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ABSTRACT
Cooperative checkpointing increases the performance and
robustness of a system by allowing checkpoints requested
by applications to be dynamically skipped at runtime. A
robust system must be more than merely resilient to fail-
ures; it must be adaptable and flexible in the face of new
and evolving challenges. A simulation-based experimental
analysis using both probabilistic and harvested failure dis-
tributions reveals that cooperative checkpointing enables an
application to make progress under a wide variety of failure
distributions that periodic checkpointing lacks the flexibility
to handle. Cooperative checkpointing can be easily imple-
mented on top of existing application-initiated checkpoint-
ing mechanisms and may be used to enhance other reliability
techniques like QoS guarantees and fault-aware job schedul-
ing. The simulations also support a number of theoretical
predictions related to cooperative checkpointing, including
the non-competitiveness of periodic checkpointing.

Categories and Subject Descriptors
D.4.5 [Operating Systems]: Reliability—checkpoint/restart,
fault-tolerance; C.4 [Performance of Systems]: Fault Tol-
erance

General Terms
Algorithms, Experimentation, Measurement, Reliability

Keywords
Cooperative checkpointing, RAS, high-performance comput-
ing, supercomputing, parallel computing, simulations
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1. INTRODUCTION
Periodic checkpointing, the standard method for provid-

ing reliable completion of long-running jobs, cannot cope
with many realistic reliability challenges on large-scale sys-
tems; cooperative checkpointing, in which checkpoint requests
may be skipped, provides greater performance and reliability
by enabling flexible behavior. With cooperative checkpoint-
ing, the application programmer, the compiler, and the run-
time system are all part of the decisions regarding when and
how checkpoints are performed. Specifically, the program-
mer inserts checkpoints at locations in the code where the
application state is minimal, placing them liberally wherever
a checkpoint would be efficient. The compiler then removes
any state which it finds to be superfluous, checks for errors,
and makes various optimizations that reduce the overhead
of the checkpoint. At runtime, the application requests a
checkpoint. The system grants or denies the checkpoint
based on various system-wide heuristics, including disk or
network usage and reliability information. A key benefit
of cooperative checkpointing is that checkpoints less likely
to be used for recovery can be skipped, thereby improving
overall performance.

Standard practice is to checkpoint periodically, at an in-
terval determined primarily by the overhead and the failure
rate of the system. Although such a scheme is optimal under
an exponential (memoryless) failure distribution, real sys-
tems may not exhibit such failure behavior [11, 18, 20] and
there is no reason to believe different systems will share reli-
ability characteristics. Furthermore, periodic checkpointing
does not scale with the growing size and complexity of sys-
tems [17]. Cooperative checkpointing performs well under
all tested failure distributions and system parameters, in-
cluding those where periodic checkpointing fails.

The system has an opportunity to skip requested check-
points at runtime, and thus may be considered a hybrid
of application-initiated and system-initiated checkpointing.
The application requests checkpoints, and the system either
grants or denies each one. Without cooperative checkpoint-
ing, all application-initiated checkpoints are taken, even if
system-level considerations would have revealed that some
are inefficient or have a low probability of being used for re-
covery. Cooperative checkpointing also leads to more portable
code; an application instrumented with checkpoint requests
can be run under many different failure distributions.

We verify our claims of robustness by means of exten-
sive simulations of large-scale systems. For example, using
cooperative checkpointing in one instance reduced bounded
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slowdown by a factor of nine, improved system utilization,
and lost no more work to failures than periodic checkpoint-
ing; this occurred even when event prediction had a 90%
false negative rate. We also confirm the theoretical result
that periodic checkpointing can be arbitrarily bad for non-
exponential failure distributions.

2. BACKGROUND
Checkpointing for computer systems has been a major

area of research over the past few decades. Work has typ-
ically focused on determining the optimal periodic check-
point interval [19, 23], reducing the overhead [12] or size of
a checkpoint (e.g. incremental checkpointing [2, 5]), and im-
proving the models used to describe system reliability [18,
22]. One area that merits greater attention is the flexibility
and robustness of current checkpointing approaches.

In order for any reliability scheme to be effective, one
must develop useful models of the failure behavior of super-
computers. Several early studies in the 1980’s and 1990’s
looked at the failure trends and developed theoretical mod-
els for small to medium-scale computer systems [4, 9]. Re-
cent studies harvested failures from both large-scale clus-
ters of commodity machines, as well as from a Blue Gene/L
prototype [11]. Critical event prediction algorithms on real
system traces have seen accuracies up to 80% [10, 20].

Tantawi and Ruschitzka [22] developed a theoretical frame-
work for performance analysis of checkpointing schemes. In
addition to considering arbitrary failure distributions, they
recognize the importance of flexibility by presenting the equicost
checkpointing strategy, which varies the checkpoint interval
according to a balance between the checkpointing cost and
the likelihood of failure. The costs of checkpointing at arbi-
trary points in a program’s execution is one of the many un-
desirable characteristics that make system-initiated check-
pointing inappropriate for large-scale systems.

Cooperative checkpointing is addressed in several unpub-
lished documents [13, 16, 17], but the only published manuscript
[14] deals exclusively with the theoretical models and mathe-
matical analysis. All of our listed contributions are exclusive
to this publication. This is the first paper to propose cooper-
ative checkpointing as a practical solution (with a discussion
of gatekeeper heuristics and checkpointing scheme proper-
ties), the first to motivate the need for cooperative check-
pointing as an alternative to periodic checkpointing, and the
first to empirically evaluate cooperative checkpointing.

3. TERMS AND DEFINITIONS
Define a failure to be any event in hardware or software

that results in the immediate failure of a running applica-
tion. At the time of failure, any unsaved computation is
lost and execution must be restarted from the most recently
completed checkpoint.

When an application initiates a checkpoint at time t, progress
on that job is paused for the checkpoint overhead (C) af-
ter which the application may continue. The checkpoint la-
tency (L) was shown [18] to have an insignificant impact on
checkpointing performance for realistic failure distributions.
Therefore, we treat C ≈ L. We assume downtime and re-
covery time are independent of the checkpointing choices;
regardless, we make no further mention of them, nor L, as
they do not impact cooperative checkpointing analysis.

In the context of cooperative checkpointing, I refers to

the length of the periodic request interval. Thus, a check-
point will be requested by the application every I seconds,
but not necessarily taken each time. This is an intentional
simplification of cooperative checkpointing, which does not
require that requests be made periodically.

From a system management perspective, supercomputer
node time is a valuable resource. Define a unit of work to be
a single node occupied for one second. That is, occupying n
nodes for k seconds consumes work n·k node-seconds. Thus,
a node sitting idle, recomputing work lost due to a failure,
or performing a checkpoint is considered wasted work. We
find it better to use the complementary metric, saved work
(or committed work), which is the total execution time mi-
nus its wasted time. Saved work never needs to be recom-
puted. Checkpointing overhead is considered wasted work
and is never included in the calculation of saved work. For
example, if job j runs on nj nodes, and has a failure-free ex-
ecution time (excluding checkpoints) of ej , then j performs
nj ·ej node-seconds of saved work. If that same job requires
Ej node-seconds, including checkpoints, then a failure-free
execution effectively wastes Ej − ej node-seconds.

Figure 1 shows typical application behavior and illustrates
the concepts of saved and wasted work. Periods of compu-
tation are occasionally interrupted to perform checkpoints,
during which job progress is halted. Job failure forces a
rollback to the previous checkpoint; any work performed
between the end of that checkpoint and the failure must be
recomputed and is considered wasted. Long-running appli-
cations will have hundreds of these checkpoints, many of
which may never be used.

A failure-free interval (FFI) is a period of time during
which the application can perform useful work, and so it
excludes downtime and recovery time. An FFI is ended by a
failure, and an FFI length is the span of useful computation
time between two consecutive failures.

4. MOTIVATION
High performance computing systems continue to grow in

size and complexity. For example, a 64-rack Blue Gene/L
(BG/L) system contains 65,536 nodes and more than 16
terabytes of memory [1]. Applications on these systems are
designed to run for days to months. Despite a design fo-
cus on reliability, there is little evidence that reliability will
improve faster than the increases in machine size. If we
hope to use checkpointing to provide reliable completion of
these jobs on inherently unreliable hardware, it is clear that
standard checkpointing techniques must be reevaluated [6].

Periodic checkpointing is not the best solution to provid-
ing reliable execution of jobs under realistic system condi-
tions. Consider Figure 2, which shows the performance of a
large-scale cluster at different checkpointing overheads and
checkpoint intervals. Average bounded slowdown is a stan-
dard performance metric that considers the ratio of time a
job actually spends in a system (from submission to com-
pletion) to its execution time without checkpoints. Work
lost measures the amount of work that had to be recom-
puted due to failures. We want to minimize both metrics.
This particular set of results used a real job log (LLNL T3D
[7]) from a toroidal architecture machine similar in config-
uration to BG/L and a failure distribution harvested from
a 350-node AIX cluster [20]. We performed similar exper-
iments with other interconnect architectures, job logs, and
scheduling algorithms (more details on the other simulations
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Figure 1: Three runs of a job in which different checkpoints are skipped. Run (a) shows typical periodic
behavior, in which every checkpoint is performed. In run (b), the final checkpoint is skipped, perhaps because
the critical event predictor sees a low probability that such a checkpoint will be used for rollback, given the
short time remaining in the computation. Finally, run (c) illustrates optimal behavior, in which a checkpoint
is completed immediately preceding a failure. The figure lists the amount of work wasted in each execution.

can be found elsewhere [17]).
In all experiments, the conclusion was that periodic check-

pointing, while the most common method of mitigating job-
level loss from failures, may not be appropriate for improving
system-level metrics. Indeed, the act of checkpointing can
be more detrimental than the failures, themselves. Not only
that, but the metrics give conflicting advice: Figure 2(a)
argues for checkpointing as infrequently as possible, while
Figure 2(b) implies that frequent checkpoints are effective
(to a point). There is a need for a practical checkpointing
technique that both reduces lost work and improves system-
level metrics. Cooperative checkpointing does exactly that:
it acts to improve job-level and system-level metrics with a
mechanism that is both practical and flexible.

5. COOPERATIVE CHECKPOINTING
Cooperative checkpointing is a set of semantics and poli-

cies that allow the application, compiler, and system to
jointly decide when checkpoints should be performed. Specif-
ically, the application requests checkpoints, which have been
optimized for performance by the compiler, and the system
grants or denies these requests. The general process consists
of two parts:

1. The application programmer inserts checkpoint requests
in the code at places where the state is minimal, or
where a checkpoint is otherwise efficient. These check-
points can be placed liberally throughout the code, and
permit the user to place an upper bound on the num-
ber and rate of checkpoints. The compiler optimizes
these requests by catching errors, removing dead vari-
ables, and assisting with optimization techniques such
as incremental checkpointing.

2. The system receives and considers checkpoint requests.
Based on system conditions such as I/O traffic, criti-
cal event predictions, and user requirements, this re-
quest is either granted or denied. The mechanism
that handles these requests is referred to as the check-
point gatekeeper or, simply, the gatekeeper. The re-

quest/response latency for this exchange is assumed
to be negligible.

There are many possible implementations of this tech-
nique; it can be made to guarantee distributed process con-
sistency, support incremental checkpointing, and so on, based
on the requirements of the particular system. For example,
state-of-the-art application-initiated checkpointing schemes
[21] already have a predicate-based checkpointing decision
point, currently triggered on elapsed time. This can easily
be changed to query a system-level cooperative checkpoint-
ing gatekeeper that incorporates other factors as well. Fail-
ure prediction capabilities for BG/L have been completed
[10] and an implementation of cooperative checkpointing for
BG/L is underway.

Cooperative checkpointing appears to an observer as ir-
regularity in the checkpointing interval. When good heuris-
tics are used, this irregularity produces greater resilience
against a variety of failure distributions. The behavior of
applications as they choose to skip different checkpoints is
illustrated in Figure 1.

The primary policy question with regard to cooperative
checkpointing is, “How does the gatekeeper decide which
checkpoints to skip?” There are many heuristics that the
gatekeeper may use, including:

• Network Traffic. Network I/O is a bottleneck with
respect to saving state to disk. The gatekeeper may
choose to skip a checkpoint if traffic conditions suggest
that the checkpoint would take unacceptably long.

• Disk Usage. Similarly, the shared stable storage itself
may be the bottleneck if the network bandwidth lead-
ing to the disks outpaces the media’s available write
bandwidth.

• Job Scheduling Queue. If a high-priority job is waiting
for a running job’s partition, it may be profitable to
risk skipping checkpoints to allow that waiting job to
run sooner. For example, if a single-node job is block-
ing a 128-node job, then we would rather skip some
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Figure 2: Simulations of periodic checkpointing under realistic large-scale system conditions (a) suggest that
the optimal system-level strategy is to never checkpoint at all. At high enough overheads (b), periodic
checkpointing is not even effective at reducing the amount of work lost to failures. C is the checkpoint
overhead in seconds.

of the small job’s checkpoints to free up that node as
soon as possible.

• Event Prediction. If a failure is likely to occur in the
near future, the gatekeeper should choose to save the
state before that happens. On the other hand, if sys-
tem conditions are stable, performing the checkpoint
may be a waste of time and resources. Failure predic-
tion on real systems can be very accurate [10, 20].

• QoS Guarantees. Many systems make QoS guaran-
tees to users in the form of deadlines or minimum
throughput. Cooperative checkpointing can be used
as a tool to help keep those promises [15]. For exam-
ple, a job that started later than expected can be made
to skip checkpoints in order to reduce its effective run-
ning time, thereby potentially meeting a deadline it
would otherwise have missed.

Note that most of these heuristics cannot and should not
be considered by the application programmer at compile-
time. At the same time, there are many aspects of the in-
ternal logic of an application (data semantics, control flow)
that cannot and should not be considered by the system at
runtime. Neither application-initiated nor system-initiated
checkpointing satisfactorily considers all these factors in de-
ciding when to perform checkpoints.

Table 1 compares characteristics of cooperative checkpoint-
ing to system-initiated and application-initiated checkpoint-
ing. Certainly, the table is neither complete nor strictly
precise. The entries in the table, however, act as a useful
reminder of the tradeoffs made by designers attempting to
construct reliable systems. The features we consider are:

• Semantics. The checkpointing scheme is aware of the
semantics of the data, and can save only what is needed
to recreate the application state.

• Min-State. The checkpoints are performed at places
in the code where application state is minimal, such
as at iterations of an outer loop.

• Portable. Checkpoints may be used for restart on ma-
chines that are different from the ones on which the
checkpoint was made. This is useful for heterogeneous
systems.

• Compiler. At compile time, the application can be
optimized to more efficiently perform the checkpoints.

• Runtime. The checkpointing policy is decided at run-
time, and can consider such factors as the size of the
application’s partition, system health, and network traf-
fic.

• Kernel State. The checkpointing mechanism is able to
save and restore kernel-level information, such as PID
or PPID.

• Transparent. User intervention is not required to ac-
complish checkpointing; checkpoints are placed and
performed transparently.

Transparency is difficult to achieve without sacrificing knowl-
edge of the data semantics and application state behavior.
That knowledge translates to smaller checkpoints, and, con-
sequently, smaller checkpointing overheads. Using compiler
or preprocessing techniques [3, 21], however, it is possible to
minimize user intervention.

5.1 Checkpointing Algorithms
The space of deterministic cooperative checkpointing al-

gorithms is countable. Each such algorithm is uniquely iden-
tified by the sequence of checkpoints it skips and performs.
One possible way to encode these algorithms is as binary se-
quences, where the kth digit is 1 if the kth checkpoint should
be performed and 0 if it should be skipped. For example,
an algorithm A that skips every third checkpoint could be
written as: A = {1, 1, 0, 1, 1, 0, 1, . . .}

We use deterministic to refer to a cooperative checkpoint-
ing algorithm that decides which checkpoints to perform at
the beginning of the failure-free interval, and dynamic to
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Feature System Application Cooperative

Semantics × ×
Min-State × ×
Portable × ×
Compiler × ×
Runtime × ×
Kernel State × ×
Transparent ×

Table 1: Comparison of the characteristics of the
two major approaches in addition to cooperative
checkpointing. Cooperative checkpointing provides
nearly all of the benefits of the other schemes, with
the exception of transparency. In the absence of
better compilers or developer tools, however, trans-
parency necessarily comes at the cost of smaller,
more efficient checkpoints; that is not an acceptable
tradeoff for most high performance applications.

refer to those that make decisions online based on what-
ever information is available at that point. The following
algorithms are considered in this paper.

5.1.1 Offline Optimal
Denoted as OPT , this algorithm nondeterministically per-

forms the latest checkpoint in a failure-free interval that it
can complete before the failure, and no others. It is used as
a point of reference for the performance of more practical
algorithms.

5.1.2 Periodic
The näıve implementation of periodic checkpointing per-

forms the dth checkpoint, the 2dth checkpoint, the 3dth check-
point, and so on. When dI is optimal according to Young’s
approximation [23] and is used under an exponential failure
distribution, periodic checkpointing is roughly optimal for a
deterministic algorithm. A similar algorithm, revised pe-
riodic checkpointing, always performs the first checkpoint,
then the (d + 1)th checkpoint, the (2d + 1)th checkpoint,
and so on. Examples of these algorithms in binary notation
follow:

[ Periodic, d=2 ] = {0, 1, 0, 1, 0, 1, . . .}
[ Revised Periodic, d=3 ] = {1, 0, 0, 1, 0, 0, 1, . . .}

5.1.3 Risk-Based
This dynamic cooperative checkpointing algorithm makes

online decisions about whether or not to skip each check-
point request using a probabilistic analysis. When deciding
whether to perform checkpoint i, it asks how much work it
expects to lose before checkpoint i + 1 would be completed.
If that measure is greater than the cost of checkpointing,
then it performs the checkpoint. This strategy is also called
risk-based checkpointing. Let pf be the probability that a
failure will happen before checkpoint i+1 completes (deter-
mined from the failure density function), and let d be the
number of consecutive preceding intervals that have elapsed
since a checkpoint was completed. The expected cost of
skipping the checkpoint is pf ((d + 1)I + C), with no cost if
a failure does not occur. The cost of performing the check-
point is pf (I + 2C) + (1− pf )C. This gives the heuristic for

risk-based checkpointing, which is pfdI ≥ C. If the inequal-
ity holds, the algorithm performs the checkpoint.

5.1.4 Exponential Backoff
Let backoff be a cooperative checkpointing algorithm that

doubles the amount of saved work at the completion of each
checkpoint. Thus, in each failure-free interval, it performs
the 1st, 2nd, 4th, 8th, etc. checkpoints:

[ Backoff ] = {1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, . . .}

All of the algorithms described in this section are tech-
nically cooperative checkpointing algorithms, because they
each involve skipping checkpoint requests as part of their
behavior. Risk-based, however, captures the essence of co-
operative checkpointing by explicitly weighing the cost of
checkpointing against the benefit from doing so using infor-
mation beyond merely the mean time between failures.

6. ROBUSTNESS OF COOPERATIVE CHECK-
POINTING

Robustness implies the ability to withstand changes in the
environment, rather than being optimal for some particular
set of conditions and metrics. We show that cooperative
checkpointing is robust to system parameters and failure
behavior where periodic checkpointing is not.

6.1 Robust to System Parameters
Before considering a variety of failure distributions, we re-

visit the experiments of Section 4 and see that cooperative
checkpointing is robust under a variety of system parame-
ters. These experiments simulated the scheduling of more
than 30 million jobs over 600,000 machine hours using job
logs from actual supercomputers and a failure trace from a
350-node AIX cluster.

Recall Figure 2, which showed periodic checkpointing ex-
periencing terrible performance degradation at short check-
point intervals; when the overhead became very large it even
failed to reduce lost work. Now, consider a system using co-
operative checkpointing as in Figure 3. “Risk A” means
risk-based checkpointing whose predictor has an accuracy
of A; there are no false positives, so this also implies a false
negative rate of (1-A). “Work” means work-based check-
pointing, which checkpoints whenever unsaved work exceeds
checkpoint overhead.

Cooperative checkpointing improves both system-level met-
rics like bounded slowdown and job-level metrics like work
lost due to failures. According to extensive experimentation,
cooperative checkpointing retains good performance at low
prediction accuracies (at most 10% is needed); toroidal or
flat interconnect architectures; job logs from LLNL, SDSC,
and NASA [7]; checkpoint overheads of 720 seconds and 3600
seconds; a huge range of checkpoint request intervals; and
considering metrics like bounded slowdown, response time,
wait time, average system utilization, and total work lost to
failures. An application using periodic checkpointing would
have to be reconfigured for each of these cases, likely with
programmer intervention, and would still not obtain the per-
formance and reliability of cooperative checkpointing. We
believe the potency of low prediction accuracy is a function
of the temporal and spatial clustering of failures in the real
system trace, a trend which we have observed in many other
systems. Predicting a member of such a cluster effectively
predicts them all.

18



0 0.5 1 1.5 2 2.5 3
x 104

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2 x 104

Av
g 

Bo
un

de
d 

Sl
ow

do
w

n

Interval (seconds)

Periodic
Work
Risk 1
Risk 0.5
Risk 0

(a)

0 0.5 1 1.5 2 2.5 3
x 104

0

5

10

15 x 107

W
or

k 
Lo

st
 (n

od
e 

* s
ec

on
ds

)

Interval (seconds)

Periodic
Work
Risk 1
Risk 0.9
Risk 0.8
Risk 0.7
Risk 0.6
Risk 0.5
Risk 0.4
Risk 0.3
Risk 0.2
Risk 0.1
Risk 0

(b)

Figure 3: Cooperative checkpointing controls the exponential explosion of bounded slowdown as checkpoint
intervals become smaller. Figure 3(b) shows that it simultaneously reduces the amount of work lost to failures,
a feat that periodic checkpointing could not do for large overheads. This tremendous benefit was garnered
even when the event predictions given to the cooperative checkpointing gatekeeper had a 90% false-negative
rate.

C (sec) I (sec) T (sec) # FFIs

720 IOP T
2

60,480,000 100,000

Table 2: Simulation parameters. These values are
assumed where not specified to be otherwise. The
choice of I means that optimal periodic checkpoint-
ing will perform every second checkpoint, because
the request interval is half the optimal periodic in-
terval.

6.2 Robust to Failure Behavior
Cooperative checkpointing provides robustness against nu-

merous failure behaviors that periodic checkpointing does
not. These experiments were performed using a specially de-
signed cooperative checkpointing simulator written in Java.
The simulator uses a given failure density function, which
is either probabilistic or based on an input trace, to gen-
erate FFI (failure-free interval) lengths. For each cooper-
ative checkpointing algorithm, the simulator tests its be-
havior during that interval, recording both how much work
was saved and what ratio it achieved relative to the offline
optimal. We tested each of the algorithms described in Sec-
tion 5.1. Most runs performed 100, 000 of these intervals for
each algorithm for each failure distribution for each mean
time between failures.

The checkpoint overhead C was set to 720 seconds (half
the maximum estimated overhead for BG/L), and the max-
imum application running time was set at T = 100 weeks
(larger than any observed FFI length). The checkpoint re-
quest interval was set to be half the optimal periodic check-
pointing interval for a distribution with a given mean (I =
IOP T

2
). This means that there are twice as many possi-

ble placements of checkpoints. It also means that periodic
and revised periodic checkpointing will have d = 2 in these
experiments (they will skip every other checkpoint). The
parameters are summarized in Table 2.

Although a large amount of information was collected,

this paper focuses on the presentation of two similar but
not necessarily correlated metrics:

Average ratio: For a given interval i, let V i
A be the

amount of work saved by algorithm A and let V i
OPT be the

amount saved by the offline optimal. The average ratio com-

putes the average over all intervals i of
V i

A

V i
OP T

.

Average saved work: The average saved work calcula-
tion sums the saved work over all intervals and divides by
the number of intervals. It has units of node-seconds, but
here we treat the cluster as a single node.

System reliability is commonly modeled by one of several
probability densities that describe the distribution of time
to failure: exponential, Weibull, and uniform. It is also
possible to create an empirical probability distribution using
machine traces, which can then be used as a model for future
behavior. These distributions generate the time to failure for
the system: if a distribution generates a value f1, that means
the system will fail after running for f1 seconds. Remember
that we are considering any failure that causes a job to fail,
be it in hardware or software. More information on these
distributions can be found elsewhere [8].

For each failure distribution, we varied the mean ( 1
λ
) among

14 values, evenly distributed from an expectation of 10 fail-
ures per day (8640 seconds) to one failure every 5 days
(432000 seconds). The Weibull distribution we used was a
sum of three subpopulations of Weibull distributions to ap-
proximate the so-called “bathtub” reliability function. One
subpopulation had β = 0.5 and represented early-life burn-
in failures, one with β = 1 for steady state, and one with
β = 1.5 for wear-out failures. The scale parameter, η, was
determined from the desired mean:

1

η
= λΓ(1 +

1

β
)

The uniform distribution was defined as a constant over
[0, 2

λ
] so that the mean is 1

λ
. This implies that there will

always be a failure within that interval of time; the expected
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rate of failure increases as the interval progresses. We de-
fined a composite uniform distribution that consisted of two
uniform distributions: one centered at I + C and having
weight 0.99, and one centered at ( 1

λ
−0.99(I +C))/0.01 with

weight 0.01. In other words, nearly all the failures happen
just after the first checkpoint (if taken) would be completed,
while a small number occur far later.

The real machine trace was harvested from a 4,096-node
prototype of IBM’s Blue Gene/L supercomputer during the
course of just over 18 weeks. More information on the ma-
chine and the original traces can be found elsewhere [11].
The logs were filtered to isolate individual critical failure
events from those that were either not severe or non-critical
informational events. The final filtered trace had 124 entries
that correspond to processor or memory failures that would
have caused an application using that node to crash. The
FFI lengths in the trace are distributed almost exponentially
at small inter-failure times, but there are several intervals
that last for much longer.

6.2.1 Generated Trace Results
Figure 4 illustrates the results of runs under an expo-

nential failure distribution with varying mean. The pair of
plots represents simulated data for seven million intervals of
failure-free execution. Figure 4(a) shows the average ratio
with the optimal. At low means, both exponential backoff
and revised periodic checkpointing do the best because they
always perform the first checkpoint; at higher means those
two do the worst, with backoff giving the most precipitous
drop. Figure 4(b) shows average amount of saved work. In
general, both graphs show performance increasing with re-
liability, with the exception of the ratio with backoff. This
happens because backoff will achieve a poor ratio when the
next scheduled checkpoint falls after the next failure, but on
the whole saves a respectable amount of work. Both plots
also exhibit an interesting inflection point. When the aver-
age interval is small, many intervals will not give any saved
work and the average will be dominated by the large inter-
vals. Past this inflection point, the amount of saved work
grows roughly linearly with the mean time between failures.

The results for the Weibull bathtub distribution are given
in Figure 5. Simple periodic checkpointing and risk-based
checkpointing are clear winners here. The benefits backoff
and revised periodic showed at high failure rates under the
exponential distribution are less pronounced here, because
nodes that fail early only make up a third of the popula-
tion. Deterministically performing the first checkpoint may
bound the damage in some bad cases, but it is not always a
desirable behavior.

There are several interesting features of Figure 6, which
plots results for the uniform distribution. First is the saw-
tooth pattern in the average ratio of the backoff algorithm.
This is a consequence of checkpoints that fall right around
the failure time. If the checkpoint came just before the fail-
ure, backoff does very well. On the other hand, if that check-
point doesn’t finish before the failure, backoff saves only half
as much work as if the checkpoint had finished, by virtue of
the nature of the algorithm, which doubles the amount of
saved work with each checkpoint.

The second interesting feature of Figure 6(a) is the unusu-
ally poor average ratio of risk-based checkpointing. This is
a consequence of the derivation of the algorithm’s heuristic,
which implicitly assumed a memoryless distribution. There

is also some question about the appropriateness of the uni-
form distribution as a reliability model, especially as it is
treated here: there is always a failure before time t = b, and
the expected failure rate increases as the interval elapses.

Figure 7 clearly demonstrates both the robustness of co-
operative checkpointing and the difference between the two
metrics. Despite performing well under the other distribu-
tions, Figure 7(a) shows that periodic checkpointing does
poorly in terms of its ratio with the optimal. The other al-
gorithms give an excellent ratio. Risk-based checkpointing
did well under all distributions and was therefore demon-
strated to be more robust.

On the other hand, Figure 7(b) looks very much like the
saved work plots for every other distribution, suggesting that
the metric lacks some crucial information that is needed to
accurately identify the merit of a checkpointing algorithm.
Periodic checkpointing almost never manages to save any
work under this composite uniform distribution, because it
skips the first checkpoint; this gives it a poor average ratio.
When it does save work, however, it saves a huge amount;
this causes the average saved work to look normal.

6.2.2 Machine Trace Results
Figure 8 plots the results of experiments using the Blue

Gene/L harvested failure trace. The mean is not varied.
Instead, each algorithm is given along the horizontal axis.
Risk-based checkpointing would have resulted in the shortest
application running time, but did not actually give the best
average ratio (revised periodic did). Revised periodic per-
forms better than periodic checkpointing under both met-
rics, suggesting that the small modification to periodic check-
pointing translates to better performance in practice. Recall
that this approximated failure distribution was generated
from only 124 failure events; the performance may improve
as more data is gathered.

In the BG/L trace, we observed what appeared to be an
exponential failure distribution at shorter intervals. Com-
bining that observation with the good performance of back-
off at higher failure rates in Figure 4(a) might lead one to
conclude that backoff should do well here. It seems, however,
that the mean of the trace distribution is not low enough to
bring out the benefits of performing many of the early check-
points. Note that the full Blue Gene/L is 64 racks, and may
exhibit failure rates significantly different from this trace.

The results were not very sensitive to the chosen simula-
tion parameters. Varying the checkpoint overhead (C) does
not significantly affect the relative performance of the algo-
rithms, but does lead to an across-the-board decline in both
average ratio and saved work. Backoff is hit hardest, because
it pays for a fixed number of checkpoints in a given set of
requests. As long as I is some integer fraction of IOPT , and
we neglect the request overhead, the impact of varying I on
risk-based checkpointing is nil. With backoff, however, de-
creasing I significantly increases the number of checkpoints
the algorithm performs early on, which quickly becomes a
detriment to performance.

Cooperative checkpointing is designed to favor algorithms
that do well in failure-free intervals of all lengths, rather than
great in some and terrible in others. This makes them ro-
bust enough to handle many different failure distributions,
without necessarily sacrificing average saved work. In ev-
ery experiment, risk-based checkpointing did well in both
metrics; the same cannot be said for periodic checkpointing.

20



(a) (b)

Figure 4: Exponential failure distribution. The exponential backoff algorithm is typically worse, but beats
many of the others when the mean is small. Risk-based checkpointing performs comparably with periodic
checkpointing, which is important to remember when we see risk-based do much better than periodic for
other distributions.

(a) (b)

Figure 5: Weibull bathtub failure distribution. Revised periodic checkpointing does consistently worse than
the näıve implementation, meaning that performing the first checkpoint is not always ideal behavior. Risk-
based checkpointing once again keeps pace with periodic checkpointing.

7. CONTRIBUTIONS
Cooperative checkpointing, which empowers a system to

skip checkpoints requested by applications at runtime, is
more robust than periodic checkpointing to variations in
failure distributions and system parameters. To summa-
rize: the user inserts checkpoint requests liberally where
they would be efficient, the compiler optimizes these pos-
sible checkpoint locations, and the system (gatekeeper) may
consider any number of runtime factors when deciding which
checkpoints to skip. Some of the contributions of this paper
are as follows:

• Motivates the work by showing that periodic check-
pointing does not scale under realistic failure distribu-
tions (Figure 2) and that even low accuracy prediction
can be a powerful resource worth exploiting (Figure 3).

• Argues that cooperative checkpointing is a simple, effi-
cient, portable, and flexible reliability tool that can be

practically implemented on top of existing application-
initiated checkpointing mechanisms, and its infrastruc-
ture can be used to facilitate numerous other system
tasks such as QoS guarantees or job scheduling (Sec-
tion 5).

• Describes a cooperative checkpointing simulator writ-
ten in Java and the experiments performed with that
software. Using large-scale system parameters and real
traces (where appropriate), we simulated hundreds of
millions of machine hours and verified our claims of
robustness (Figures 3-8).

• Demonstrates the behavior of several cooperative check-
pointing algorithms under a number of reliability con-
ditions. These algorithms include the offline optimal,
periodic checkpointing, revised periodic checkpointing,
risk-based checkpointing, and exponential backoff.
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(a) (b)

Figure 6: Uniform failure distribution. Risk-based checkpointing does uncharacteristically poorly, because
the heuristic was derived under a memoryless assumption. Exponential backoff exhibits a sawtooth pattern;
parameter variations cause a late checkpoint to fall before or after the failure, which has a factor of 2 impact
on saved work and the ratio with the optimal.

(a) (b)

Figure 7: Composite uniform distribution. As predicted, periodic checkpointing is abysmally non-competitive
against all the other algorithms in terms of the ratio with the optimal. Surprisingly, this is not apparent
when looking at average saved work.

(a) (b)

Figure 8: Failure trace from Blue Gene/L. Risk-based checkpointing takes second in the ratio, but comes clos-
est to OPT in average saved work. Revised periodic checkpointing does better than periodic checkpointing,
suggesting that performing the first checkpoint deterministically may be a good strategy in practice.
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• Supports experimentally a number of theoretical re-
sults related to cooperative checkpointing, including
the non-competitiveness of periodic checkpointing and
the optimal competitiveness of simple cooperative check-
pointing algorithms like backoff (Figure 7).

• Reveals interesting characteristics of cooperative check-
pointing: optimally competitive algorithms may do
worse than non-competitive algorithms under common
failure distributions (Figure 6), and the competitive
ratio may have no relationship with the expected rate
of progress an application makes while remaining a
relevant indicator of the quality of a checkpointing
scheme (Figure 7).

The purpose of these experiments was not to argue the
quality of one failure model over another, nor one coopera-
tive checkpointing algorithm over another. The important
conclusion is that periodic checkpointing lacks the flexibility
to handle even a small variety of non-exponential traces or
to scale with increasing failure rates and checkpoint over-
heads. Cooperative checkpointing provides that robustness
in a manner that is practical, theoretically proven, and ex-
perimentally confirmed.
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