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Abstract In this paper, we propose a method for pose-
invariant facial expression recognition from monocular
video sequences. The advantage of our method is that, unlike
existing methods, our method uses a simple model, called
the variable-intensity template, for describing different fa-
cial expressions. This makes it possible to prepare a model
for each person with very little time and effort. Variable-
intensity templates describe how the intensities of multiple
points, defined in the vicinity of facial parts, vary with differ-
ent facial expressions. By using this model in the framework
of a particle filter, our method is capable of estimating facial
poses and expressions simultaneously. Experiments demon-
strate the effectiveness of our method. A recognition rate of
over 90% is achieved for all facial orientations, horizontal,
vertical, and in-plane, in the range of ±40 degrees, ±20 de-
grees, and ±40 degrees from the frontal view, respectively.
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1 Introduction

Facial expression recognition is attracting a great deal of at-
tention because of its usefulness in many applications such
as human-computer interaction and the analysis of conver-
sation structure (Otsuka et al. 2007). Most existing methods
for facial expression recognition assume that the person in
the video sequence does not rotate the head strongly and that
the image shows a nearly frontal view of the face (e.g., Lani-
tis et al. 1997; Huang and Huang 1997; Tian et al. 2001;
Fasel et al. 2004; Chang et al. 2006; Bartlett et al. 2006;
Kotsia and Pitas 2007; Koelstra and Pantic 2008). However,
in situations such as multi-party conversations (e.g. meet-
ings), people will often turn their faces to look at other par-
ticipants. Hence, unless a stressful head-mounted camera is
used, e.g. Pantic and Rothkrantz (2000a), we must simulta-
neously handle the variations in head pose as well as facial
expression changes.

The major approach to correctly recognizing facial ex-
pressions in a face image containing head movements is to
prepare a three-dimensional facial shape model of the user’s
neutral expression (rigid model) and its deformation model
for other facial expressions (non-rigid model). The shape
model and the facial expression model are together referred
to as the face model in this paper. In this approach, facial
pose variations are described by globally translating and ro-
tating the shape model in three-dimensional space, and fa-
cial expression changes are described by locally deforming
the shape model according to the facial expression model.
This is often called the geometry-based approach.

Existing methods require an accurate face model, be-
cause image variations caused by facial expression change
are often smaller than those caused by facial pose change.
Accordingly, the use of inaccurate face models degrades the
accuracy of both the facial pose and the expression estimates

http://dx.doi.org/10.1007/s11263-008-0185-x
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Fig. 1 Our method absorbs
errors in shape models and
recognizes facial expressions by
treating the changes in intensity
of multiple points defined
around facial parts

because those two components cannot be differentiated re-
liably. One method generates a face model for each user,
a person-specific model, by using stereo cameras (Gokturk
et al. 2002). Accordingly, this approach cannot be applied
to monocular video sequences. Other methods utilize a gen-
eral face model which can be applied to arbitrary users (Zhu
and Ji 2006; Dornaika and Davoine 2008). However, gener-
ating an accurate general deformable model is not so easy
in practice. It has been reported that general models cannot
cover the large interpersonal variations of face shape and
facial expression expected with sufficient accuracy (Gross
et al. 2005).

Another approach, the region-based approach, has been
reported to be relatively robust for small out-of-plane
head rotations. In this approach, a two-dimensional (plane)
(Black and Yacoob 1997; Tong et al. 2007) or three-
dimensional rigid shape model, e.g. a cylinder in Liao and
Cohen (2006), is prepared. Facial expressions are recog-
nized using regional features such as optical flow (Black and
Yacoob 1997; Liao and Cohen 2006), and Gabor-wavelet
coefficients (Tong et al. 2007). They first estimate the head
pose, and then calculate regional features for the aligned
face. However, the use of rough shape models such as plane
or cylinder degrades the accuracy of the facial expression
estimates, because large out-of-plane head rotations often
cause image appearance variations that are more significant
than those yielded by facial expression changes. In addition,
the optical flow estimation is easily violated by illumination
changes and non-rigid motion. The failure of optical flow
estimation directly disturbs facial expression recognition.

Motivated by these problems, we propose a novel point
intensity-based approach for facial expression recognition.
Specifically, we propose variable-intensity templates for the
following reasons:

1. Monocular video capture systems are supported.
2. A face model for each person can be easily prepared.
3. Facial expressions can be estimated even with a large

change in facial pose.

Our idea is to describe the change in facial expression not as
the deformation of a shape model or as optical flow in facial
part regions but as just a change in the intensities of multiple
points fixed on a rigid shape model. The variable-intensity

template makes it unnecessary to estimate non-rigid motion
caused by facial expressions.

The variable-intensity template consists of three compo-
nents: a rigid shape model, a set of interest points, and an
intensity distribution model. As the shape model, we use an
average face shape generated from the shapes of many peo-
ple. The interest points are sparsely defined away from the
edges of facial parts such as eye corners, in a frontal and neu-
tral expression face image. The intensity distribution model
is the facial expression model that describes how interest
point intensity varies for different facial expressions. The
set of interest points and the intensity distribution model are
person-specific.

The mechanism and effect of the use of the variable-
intensity template are as follows. The intensities of the in-
terest points vary significantly due to the movements of the
facial parts created when showing facial expressions (see
Fig. 1). Focusing on this characteristic, we recognize facial
expressions by matching the model intensities prepared in
advance against the observed intensities. We want a sys-
tem that is robust against head pose variations even if the
shape model used produces some approximation error. To
achieve this, we must handle the problem that the interest
points will be shifted from their actual positions due to the
shape model error as the out-of-plane head rotation angles
increase. Hence, we site the interest points away from the
edges of facial parts to keep the change in intensity small
when the face is rotated (see Fig. 1).

Our contribution1 is that we propose a facial expression
recognition method for varying facial poses based on the
key idea that facial expressions can be correctly recognized
by knowing how the interest point intensities vary with the
facial expressions. The main advantage of our method is
that a face model for each person is created simply by cap-
turing frontal face images of the person making the target
facial expressions. Thus it is more efficient that existing

1A part of this work appeared in Asian Conference on Computer Vision
(ACCV) (Kumano et al. 2007). The present work extends our previous
work in several important aspects. First, to improve the performance,
the face model is changed from the cylinder previously used to an av-
erage face shape model. Second, an intensity adjustment is applied to
handle changes in intensity of the face caused by such as illumination
variations and vertical head rotations.
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methods that need measurement instruments (e.g. Gokturk
et al. 2002), time-consuming manual intervention processes
(e.g. Dornaika and Davoine 2008), large amounts of train-
ing data (e.g. Tong et al. 2007) and so on. Furthermore, we
implement a particle filter that utilizes the variable-intensity
template as a face model, to simultaneously estimate facial
poses and expressions.

The remainder of this paper is organized as follows. First,
a brief overview of related work is presented in Sect. 2. Sec-
tion 3 describes our proposed method. Then, in Sect. 4, ex-
perimental results are given. Finally, a summary and future
work are given in Sect. 5.

2 Related Work

While most existing facial expression recognition systems
assume that the person in the video sequence does not
rotate the head significantly and that the image shows a
nearly frontal view of the face (e.g. Lanitis et al. 1997;
Huang and Huang 1997; Tian et al. 2001; Chang et al. 2006;
Bartlett et al. 2006; Fasel et al. 2004; Kotsia and Pitas 2007),
some methods consider head pose variations. Facial pose
and expression vary independently, and, image variations
caused by facial expression change are often smaller than
those caused by head movement.

Hence, the precise separation of these two components is
needed to achieve correct recognition of facial expressions.
Unfortunately, the highly non-linear effect on face appear-
ance in the image due to large out-of-plane head rotations is
not easy to handle. In addition, only a few video databases
containing non-frontal faces have been published, e.g. Face
Video Database,2 so it is difficult to compare the recogni-
tion ability of existing methods quantitatively. Given these
issues, pose-invariant facial expression recognition can be
said to be an underdeveloped research area.

In this section, we briefly overview the facial expression
recognition methods that allow some out-of-plane head ro-
tations with regard to their face shape models. Excellent re-
views of a number of recent studies assuming near-frontal
faces can be found in Pantic and Rothkrantz (2000b); Fasel
and Luettin (2003); Tian et al. (2005); Pantic and Bartlett
(2007).

In what follows, we divide the existing methods into the
following five groups with regards to the shape model used:
(1) face shapes directly measured, (2) face shapes recov-
ered from images, (3) general face shapes, (4) parametric
shapes, and (5) shape-free approach. These shape models,
except for group (2) and (5), are detailed below in descend-
ing order of their approximation accuracy. Group (1–4) are

2Face Video Database of the Max Planck Institute for Biological Cy-
bernetics in Tuebingen: http://vdb.kyb.tuebingen.mpg.de/.

divided into two classes by the following three kinds of
classifications: measured models (1) versus non-measured
models (2–4), person-specific models (1, 2) versus person-
independent models (3, 4), and deformable models (1–3)
versus rigid models (4).

(1) Face shapes directly measured The most conclusive
way to make the estimation robust against head rotations
is to directly measure the actual three-dimensional shape
of each user with an instrument other than monocular cam-
era. Gokturk et al. (2002) use a stereo cameras to accurately
measure the three-dimensional positions of 19 facial feature
points defined on the user’s face and their deformations due
to change in facial expression. In the test stage, they clas-
sify facial expressions using deformation parameters esti-
mated by using an optical-flow-like technique. Their experi-
mental results suggest that their method can recognize facial
expressions in a variety of head poses. In the field of head
tracking, there is a similar approach to handle facial expres-
sion variations, e.g. Oka and Sato (2005). However, these
methods cannot be applied to monocular video sequences,
because they require stereo cameras to measure the three-
dimensional positions of feature points in the initial frame
of test video sequences. Dispensing with images, the sys-
tems of Wang et al. (2006); Tang and Huang (2008) cor-
rectly recognize facial expressions regardless of head pose
from face range data acquired by a three-dimensional digi-
tizer.

(2) Face shapes recovered from images Some methods try
to recover the actual three-dimensional shape of the user
from a monocular video sequence by using a structure-from-
motion technique. Xiao et al. (2004) propose 2D + 3D Ac-
tive Appearance Models (AAM) where first the positions of
the set of feature points in the video sequence are tracked by
using a common two-dimensional AAM and then the three-
dimensional face shape is recovered by using a non-rigid
structure-from-motion technique. Lucey et al. (2006) apply
2D + 3D AAM to recognize facial expressions. However, in
their experiments, the recovered three-dimensional shapes
were inaccurate which rather degraded the recognition rates.

(3) General face shapes Some methods utilize models that
can be applied to arbitrary users, i.e. person-independent
models. Cohen et al. (2003) utilize the Piecewise Bezier
Volume Deformation (PBVD) tracker which tracks feature
points defined on a generic three-dimensional wireframe
model of the face. They classify facial expressions using
its motion parameters as the temporal cues. Dornaika and
Davoine (2008) describe a system that uses a existing de-
formable face mesh model; its deformation parameters are
related to action units. They estimate facial expressions in
the framework of a particle filter (Isard and Blake 1998),

http://vdb.kyb.tuebingen.mpg.de/
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after estimating the head pose by a gradient-based method.
However, generating an accurate general deformable model
is not so easy in practice. Gross et al. (2005) suggest that
such person-independent models cannot cover the large in-
terpersonal variations in face shape and facial expression ex-
pected with sufficient accuracy.

(4) Parametric shapes Some methods utilize simple rigid
shapes rather than complicated deformable shapes. Black
and Yacoob (1997), Tong et al. (2007), and Liao and Cohen
(2006) approximate the human face as plane (the first two)
and cylinder (the last), respectively. As the feature, Black
and Yacoob (1997) and Liao and Cohen (2006) utilize the
optical flow in the face region, while Tong et al. (2007)
use Gabor wavelet coefficients. However, using the simple
parametric shape causes large error in the alignment of the
face. Hence, facial expressions at large head rotation angles
tend to be misrecognized in the absence of a mechanism for
handling the face misalignment. Tong et al. introduced Dy-
namic Bayesian Network (DBN) inference, where the re-
lationships between action units are modeled. Their exper-
iments suggest that this framework can compensate some
misclassification of action units. However, it is reasonable
to expect that it cannot handle heavy face misalignments
caused by large out-of-plane head rotations. Furthermore,
note that optical flow estimation is easily corrupted by illu-
mination changes and non-rigid motion.

(5) Shape-free approach Hu and his colleagues developed
a facial expression recognizer that does not utilize any face
shape model (Hu et al. 2008). By utilizing Support Vector
Machines (SVMs), they discriminated horizontal head ori-
entations (discretized at 15 degree or larger angle interval)
and facial expressions sequentially or simultaneously. Al-
though their system can handle faces in the range of frontal-
to profile-view, the discretization error for head pose in real
situations, where the head pose is continuous, is expected to
degrade the facial expression recognition. Note that prepar-
ing a large number of classifiers (each of which covers a
small angle range) is undesirable in terms of processing time

and memory resources. Furthermore, they assume that the
face regions in input data are precisely extracted. This, how-
ever, remains difficult for current computer vision technolo-
gies.

Overall, to the best of our knowledge, there is no work
that matches all of our goals:

• Monocular video capture systems are supported.
The approach that directly measures face shapes (1) does
not have this advantage.

• A face model for each person can be easily prepared.
The general model-based approach (3) and shape-free ap-
proach (5) fail to achieve this advantage because of model
complexity.

• Facial expressions can be estimated even with a large
change in facial pose.
The recovered face shape model-based approach (2)
and the parametric model-based approach (4) have not
achieved this end.

The method proposed herein is a novel point intensity-based
approach that can realize all of the above goals. We describe
a change in facial expression not as the deformation of the
shape model or as optical flow in facial part regions, but just
as a change in the intensities of local face regions. In ad-
dition, none of the existing papers, other than Wang et al.
(2006); Hu et al. (2008), describe how the recognition rate
of facial expressions varies with out-of-plane head rotation
angle. Hence, pose-invariability of their methods cannot be
quantified while the problem of the difference in test data
remains. In this paper, we also describe experiments that as-
sess the impact of head pose on the recognition rate.

3 Proposed Method

Our method consists of two stages (see Fig. 2). First, we pre-
pare a variable-intensity template for each person from just
one frontal face image for each facial expression (referred
to as the training images in this paper). Second, we estimate
facial pose and expression simultaneously within the frame-
work of a particle filter.

Fig. 2 System flow chart
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Fig. 3 Upper: The method used to extract interest points P . Lower:
Example of a set of paired interest points P , shown as 128 green dots.
The large rectangles represent the boundaries of facial parts, detected
by the method described in Sect. 3.3. The right side shows the ex-
panded right eyebrow and eye regions

3.1 Variable-Intensity Template

The variable-intensity template M consists of the following
three components:

M = {S, P , I} (1)

where S , P , and I denote a rigid face shape model, a set
of interest points, and an intensity distribution model, re-
spectively. The intensity distribution model describes the in-
tensity distribution of each interest point for different facial
expressions.

The variable-intensity template is generated from a set
of training images and the rigid face shape model. The
training image set consists of one face image for each
facial expression, {ge=1, . . . ,ge=Ne

}, as shown in Fig. 2,
where ge denotes the image labeled with facial expression e

(∈ {1, . . . ,Ne}), and Ne is the number of target expressions.
In particular, the training image for neutral expression is de-
noted by gNEU. The face in each image g is frontal, and
virtually fixed. The way to generate such training images is
described in Sect. 3.3.

As the face shape model S , we use the average face shape
model3 shown in Fig. 2 in this paper. The approach used to
fit it to each user is described in Sect. 3.4.

3.1.1 Set of Interest Points P

The multiple interest points are sparsely defined away from
the edges of facial parts such as eye corners in the training

3Average head dummy of Japanese young males contains over
100,000 polygons without texture. It is published by Digital Hu-
man Research Center, Advanced Industrial Science and Technology,
http://www.dh.aist.go.jp/research/centered/facedummy/.

image in neutral expression gNEU, as shown in the lower
part of Fig. 3. All interest points are fixed on the rigid shape
model S . The set of interest points P is described as

P = {p1, . . . ,pNp
} (2)

where pi denotes the image coordinates of the i-th interest
point in the training image gNEU, and Np denotes the num-
ber of interest points. The set of interest points P is different
for each subject.

An interest point constitutes a pair of points (herein
called paired interest points or paired points) (Matsubara
and Shakunaga 2005) that straddle and are centered on the
edge, to detect the bidirectional motions of the facial parts.
The paired points are selected in the four facial part regions
(eyebrows, eyes, nose, and mouth) in the training image,
gNEU. These facial part regions are detected by the method
described in Sect. 3.3. Examples of these pairs are shown in
the lower part of Fig. 3: The total number of interest points
for each subject is set to be 128 (eyebrows: 20 × 2, eyes:
12 × 2, nose: 24, and mouth: 40). This number was decided
after conducting preliminary evaluations of the performance
metrics of accuracy and processing speed.

The paired points are extracted in each facial part as fol-
lows (see also the upper part of Fig. 3).

(1) Edges are detected in each of the four facial parts as
zero-cross boundaries of the Laplacian-Gaussian fil-
tered image.

(2) All paired point candidates that straddle and are cen-
tered on the edge are extracted. These candidates are,
then, grouped into eight according to their direction of
intensity gradient (up, down, left, right, or one of four
oblique directions). The distance between the points in
each pair was empirically set to be 1/60 and 1/45 of the
face width for eye and other regions, respectively. The
short distance set in eye regions is based on the small
movements of eyes.

(3) The pairs are selected from the candidates one by one in
ascending order of the interpair difference in intensity.
The current target candidate is selected, if the center of
the target candidate is separated from all of the centers
of pre-selected pairs by at least a threshold distance. Af-
ter one candidate is selected in the current target group
or no candidate can be selected, the next target group is
selected. The initial group is the upmost group, and the
initial threshold distance is set to one-fifth of the width
of the target facial part region. They were empirically
decided.

(4) The selection is terminated, as soon as the number of
pairs reaches the limit. If the total number of selected
pairs does not reach the limit, the current threshold
of the interpair distance is decreased and the selection
process is reentered at (3).

http://www.dh.aist.go.jp/research/centered/facedummy/
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Fig. 4 Intensity distribution model I : The intensity distributions of
interest points, described as normal distributions, indicate the change
in facial expressions. The colors in the right part correspond to the
interest points in the left part

Note that the resulting locations of the interest points are
different for subjects due to the differences in positions of
the edges.

3.1.2 Intensity Distribution Model I

The intensity distribution model describes how the inter-
est point intensity varies for different facial expressions. As
shown in Fig. 4, the interest point intensity changes strongly
due to the shift of its associated facial part. Focusing on this
property, we recognize facial expressions from the changes
in observed interest point intensities.

The observed intensity of each interest point is varied by
small position shifts of the interest point. This is caused by
error in the shape model as well as the errors in the intensity
adjustment, described in Sect. 3.2.2. Such variation is repre-
sented as a normal distribution in our method. The intensity
distribution model I is described as:

I = {
N1, . . . , NNp

}
, Ni = N (μi(e), σi(e)) , (3)

σi(e) = kμi(e) (4)

where N (μ,σ ) denotes a normal distribution with mean μ

and standard deviation σ , and μi(e) and σi(e) denote the
mean and standard deviation of the intensity of point i for
expression e, respectively. We set the intensity mean μi(e)

to be the value recorded from the training image labeled with
expression e, ge, at image coordinate pi . Furthermore, we
assume that standard deviation σi is proportional to mean
μi , and set the proportionality factor, k, to be 0.3.

3.2 Simultaneous Estimation of Facial Pose and
Expression by Using a Particle Filter

Our method simultaneously estimates the facial pose and ex-
pression by calculating their likelihood given the observed
intensity of interest points with the intensity distribution
model. The joint distribution of facial pose and expression

Fig. 5 Dynamic Bayesian Network for head poses, facial expressions,
and face images

at time t given all face images up to that time (z1:t ) is recur-
sively represented as follows:

p(ht , et |z1:t ) = αp(zt |ht , et )

∫
p(ht |ht−1)

×
∑

et−1

P(et |et−1)p(ht−1, et−1|z1:t−1)dht−1

(5)

where facial pose state ht and expression state et follow first
order Markov processes (see Fig. 5); ht and et are assumed
to be conditionally dependent given image zt ; Bayes’ rule
and conditional dependence are used along with marginal-
ization (e.g. Russell and Norvig 2003); α is a normalization
constant.

The facial pose state ht consists of the following six con-
tinuous variables: the coordinate of the center of the tem-
plate on the image plane, three-dimensional rotation angles
(yaw, pitch, and roll), and scale. For the head motion model,
p(ht |ht−1), we utilize a random walk model where the com-
ponents of head pose state are considered to be independent
each other. The system noise for each component is created
by a zero-mean Gaussian process. The variances of the sys-
tem noises were empirically decided.

With regards to facial expression, we set P(et |et−1) to be
equal for all expression combinations in this paper. Any ex-
pression transition matrix can be utilized in our framework,
but it is difficult to obtain the actual transition. Accordingly,
in this paper, we adopt the simple distribution model, where
no prior knowledge of facial expression transitions is as-
sumed.

Equation (5), unfortunately, cannot be calculated exactly,
because parameters of facial pose ht are continuous, and
their distributions are complex due to occlusion, etc. Hence,
we use a particle filter (Isard and Blake 1998), which calcu-
lates (5) by approximating the posterior density as a set of
weighted samples called particles. Each particle expresses a
state and its weight. In our method, the state and weight of
the l-th particle are expressed as [h(l)

t , e
(l)
t ] and ω

(l)
t , where

ω
(l)
t is proportional to p(zt |h(l)

t , e
(l)
t ) calculated using (6)

and
∑

l ω
(l)
t = 1 is satisfied.

3.2.1 Likelihood of Facial Poses and Expressions

The likelihood of facial pose ht and expression et for face
image zt is expressed as p(zt |ht , et ). Assuming that the in-
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Fig. 6 Shape of robust function ρ(x), weight function w(x) =
(dρ(x)/dx)/x, and exp(−ρ(x)), similar to the likelihood function

tensities of the interest points are independent, we can trans-
form likelihood p(zt |ht , et ) as follows:

p(zt |ht , et ) =
∏

i∈P ′
p(z̃i,t |ht , et ) (6)

where z̃i,t denotes the illumination-adjusted intensity (see
Sect. 3.2.2) of interest point i at time t , and P ′ denotes the
set of non-occluded interest points. Here, we consider that
the interest point is not occluded if the surface normal of
its corresponding point on the face shape model is pointing
toward the camera.

We define the likelihood of facial pose ht and expression
et for the illumination-adjusted intensity z̃i,t , p(z̃i,t |ht , et ),
by adopting a robust estimation as:

p(z̃i,t |ht , et ) = 1√
2πσi(et )

exp

[
−1

2
ρ (di)

]
, (7)

di = z̃i,t − μi(et )

σi(et )
(8)

where function ρ(·) denotes a robust function. In this paper,
we use the Geman McClure function (Geman and McClure
1987) with scaling factor c(= 9) which regulates an infinite
input (see Fig. 6):

ρ(x) = c · x2

1 + x2
. (9)

This robust function ρ(·) makes the estimation more robust
against such noise as imaging noise, intensity adjustment er-
ror, and large position shifts due to shape model error.

3.2.2 Intensity Adjustment

We should adjust the intensity of interest points observed
in the input image to make the estimation robust against
changes in intensity of face itself. Such changes in intensity
caused by changes in illumination as well as head move-
ments, especially up-down head rotations, which changes
the orientation of the light source to the face.

We obtain the illumination-adjusted intensity z̃i,t as:

z̃i,t = γb,t zi,t (10)

where zi,t denotes the intensity of interest point i, and γb,t

represents the intensity adjustment factor for facial block b

at time t . That is, we divide the face into four blocks, {left
eyebrow and eye, right eyebrow and eye, left parts of nose
and mouth, and right parts of nose and mouth}, and assume
that the rate of change in interest point intensity is uniform
in each block. Although this assumption is not strictly valid,
the small error present in intensity adjustment estimation
does not severely disturb facial expression recognition. The
reason is that the interest points defined in the vicinity of
facial parts yield significant differences in intensity between
facial expressions.

Intensity zi,t is obtained as follows. The image coordi-
nate of the i-th interest point under head pose ht is obtained
via three processes: (1) orthogonal projection from the train-
ing image plane onto the shape model S , (2) translation and
rotation of S according to pose ht , and (3) projection of the
interest point i on the shape model S onto the target image
plane.

We define the intensity adjustment factor γb,t as the max-
imum likelihood estimator (MLE) of p(γbzi,t |ht , et ). This
estimation of γb,t can be simplified to the following equa-
tion by considering the log likelihood:

γ̂t,b = arg max
γb

∏

i∈P ′
b

p( ˜zi,t |γb,ht , et ) (11)

= arg min
γb

∑

i∈P ′
b

ρ

(
γbzi,t − μi(et )

σi(et )

)
(12)

where P ′
b denotes the set of non-occluded interest points in

facial block b. It is noted that this robust estimation problem
can be effectively solved by using an iterative method such
as iteratively reweighted least squares (Beaton and Tukey
1974). The estimation of the intensity adjustment factor γ̂b,t

by the iteratively reweighted least squares technique pro-
ceeds as follows:

1. Initialize Nb × Nb weight matrix W = diag[1, . . . ,1]T,
where Nb denotes the number of elements in set P ′

b .

2. Estimate current intensity adjustment factor γ
(m)
b using

the previous weight matrix W (m−1):

γ
(m)
b = (zT

bW (m−1)zb)
−1zT

bW (m−1)μb (13)

where m denotes the iteration step number, and zb

and μb denote Nb × 1 vectors of observed intensity
and mean of intensity distribution model divided by
standard deviation, zb = [. . . , zi/σi, . . .]T and μb =
[. . . ,μi/σi, . . .]T, i ∈ P ′

b.
3. Update weight matrix W :

W
(m)
ii = w

(
γ

(m)
b zi − μi

σi

)

(14)

where Wii denotes the i-th diagonal element of weight
matrix W , and w(·) denotes the weight function related
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to the robust function ρ(·) as w(x) = (dρ(x) /dx)/x (see
Fig. 6).

4. Steps 2 and 3 are repeated until convergence.

3.2.3 Estimators of Facial Pose and Expression

Estimators of facial pose and expression at time t , ĥt and êt ,
are calculated as:

ĥt =
∑

l

ω
(l)
t h

(l)
t , (15)

êt = arg max
e

∑

l

ω
(l)
t δe(e

(l)
t ) (16)

where the recognized facial expression êt is defined to
be the expression that maximizes the marginal probability
p(et |z1:t ). The function δe(e

′) is the indication function such
that δe(e

′) = 1 if e = e′, and δe(e
′) = 0 otherwise.

3.3 Generating Training Images and Detecting Facial Parts

Generating training images We prepare training images,
g, where the iris centers are laid on a horizontal line. Such
training images are generated from source face images (re-
ferred to as training source images) that contain a human
face in one of the target facial expressions. We assume that
the face in the training source images is stationary between
neutral expression and non-neutral expressions for the same
subject. The position and size of the faces, however, may be
different for each person. The training images are the train-
ing source images that are rotated in-plane until iris cen-
ters fall on a horizontal line. The iris centers are detected
in the eye regions by utilizing Fast Radial Symmetry (Loy
and Zelinsky 2003; Zhang et al. 2006). This rotation is cal-
culated with each training source image only for neutral ex-
pression. The non-neutral expression images are rotated by
the same rotation matrix for the neutral expression image of
the same person.

Detection of face and facial parts Before selecting the in-
terest points (described in Sect. 3.1.1), the face and the four
facial parts (eyebrows, eyes, nose and mouth) are detected in
the neutral training image gNEU. The face region is roughly
detected by using a cascaded AdaBoost detector based on
Haar-like features (Viola and Jones 2001). The four facial
parts are detected as rectangular boundaries in the face re-
gion, as shown in Fig. 3.

Eye and mouth regions are detected by using cascaded
AdaBoost detectors (Castrillon et al. 2007), respectively.
These detectors often return multiple candidates and we se-
lect the most likely candidate. We empirically defined the
likelihoods with rough previous knowledge about their po-
sitions and sizes: L(y) = ∏

k N (yk;μk,σk), where L(y)

Fig. 7 Example of the shape model fitted to a person

is the likelihood of the feature vector of target candidate
y(= [X,Y,W,H ]T). Vector [X,Y ]T denotes the position of
the center of the candidate region, and W and H are its width
and height, respectively. Variables μk and σk describe the
empirically defined mean and standard deviation of the k-th
component of y, respectively.

Nose region is given by the position of nostrils extracted
as the valley in the horizontal and vertical intensity profiles
between eye and mouth regions. Eyebrow regions are simply
set as the regions that contact (above) the eye regions with
the same size.

3.4 Shape Model Fitting

We fitted the average face shape to each user as follows:
(1) fit the center of the shape model to the center of face re-
gion in the training image in neutral expression, gNEU, de-
tected by the method of Viola and Jones (2001), (2) stretch
the shape model in the horizontal and vertical directions to
match both face width and height; stretching in the depth di-
rection used the scaling factor given as the square root of the
product of vertical and horizontal scaling factors. An exam-
ple of the fitting results is given in Fig. 7.

4 Experimental Results

To evaluate the estimation performance of the proposed
method, we performed three experiments: The objective of
the first test was to evaluate the accuracy of our system in
recognizing facial expressions when the face does not face
the camera. The second test evaluates the performance of
our system with person-independent strategy. The third test
evaluates the performance of the system in head pose track-
ing.

At the same time, to evaluate the effectiveness of our in-
terest points (paired points described in Sect. 3.1.1), we pre-
pared two other kinds of variable-intensity templates: those
with randomly allocated points and those with points de-
fined on the edges (these points are hereinafter referred to as
random points and edge points, respectively). These points
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Fig. 8 Example of two kinds of set of interest points: randomly allo-
cated (left) and defined on edges (right). These points are used for the
comparison with our interest points shown in Fig. 3

are also defined in each of the four facial part regions as
shown in Fig. 8.

In the following experiments, the recognition rates were
calculated as the ratio between the number of frames
wherein the estimated expression matched the ground truth
to the total number of target frames. In this paper, we ran
our system offline to evaluate the recognition rates of facial
expression. The number of particles was set to 1,500, and
the processing time was about 80 ms/frame on a Pentium
D processor at 3.73 GHz with 3.0 GB RAM. Currently, the
identity of a person is given a priori.

4.1 Performance Evaluation for Non-Frontal-View Faces

Unless the true face shape model is used, the interest points
are misaligned due to error in the shape model. Such shift in-
creases as the head is more rotated in out-of-plane. Accord-
ingly, it is important to evaluate the robustness of the sys-
tem against head rotation. Unfortunately, to the best of our
knowledge, there is no facial expression database that con-
tains video sequences where the face moves together with
various changes in facial expression. Hence, we generated
such video datasets and used them to evaluate our system.

4.1.1 Our Original Facial Expression Datasets

Our datasets contain the following two kinds of video se-
quences: fixed-pose dataset and free-pose dataset. Both
datasets contain facial expression categories of neutral, an-
gry, sad, surprise and happy. Both sets include training im-
ages and test video sequences for each subject. The training
images were captured immediately prior to the capture of the
test video sequences. That is, each couple of training images
and test sequences was captured in the same situation on the
same day. These video sequences were captured by the same
IEEE 1394 XGA (1024 × 768 pixel) color camera at 15 fps.
In this paper, we utilized these video sequences after con-
verting them into grayscale 512 × 384 pixel sequences.

In the fixed-pose dataset, subjects exhibited multiple fa-
cial expressions with the head fixed in one of three directions
relative to the camera: 0/±20/±40 degree in yaw (horizon-
tal), 0/±20 degree in pitch (vertical), or 0/±20/±40 de-
gree in roll (in-plane) (see Figs. 9–11). Yaw, pitch, and roll
sequences contain nine subjects (seven males and two fe-
males in their 20 s to 40 s), four subjects (four males of the

nine subjects), and one subject (one male of the four males),
respectively. For each direction, each subject provided one
sequence.

All sequences start with neutral expression face looking
toward the camera, then move to one direction relative to the
camera. Finally, the subjects create five facial expressions
one by one without moving their head, each for a duration
of 60 frames followed by a 60 frame interval with relaxed
face as indicated by the instructions displayed on a monitor,
which are used as truth of the facial expression.

The free-pose dataset, on the other hand, contains one
sequence of the subject, who is also contained in the fixed-
pose dataset. The subject freely shows five facial expressions
one by one while shaking the head left and right.

To capture the training images, we gave the subjects the
following instructions: (1) face the head directly at the cam-
era during the capture process, (2) show facial expressions
one by one as requested by the instructions with category
name on the monitor, (3) press a key on a keyboard, when
the target expression was being expressed, to have a facial
image captured as the training image.

4.1.2 Evaluation with Fixed-Pose Dataset

First, by using the fixed-pose dataset, we evaluate how ac-
curately our system can recognize facial expressions for var-
ious head orientations. In calculating the recognition rates,
we excluded the first 20 frames of each expression just af-
ter the instruction was displayed, because of the time lag
between the instruction and the creation of the facial expres-
sion.

Figures 9, 10, and 11 show some estimation results of
facial poses and expressions by using our paired points for
horizontal, vertical and in-plane head rotations, respectively.
They show the facial poses and expressions were correctly
estimated for all subjects.

Table 1 shows a comparison of our paired points and
random points with the average facial expression recogni-
tion rates for each target head rotation angle. For out-of-
plane (yaw and pitch) rotations, the recognition rate de-
creased as the head rotation angle increased. Nevertheless,
our paired interest points are more robust against the out-of-
plane rotations, than the random points. For in-plane direc-
tion, our method recognized all facial expressions perfectly,
because the misalignment of interest points due to error in
the shape model does not occur with in-plane rotation. Ac-
cordingly, we evaluated it just for one subject. Our paired
points achieved at least 90(%) in average for all rotations,
yaw, pitch and roll.

Table 2 shows the confusion matrix for the average recog-
nition rates with the paired interest points. These results sug-
gest that, for many subjects, the difference in face appear-
ance between sad expression and both neutral and angry ex-
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Fig. 9 Some estimation results
of facial poses and expressions
with fixed-pose dataset
(Horizontal): The expression in
the upper part of each image
denotes the recognized result.
The width of each bar in the
upper right part of each image
denotes the estimated
probability of each facial
expression, P (et |z1:t ). Small
points on each face denote
interest points

pressions is smaller than for other expression combinations,
accordingly, they were sometimes confused with each other.

On the other hand, with the edge interest points, head
tracking was lost for many video sequences. The reason for
this seems to be that such interest points are too sensitive to
misallocation of interest points. The misallocation is caused
by errors in the shape model and slight differences in facial
expression between the test sequences and training images.

4.1.3 Evaluation with Free-Pose Dataset

We next evaluated our system with the free-pose dataset,
where the subject changes both the facial expression and the
head’s horizontal orientation.

Five frames of the video sequence of the free-pose dataset
and the estimated results of facial expression and pose in
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Fig. 10 Some estimation
results of facial poses and
expressions with the fixed-pose
dataset (Vertical): The
expression in the upper part of
each image denotes the
recognized result. The width of
each bar in the upper right part
of each image denotes the
estimated probability of each
facial expression, P (et |z1:t ).
Small points on each face
denote interest points

Fig. 11 Some estimation results of facial poses and expressions with
the fixed-pose dataset (In-plane rotation): The expression in the upper
part of each image denotes the recognized result

each frame4 are shown in (a), (b) and (c) of Fig. 12, re-
spectively. The ground truth of the facial expression in every
frame was hand-labeled by the subject. Figure 12(b) shows
that facial expressions were recognized correctly in almost
all frames. In addition, the correct expressions were as-
signed significantly higher probabilities than other expres-
sions. A quantitative evaluation for head pose is given in
Sect. 4.3.

4.2 Performance Evaluation with Person-Independent
Strategy

The main advantage of our system is that our system makes
it possible to generate the variable-intensity template for
each person with very little time and effort. As demonstrated
in Sect. 4.1.2, by using our person-specific model, we can

4A part of video sequences for the result with both the fixed-pose
dataset and the free-pose dataset are available from http://www.hci.
iis.u-tokyo.ac.jp/~kumano/papers/IJCV2008/.

http://www.hci.iis.u-tokyo.ac.jp/~kumano/papers/IJCV2008/
http://www.hci.iis.u-tokyo.ac.jp/~kumano/papers/IJCV2008/
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Table 1 Average recognition rates of facial expressions for a variety
of head orientations with fixed-pose dataset by comparing two types
of interest points: Pair: our paired interest points. Random: points ran-
domly defined in each facial part region

Point type Total Angle [deg]

−40 −20 0 20 40

Yaw (Horizontal): nine sequences

Pair 92.3 83.3 94.3 95.4 95.9 92.5

Random 90.1 90.2 92.1 95.4 96.1 76.7

Pitch (Vertical): four sequences

Pair 94.0 N/A 87.0 97.5 97.6 N/A

Random 86.4 N/A 74.1 98.1 87.0 N/A

Roll (In-plane): one sequence

Pair 100.0 100.0 100.0 100.0 100.0 100.0

Random 100.0 100.0 100.0 100.0 100.0 100.0

Unit is (%)

Table 2 Average confusion matrix of facial expressions with fixed-
pose dataset for horizontal and vertical directions: GT and RCG denote
ground truth and recognition, respectively. The overall recognition rate
is 93.1[%]

GT\RCG Neutral Angry Sad Surprise Happy

Neutral 88.9 1.5 7.9 1.6 0.1

Angry 0.4 97.6 0.9 1.1 0.0

Sad 3.2 8.0 85.4 3.3 0.1

Surprise 0.0 0.0 4.2 95.8 0.0

Happy 0.2 1.1 0.0 1.1 97.7

Unit is (%)

achieve the high facial expression recognition performance.
Such a person-specific strategy is useful for applications
where the number of users is small. However, some appli-
cations require that it can be applied to arbitrary users with-
out such training for each user. Accordingly, we evaluate
the potential of our system to be extended to the person-
independent strategy.

To compare our system (with person-independent strat-
egy) against existing methods, we utilized a widely used
public facial expression database, the Cohn-Kanade DFAT-
504 database (Kanade et al. 2000). The Cohn-Kanade data-
base consists of FACS-coded (Ekman and Friesen 1978)
video sequences of 104 subjects, starting from a neutral ex-
pression and ending in the peak of the facial expression. For
each person, there are on average 8 frames for each expres-
sion. The desired facial displays were described and mod-
eled before the material was recorded.

Although there are a variety of facial expression se-
quences coded with Action Units (Ekman and Friesen
1978), or components of facial expression, in the Cohn-

Kanade database, they are not labeled with facial expres-
sion categories. Hence, we hand-labeled the last frame of
them with one of the non-neutral expressions, following the
FACS rule (Ekman et al. 2002). We excluded about one third
of sequences that were not labeled with six basic facial ex-
pressions (Ekman and Friesen 1975): angry, sad, surprise,
happy, fear, and disgust. Next, we excluded about one half of
the remaining sequences where the stationary head assump-
tion (described in Sect. 3.3) was violated, that is, where the
head moved while the facial expressions were being demon-
strated. 129 video sequences were finally selected (13, 20,
14, 43, 12, and 27 for angry, sad, surprise, happy, fear, and
disgust expressions, respectively) from the 53 subjects. All
initial frames of the selected 129 sequences were inevitably
labeled as neutral. All labeled frames, i.e. the first and last
frames in each selected video sequence, were used as train-
ing image candidates. That is, our target facial expressions in
the person-independent strategy are seven categories: neu-
tral and six basic facial expressions.

The average facial expression recognition rates were cal-
culated as follows. First, we tracked (estimated facial pose
and expression) over all video sequences for each subject in
the database. Next, we picked up the recognition results of
the first frames and the last frames for all tracked sequences.
Thus, the total number of the target frames for neutral ex-
pression is the sum of those for the non-neutral expression
(each of the six categories started with a neutral expres-
sion). Finally, we calculated the recognition rate separately
for each of the seven expressions.

Learning stage We developed a fully automatic system for
learning a person-independent, or general, variable-intensity
template. Given training images, it proceeds as follows.

First, facial parts are detected in the rotationally aligned
training image (Sect. 3.3) in neutral expression of each sub-
ject. The face part regions in non-neutral expressions are set
to be the same as those of the same subject in neutral ex-
pression. Hereinafter, these detected face images are just re-
ferred to as training images, and those in expression e for the
j -th subject are denoted as gj,e, especially those in neutral
expression also as gj,NEU.

Next, all training images of each subject are normalized
to remove the effect of global lighting, skin color, etc. The
normalization is given by g̃j,e = (gj,e − α(j)1)/β(j). The
normalization factors for the j -th subject, α(j) and β(j),
are calculated as the mean and variance of intensity, respec-
tively, in the rectangle in gj,NEU that encloses eyebrow and
mouth regions.

Then, average face images of each facial expression e,
ge , are generated individually for every facial part p with
the normalized images g̃j,e for all subject j . This average
images of each facial part p are hereinafter referred to as
average facial part images, and denoted as ge,p . An example
of the average facial part image ge,p is shown in Fig. 13.
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(a) Input video sequence (from left to right, frame number 100, 290, 400, 560, 660)

(b) Ground truth (top) and recognition results (others) of facial expression: The probability of correct expression is remarkably
higher than that of other expressions

(c) Estimation results of facial pose (horizontal axis equals that of (b)): Facial poses are estimated with enough accuracy to detect three
cycles of head shake movement (red solid line)

Fig. 12 Images and estimation results in the free-pose dataset

Fig. 13 The average face image for each facial expression, ge , learned from the Cohn-Kanade DFAT-504 database. Each average face image
consists of the average facial part images, ge,p

Finally, a set of interest points is selected in the average
facial part images ge,p as described in Sect. 3.1.1. A sample
of the resulting set of interest points is shown in the left side
of Fig. 14.

Testing stage In the test stage, the variable-intensity tem-
plate for the person is prepared by using the average face
images ge .

First, the facial parts are detected in the initial frame of
the test video sequence, after rotating the frame until the iris
centers fall on a horizontal line using the approach described
in Sect. 3.3 (hereafter this rotated image is just referred to as
the initial frame).

Next, the coordinates of the i-th interest point in the ini-
tial frame, pi , is calculated by scaling and translating its co-
ordinates in the average facial part images ge,p . This map-
ping adapts the average facial part image to the same facial
part region in the initial frame both in size and position. The
right part of Fig. 14 shows the mapping results.

Finally, the mean intensity in the intensity distribution in
each facial expression μ(e) is restored via denormalization
of the average facial part images: ĝe,p = β(j) ge,p + α(j)1,
where ĝe,p is the restored (training) image, α(j) and β(j)

are calculated as described in the above test stage process,
where the face region in the initial frame is used as gj,NEU.
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Fig. 14 Left: Example of set of interest points defined in the aver-
age facial part images ge,p that are learned with the Cohn-Kanade
DFAT-504 database. Right: The set of interest points P generated by
projecting the average facial part image into the initial frame, or the
training image for neutral expression gj,NEU, of a target subject

Fig. 15 Sample recognition results with the set of interest points P
shown in the right part of Fig. 14

Finally, the mean intensity μi(e) is set to be the intensity of
the restored training image, ĝe,p , at coordinates pi .

Recognition performance We evaluated the recognition
performance achieved by this person-independent strategy,
based on the leave-one-subject-out cross-validation. The re-
sults with our paired points and those with random points are
shown in Table 3 (also in Fig. 15) and Table 4, respectively.
The overall recognition rate was about 60% with our paired
points, and about 70% with the random points. In both re-
sults, fear expression recorded significantly lower recogni-
tion rates than the other expressions. The average recogni-
tion rate excluding fear expression with random points is
about 80%.

We were encouraged by these results with the person-
independent strategy, even though these recognition rates
are lower than those with our person-specific strategy in
Sect. 4.1.2 and those of state-of-the-art methods such as
Littlewort et al. (2006); Sebe et al. (2007); Zhao and
Pietikainen (2007);5 Kotsia and Pitas (2007); Yang et al.
(2008) (over 90% for all methods). Note that, our original
target is the person-specific strategy, and the objective of this
evaluation was to assess if our approach has the potential to
be extended to the person-independent version.

5The neutral expression was not one of their targets.

Table 3 Confusion matrix with the Cohn-Kanade DFAT-504 database
by using our paired interest points with person-independent strategy.
The overall recognition rate is 59.8[%]

GT\RCG N A Sd Sp H F D

Neutral (N) 82.9 5.7 1.9 1.6 0.3 5.7 1.9

Angry (A) 23.1 30.7 7.7 7.7 7.7 7.7 15.4

Sad (Sd) 20.0 15.0 35.0 5.0 5.0 10.0 10.0

Surprise (Sp) 0.0 0.0 0.0 100.0 0.0 0.0 0.0

Happy (H) 5.0 3.7 0.0 2.5 73.8 2.5 12.5

Fear (F) 16.7 0.0 8.3 8.3 33.4 25.0 8.3

Disgust (D) 3.8 19.2 3.8 0.0 0.0 1.9 71.3

Unit is (%)

Table 4 Confusion matrix with the Cohn-Kanade DFAT-504 database
by using randomly defined points with person-independent strategy.
The overall recognition rate is 70.2[%]

GT\RCG N A Sd Sp H F D

Neutral (N) 82.1 4.1 4.6 3.8 0.0 1.6 3.8

Angry (A) 7.7 69.2 0.0 0.0 0.0 15.4 7.7

Sad (Sd) 15.0 5.0 70.0 5.0 0.0 5.0 0.0

Surprise (Sp) 0.0 0.0 0.0 100.0 0.0 0.0 0.0

Happy (H) 0.0 3.7 0.0 2.5 83.8 5.0 5.0

Fear (F) 25.0 0.0 8.3 8.3 33.4 25.0 0.0

Disgust (D) 9.6 3.8 3.8 3.8 0.0 17.3 61.7

Unit is (%)

The main difference between the person-specific strategy
and the person-independent strategy is whether the interest
points are correctly allocated. With the person-specific strat-
egy, the paired points are correctly allocated directly to the
face image of the target subject, as show in Fig. 3. On the
other hand, with the person-independent strategy, we locate
the paired points in the average faces learned with the data-
base. Hence, without precise facial part detection, these in-
terest points are likely to be misallocated in the actual face
image for each subject, as shown in Fig. 16. Consequently,
the recognition rates with person-independent strategy seem
to be significantly degraded. By improving the facial part
detection, the performance of our paired points with the
person-independent strategy is expected to outperform those
with the random points.

The interest point misallocation affects more severely for
the facial expressions that produce similar appearances each
other. For example, as shown in Fig. 13, angry, sad and dis-
gust expressions resemble each other, especially in the eye-
brow regions. Inevitably, the eyebrow regions are likely to
yield large localization errors, especially with our rectangle-
based detector, due to their large interpersonal variation in
position, size, and shape. Furthermore, misrecognition of
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Fig. 16 Example of misallocation of interest points in eyebrow region.
Left: interest points defined in the average face. Right: those allocated
in the actual face image. Both images shows neutral expression. The
interest points on the eyebrow in the average image do not so in the
actual image

Fig. 17 Comparison between the estimated poses and the ground
truth for one sequence. Dashed: estimations by our method; Solid: the
ground truth. Black: yaw; Red: pitch; Blue: roll

some neutral expressions, in both Tables 3 and 4, also seems
to be caused by the facial part mislocalization. The neutral
eyebrow image in the right part of Fig. 16 associates angry
and disgust expressions (lowered eyebrow).

We suggest that the low recognition rates for fear expres-
sion are caused by the large interpersonal difference in the
display of fear expression in the database, especially in the
eyebrow regions (the mouth region is chiefly determiner of
the fear expression). Consequently, the eyebrow regions in
average face image in Fig. 13 are significantly blurred com-
pared to the other expressions. Such a variety of fear expres-
sions are hardly to be recognized correctly with the degen-
erated intensity distribution model. Consequently, many fear
expressions are mistakenly recognized as happy expression,
where the mouth region resembles those in fear expression.
This issue could be mitigated by modifying our method to
divide the intensity distribution model into upper and lower
face regions (cf. Action Units).

4.3 Performance Evaluation for Head Tracking

Finally, we evaluate the performance of the proposed
method for head tracking, separated from those for fa-
cial expression recognition, by using the Boston Univer-
sity (BU) face tracking database6 (Cascia et al. 2000). The

6http://www.cs.bu.edu/groups/ivc/HeadTracking/

Fig. 18 Sample tracking results on BU face tracking database

Table 5 Comparison with mean absolute error in head pose estimation
between the proposed method, its variations in interest points, and ex-
isting methods. The accuracies of these two existing methods are taken
from Murphy-Chutorian and Trivedi (2008)

Methods Errors [deg]

Yaw Pitch Roll

Pair 7.1 4.2 2.9

Edge 9.5 6.6 5.5

Random 7.1 4.9 3.0

Cascia et al. (2000) 3.3 6.1 9.8

Xiao et al. (2003) 3.8 3.2 1.4

BU face tracking database contains sets of 30[fps] QVGA
(320 × 240 pixel) MPEG compressed video sequences.
These sequences were captured under uniform illumination
or varying illumination together with head pose recorded by
a magnetic sensor. Subjects were asked to perform free head
motion, which included translation and rotation. We use the
set of video sequences captured under uniform illumination.
Moreover, the BU database does not contain any frames with
distinctive facial expression. Accordingly, we generated the
intensity distribution model that describes only neutral ex-
pression.

The tracking results are shown in Figs. 17 and 18. The
mean absolute angular error of our head pose estimation
module for yaw, pitch, and roll is shown in Table 5 together
with the results of two existing methods listed in Murphy-
Chutorian and Trivedi (2008). Our system is ranked between
them. Table 5 also shows that vertical head pose detection is
more accurate than horizontal detection.

These results demonstrated that the performance of head
pose estimation with the paired points almost matches that
with random points and bests that with edge points. The
cause of the low accuracy with edge points seems that they

http://www.cs.bu.edu/groups/ivc/HeadTracking/
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are sensitive to the misalignment caused by shape model er-
ror and to the slight change in neutral expression. Compared
to the random points, little effect of the use of the paired
points is found in Table 5.

4.4 Discussion

This section evaluated the estimation performance of the
proposed method in three aspects: facial expressions in non-
frontal-view with person-specific strategy, person-indepen-
dent strategy, and head tracking accuracy.

The results with person-specific strategy using our dataset
demonstrate that our method (person-specific) can achieve
the high performance for facial expression recognition even
with a large head rotation in almost all orientations. This
is because it avoids the problem of personal differences in
terms of the geometric arrangement of facial parts and fa-
cial expressions. These results suggest that locating inter-
est points away from the edges of facial parts can suppress
the severe impact of interest point shift produced by out-of-
plane rotation of the head with shape model error.

By enhancing interest point selection module, the perfor-
mance of our system would be increased. First, the interest
point selection module in this paper uses only a neutral ex-
pression image. However, selecting salient points for each
facial expression is expected to increase the recognition per-
formance. Second, the head tracking will become more sta-
ble by more accurately fitting the face shape model.

Our experiments also demonstrate the potential of our ap-
proach in supporting person-independent applications. The
performance of the person-independent version is expected
to be improved by enhancing the facial part detection mod-
ule using techniques such as active contours (Kass et al.
1988) or profile-based matching (Huang and Huang 1997),
i.e. shifting each paired point along the line connecting the
interpair points to be centered on the edge.

Based on these results with both strategies, we believe
that our person-independent version could handle large head
rotations as well as the person-specific version. Compared
to the existing deformation-based facial expression recog-
nition methods, our approach has the large advantage that
facial expression models can be learned just from monoc-
ular images, that is, many facial expression databases can
be utilized. Furthermore, unlike the dense-feature-based ap-
proach (such as optical-flow-based one), our approach can
introduce any three-dimensional face shape model to im-
prove the robustness against large head rotations, without
increasing the computational cost.

5 Summary and Future Work

In this paper, we presented a particle filter-based method for
estimating facial pose and expression simultaneously; it uses

a novel face model called the variable-intensity template.
Our method has the distinct advantage that a face model
for each person can be prepared very easily with a simple
step. Our method recognized the five facial expressions with
overall accuracy of 95.4% for horizontal, vertical and in-
plane facial orientations in the range of ±40, ±20, and ±40
degrees from the frontal view, respectively.

We intend to tackle the recognition of subtle spontaneous
facial expressions. To this end, we would like to apply un-
supervised learning with an online clustering technique, and
to estimate the intensity of facial expressions from changes
in interest point intensity by referring to optical flow estima-
tion.
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