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Abstract

One of the central problems in knowledge discovery is the development of good
measures of interestingness of discovered patterns. With such measures, a user needs
to manually examine only the more interesting rules, instead of each of a large number
of mined rules. Previous proposals of such measures include rule templates, minimal
rule cover, actionability, and unexpectedness in the statistical sense or against user
beliefs.

In this paper we will introduce neighborhood-based interestingness by consider-
ing unexpectedness in terms of neighborhood-based parameters. We first present
some novel notions of distance between rules and of neighborhoods of rules. The
neighborhood-based interestingness of a rule is then defined in terms of the pattern of
the fluctuation of confidences or the density of mined rules in some of its neighbor-
hoods. Such interestingness can also be defined for sets of rules (e.g. plateaus and
ridges) when their neighborhoods have certain properties. We can rank the interesting
rules by combining some neighborhood-based characteristics, the support and confi-
dence of the rules, and users’ feedback. We discuss how to implement the proposed
ideas and compare our work with related ones. We also give a few expected tendencies
of changes due to rule structures, which should be taken into account when considering
unexpectedness. We concentrate on association rules and briefly discuss generalization

to other types of rules.

*This work was supported in part by a research grant from the Australian Research Council.



1 Introduction

Data mining is concerned with the extraction of previously unknown and potentially useful
high-level knowledge in the form of patterns from a huge mass of data. This area has received
extensive attention from the research community and industry recently. When the amount
of such high level knowledge is large, which is typically the case for association rules [1], the
selection of interesting patterns becomes a serious problem for the human user; we will call
this problem the post-mining rule analysis problem. Thus one of the central problems in
the field of data mining is the development of good measures of interestingness of discovered
patterns. With such measures, we can develop algorithms to help find the interesting rules
from the mined rules. The results of mining can then be made more usable, without the
need of going through all the mined rules manually. Previous proposals of interestingness
measures include: rule templates [5, 4] for limiting attention to only those rules that match
the templates, minimal rule covers [12] where rules implied by those presented to the user are
eliminated, actionability of rules [8, 10] (some benefit can be obtained by doing something),
and unexpectedness of rules [6, 11]. Unexpectedness has been interpreted either in the
statistical sense, as having higher chance than that under the independence assumption or

as having higher chance than some threshold, or against user beliefs.

We believe that one should take the neighborhood of the rule into account when consid-
ering unexpectedness. Using mountains as an analogy, normally one would not say that all
peaks of the Himalayas Range of height > 4000 meters are more interesting than the highest
mountain in North America and Japan, although these peaks are higher than the highest
mountain in North America and Japan. Indeed, the interestingness of a mountain depends
on its height as well as on its position in its neighborhoods; indeed, Mount Fuji of Japan is
famous because there are no comparable peaks in its neighborhood. In the terminology of
association rules, the interestingness of a rule should depend on its confidence as well as on
the degree of the confidence fluctuation in its neighborhoods and the density of mined rules
there. The purpose of this paper is to introduce the neighborhood-based unexpectedness

and to examine interestingness in terms of such unexpectedness.

We first present some novel notions of distance between rules and of neighborhoods of
rules. The interestingness of a rule is then defined in terms of the pattern of the fluctuation of
confidences or the density of mined rules in some of its neighborhoods. Such interestingness
can also be defined for sets of rules (e.g. plateaus and ridges) when their neighborhoods
have certain properties. We rank the interesting rules by combining some neighborhood-
based characteristics, the support and confidence of these rules, and users’ feedback. We

discuss how to implement the proposed ideas and compare our work with related works. We



also give a few expected tendencies of changes due to rule structures, which should be taken
into account when considering unexpectedness. We will mainly concentrate on association
rules and will briefly discuss generalization to other types of rules (by defining appropriate

distance functions).

For the case of association rules, one might argue that it is possible to solve the post-
mining rule analysis problem by increasing the thresholds — the number of mined rules will
then decrease. Continuing with the world map analogy, one can easily see that as a result of
such an approach only those global peaks will be shown to the user, thus missing the useful

information conveyed by those local peaks over vast plains.

Our neighborhood-based interestingness is proposed as a complementary measure to
those proposed previously in the literature, including those cited at the beginning of the
introduction and the following. The issue of interestingness of general discoveried knowl-
edge was discussed in [7]. Interestingness can also be measured in terms of the statistical
strength of a pattern such as confidence and support [2], and ancestor rules’ confidences [9].
The problem of how to find patterns satisfying multiple criteria of interestingness has been
investigated in [13]. A comprehensive survey about measurements of interestingness can be
found in [11].

The rest of this paper is organized as follows. In Section 2, we present the preliminaries
of association rules. In Section 3 we introduce the notion of distance among rules. In Section
4 we define neighborhoods of rules. In Section 5 we define interestingness of rules in terms of
neighborhood-based unexpectness, and similarly interestingness of sets of rules. In Section
6 we present some expected changes. In Section 7 we discuss how to rank interesting rules.
In Section 8 we cover some implementation issues. In Section 9 we compare our work with

related ones. In Section 10 some concluding remarks are given.

2 Preliminaries on association rules

Let I = {iy,149,--+,i,} be a set of literals, called items. Let D be a set of transactions, where
each transaction® is a subset T of I. Given a set of items X from I, we say a transaction
T contains, or matches, X if X C T; let m(X) denote the set of transactions in D which
match X.

An association rule R is an implication of the form X — Y, where X C I, Y C I,

and X NY = (. The support of R, denoted as support(R), is ‘m%‘y)‘: the percentage of

LA transaction is also referred to as a basket in the literature.



transactions in D which contain? XY. The confidence of R, denoted as conf(R), is ‘T‘"ﬁ%‘)‘:

the percentage of transactions containing X which also contain Y. (So confidence is defined
only if m(X) > 0.)

The task of mining association rules is to find all association rules whose supports and
confidences are larger than, respectively, some given minimum support threshold, min_support,

and some minimum confidence threshold, min_confidence.

Given the item set I, there is a unique set of potential association rules. Given different
thresholds for support and confidence, different sets of rules can be mined from a given set

of transactions.

3 Distance definition

The central theme of this paper is to consider interestingness of rules in terms of neighborhood-
based unexpectedness. To this end, we need to have some distance functions between rules.
Such distance can be defined in more than one way, including semantics-based ways and
syntax-based ways; we will review a semantics-based distance and introduce a syntax-based
one. The syntax-based definition has several parameters which can be adjusted to suit the

need of particular applications.

3.1 A semantics-based distance

A semantics-based distance between association rules was given in [12]. It measures the
difference between rules in terms of their sets of matching rows. More specifically, the
matching-set distance between two rules X; — Y; and Xy — Y5 is defined as |m(X,Y})| +
Im(XoY3)| — 2 % [m(X1Y1XoY5)|. We will use Distse; to denote this function.

Using this definition, there can be different rules R; and R;, namely A — B and
B — A, such that Dist,,se(R1, Ry) = 0. Thus Dist,, e is not a metric distance over the set
of all potential rules. This may lead to “more crowded” neighborhoods, and may have some

effect on neighborhood-based unexpectedness.

2Following the tradition of database literature and for the sake of clarity, we write XY for X UY where

X and Y are sets of items. We use |S| to denote the cardinality of a set S.



3.2 A syntax-based distance

We now introduce a syntax-based distance, which is intended to measure the item-set dif-

ference between rules. This turns out to be a metric distance.

Our distance function is defined in such a way that one can give different scales of
importance to differences for different parts of rules. Item-set differences are divided into
three parts®: (i) the symmetric difference of all items in the two rules, (ii) the symmetric
difference of the left-hand sides of the two rules, (iii) the symmetric difference of the right-

hand sides.

Definition 3.1 Given three non negative real numbers 01, 0, 03, define an item-set distance

between two rules Ry : X; — Y; and Ry : Xy — Y5 as*
Distises(Ra, R2) = 61 % [(X1Y7) © (XoYy)|

+d % | X7 0 Xy + 03 % |V © Y5

Example 3.2 To illustrate this definition, consider the following rules:

R,: D — BC
Ry, : AD — BC
Ry : BC — D
R,: BC — AD

Then DiStiset(Rl; Rg) = (51 + (52 and DiStiset(Rg, R4) == (51 + (Sf; Both of (51 + (52 and (51 + (Sf;
are contributed by A, as items B, C', and D make no contribution to the two distances.

To illustrate the point that different “positional” differences make different contribu-

tions to the distance, consider the following rules:

Ry : AB— CD
Rs: ADF — CFE

Then Dist;ser(Rs, Rg) = 3% 01 + 3 % 03 + 2 % §3. The different §’s are contributed as follows.

e [tem A occurs in both rules and occurs on the same sides of the two rules. So A makes

no contribution to the distance. The same happens with C.

3We can define distance functions using the difference of (i) only. However, there can be different rules,
namely A - B and B — A, such that the distance between them is 0.
4Given two sets X and Y, X ©Y denotes the symmetric difference between X and YV, ie., X ~ YUY — X.



e Item D occurs in both rules but occurs on different sides of the two rules. So D makes
a contribution of dy + d3 to the distance.

e [tem B occurs in one rule and on its left-hand side; it does not occur in the other rule.
So B makes a contribution of d; + d5 to the distance. The same happens with F.

e [tem E occurs in one rule, and on its right-hand side; it does not occur in the other

rule. So F makes a contribution of §; + d3 to the distance.

Different choice of values for d;, do, 93 can be used to reflect users’ preferences. For most
of the paper we will set 6; = 1,8, = ”n—}l and 03 = #, where n = |I|. However, the approach
works for other distance functions.

Having §; > 09 > 03 reflects our belief that the three kinds of item-set differences
should contribute differently to the distance: the whole difference (X,Y7) © (X,Y3) is more
important than the left-hand side difference X; & X5, which in turn is more important than
the right-hand side difference Y; & Y.

We set §y = 254 and 03 = =5 to ensure that (*) rules with identical set of items are closer
to each other than to rules with different sets of items. Suppose Ry : X; — Y; and Ry : Xy —
Y, are two rules such that X;Y; = XyY5. Then Distigei(R1, Ry) = 09%| X7 © Xo|+05%[Y0Y5].
We wish to ensure that Distise;(R1, Ro) < Distiser(R1, R3), for every rule R3 : X3 — Y3 where
| X1Y7 © X3Y3] > 0 (that is R3’s item set is different from that of Ry’s). We use the following
example to further illustrate why (*) holds.

Example 3.3 Consider the following rules:

R, : ABC — DE
R,: DE — ABC
R, : ABC — D.

Then Distiser(Ri, Ry) = 0% 8 + 5% 0y + 5% 05 = 200 4 5 — 5 <1 < Distyy (R, RY) =
1xd +1%xd03 =1+ # = ”iﬁl It is easy to see that R, is a rule farthest away from Ry,

among all Ry containing the same set of items as ;. Furthermore, R; is a rule closest to Ry,
among all Rz containing an item set different from that of Ry’s. Therefore Dist;ze; (R, Ro) <
Distser(Ry, R3) for all Ry and Ry satisfying the conditions given above. |

The Dist;,; distance behaves like the usual distances we know:



Proposition 3.4 The Dist;,.; distance is a metric distance over the set of all potential rules.

That is, the following properties hold for all rules Ry, Ry and Rj:

1. DiStiset(Rl s R]) = 0,
2. DiStiset(Rl, RQ) > 0 if R1 7£ RQ,
3. DiStiset(Rl ’ RQ) = DiStiset(RZa Rl)a

4. DiStiset(Rl ) R3) S
Di‘gtiset(Rl ) RQ) + D'[:Stiset(RQa RS)

The proofs of (1-3) are easy, and that of (4) can be given by utilizing a vector repre-

sentation of item sets (after fixing an ordering on elements of I).

As an aside, observe that the potential rule space may not be dense in the sense that
every “realizable” distance is the sum of two “realizable” distances. That is, there can be
rules Ry and Ry such that Distise(R1, Re) < Distiset(R1, R3) + Distiser(Ro, R3) for every
rule Rj3; this happens for Ry : AB — C and Ry : AB — CD and for Ry : AB — C and
Ry ' A — BC. Sometimes, though, a “realizable” distance is the sum of two “realizable”
distances: There can be rules Ry, Ry and Rz such that Dist;s (R, Ry) = Distisei(R1, R3) +
Dist;ser(Ro, R3); for example, Ry : AB — CDE, Ry: B— CD and R3; : AB — CD.

3.3 Other variants of Dist;g.;

We now suggest some variants of the syntax-based distance by setting 4y, d9, 63 differently:

these can be useful for different user preferences, though not used in the sequel.
If we want to emphasize the changes on the left-hand side of rules, we can set §; = 0,

dy =1, and d3 = n—}rl For any two rules Ry : X; — Y; and Ry : Xy — Y5 we have

1
Distigoi(R1, Ry) = | X716 X — 1V, 6Y,).
18 t(1 2) | 19 2‘+n—|—1| 19 2\

If we want to emphasize the changes on the right-hand side of rules, we can set §; = 0,

Oy = HLH, and 03 = 1. For any two rules Ry : X7 — Y7 and Ry : X5 — Y, we have

1
Distiser(R1, Ro) = n—+1|X1 o Xyl + Y16V,



3.4 Distance on other types of rules

We can also define distances for rules of other types. For Datalog (or Horn clauses), we can
define distance between two rules in terms of their largest unifiable parts. One can use area

of overlap for defining distances between interval-based rules such as < Age : 20..30 >=<

car : 1..2 > (8% support, 70% con fidence).

4 Neighborhoods

In this section, we introduce the notion of neighborhoods of rules. These will be used to

define interestingness in the next section.

Definition 4.1 An r-neighborhood of a rule Ry (r > 0), denoted as N (R, ), is the following
set
{R : Distiset(R, Ry) < r, R a potential rule}.

Although other types of neighborhoods are possible, in this paper we will only be

concerned with neighborhoods defined by circles.

One example type of neighborhoods is the 1-neighborhoods such as Ng, ;.

Example 4.2 Suppose [ = {A, B,C, D, E}. Then the 1-neighborhood of the rule AB —

CD consists of the following rules:

A— BCD B— ACD C — ABD
D— ABC AB—CD AC — BD
AD —- BC BC —AD BD — AC
CD— AB ABD —(C ABC — D
ACD - B BCD — A

In general, as a consequence of the way Dist;s.; is defined, all rules in a 1-neighborhood

have the same item set as the center and consequently they all have the same support. |

We will also talk about interestingness of collections of rules in terms of their neighbor-
hoods. For example, we can consider the interestingness of the collection of rules in Ng, ; in
terms of the set of rules in Ng, o — Ng,1 = {R : 1 < Dist;se(R, Ry) < 2, R a potential rule}.
One can also view this set as the union of 1-neighborhoods of all rules whose item set differ

from that of the center by exactly one item.



5 Interestingness of rules

In this section we introduce several neighborhood-based interestingness. One of these is
in terms of unexpected confidence, and the other is in terms of unexpected density. We
then define neighborhood-based interestingness of sets of rules. We also discuss the need
for distinguishing the true unexpected changes from the inherent changes in confidence and

support due to rule structures.

Similarly one can consider interestingness in terms of unexpected support, especially for

collections of rules within some 1-neighborhoods of rules. The details of these are omitted.

5.1 Interesting rules with unexpected confidence

To capture “unexpected confidence”, we need to introduce two measures of the fluctuation of
the confidences of mined rules in a neighborhood: average confidence and standard deviation

of confidence.

Suppose M is a set of mined rules for given minimum support and confidence thresholds

min_support and min_confidence, Ry is a mined rule in M and r > 0.

e The average confidence of the r-neighborhood of R, is defined as the average of the
confidences of rules in the set M N N(Ry,r) — {Ry}; we use avg_conf(Rg,r) to denote

this value.

e The standard deviation of the r-neighborhood of Ry is defined as the standard deviation
of the confidences of rules in the set M N N(Ry,r) —{Ry}; we will use std_conf(Ry,r)

to denote this value.

When the set M N N(Ry,r) — {Ry} is empty, we choose to define these two values as zero,

although other choices are possible.

Observe that the value std_conf(Ry,r) gives the average fluctuation of confidences in
the r-neighborhood of R,.

We choose to identify unexpected confidence of a rule Ry in its r-neighborhood with
the condition that |conf(Ry) — avg_conf(Ry,r)| is much larger than std_conf(Rg,r). This

is the basis of our first interestingness in terms of neighborhood-based unexpectedness.

Definition 5.1 A rule Ry is said to be interesting, of the unexpected confidence type, in

its r-neighborhood if ||conf(Ry) — avg_conf(Ry,7)| — std_conf(Ry,r)| is large’; in other

®The meaning of large can be specified by a threshold.



Confidence Confidence
0.75 0.75 0.74

0.4 0.4

0.3 0.32

0.25 0.250-3

R1 R2 Rz R4 Rs Rule R1 Ry R3 R4 Rs Re Rule
(a) (b)

Figure 1: Unexpected Confidence

words, if the confidence of R deviates from the avg_con f(Rg, ) much more than the average

deviation.

Example 5.2 Figure 1(a) shows that this definition indeed captures rules with unexpected
confidence in a neighborhood. Suppose there are only five mined rules Ry, ---, R5 in some
r-neighborhood, whose confidences are 0.25, 0.3, 0.75, 0.32, and 0.4 respectively. Then
avg_conf(Rs,r) = 0.3175 and std_conf(Rs,7) = (((0.25 — 0.3175)? + (0.3 — 0.3175)% +
(0.32 — 0.3175)2 + (0.4 — 0.3175)2)/4)2 = 0.026. Thus, conf(Rs) — avg_conf(Rs, ) = 0.4325,
a difference which is about 16 times as large as std_conf(Rs,r). So, the confidence of Rj is

unexpected in its r-neighborhood. |

The value of ||conf(Ry) — avg_conf(Ry,r)| — std_conf(Ry,r)| was chosen because it
avoids some deficiencies of two other possible alternatives. (i) Defining a rule Ry as having
unexpected confidence if it achieves near maximum difference of confidence between pairs
of rules in their r-neighborhood if there exists R’ € M N N(Ry,r) such that |conf(Rg) —
conf(R')| =~ max{|conf(Ry) — conf(Ry)| : Ri,Ry € M N N(Ry,r)}. This suffers from the
inability to differentiate between the unexpected minority and the prevailing majority. For
example, in Figure 1(a), Ry, Ry, R3, Ry (the prevailing majority) will then all be considered
as having unexpected confidence. (ii) Defining a rule R, as having unexpected confidence
if it has no competitors in confidence among rules in a neighborhood — if max{|conf(Ry) —
conf(Ry)| : Ry € M N N(Ry,r)} is large. This definition is not able to capture rules
with unexpected confidence when there are two or more rules with outstanding and equal
confidence. For example, in Figure 1(b), neither R3 not Rg will then be considered as having

unexpected confidence.

The values used in the above definition can be used for ranking the interestingness of
rules. For example, the larger the neighborhood the more interesting the rule is, and the

10



larger ||conf(Ry) — avg_conf(Ry,r)| — std_conf(Rg,r)| the more interesting the rule is. This
will be the topic of Section 6.

Rules with unexpected confidence can have around the highest confidence among rules
in the neighborhood or the lowest. For the latter, however, caution is needed when the
confidence of the rule is not sufficiently larger than the minimum confidence threshold:

there might be many potential rules in the neighborhood whose confidences are just below
the threshold.

5.2 Interesting rules with sparse neighborhoods

A second kind of rules are considered interesting because there are many potential rules in

their neighborhoods but there are very few mined rules there.

Definition 5.3 A rule Ry is interesting, of the isolated type, if it has an unexpectedly sparse
r-neighborhood: if the number of potential rules in N(Ry, r) is large but and the number of

mined rules there, i.e. |M N N(Ry,1)|, is relatively small.

| % the density of the r-neighborhood of Ry, then the condition in the

above definition can be reworded as “if the number of potential rules in N(Ry,r) is large

If we cal

but the density of the r-neighborhood of R is relatively small.”

Consider Example 4.2. There are 14 potential rules in the 1-neighborhood of ABC —
D. If ABD — (C'is the only other mined rule in this neighborhood, then the density of this
neighborhood is % ~ 14.3%. If no rule other than ABC' — D is mined in this neighborhood,
then the density is & ~ 7%.

|MON(Ro,r)|
IN(Ro,r)|

the definition, because we believe that the first number can help determine the degree of

We choose to use the number of potential rules as well as the density in
interestingness of isolated rules. For example, as shown in Figure 2, the ry-neighborhoods of
Ry and Ry can both be sparse neighborhoods; the rg-neighborhood R, is more sparse than
that of Ry if the number of potential rules in N(R;,rg) is equal to that in N(Ry, 7).

The meaning of “the number of mined rules is relatively small” can be specified by
some threshold, either given by the user or calculated from the application (e.g. %, where

N is the total number of potential rules).

An isolated rule in a neighborhood may not be a rule with the highest confidence in the
same neighborhood. Isolated rules with unexpected confidence are clearly more interesting

than isolated rules which do not have unexpected confidence.

11



Figure 2: Sparse neighborhoods

Whether a rule is interesting or not is dependent on the min_support and min_confidence
thresholds. For example, when these thresholds are increased, rules which were not isolated

may become isolated.

5.3 Interestingness of collections of rules

Neighborhood-based unexpectedness can also be used to define interestingness of collections
of rules. We now briefly describe two such collections, including plateau-like, ridge-like rule

groups.

Definition 5.4 Let M be a set of mined rules, Ry a rule in M, and ry < r; be two pos-
itive numbers. We say the rg-neighborhood of Ry has unexpected confidence in its r-
neighborhood if the following hold:

e The standard deviation of confidences of the rules in M N N(Ry, ) is small.

e The average confidence of rules in N(Rjg, o) is much larger or smaller than the average
confidence of the rules in M N (N(Ry, 1) — N(Ry,19)).

While the interesting group of rules defined above is about a region with a very regular
border, it is also possible to consider regions of rules with irregular borders or even curves. For
example, one can define an interesting ridge as a sequence of rules with very high confidence.
Such a ridge can be obtained by iteratively choosing rules with the highest confidence, within

some small neighborhood of the rule chosen last.

12



6 Expected change due to rule structure

There are certain expected changes of supports and confidences of rules implied by the
structure of the rules. Such expected changes should be taken into account when considering

the (un)expectedness of changes.
We first note two such expected changes.

(1) Given two rules R; and Ry, if R;’s item set is a subset of that of Ry, then
support(Ry) > support(Ry). For example, support(A — C') > support(AB — C).

(2) If Ry’s left-hand side is a subset of that of Ry and R; and R, have the same item
sets, then conf(Ry) < conf(Ry). For example, conf(A — CDB) < conf(AB — CD) <
conf(ABC — D); this is because |m(A)| > |m(AB)| > |m(ABC)|.

Such expected changes can happen in a larger scale.

Proposition 6.1 Let U be a fixed item set and PGroupg] be the subset of the potential
rules whose item sets are U and which have exactly j items on their left-hand sides. Then

the average confidence of rules in PGroup}! is less than or equal to the average confidence of

L

rules in PGroup!,, for any given set of transactions.

Proof: Let k£ be the number of elements in U. Let R,,---, R,, be an enumeration of the
rules in PGroup; and R),---, R/ an enumeration of the rules in PGroup;;;. Then m = (¥)
and n = (¥.,); observe that m = %

For each R;, let S; be the set of rules in PGroup;;; whose left-hand sides contain the

left-hand side of R;. Then the average of confidences of rules in PGroup,4, is

iy conf(R) _ (1 +1) X%, conf(R)
n (i+1)n
X Ywes,; conf (1)
B (i+1)n
G S conf(Ry)
- (i+1)n
_ Z;ﬂ:] Conf(Rj)
m
which is equal to the average of confidences of rules in PGroup;. |

One might tend to believe that such expected changes can happen for the rules satisfying
given support and confidence thresholds as well that the average confidence of rules in

MGroup! is less than or equal to the average confidence of rules in MGroup,,, where

13



U is a fixed item set and MGroupg] is the subset of the rules (i) satisfying given support
and confidence thresholds, (ii) whose item sets are U and (iii) which have exactly j items
on their left-hand sides. Interestingly, this is false. Indeed, suppose U = {A, B, C'} and the
following set of transactions is given: the transaction ABC occurs 100 times, the transaction
AB 50 times, the transaction AC once, the transaction BC 2 times, the transaction A 9
times, the transaction B 8 times, and the transaction C' once. Therefore, |m(ABC)| =
100, |m(AB)| = 150, |m(AC)| = 101, /m(BC)| = 102, |/m(A)| = 160, |m(B)| = 160,
and |m(C)| = 104. If min_confidence is set as 0.65, then Group; = {C — AB(0.9615)}
and Groupy, = {AB — ((0.6667), AC — B(0.9901), BC — A(0.9804)}. So, the average

confidence of Group; is greater than that of Groups,.

7 Ranking of interesting rules

The mined rules can be ranked according to their degree of interestingness and then given
to the user in the ranked order. Ranking of rules can be done using some primitive char-
acteristics, including support and confidence and some neighborhood-based characteristics.
In this section we first list the important primitive characteristics, and then discuss how to

rank the rules using these characteristics.

7.1 Primitive characteristics

We associate with each rule some primitive characteristics, each of them being a function.

Given a rule R and a positive number r, we consider important the following primitive
characteristics: support(R), conf(R), avg_conf(R,r), std_conf(R,r),
avg_supp(R,r), std_supp(R,r), potent_size(R,r),
density(R,r). The meaning of the first four items have been explained earlier; avg_supp(R, r)
and std_supp(R,r) can be defined in manners similar to avg_conf (R, r) and std_conf(R,r);
potent_size(R,r) is defined as the number of potential rules of R in its r-neighborhood

(which can be calculated from R’s item set, r and I). Recall that density(R,r) is defined as
[MAN(Ro 1)
IN(Ro,r)|

Given a radius r, the primitive characteristics can be obtained quite efficiently using

the partitioning method discussed later.

14



7.2 Ranking

The above primitive characteristics can be combined to form combined characteristics.

One example of such combined characteristics is the function we used earlier in defining
interesting rules with unexpected confidence; that function is defined by f(R,r) =
llconf(R) — avg_conf(R,r)| — std_conf(R,r)|. Another example of such combined charac-
teristics is g(R, r) defined as g(R) = 1 if [N(R,r)| < 50 and g(R,r) = % otherwise.
This function can be viewed as a way of specifying what rules are interesting because they

have large and sparse r-neighborhoods.

In general, ranking can be specified by weighted sum of several of such combined char-
acteristics. The ways the combined characteristics are formed and the weighting together

specify what are important in an application (or what the users’ preferences are).

Ranking can also be augmented by reacting to user feedback. At any moment of
time, the user should have looked at the “most interesting rules” produced by the system.
After examining a rule R, the user may indicate the relative interestingness of this rule
compared with the others, whether he/she is interested in seeing more interesting rules in
the neighborhood of the rule just seen, and whether she/he is interested in seeing more rules
having the same left-hand side as R, etc. The system can accumulate such feedback and
try to adapt to the user’s preferences, by perhaps adjusting the functions for the combined

characteristics or the weightings. Techniques from neural networks might be helpful here.

8 Implementation issues and a detailed example

In this section, we discuss some implementation issues for finding interesting rules from a

set of mined rules. We then give a detailed example to illustrate our ideas.

8.1 First partition then find

To find the interesting rules efficiently from a set M of mined rules, we will first partition
M into a number of 1-neighborhoods. We need to have one bucket for each nonempty 1-
neighborhood. Recall that rules with the same item sets have identical 1-neighborhoods.
Consequently, we can identify buckets with item sets whose corresponding 1-neighborhoods

are not empty.

To be able to find a bucket for an item set fast, we have a(n ordered) tree to manage the

correspondence between an item set and the physical address of the corresponding bucket.
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For each node of the tree we have a pair (U, Ad) where U is an item set and Ad is the address
of the bucket.

The parent node of a node (U, Ad) is the node whose item set is V such that V is the
smallest item set containing U as a subset. (We fix an order on the items. Then we use the
lexical order on item sets when we talk about order between item sets.) The tree can be

maintained efficiently — we only need to consider insertions.

The partition based on 1-neighborhoods can be directly used to find interesting rules
for radius » < 1. For radius r > 1 we can find all [r]|-neighborhoods using the tree, by
brute force in time O(p?) where p is the number of nonempty 1-neighborhoods. Observe
that the [r]-neighborhoods can be formed by merging the pointer sets for the constituent

1-neighborhoods.

After the proper partitioning is done, we can then find those rules which have unex-
pected confidence or which are isolated from the proper buckets. For each r and each bucket,

this can be done in roughly O(k?), where k is the number of rules in the bucket.

One might wish to find all radius r and rule R such that R has unexpected confidence
(or isolated) in its r-neighborhood. When there are too many of such radius, we can get
approximate answers by considering only, say, those radius of the form i+ 0.25 |R|(d3 + d3),
i+ 0.5 % |R[(0 + d3), i + 0.75 % |R|(d9 + 03), and i + |R|(d2 + d3), where i is a non negative

integer.

8.2 A detailed example

A synthetic example is given below to demonstrate the procedures of finding interesting
rules. Suppose the total item set is I = {A, B,C, D, E, F'}. Suppose the thresholds for the
confidence and support are set as 0.205 and 0.05, respectively, and the following rules are

mined.
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CDE — F(.78125)
CEF — D(.625)
CD — EF(.2451)
CF — DE(.3205)
DF — CE(.333)
E — CDF(.2083)
CE — D(.5333)
D — CE(.256)
CD — F(.3431)
DF — C(.4667)
F — CD(.233)

CF — E(.5128)
E — CF(.333)
DE — F(.3061)
EF — D(.375)
E — DF(.25)

3
466
233

F — E(.5333)

CDF — E(.7143)
DEF — C(.833)
CE — DF(.4167)
DE — CF(.2551)
EF — CD(.3125)
CD — E(.3137)
DE — C(.3265)
E — CD(.267)
CF — D(.4487)
D — CF(.28)
CE — F(.6667)

EF — C(.5)
F — CE(.2667)

The percentage following each rule represents its confidence.

The above 43 mined rules can be partitioned into 11 clusters, each of these being a 1-
neighborhood. The biggest one is for the 1-neighborhood centered at the rule of CDE — F
and contains all rules whose item set is {C, E/, D, F'}; the other ten 1-neighborhoods are much
smaller and are for rules whose item sets are {C, D, E}, {D,E,F}, {C,D,F}, {C,E,F},
{C,D}, {C,E}, {C,F}, {D,E}, {D, F}, and {E, F'} respectively.

Observe that the 2-neighborhood of CDE — F' is the union of the 1-neighborhoods for

{C,D,E,F},{C,D,E}Y,{D,E,F},{C,D,F},{C,E,F},{A,C,D,E,F}and {B,C, D, E, F}.

For the rule R,

: CDE — F, the following table shows the neighborhood-based pa-

rameters for the different radius values of p; = ¢ + @ % j % (03 4+ 03), where i = 0 and

j=1,2,3,4. Observe that R, is a relatively interesting rule with unexpected confidence in

its pi-neighborhood where p; = 0.17. There are no isolated rules.
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r P P2 P3 P4
avg_conf || 0.3056 | 0.4711 | 0.4264 | 0.4264

std_conf || 0.0786 | 0.2310 | 0.2075 | 0.2075

* 0.4757 | 0.3102 | 0.3549 | 0.3549
Density || 100% | 80% 85% 79%
ok 4 10 13 14

Table 1: The confidence fluctuation in p;-neighborhoods of R;, where
pj = % % j % (09 4 03). * stands for |conf(Ry) — avg_conf(Ry,r)|, ** for number of

potential rules.

9 More discussion on related works

Typical measures of interestingness can be divided into two classes: the objective ones and
the subjective ones. The objective ones, such as rule template and rule cover, focus on the
importance of rules’ structures. The subjective ones, in contrast, depend not only on the

structure of a rule and the data, but also on the user who examines the rules.

Two useful subjective interestingnesses are actionability and unexpectedness. The notion
of actionability [8, 10] of association rules is based on the usefulness of the rules to user
whether the users can do something because of the rules to their advantage. Actionability
is an important subjective measure of interestingness because users are mostly interested in
the knowledge that permits them to do their jobs better by taking some specific actions in
response to the newly discovered knowledge. However, it is not an easy matter to decide
what rules are actionable; the answer might be obtained only after a period of practical

validation.

Unezxpectedness can be either subjective or objective. Apparently, if a newly discovered
pattern is surprising to the user, then it is certainly interesting. For the subjective ones
[6, 11], “surprising” means the discovered knowledge contradicts the user’s beliefs. Therefore,
unexpectedness is closely related to beliefs or general impressions. Beliefs can be classified
into two types: hard beliefs and soft beliefs. The hard beliefs are the constraints that cannot
be changed with new evidence, whereas the soft ones are those that the user is willing to

change with new evidence.

The objective unexpectedness can be specified in statistical terms. For example, having
support and confidence larger than their corresponding thresholds is one such specification;

having a higher chance than that under the independence assumption is another.
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Our neighborhood-based interestingness belongs to the class of objective measures of
interestingness, because the neighborhoods are determined by the rules’ structures. Clearly,
useful interestingness measures should help identify those rules that are surprising to the
user. We believe that our neighborhood-based unexpectedness is very useful in this regard,

and can be used in complement the other measures.

Rule template was also used to help find interesting rules [5] and it is an objective

measure for interestingness. A template is an expression
A],...,Ak = Ak+],

where, each A; is either an item name, a class name, or an expression C'+ or Cx (C'is a class
name). Here C'+ and C'x correspond to one or more and zero or more instances of the class

C, respectively.

10 Concluding remarks

We have proposed neighborhood-based unexpectedness as a way of identifying interesting
rules. In this approach, the interestingness of a rule depends not only on its own support and
confidence but also on the support and confidence of rules in its neighborhood. This idea has
not been used by previous interestingness measures, including unexpectedness, actionability,

rule cover, rule template.

Neighborhood-based interesting rules proposed in this paper include those with unex-
pected confidence and those with sparse neighborhood. Similar ideas have been used for
identifying interesting sets of rules such as plateaus and ridges. The neighborhood-based
parameters have been combined with other parameters to rank the interesting rules. We
have also addressed some implementation issues for finding neighborhood-based interesting

rules.

We gave a few expected tendencies of changes due to rule structures, which should be
taken into account when considering unexpectedness. There might be other similar useful

properties.

There are also some issues requiring further research, including: How to use users’
feedback to adjust the functions used in the ranking of interesting rules? How to adjust the
values of d1, do, and 03 to best fit the application? It is also possible to find other types of

neighborhood-based interesting rules.
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