were included
in the initial training set used to derive the optimized parameters. An example of a complex not included in the initial
training set, EPO/EPObp (PDB 1eer), is shown.

† http://capri.ebi.ac.uk
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Figure 2. Representation of the docking poses obtained for complexes of the training set: (a) chymotrypsin/APPI; (b)
cytochrome f /plastocyanin; and (c) Fab/lysozyme; and of the test set: (d) ribonuclease inhibitor/ribonuclease A; (e)
FNR/ferredoxin; and (f) IgG1 E8 Fab/cytochrome c. The native complex structures (PDB codes: 1ca0; 2pcf; 1mlc; 1dfj;
1ewy; 1wej, respectively) are represented (receptor in gray; ligand in green). The dots represent the center of mass of
every ligand pose after the rigid-body simulations. They are colored according to the energy value of each solution
from red (lowest energy) to blue (highest energy).

848 Mapping Protein Interfaces by Docking



corresponding pose (from lower to higher energy
values, respectively). An accumulation of low-
energy solutions around the known position of the
ligand in the complex can be observed, both in com-
plexes in the training set and in the test set.

The analysis of these distributions can be further
facilitated using a spherical coordinates projection
of the positions of the ligand’s center of mass (see
Materials and Methods). These projected docking
landscapes (shown in Figure 3(a) for selected com-
plexes) indicate clearly the accumulation of low-
energy solutions around the known binding site.
Zones with high density of low-energy solutions

are shown in red, while regions with high-energy
solutions or no solutions at all are shown in blue.
Averaging neighboring regions removes some of
the noise and shows more clearly the populated
areas of both low and high-energy regions (red
and blue zones, respectively), as can be seen in
Figure 3(b). In this analysis, the receptor surface is
considered spherical (thus overlooking all minor
geometrical details). In some cases, this might be an
oversimplification, but it provides a simple visual-
ization of the distribution of docked poses on the sur-
face of the receptor, which can be useful to compare
docking landscapes of different complexes.

Figure 3. (a) Representation of the rigid-body docking poses for the complexes chymotrypsin/APPI (PDB 1ca0);
cytochrome f /plastocyanin (PDB 2pcf); and Fab/lysozyme (PDB 1mlc). The position of the center of mass of every
ligand docking pose is represented in spherical coordinates as a 2-D sinusoidal equal-area projection, and colored
(from red to blue) according to the energy values (low energies in red; high energies in blue). (b) The same docking
energy landscapes, averaged as described in Materials and Methods, and colored according to the same criteria.
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Mapping residue interface propensities onto
the protein surface

We next proceeded to investigate how the
observed trends in docking pose distributions and
energy landscapes could be translated into the pro-
pensities of the individual receptor surface resi-
dues to be buried in the putative complexed
structures. For each receptor–surface residue, the
relative surface buried upon ligand binding was
calculated, and this value was averaged for all
docking poses according to a Boltzmann distri-
bution at the elevated simulation temperature, as
defined by equation (4). This energy-based weight-
ing system increases the influence of the low-
energy solutions in the final average relative
buried surface values (for more details, see
Materials and Methods). In Figure 4(a) the per-
residue segments of the molecular surface of chy-
motrypsin are colored from red to blue according
to the energy-averaged buried surface values cal-
culated using the complete set of docking solutions
ðN ¼ 5958Þ for the chymotrypsin/APPI complex.
This representation reflects the zones of the recep-
tor surface where the lowest-energy solutions
accumulate (in red). High-energy solutions have
little influence on the final values, so if we compute
only the relative buried surface values per residue
for the 100 lowest-energy solutions (instead of the
total number of 5958), the results are very similar,
as can be seen in Figure 4(b). Moreover, if we calcu-
late the same values using the 100 lowest-energy
solutions without any energy weighting, as defined
by equation (5), the results are practically identical,
as can be seen in Figure 4(c). This averaged buried
surface (ABS) value is easier to compute and
reflects the number of low-energy solutions in
which a particular residue is involved in the inter-
face: a value of 0 for a particular residue would
mean that it is not found in the interface in any of
the 100 lowest-energy solutions, whereas a value
of 1 would mean that it is buried completely upon
binding in all 100 lowest-energy docking solutions.
Using these values and ,ABS . (estimator for the
expected ABS value from a random distribution of
the docking interfaces), we can calculate the nor-
malized interface propensity (NIP) per residue
(see Materials and Methods). A normalized pro-
pensity of 0 will indicate that the residue is found

Figure 4. Mapping of the averaged relative buried sur-
face per residue on the receptor molecular surface for the
docking of chymotrypsin (PDB 5cha) and APPI (PDB

1aap). The Connolly surface of the receptor is rep-
resented, and residues are colored according to their
ABS values (residues in red/blue have highest/lowest
values, respectively). The position corresponding to the
experimental complex structure is marked in green. (a)
Plot obtained from all 5958 docking poses, after weight-
ing according to a Boltzmann distribution (equation (4)
in Materials and Methods). (b) Plot obtained from the
100 lowest-energy docking poses with the same energy
weighting (equation (4) with N ¼ 100). (c) Plot obtained
from the 100 lowest-energy docking poses with no
energy weighting, as defined by equation (5).
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in the docking interfaces as frequently as expected,
while a value of 1 (maximum expected value)
would indicate that it is found in absolutely all
the docking interfaces. Negative values would
indicate that the residue is found in the docking
interfaces less frequently than expected. Figure 5
shows the interface propensity maps calculated
for complexes from both the training and test sets.
The accumulation of low-energy solutions in the
vicinity of the known binding sites indicates the
existence of preferred binding areas for protein–
protein docking. We will now compare these
interface propensity maps with the experimental
interfaces and explore their potential to predict
protein–protein interaction sites.

Interface propensity maps from the docking
poses: prediction of binding sites

The observed distribution of the docking inter-
face propensities suggests that they can be used to
predict which residues are likely to be involved in
the interface. We initially used a loose NIP cutoff
of 0.0 to define the theoretical binding residues
(i.e. those found in the docking interfaces more fre-
quently than expected). In order to compare this
theoretical binding site with the experimental one,
we can compute the coverage, i.e. percentage of the
experimental binding site that is predicted correctly:

COVERAGE ¼ 100
NEXP

r > NPRED
r

NEXP
r

ð2Þ

where NEXP
r and NPRED

r are the number of residues in
the experimental and predicted binding site,
respectively.

The statistical significance of the predicted cov-
erage values was evaluated by a x2 test. Contin-
gency tables were built for each prediction, for
which a P significance (probability that the predic-
tion is random) was computed. As an example, in
Table 2 is shown the contingency table for the pre-
dicted receptor and ligand interfaces of the com-
plex chymotrypsin/APPI (PDB 1ca0) compared to
the experimental ones.

In Table 3 are listed the values of the percentage
of the experimental interface covered by the pre-
dicted one in the complexes of the training and
test sets (for both receptor and ligand molecules),
as well as their confidence values. As can be seen,
the predicted interfaces differ from a random dis-
tribution (confidence .95%) in the majority of the
molecules both in the training set (69%) and in the
test set (81%). If we consider only the significant
predictions, the average percentage of the experi-
mental interface covered by the predicted one in
the complexes of the training set is 86% (89% for
the receptor interfaces; 81% for the ligand inter-
faces). The results for the test set are very similar:
the average coverage is 80% (83% for the receptor
interfaces; 78% for the ligand interfaces).

High-propensity binding patches in the
training set

The predicted binding sites listed in Table 3 are
formed by residues found in the docking interfaces
more frequently than expected. This yields, in gen-
eral, theoretical interaction sites larger than the
experimental ones. Although we found a signifi-
cant correlation between the predicted and native
interfaces in most of the cases, some concern may
arise about the practical application of these large
predicted binding sites. Thus, it may be beneficial
to reduce their size by selecting residues with
stronger interface propensities, that is, by increas-
ing the NIP cutoff value used to define the theoreti-
cal binding sites. As can be seen in Figure 6(a),
when the NIP cutoff value was increased, the accu-
racy (i.e. percentage of correctly predicted resi-
dues) of the theoretical binding sites in the
training set improved considerably, although it
increased the number of molecules with no detect-
able high-propensity residues. As can be seen in
Table 4, at NIP cutoff of 0.4 the average accuracy
of the high-propensity binding patches (found in
65% of the molecules) is about 85%. Higher cutoff
values could be imposed to try to find residues
even more likely to be in the native interface; e.g.
at NIP cutoff of 0.7 the high-propensity binding
patches, found in 19% of the molecules, are all cor-
rect (results not shown).

High-propensity binding patches in the test set

In order to test the general applicability of the
method, we have analyzed the existence of high-
propensity binding patches in an independent test
set formed by complexes not used in the training
set (Table 1; for more details about the test set
selection, see Materials and Methods).

As can be seen in Figure 6(b), when the NIP cut-
off value was increased, the accuracy (i.e. percen-
tage of correctly predicted residues) of the
theoretical binding sites in the test set improved

Table 2. x2 test for the comparison between predicted
and experimental interfaces in the interaction chymo-
trypsin/APPI

In experimental
interface

Not in
experimental

interface

Receptor
In predicted interface 21 (5.3) 21 (36.7)
Not in predicted
interface

5 (20.7) 158 (125.6)

x2 ¼ 66.4; P , 1024

Ligand
In predicted interface 8 (5.8) 14 (16.2)
Not in predicted
interface

6 (8.2) 25 (22.8)

x2 ¼ 1.9; P ¼ 0:17

The x2 test is based on the number of residues inside/outside
the predicted and experimental interfaces (expected occurrences
for a hypothetically random distribution in parentheses).
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Figure 5 (legend opposite)
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Figure 5. Maps of the residue interface propensities for some receptor molecules. The 100 lowest-energy docking
solutions were used to generate the maps. The color-coding is the same as that in Figure 4. Complexes of the training
set: (a) chymotrypsin (PDB 5cha)/APPI (PDB 1aap); (b) cytochrome f (PDB 1ctm)/plastocyanin (PDB 1ag6); (c) subtili-
sin (PDB 2st1)/SSI (PDB 3ssi). Complexes of the test set: (d) ribonuclease inhibitor/ribonuclease A (PDB 1dfj); (e)
FNR/ferredoxin (PDB 1ewy); and (f) IgG1 E8 Fab/cytochrome c (PDB 1wej).

Table 3. Comparison between the predicted and the experimental interfaces

Receptor Ligand

Complexa Coverageb Sizec Pd Coverageb Sizec Pd

Parameterization set
1ca0 81 1.6 ,1024 57 1.6 0.17
1cbw 92 1.4 ,1024 64 1.9 0.16
1acb 77 1.4 ,1024 41 1.9 0.44
1cho 89 1.4 ,1024 77 1.6 ,0.05
1cgi 92 1.3 ,1024 70 1.2 ,0.05
2kai 54 1.3 ,1024 79 2.2 0.06
2sni 93 2.6 ,1024 53 1.4 0.09
2sic 83 2.8 ,1024 46 2.5 0.27
1cse 96 2.9 ,1024 41 1.8 0.53
2tec 82 2.4 ,1024 45 1.5 0.90
1taw 83 1.6 ,1024 62 1.8 0.13
2ptc 89 1.7 ,1024 36 2.0 0.16
3tgi 29 1.8 0.78 64 2.1 0.44
1brc 80 1.8 ,1024 62 1.7 0.09
1fss 100 4.2 ,1024 83 1.2 ,1024

1bvn 90 2.0 ,1024 86 1.4 ,1024

1bgs 95 1.3 ,1024 94 1.3 ,1024

1ay7 100 1.4 ,1024 94 1.8 ,1024

TEM1e 59 2.3 0.07 79 1.2 ,1024

1ugh 97 2.2 ,1024 75 0.9 ,1024

2pcb 92 3.8 ,1024 73 2.5 ,0.05
2pcf 92 1.6 ,1024 73 1.1 ,1024

1mlc 100 3.2 ,1024 29 3.2 0.11
1vfb 100 1.9 ,1024 83 3.1 ,0.05

Test set
1ewy 100 1.9 ,1024 68 1.2 ,1024

1eer 91 2.6 ,1024 75 1.4 ,1024

1kkl 11 3.1 0.37 81 1.2 ,1024

VP6FABf 91 4.5 ,1024 100 4.9 ,1024

1ken 97 3.2 ,1024 100 3.4 ,1024

1kxv 10 2.7 0.19 83 1.9 ,1024

1kxt 55 3.9 ,0.05 96 1.8 ,1024

1kxq 100 1.9 ,1024 96 1.7 ,1024

1l0x 0 2.8 ,0.05 100 6.2 ,1024

1avw 100 1.7 ,1024 94 2.6 ,1024

1dfj 89 1.8 ,1024 80 1.2 ,1024

1tgs 93 1.5 ,1024 82 1.2 ,1024

1ahw 89 5.7 ,1024 0 1.9 ,1024

1dqj 100 5.0 ,1024 39 2.7 0.68
1wej 100 4.1 ,1024 44 2.4 0.77
1avz 42 2.6 0.49 92 1.7 ,1024

1wq1 33 2.9 0.35 53 1.3 ,0.05
2mta 93 3.1 ,1024 100 1.7 ,1024

1bth 61 2.2 ,1024 39 1.2 0.84
1fin 68 2.4 ,1024 100 1.5 ,1024

1fq1 32 3.9 0.84 0 2.1 ,1024

Predicted interfaces were defined as those surface residues with NIP . 0.0 (equation (7) in Materials and Methods).
a The PDB code of the complex is shown here for clarity, but the unbound subunits were used during docking simulations (see

Table 1).
b Percentage of residues in the experimental interface predicted correctly.
c Relative size of the predicted interface with respect to the experimental one (i.e. total number of residues in the predicted interface

divided by the total number of residues in the experimental interface).
d P-significance values obtained from a x2 test (see Materials and Methods).
e Complex TEM-1 b-lactamase/BLIP; see Table 1 for coordinates.
f Complex VP6/Fab; see Table 1 for coordinates.
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considerably in a fashion similar to that in the
training set (expectedly, it increased the number of
molecules with no detectable high-propensity
residues). As can be seen in Table 4, at NIP cut-
off of 0.4 the average accuracy of the high-pro-
pensity binding patches (found in 62% of the
molecules) is 73%. If antigen molecules are
removed from the analysis (see Discussion), the
average accuracy of the high-propensity binding
patches (NIP cutoff ¼ 0.4) increases to 81%
(Figure 6(c)). The results obtained in the test set
are thus comparable to the values obtained in
the parameterization set.

Docking non-native ligands

So far, we have generated interface propensity
maps starting from the unbound receptor and
ligand subunit coordinates of known protein–pro-
tein complexes. For test purposes, we have
explored the possibility of docking a non-native
ligand. For that, we performed docking simu-
lations using the 3-D coordinates of unbound
receptors (chymotrypsin, PDB 5cha; cytochrome f ;
PDB 1ctm; UDG, PDB 1akz) and a non-native
ligand such as lysozyme (PDB 1lza) instead of
their native ligands (APPI, plastocyanin and UGI,

Figure 6. Comparison between
the theoretical and the experimental
binding sites in (a) the training set;
(b) the test set; and (c) the same
test set after excluding antigens.
The average accuracy (percentage
of predicted residues located cor-
rectly in the native interface; red
line) increases proportionately to
the NIP cutoff value that is used to
define the theoretical binding sites.
The blue line shows the percentage
of cases in which a predicted bind-
ing patch (formed by at least one
residue with NIP . cutoff) is
detected.
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respectively). The results are quite interesting: the
lysozyme docking poses accumulated around the
experimental location of the native ligand in some
of the receptor molecules. For instance, the pre-
dicted receptor interface derived from the chymo-
trypsin/lysozyme docking simulations (at NIP
cutoff ¼ 0.0) covered 73% ðP , 1024Þ of the recep-
tor experimental interface (as compared to the
value of 81% obtained by using the native APPI
ligand; Table 3). Furthermore, a high-propensity
binding patch was found on the surface of chymo-
trypsin (14 residues; 79% accuracy). However, the
predicted interface derived from the cytochrome
f /lysozyme docking (at NIP cutoff ¼ 0.0) did not
show a significant correlation with the experimen-
tal interface, and the four residue high-propensity
binding patch found had a low level of accuracy
(25%). Lastly, the predicted interface derived from
the UDG/lysozyme docking simulations (at NIP
cutoff .0.0) covered 52% (P , 0.05) of the receptor
experimental interface (as compared to the value of
97% obtained by using the native UGI ligand;
Table 3), but no high-propensity binding patch
was found.

Discussion

Global rigid-body docking: exploring the whole
protein surface

In this work we have explored the docking
energy landscapes of known protein–protein com-
plexes using ensembles of docked structures gener-
ated by a rigid-body pseudo-Brownian global
energy optimization procedure. Previously4 we
described a two-step docking procedure that
allowed sampling of approximately half of the sur-
face of the receptor around the known binding site.
We have extended the search to the whole receptor
surface. No spatial or biological restrictions were
used during simulations, which allowed a com-
plete sampling of the docking landscape around
each subunit. A side-chain refinement step was
used in our previous work in order to re-evaluate
the 400 lowest-energy interfaces in search for the
near-native solution. However, the goal here is the
analysis of all docking poses for the description of
the complete docking landscape. A side-chain
refinement of all the thousands of interfaces gener-
ated by the rigid-body protocol would have been
computationally too expensive, so we have pre-
ferred to focus the analysis onto the rigid-body
docking landscape.

Optimized energy function for
protein–protein association

It was observed repeatedly that force-field
energy as well as various solvation and electro-
static terms failed to discriminate consistently the
near-native solution from false positives in docking
simulations. A number of factors contribute to this

Table 4. High-propensity binding patches

Proteina

Number of residues
in patch Patch accuracyb

Parameterization set
1ca0 (receptor) 12 83
1ca0 (ligand) 2 100
1cbw (receptor) 14 93
1acb (receptor) 14 86
1cho (receptor) 11 91
1cho (ligand) 2 100
1cgi (receptor) 15 100
1cgi (ligand) 1 100
2kai (receptor) 7 57
2sni (ligand) 9 44
2sic (ligand) 2 0
1taw (receptor) 9 100
1taw (ligand) 2 100
2ptc (receptor) 11 91
3tgi (receptor) 3 0
1brc (receptor) 3 100
1brc (ligand) 1 100
1fss (ligand) 8 100
1bvn (receptor) 3 100
1bvn (ligand) 5 100
1bgs (receptor) 6 100
1bgs (ligand) 3 100
1ay7 (receptor) 8 100
TEM1 (ligand)c 20 95
1ugh (ligand) 10 100
2pcb (receptor) 9 56
2pcb (ligand) 7 29
2pcf (receptor) 10 100
2pcf (ligand) 3 100

Test set
1ewy (receptor) 11 100
1ewy (ligand) 7 71
1eer (ligand) 6 83
1kkl (ligand) 4 100
VP6FAB (ligand)d 4 100
1ken (ligand) 11 100
1kxv (receptor) 11 0
1kxv (ligand) 8 75
1kxt (receptor) 9 0
1kxt (ligand) 9 89
1kxa (receptor) 13 100
1l0x (receptor) 13 0
1avw (receptor) 7 100
1avw (ligand) 7 86
1dfj (receptor) 10 90
1dfj (ligand) 3 100
1tgs (receptor) 6 100
1tgs (ligand) 4 100
1ahw (ligand) 2 0
1dqj (receptor) 1 100
1wej (receptor) 9 89
1avz (receptor) 2 0
1avz (ligand) 1 100
2mta (ligand) 6 100
1bth (ligand) 1 0
1fin (ligand) 9 100

All cases where a high-propensity binding patch was found
(as defined by those surface residues with NIP . 0.4; equation
(7) in Materials and Methods).

a The PDB code of the complex is shown here for clarity, but
the prediction results apply to the unbound subunits listed in
Table 1 (receptor or ligand as specified).

b Percentage of predicted residues located correctly in the
experimental interface.

c Complex TEM-1 b-lactamase/BLIP; see Table 1 for
coordinates.

d Complex VP6/Fab; see Table 1 for coordinates.
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phenomenon: (i) each of the terms used in the
energy functions can be estimated only with con-
siderable uncertainty (e.g. the values of partial
charges and internal dielectric constant, depths of
the minima for van der Waals interactions, and
per-atomic solvation parameters vary up to two-
fold and sometimes more between various esti-
mates/parameterizations); (ii) van der Waals
interactions and, to a lesser extent, electrostatics
and other terms, are highly sensitive to the inac-
curacies of the atomic coordinates, the situation
being exacerbated by the lack of relaxation in the
structures produced by the rigid-body docking
simulations; and (iii) certain phenomena such as
aromatic/aromatic interaction might be largely
unaccounted for in the existing force-field
parameters.

These problems may be alleviated by the appro-
priate weighting of the terms. Possible benefits of
weighting are twofold: (i) it can correct for sub-
optimal choice of uncertain parameters such as
internal dielectric constant, and (ii) it can down-
weight the terms that carry larger noise. While the
latter may seem non-physical, it can be shown
easily that the optimal weight of a term, which
includes a noise component declines as 1=ð1 þ
s2

n=s
2
s Þ with the increase of the amplitude of noise

(s2
n is the mean-square deviation of the noise com-

ponent and s2
s is that of the signal).

We thus introduced weighting coefficients for
van der Waals, electrostatics and hydrogen bond-
ing potentials. Furthermore, we have split the
atomic ASA-based solvation term into three com-
ponents: polar desolvation, aliphatic hydrophobi-
city and aromatic hydrophobicity. The coefficients
for the different energy terms were optimized on a
training set using as objective function the ranking
of the near-native conformations for a set of 24
protein–protein complexes of known structure,
docked from the unbound subunits. After the
energy re-evaluation using the optimized par-
ameters, the near-native solutions ranked below
100 in 70% of the cases of the training set (as com-
pared to 33% with the old energy function). In
order to exclude the possibility of over-fitting of
the parameters on the training set, we explored
the effects of the parameter optimization on the
ranking of more remote solutions, as well as on
the ranking of the near-native solution in a test set
formed by complexes not included in the training
set. We observed that although the new energy
function was optimized to rank as best as possible
only a single near-native solution per complex, the
energy landscapes in the vicinity of the native
structure adopted a more defined funnel-like
shape (Figure 1). This suggests that the optimiz-
ation procedure was not distorted by particular
features/inaccuracies of the specific near-native
solutions used. On the contrary, the new energy
function seems to result in better behavior of the
averaged energy for the ensemble of solutions
near the native binding sites. Furthermore,
we found that the new energy function also

improved the docking landscapes of other com-
plexes not included in the initial training set
(Figure 1).

It is noteworthy that the optimal weighting fac-
tor for the aromatic solvation is considerably larger
than those obtained for the rest of the solvation
terms. It might indicate that the parameters for
water/octanol transfer of aromatic atoms are not
optimal to estimate the energy gain of burying aro-
matic atoms in the (often) non-aliphatic environ-
ment of the protein–protein interfaces. As an
alternative explanation, the larger weighting value
for the solvation of aromatic atoms could be com-
pensating for some specific aromatic interactions
underestimated or not considered at all in the rest
of the energy function, such as the van der Waals
attraction. Indeed, Lomize and co-workers
reported recently that the solvation parameter for
aromatic carbon should be increased several-fold
when no explicit van der Waals interaction is
included.34

Validation of the binding-site prediction on a
test set of 21 complexes

We used 21 complexes not included in the initial
parameterization set as an external validation set.
Overall, the performance of the method on the test
set was comparable to its performance on the train-
ing set.

The first example in the test set is a recently
solved electron transfer complex formed by the
proteins FNR and Fd. As can be seen in Figure
5(e), the predicted binding sites correlated extra-
ordinarily well with the experimental interfaces,
and we found highly accurate high-propensity
binding patches in both FNR and Fd molecules
(100% and 71% accuracy, respectively; see Table 4).
These high-propensity binding areas detected in
the surface of both molecules, as can be seen in
Figure 7(a) and (b), may be explained by the exist-
ence of favorable forces that orient the molecules
during the association process to allow an efficient
electron transfer between the redox centers, as
mutational studies suggest.35 Another interesting
example is the interaction between EPO and
EPOR. The predicted receptor interaction site (NIP
cutoff ¼ 0.0) covered 91% ðP , 1024Þ of the exper-
imental one (see Table 2). Interestingly, we found a
six residue high-propensity binding patch in the
ligand, located correctly (83% accuracy) in one of
the two experimental ligand interaction sites:
indeed the one reported to have significantly
higher affinity (Figure 7(c)).36

The following examples in the test set came from
the CAPRI experiment. The first of the CAPRI tar-
gets was the HPr kinase/HPr complex, in which
the ligand interface was predicted perfectly (Tables
3 and 4). However, no good prediction was found
for the receptor interface, probably because of the
large conformational movement of the C-terminal
helix of the receptor HPr kinase between the
unbound and the complexed states. The following

856 Mapping Protein Interfaces by Docking



Figure 7. High-propensity binding sites found in different molecules of the test set: (a) FNR (bound ferredoxin is
shown in green); (b) ferredoxin (bound FNR in green); (c) EPO (bound EPObp in green); (d) Fab (bound hemagglutinin
in green); (e) TCR-b (bound speA in green; in yellow is the expected position of the TCR-a subunit as in PDB 1tcr); and
(f) cyclin (bound CDK2 is shown in green). High-propensity binding residues (NIP . 0.4) are shown in red.
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five CAPRI targets were antigen–antibody com-
plexes, in which the structure of the bound anti-
body was provided in a random orientation.
Interestingly, the antibody-binding interfaces were
predicted excellently (Tables 3 and 4): high-propen-
sity patches were found in four out of a total of five
cases, with an average level of accuracy of 91%. For
example, Figure 7(d) shows the interface prediction
for the hemagglutinin/Fab complex, in which the
11 residue high-propensity patch found in the Fab
ligand was located 100% correctly on the exper-
imental interface. However, the predictions were,
in general, poorer for the antigen molecules (see
the next sub-section). In the last CAPRI target, the
TCR-b/speA complex, a high-propensity patch
was found in the receptor, although in a location
different from the experimental binding site. Inter-
estingly, as can be seen in Figure 7(e), this pre-
dicted binding site was actually located in the
previously described interface between TCR-b and
TCR-a (PDB 1tcr). In the absence of TCR-a during
simulations, it seems that low-energy docking
poses accumulated in the area that TCR-b uses for
the binding to TCR-a, a “protein-phylic” patch
that the method thus recognized.

The remaining complexes in the test set were
taken from the benchmark independently built by
Chen et al.33 After removing those cases already
included in our training set, we had a set of 12
complexes divided in four categories (enzyme-
inhibitor, antibody–antigen, others, and difficult
cases) according to the definition in the original
benchmark. It is interesting to compare the results
obtained for the different categories. In the three
complexes classified as enzyme-inhibitor (PDB
codes 1avw, 1dfj, 1tgs), the results were perfect:
high-propensity binding patches were found in all
of them (both in receptor and ligand molecules)
with 96% of the predicted residues located cor-
rectly at the interfaces. It is interesting that even in
a complex such as the ribonuclease A/inhibitor
(PDB 1dfj), whose topology is completely different
from that of the standard protease-inhibitor, the
predictive results were excellent, as can be seen in
Figure 5(d). As for the three antibody–antigen
complexes (PDB codes 1ahw, 1dqj, 1wej), the
results were similar to those obtained in the rest of
the antibody–antigen cases: good prediction of
binding sites in the antibody surfaces, but no cor-
rect predicted sites in the antigen surfaces (see the
next sub-section). In the following three complexes,
classified in the original benchmark as others (PDB
codes 1avz, 1wq1, 2mta), we found high-propen-
sity binding patches in three of the six molecules
involved, but one of them (HIV-1 NEF) yielded
incorrect predictions (0% accuracy). This is per-
haps a non-adequate case for a prediction test, as
the structure of the unbound receptor (PDB 1avv)
is lacking three residues that are essential for bind-
ing: thus, it is not surprising that the correct bind-
ing patch is not found on this incomplete protein
structure. In the last three complexes, described as
difficult cases (PDB codes: 1bth, 1fin, 1fq1), the

results were slightly worse, as expected: high-pro-
pensity binding patches were found in only two
of the six molecules involved, and one of them
(pancreatic trypsin inhibitor) was not located cor-
rectly in the interface. All of these difficult cases
either have major backbone movement between
the unbound and bound conformations, or are
lacking an important number of residues in the
structure of the unbound subunits. These challen-
ging conditions are pushing the rigid-body dock-
ing approach to the limit. Nevertheless, it is
remarkable that, in spite of these difficulties, we
can find a high-propensity binding patch in cyclin
located correctly in the interface with CDK2, as
can be seen in Figure 7(f).

Poor prediction of antibody-binding sites on
antigen surfaces

Relatively poor performance of the NIP as a pre-
dictor of the protein binding patch for the antigens
is perhaps not surprising, since the antibody–anti-
gen system represents a rather special case of pro-
tein–protein interaction, where only one partner
(the antibody) has actively evolved for optimal
binding, while the other partner (the antigen) pas-
sively provides relatively arbitrary interface. For
instance, among the CAPRI targets there were
three different a-amylase/VHH complexes (PDB
codes 1kxv, 1kxt, and 1kxa), where the VHH anti-
body bound to different areas of the a-amylase sur-
face in each complex. Interestingly, docking
simulations found an identical high-propensity a-
amylase binding site in all these three cases. This
predicted site correlates very well (89% accuracy)
with the experimental interface of the a-amylase/
VHH Amd9 complex, indeed the one reported to
have the strongest affinity amongst the three
complexes.37 This brings up the interesting ques-
tion of whether these antibody molecules prefer-
ably bind zones of the antigen surface with higher
“protein-phylicity”. A systematic analysis of high-
propensity patches in antigen surfaces, beyond the
scope of this work, could help to understand
immunogenicity properties, which would be extre-
mely useful for antibody design.

Docking a non-native ligand to predict binding
interfaces of a receptor

The surprising results obtained when using a
non-natural ligand during the docking simulations
indicate that, at least for some complexes, the pre-
ferred binding areas derived from the interface
propensity maps may not depend on the ligand
molecule used, and might suggest the existence of
non-specific binding areas in the protein surfaces.
This would be expected for proteases, which are
functionally required to interact with a variety of
polypeptides. It would be highly interesting to ana-
lyze if this is a general property of protein–protein
interfaces or if, on the contrary, this is a phenom-
enon associated only with certain protein–protein
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binding mechanisms. A complete analysis of the
effect of using different probes on the docking
landscape is beyond the scope of this work, and
will be studied in a forthcoming publication.

Conclusions

The method described here can be applied
immediately to suggest “hot spots” in the subunits
of the complexes for experimental testing by muta-
genesis. The identification of protein–protein inter-
action sites on a protein surface can be used to
restrict the conformational search during the dock-
ing simulations. This would allow the selection of
a sub-set of rigid-body docking solutions for
further refinement when no experimental infor-
mation about the binding site is available. A
further development would be the introduction of
genomics information (conservation of residues in
the interfaces), which could lead to more accurate
predictions. This methodology could be applied to
large datasets of individual structures generated
by the structural genomics efforts or by homology
modeling methods. Prediction of putative protein
interfaces can provide additional evidence for
candidate protein pairs detected by other
techniques, such as the Rosetta Stone method,38

which could be an important step in building the
map of interactions of a given organism at the
atomic level.

In conclusion, we have described a new efficient
protocol for sampling the complete protein sur-
faces in protein–protein docking. The ensembles
of rigid-body docking solutions for a training set
of 24 protein–protein complex structures were
used to derive an optimized energy function for
protein–protein association. We found that low-
energy docking solutions accumulated in the vicin-
ity of the experimental protein–protein interfaces,
and devised a graphic way of visualizing the puta-
tive binding hot spots by averaging the interfaces
of the 100 lowest-energy docking poses. The inter-
face propensity maps generated from the docking
poses showed excellent correlation with the exper-
imental protein-binding sites in the training set,
and these results were further confirmed on an
independent test set of 21 protein–protein com-
plexes. The work presented here indicates the
existence of energetically favorable binding areas
on the surfaces of proteins, and provides a useful
tool to identify protein-binding sites on individual
structures.

Materials and Methods

Rigid-body docking simulations: energy function

The rigid-body docking procedure used here is a vari-
ation of a previously described method, benchmarked on
a set of experimental protein–protein complex
structures.4 Global energy optimization was performed
by rigid-body sampling of the orientations of the ligand

molecule with respect to the receptor molecule (whose
position is fixed). The interaction energy was rep-
resented by five types of grid potentials,39,40 pre-calcu-
lated on a grid as described elsewhere:4,41 the van der
Waals potentials for a hydrogen atom probe ðEHvwÞ and
for a heavy-atom probe ðECvwÞ; an electrostatic potential
where the partial atomic charges of the receptor were
corrected by the induced surface solvent charge density
to account for the solvent screening effect on the inter-
molecular pairwise electrostatic interactions ðEsolv

el Þ;30 the
hydrogen-bonding potential ðEhbÞ; and a simple hydro-
phobic potential roughly proportional to the number of
hydrophobic atoms of the ligand in contact with the
hydrophobic surface of the receptor ðEhpÞ: Energy bal-
ance between the different terms was optimized pre-
viously on a training set of known protein–protein
complexes.4 The solvation energy ðEsolvÞ was calculated
using an atomic solvent-accessible surface (ASA)-based
model42,43 with per-atomic parameters derived44 from
experimental vapor–water transfer energies for side-
chain analogues45 and additional experimental data for
charged solutes.46 This solvation term was added to the
total energy to re-evaluate the docking solutions as
described:4

E ¼ EHvw þ ECvw þ 2:16Esolv
el þ 2:53Ehb þ 4:35Ehp

þ 0:20Esolv ð3Þ

The grid potentials generated from the receptor were cal-
culated in a box covering all the receptor atoms plus a
margin of 10 Å (Figure 8). An extended box that
depended on the size of the ligand was defined. In
order to maintain the ligand molecule in the vicinity of
the receptor during simulations, an energy penalty was
applied outside this extended box. If a ligand atom is
inside the map box, its energy is given by the grid poten-
tials. For all ligand atoms inside the extended box, but
outside the grid potential box, the energy is zero. For
each ligand atom outside the extended box, a penalty of
þ1 kcal/mol is added to the energy.

Rigid-body docking simulations: conformational
sampling procedure

In order to improve conformational sampling, mul-
tiple initial ligand positions were generated around the
receptor, by defining a series of points ðiRec ¼
1; 2;…;Nsf

recÞ with an average distance of 15 Å between
them, as can be seen in Figure 9(a). These points were
generated systematically on the receptor solvent-accessi-
ble surface (expanded by 3 Å to overcome minor struc-
tural details) by dividing the surface into triangles with
average side 15 Å. This distribution of points around
the molecule is insensitive to the atomic details of the
molecular surface, but reflects the overall shape of the
molecule (including sizeable concavities and protuber-
ances), and is more realistic than considering the mol-
ecule as a sphere or polyhedron as in our previous
work. A similar set of points ðiLig ¼ 1; 2;…;Nsf

ligÞ was gen-
erated around the ligand molecule. Imaginary axes per-
pendicular to the molecule surface were defined from
each receptor and ligand point. For each receptor surface
point ðiRecÞ, various ligand orientations “aiming” at this
point were generated by superimposing every ligand
surface point ðiLigÞ onto the receptor point and aligning
their respective axes, as can be seen in Figure 9(b).
Finally, for each of these orientations, six 608 rotations
ðiRot ¼ 1;…; 6Þ were defined around the axis perpendicular
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to both receptor and ligand surfaces. This operation was
repeated for all receptor surface points in order to gen-
erate the total number of ligand starting conformations
(6Nsf

ligNsf
rec; which ranged from 1092 in the ribonuclease

Sa/barstar complex to 4488 in the Fab F44.1/lysozyme
complex).

For each ligand starting position {iRec; iLig; iRot};
sampling of rotational and translational space of the
rigid-body ligand around the receptor molecule was per-
formed by a pseudo-Brownian Monte-Carlo minimiz-
ation procedure47 implemented in the MolSoft ICM 2.8
program.48 The minimization procedure consisted of a
series of Monte-Carlo random moves of the position of
the ligand, each one followed by up to 200 steps of the
local conjugate gradient minimization. The simulation
terminated after 20,000 energy evaluations. New confor-
mations generated after each random move and local
minimization were selected or dropped according to the
Metropolis criteria49 with a temperature of 5000 K. The
final selection of conformations is a variation of a pre-
viously described procedure.4 A simple parallelization
protocol was used to accelerate calculations: all simu-
lations originated from a given receptor surface point
ðiRecÞ were run consecutively as a single computational
job (two to seven hours on a 667 MHz Alpha processor;
four to ten hours on a 700 MHz Pentium III workstation
running Linux). Thus, a total number of jobs equal to
the number of surface points around the receptor ðNsf

recÞ
were run in parallel (ranging from 14 to 44 per complex).
For each job, all the conformations accumulated after the
different MC runs (starting from 6Nsf

lig ligand
orientations/rotations) were merged in a single confor-
mational stack,50 from which the geometrically similar
conformations (RMSD of the ligand rotation and trans-
lation positional variables ,2 Å) were removed (see the
scheme in Figure 10). Later, the 400 lowest-energy
solutions were selected and compressed further so that
only the lowest-energy conformations with RMSD for
the ligand interface Ca atoms greater than 4 Å were

retained. Finally, for each complex, all conformational
stacks obtained from the different jobs were merged
into a single file, from which the geometrically similar
conformations (RMSD of the ligand rotation and trans-
lation positional variables ,2 Å) were removed as
described above.

Solvation term for protein–protein association

The solvation effect upon complex formation was cal-
culated using an atomic solvent-accessible surface
(ASA)-based model (i.e. as a sum of per-atomic contri-
butions proportional to the ASA)42,43 with parameters
derived from linear fitting to octanol/water transfer
energies for N-acetyl amino acid amide derivatives.51

These per atomic parameters, listed in Table 5, were cal-
culated for ten classes of atoms in the same fashion as
that described for vapor–water transfer parameters.44

The solvation energy was calculated separately for the
polar, aromatic and aliphatic atoms, and separate
weighting factors were assigned to these three com-
ponents. The ASPs derived from octanol/water transfer
energies seem to describe better the burial of solvent-
exposed residues in the interface.31 Since this solvation

Figure 8. The grid box where the
receptor potentials are pre-calcu-
lated (small cube) is shown around
chymotrypsin, with the van der
Waals potential for a heavy-atom
probe represented inside. A larger
box (defined by extending the grid
box by the ligand size: 40.1 Å)
where the ligand is allowed to
roam freely is shown (large cube).
The ligand molecule is shown in an
arbitrary position. The energy of
the ligand atoms inside the grid
box is given by the grid potentials.
The energy of the ligand atoms
inside the extended box, but out-
side the grid box, is zero. The pen-
alty energy for each ligand atom
outside the extended box is
þ1.0 kcal/mol.

Table 5. Atomic solvation parameters

s (cal/(mol Å2)) Radius (Å) Atom type

15.1 1.95 C aliphatic
17.7 1.8 C aromatic
217.0 1.7 N uncharged
254.8 1.7 Nþ, Nz in Lysþ

227.3 1.7 Nh1, Nh2 in Argþ

218.5 1.6 O hydroxyl
213.6 1.4 O carbonyl
229.9 1.4 O2 in Glu, Asp
11.2 2.0 S in SH
2.2 1.85 S in Met or S–S
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model includes the attractive component of the inter-
molecular van der Waals interactions, the explicit van
der Waals calculations are required here only to avoid
large intermolecular clashes in the rigid-body interfaces.
Because of that, it was not essential to use the correct
geometry of the interacting side-chains during van der
Waals calculations, and thus we were more confident in
the use of the rigid-body approach.

Optimization of the energy function

In order to optimize the parameters for protein–pro-
tein binding, a minimization process was applied, as
described below. The conformations obtained from the
rigid-body docking simulations were re-evaluated using
an energy function consisting of: (i) the van der Waals,

hydrogen bonding and electrostatic potentials calculated
from the grid maps; and (ii) the solvation energy calcu-
lated separately for the polar, aromatic and aliphatic
atoms, according to the original per-atomic parameters
(Table 5). Because the explicit solvation term was
included, neither the SChEM30 correction for solvent
electrostatic screening nor the hydrophobic grid poten-
tial (both used during the simulations) were included in
the final energy function, defined by equation (1). The
weights of the different energy terms (the weight for
electrostatics was kept as 1 for a reference) were opti-
mized through the amoeba simplex minimization
procedure,52 using a training set of 24 protein–protein
complexes (Table 1). For each iterative step, the new
weights defined a new energy function that was used to
re-evaluate the docking solutions and to calculate a new
ranking value for the near-native solution (i.e. the one

Figure 9. (a) Distribution of the ðiRec ¼ 1; 2;…;Nsf
recÞ points around the chymotrypsin receptor (red spheres) that is

used to define the starting positions for the docking of the APPI ligand. These points ðNsf
rec ¼ 23Þ were defined on the

receptor solvent-accessible surface expanded by 3 Å (represented by the small dots), with a minimum distance of
15 Å between them. (b) A series of points ðiLig ¼ 1; 2;…;Nsf

ligÞ around the APPI ligand was defined in the same
fashion ðNsf

lig ¼ 12Þ: Each iRec point around the chymotrypsin is superimposed onto each iLig point around the APPI in
order to define Nsf

recNsf
lig (276) different positions of the APPI ligand. The ligand is also re-oriented to align the axis per-

pendicular to the solvent-accessible surfaces of ligand and receptor at the match point. Finally, six ligand orientations
are generated for every position by rotating the ligand molecule in 608 increments around that axis. A total of
6Nsf

recNsf
lig (1656) starting positions for the APPI ligand around the chymotrypsin receptor are thus generated (one

starting ligand position is shown).
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with the lower RMSD) for each complex. The logarithm
of the sum of the ranking values of the 24 near-native
solutions (one per complex) was the objective function
to optimize (the logarithm function was used here to
avoid an excessive influence of the complexes in which
the near-native solution was ranked “poorly”). Five
independent minimizations were performed, starting
from different sets of random weighting values to ensure
convergence.

Analysis of the distribution of the docking poses:
representation of the energy landscape in
spherical coordinates

For each docking solution, the center of mass of the
ligand was represented in spherical coordinates with
respect to the center of mass of the receptor. A u angle
was calculated with respect to the z axis (which was cho-
sen arbitrarily), and a w angle was calculated from the

projection of the center of mass of the given solution
onto the xy plane, with respect to the x axis (defined by
the center of mass of the ligand in the known complex
structure). As can be seen in Figure 3(a), we can rep-
resent the spherical coordinates of the different docking
poses in a 2-D sinusoidal projection ðx ¼ w sin u;
y ¼ 90 2 uÞ; in which the position of the ligand in the
native complex structure (coordinates: {w ¼ 08, u ¼ 908})
is in the center of the plot. This projection is equal-area,
the scale is true along all parallels and central meridian,
and we can evaluate the density of docking poses at all
zones of the plot (because they correspond with the
true values on the spherical surface).

We generated a continuous energy map from the pre-
viously described point values as follows. The projection
of the distribution of docking poses was divided into
cells generated by a 2-D grid (60 £ 30). All 2-D unit cells
represented portions of the spherical space with equal
area. The energy values of the solutions within a particu-
lar grid cell were averaged and assigned to this cell. If a

Figure 10. Scheme of the global rigid-body docking procedure. A computational job is launched for each iRec starting
point around the receptor. The resulting conformations are merged and filtered to obtain the final conformational set
(for more details, see Materials and Methods).
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cell had no solutions inside, the highest energy value of
all solutions was assigned to that cell. After assigning
an energy value to all unit cells, the energy profile was
smoothed by averaging the value for each cell over the
surrounding 3 £ 3 cell region, as can be seen in Figure
3(b).

Analysis of the distribution of the docking poses:
predicted interface propensities

The distribution of docked poses obtained after global
docking was projected onto the molecular surface of the
receptor as follows. For every solvent-exposed residue
of the unbound receptor, the relative surface buried
upon binding was calculated for all docking poses and
averaged with Boltzmann weighting:

Energy-averaged buried surface ðEABSiÞ

¼
1

N

XN

k¼1

ASAUnb
i 2 ASABnd

ik

ASAUnb
i

e2ðEk2E0Þ=RT

 !
ð4Þ

where ASAi
Unb is the solvent-accessible surface area for

the receptor residue i before ligand binding; ASAik
Bnd is

the solvent-accessible surface area for the same residue
after ligand binding according to the pose k; Ek is the
energy value of that pose; E0 is the lowest energy value;
T is the temperature of the simulation (typically 5000 K);
R is the gas constant (1.987 cal/mol); and N is the total
number of docking poses.

A simplified version of the method was applied as fol-
lows. The averaged buried surface was calculated from
the 100 lowest-energy solutions, with no energy weight-
ing:

Averaged buried surface ðABSiÞ

¼
1

100

X100

k¼1

ASAUnb
i 2 ASABnd

ik

ASAUnb
i

 !
ð5Þ

From this value, we calculated the residue interface pro-
pensity:

Interface propensity ðIPiÞ ¼
ABSi

kABSl
¼

ABSi

1

Nsar

XNsar

i¼1

ABSi

ð6Þ

where Nsar is the number of total solvent-accessible
receptor residues. An interface propensity IP . 1 will
indicate that the residue is found in the docking inter-
faces more frequently than expected. Larger IP values
would indicate a stronger preference for the interface,
but their maximum expected values will be different for
each complex. Therefore, in order to compare IP values
for residues in different complexes, we have to normal-
ize them between the average value (kIPl ¼ 1) and the
maximum expected value (IPMAX):

Normalized interface propensity ðNIPiÞ

¼
IPi 2 kIPl

IPMAX 2 kIPl
¼

ABSi

kABSl
2 1

ABSMAX

kABSl
2 1

¼
ABSi 2 kABSl

ABSMAX 2 kABSl
ð7Þ

where ABSMAX is the maximum expected ABS value

ðABSMAX ¼ 1Þ: The normalized interface propensity
(NIP) value for a specific residue will indicate its prefer-
ence for the interface.

Definition of experimental interface

In order to compare predicted and experimental inter-
faces, the latter were defined as the residues in the native
complex structure with relative surface buried upon
binding RBS . 0.1:

Relative buried surface ðRBSiÞ ¼
ASAUnb

i 2 ASABnd
i

ASAUnb
i

ð8Þ

Statistical significance of the predictions

In order to determine if the global occurrence of the
predicted interfaces differs significantly from a random
distribution, we evaluated the predicted coverage values
by a x2 test. For each complex, the distribution of the
predicted interface residues was compared to the distri-
bution of the residues in the real interface. A contingency
table can be built for the comparison of these two distri-
butions, by computing the number of residues in the pre-
dicted interface that are in the real interface, the number
of residues in the predicted interface that are not in the
real interface, and the number of residues not predicted
to be in the interface that are actually in the real interface
(as in Table 2). The P significance obtained from applying
the x2 test (one degree of freedom) to this contingency
table indicates the probability that the distribution of
the predicted interfaces with respect to the experimental
ones differs from a random distribution. This is used
here to evaluate if the predicted coverage values are stat-
istically significant, or if, on the contrary, they could have
been obtained by chance alone.

Selection of protein–protein complexes in the
test set

The method presented here has been validated on a
test set formed by recently solved complexes not
included in the training of the energy function.

The first test case was the electron transfer complex
formed by the proteins FNR and Fd, which play an
essential role in photosynthesis.53 The X-ray structure of
the complex between the oxidized FNR and Fd from
Anabaena PCC7119 has been reported (PDB 1ewy),54 and
suggests a highly probable conformational state of the
electron transfer between these two proteins. The struc-
tures of the unbound FNR (PDB 1que) and Fd (PDB
1fxa) from Anabaena PCC7119 were used to generate the
interface propensity maps as described in previous sec-
tions. The second test case was the interaction between
EPO and EPOR. The structure of EPO is known, both in
its unbound form (PDB 1buy) and in complex with
EPObp, the extracellular ligand binding domain of
EPOR (PDB 1eer).55 The structure of the unbound dimer-
ized EPObp has been released recently (PDB 1ern). Since
each EPObp monomer binds to different areas of EPO,
and no contact between EPObp monomers is present in
the complex structure, only one of the EPObp monomers
was used during simulations.

A further seven complexes were taken from the recent
CAPRI competition (Table 1). The coordinates of the
unbound subunits were provided by the organizers, but
the structures of the protein–protein complexes were
not released until all participants had submitted their
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models. Therefore, the rigid-body docking simulations
used here to obtain the interface propensity maps were
run in the complete absence of information about the
final solution56 and therefore constitute a perfect blind
validation of the method.

Twelve more complexes were taken from the
unbound–unbound test cases in the benchmark com-
piled by Chen et al.33 The benchmark is formed by 31
unbound–unbound test cases, but we selected only com-
plexes that were significantly different from those we
used in our training set. The final selection happened to
be formed by 12 complexes, which included three differ-
ent cases of each one of the four categories in which the
benchmark is divided: enzyme-inhibitor, antibody–anti-
gen, others, and difficult cases (Table 1). Thus, this selec-
tion constitutes a genuine validating test that effectively
covers a broad variety of protein–protein complexes.
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