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ABSTRACT
We consider the class of Iterative Shrinkage-Thresholding Al-
gorithms (ISTA) for solving linear inverse problems arising in
signal/image processing. This class of methods is attractive
due to its simplicity, however, they are also known to con-
verge quite slowly. In this paper we present a Fast Iterative
Shrinkage-Thresholding Algorithm (FISTA) which preserves
the computational simplicity of ISTA, but with a global rate
of convergence which is proven to be significantly better, both
theoretically and practically. Initial promising numerical re-
sults for wavelet-based image deblurring demonstrate the ca-
pabilities of FISTA.

Index Terms— iterative shrinkage-thresholding algo-
rithm, least squares and l1 regularization problems, optimal
gradient method, two steps iterative algorithms, image de-
blurring.

1. INTRODUCTION

A basic linear inverse problem is to estimate an unknown sig-
nal x known to satisfy the relation

Ax = b + w. (1)

where A ∈ R
m×n and b ∈ R

m are known and w is an un-
known noise (or perturbation) vector.
A classical approach to this estimation problem is the least

squares (LS) approach in which the estimator is chosen to
minimize the least squares term ‖Ax − b‖2. In many ap-
plications, such as image deblurring, it is often the case that
A is ill-conditioned and in these cases the LS solution usu-
ally has a huge norm and is thus meaningless. To overcome
this difficulty, regularization methods are required to stabi-
lize the solution. One regularization method that attracted a
revived interest and considerable amount of attention in the
signal processing literature is l1 regularization in which one
seeks to find the solution of

min
x

{F (x) ≡ ‖Ax − b‖2 + λ‖x‖1}, (2)
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where ‖x‖1 stands for the sum of the absolute values of the
components of x, see e.g., [1, 2, 3, 4]. The presence of the l1
term is used to induce sparsity in the optimal solution, of (2),
see e.g., [5, 6]. In image deblurring for example, A is often
chosen as A = RW where R is the blurring matrix andW

contains a wavelet basis. The underlying philosophy here in
dealing with the l1 norm regularization criterion is that most
images have a sparse representation in the wavelet domain.
In many applications, e.g., in image deblurring, the prob-

lem is not only large scale (can reach millions of decision
variables), but also involves dense matrix data, which often
precludes the use and potential advantage of sophisticated in-
terior point methods. This motivated the search of simpler
gradient-based algorithms for solving (2), where the domi-
nant computational effort is a relatively cheap matrix-vector
multiplications involving A and AT . One of the most pop-
ular methods to solve problem (2) is in the class of iterative
shrinkage/thresholding algorithms (ISTA), see e.g. [7, 1, 3,
8]. Specifically, the general step of ISTA is

xk+1 = T λtk

(
xk − 2tkA

T (Axk − b)
)

(3)

where tk is an appropriate stepsize and T α : R
n → R

n is the
shrinkage operator defined by

T α(x)i = (|xi| − α)+sgn (xi). (4)

Clearly, each iteration of ISTA is comprised of a gradient step
of the smooth part followed by a shrinkage operation. The
convergence analysis of ISTA has been well studied in the lit-
erature under various contexts and frameworks, including var-
ious modifications, see e.g., [1, 3, 9] and references therein.
The advantage of ISTA is in its simplicity. However, ISTA
has also been recognized as a slow method. Traditionally,
the convergence analysis of iterative algorithms focuses on
the asymptotic convergence of the sequence {xk}. Here, we
focus on the nonasymptotic global rate of convergence and ef-
ficiency of methods measured through functions values, and
we present a fast iterative shrinkage/thresholding algorithm
(FISTA) for solving the general problem

min
x

{F (x) ≡ {f(x) + g(x)}, (5)
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where f and g are convex functions, with g possibly nons-
mooth (see Section 2 for precise description). This algorithm
is shown to converge to the optimal function value with the
faster1, rate of O(1/k2), k being the iteration number. More-
over, FISTA shares the same simplicity and computational de-
mand of ISTA.
Recently, several accelerations of ISTA have been pro-

posed in the literature, e.g., [11, 12]. The recent scheme of
[11], called TwIST, uses at each step the last two iterations
and is also based on a ”gradient” type step followed by a
shrinkage operation. Within another line of analysis, the re-
cent work of [12] uses sequential subspace optimization tech-
niques to accelerate ISTA. The speedup gained by both of
these methods over ISTA was demonstrated experimentally
on various linear inverse problems. However, for both of these
two recent methods [11, 12], global rate of convergence have
not been established. More recently, a different speed-up of
ISTA was introduced in [13] for problem (5)with a O(1/k2)
global rate of convergence. Although the method in [13] and
FISTA shares the same O(1/k2) complexity result, the two
schemes are very much different. In particular, the method of
[13] requires two projections at each iteration, as opposed to
one in FISTA. Moreover, FISTA is a two-steps method, while
the scheme of [13] is a multistep method. Finally, the anal-
ysis of the two methods is completely different, see [10, 13]
for details.
The paper is organized as follows. In Section 2, we recall

ISTA as applied to the general model (5) and present the con-
vergence result in this general setting. In Section 3 we present
the details of the algorithm FISTA for both the constant and
non-constant stepsize rules and provide the promised faster
rate of convergence. In Section 4 we describe some prelimi-
nary numerical results for image deblurring problems, which
demonstrate that FISTA can be even faster than the proven
theoretical rate, and can outperform existing algorithms by
several orders of magnitude.
Omitted proofs and further details on FISTA can be found

in [10].

2. ISTA FOR THE GENERAL MODEL

As mentioned in the introduction, for the purpose of our anal-
ysis, we consider the following general formulation which
naturally extends the problem formulation (2):

(P ) min{F (x) ≡ f(x) + g(x) : x ∈ R
n}, (6)

where g : R
n → R is a continuous convex function which

is possibly nonsmooth and f : R
n → R is a smooth convex

function with gradient which is Lipschitz continuous. That is,
there exists a constant L(f) for which

‖∇f(x) −∇f(y)‖ ≤ L(f)‖x − y‖ for every x,y ∈ R
n.

1Function values for ISTA converge sublineraly, i.e. with a rate of
O(1/k), see, [10] for details.

We also denote the optimal solution set byX∗. In this setting,
the general step of ISTA is of the form

xk+1 = prox
tk

(g)(xk − tk∇f(xk)),

where the prox operation is defined by

prox
t
(g)(x) := argmin

u

{
g(u) +

1

2t
‖u − x‖2

}
. (7)

The simplicity of ISTA therefore depends on the ability to
compute the prox operation. When g(x) := λ‖x‖1, then the
prox operation is the same as soft thresholding, thus rendering
it easy to compute. In other cases, the prox operation might
not be so easy to compute. For example when g is chosen as a
total variation function, then the computation of the prox op-
eration requires the solution a total-variation based denoising
problem (see e.g. [11]), for which good algorithms exist, but
still there seems to be no explicit formula for the prox in this
case. In general, the prox operation is easy to compute when
g(·) is separable, since in that case the computation of prox
reduces to solving a one dimensional minimization problem.
It is also interesting to note that when g(x) := 0, the prox

operation is just the identity operator and therefore ISTA in
this case is the gradient method. For the gradient method it is
known that the sequence of function values F (xk) converges
to the optimal function value F∗ at a rate of convergence that
is no worse thanO(1/k) also called a ”sublinear” rate of con-
vergence. The same result also holds for ISTA, see [10].

Theorem 2.1 Let {xk}be the sequence generated by ISTA
with a constant stepsize tk = 1/L(f). Then for any k ≥ 1:

F (xk) − F (x∗) ≤
L(f)‖x0 − x∗‖2

2k
, ∀ x∗ ∈ X∗. (8)

3. FISTA: A FAST ITERATIVE
SHRINKAGE/THRESHOLDING ALGORITHM

We have just shown that ISTA has a worst-case complexity
result of O(1/k). In this section we present a simple fast
iterative shrinkage/thresholding algorithm with an improved
rate of O(1/k2).
We recall that when g(x) ≡ 0 the general model (6) con-

sists of minimizing a smooth convex function and ISTA re-
duces to the gradient method. In this smooth setting it was
proven in [14] that there exists a gradient method with an
O(1/k2) complexity result which is an ”optimal” first-order
method for smooth problems. The remarkable fact is that the
method developed in [14] does not require more than one gra-
dient evaluation at each iteration (namely, same as the gra-
dient method), but just the computation of a smartly chosen
linear combination of the two previous iterates.
In this section we extend the method of [14] to the gen-

eral model (6) and we establish the improved complexity re-
sult. We begin by presenting the algorithm with a constant
stepsize.
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FISTA with constant stepsize
Input: L = L(f) - A Lipschitz constant of∇f .
Step 0. Take y1 = x0 ∈ R

n, t1 = 1.
Step k. (k ≥ 1) Compute

xk = prox
tk

(g)

(
yk −

1

L
∇f(yk)

)
, (9)

tk+1 =
1 +

√
1 + 4t2

k

2
, (10)

yk+1 = xk +

(
tk − 1

tk+1

)
(xk − xk−1).(11)

The main difference between the above algorithm and
ISTA, is that that the iterative-shrinkage step (9) is not em-
ployed on the previous point xk−1, but rather at the point yk

which uses a very specific linear combination of the previous
two points {xk−1,xk}. Obviously the main computational
effort in both ISTA and FISTA remains the same. The re-
quested additional computation for FISTA in the steps (10)
and (11) is clearly marginal.
Since the Lipschitz constant is not always computable, we

also provide a version of FISTA with a backtracking stepsize
rule.

FISTA with backtracking
Step 0. Take L0 > 0, some η > 1 and x0 ∈ R

n.
Set y1 = x0, t1 = 1.
Step k. (k ≥ 1) Find the smallest nonnegative
integers ik such that with i = ik, L̄ = ηikLk−1:

F (pL̄(yk)) ≤ QL̄(pL̄(yk),yk).

Set Lk = ηikLk−1 and compute

xk = pLk
(yk),

tk+1 =
1 +

√
1 + 4t2

k

2
,

yk+1 = xk +

(
tk − 1

tk+1

)
(xk − xk−1).

The improved O(1/k2) convergence result for both vari-
ations is given in the following theorem.

Theorem 3.1 Let {xk}, {yk} be generated by FISTA. Then
for any k ≥ 1

F (xk) − F (x∗) ≤
2αL(f)‖x0 − x∗‖2

(k + 1)2
, ∀x∗ ∈ X∗. (12)

where α = 1 for the constant stepsize setting and α = η for
the backtracking stepsize setting.

4. NUMERICAL EXAMPLES

In this section we illustrate by some image deblurring prob-
lems the performance of the iterative shrinkage/thresholding

algorithm FISTA compared to the basic iterative shrink-
age/thresholding algorithm ISTA and to the recent TWIST
algorithm of [11]. Since our simulations consider extremely
ill-conditioned problems, the TWIST method is not guaran-
teed to converge and we thus use the montone version of
TWIST termed MTWIST. The parameters for the MTWIST
method were chosen as suggested in Section 6 of [11] for
extremely ill-conditioned problems. All methods were used
with a constant step size rule and applied on the l1 reg-
ularization problem (2), that is f(x) = ‖Ax − b‖2 and
g(x) = λ‖x‖1 .
In the first example we look at the 256 × 256 cameraman

test image. The image went through a Gaussian blur of size
9×9 and standard deviation 4 followed by a an additive zero-
mean white Gaussian noise with standard deviation 10−3.
For these experiments we assume reflexive (Neumann)

boundary conditions. We then tested ISTA, FISTA and
MTWIST for solving problem (2) where b represents the
(vectorized) observed image and A = RW where R is the
matrix representing the blur operator and W is the inverse
of a three stage Haar wavelet transform. The regularization
parameter was chosen to be λ = 2e-5 and the initial image
was the blurred image. Iterations 100 and 200 are described
in Figure 1. The function value at iteration k is denoted by
Fk. The images produced by FISTA are of a better quality
than those created by ISTA and MTWIST. It is also clear that
MTWIST gives better results than ISTA. The function value
of FISTA was consistently lower than the function value of
ISTA and MTWIST. We also computed the function values
produced after 1000 iterations for ISTA,MTWIST and FISTA
which were respectively 2.45e-1, 2.31e-1 and 2.23e-1. Note
that the function value of ISTA after 1000 iterations is still
worse (that is, larger) than the function value of FISTA after
100 iterations and the function value of MTWIST after 1000
iterations is worse than the function value of FISTA after 200
iterations.
We also considered an example in which the optimal solu-

tion is known. For that sake we considered a 64 × 64 version
of the previous test image which undergoes the same blur op-
erator as the previous example. No noise was added and we
solved the least squares problem, that is λ = 0. The optimal
solution of this problem is zero. The function values of the
three methods for 10000 iterations are described in Figure 2.
The results produced by FISTA are better than those produced
by ISTA and MTWIST by several orders of magnitude and
clearly demonstrate the effective performance of FISTA. One
can see that after 10000 iterations FISTA reaches accuracy of
approximately 10−7 while ISTA and MTWIST reach accura-
cies of 10−3 and 10−4 respectively. Finally, we observe that
the values obtained by ISTA and MTWIST at iteration 10000
was already obtained by FISTA at iterations 275 and 468 re-
spectively. These preliminary computational results indicate
that FISTA is a simple and promising iterative scheme, which
can be even faster than the proven predicted theoretical rate.
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ISTA:F100=5.44e-1 ISTA:F200=3.60e-1

MTWIST:F100=3.09e-1 MTWIST:F200=2.61e-1

FISTA:F100=2.40e-1 FISTA:F200=2.28e-1

Fig. 1. Iterations of ISTA, MTWIST and FISTA methods for
deblurring of the cameraman
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