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AbstractOne of the central problems in knowledge discovery is the development of goodmeasures of interestingness of discovered patterns. With such measures, a user needsto manually examine only the more interesting rules, instead of each of a large numberof mined rules. Previous proposals of such measures include rule templates, minimalrule cover, actionability, and unexpectedness in the statistical sense or against userbeliefs.In this paper we will introduce neighborhood-based interestingness by consider-ing unexpectedness in terms of neighborhood-based parameters. We �rst presentsome novel notions of distance between rules and of neighborhoods of rules. Theneighborhood-based interestingness of a rule is then de�ned in terms of the pattern ofthe uctuation of con�dences or the density of mined rules in some of its neighbor-hoods. Such interestingness can also be de�ned for sets of rules (e.g. plateaus andridges) when their neighborhoods have certain properties. We can rank the interestingrules by combining some neighborhood-based characteristics, the support and con�-dence of the rules, and users' feedback. We discuss how to implement the proposedideas and compare our work with related ones. We also give a few expected tendenciesof changes due to rule structures, which should be taken into account when consideringunexpectedness. We concentrate on association rules and briey discuss generalizationto other types of rules.�This work was supported in part by a research grant from the Australian Research Council.1



1 IntroductionData mining is concerned with the extraction of previously unknown and potentially usefulhigh-level knowledge in the form of patterns from a huge mass of data. This area has receivedextensive attention from the research community and industry recently. When the amountof such high level knowledge is large, which is typically the case for association rules [1], theselection of interesting patterns becomes a serious problem for the human user; we will callthis problem the post-mining rule analysis problem. Thus one of the central problems inthe �eld of data mining is the development of good measures of interestingness of discoveredpatterns. With such measures, we can develop algorithms to help �nd the interesting rulesfrom the mined rules. The results of mining can then be made more usable, without theneed of going through all the mined rules manually. Previous proposals of interestingnessmeasures include: rule templates [5, 4] for limiting attention to only those rules that matchthe templates, minimal rule covers [12] where rules implied by those presented to the user areeliminated, actionability of rules [8, 10] (some bene�t can be obtained by doing something),and unexpectedness of rules [6, 11]. Unexpectedness has been interpreted either in thestatistical sense, as having higher chance than that under the independence assumption oras having higher chance than some threshold, or against user beliefs.We believe that one should take the neighborhood of the rule into account when consid-ering unexpectedness. Using mountains as an analogy, normally one would not say that allpeaks of the Himalayas Range of height > 4000 meters are more interesting than the highestmountain in North America and Japan, although these peaks are higher than the highestmountain in North America and Japan. Indeed, the interestingness of a mountain dependson its height as well as on its position in its neighborhoods; indeed, Mount Fuji of Japan isfamous because there are no comparable peaks in its neighborhood. In the terminology ofassociation rules, the interestingness of a rule should depend on its con�dence as well as onthe degree of the con�dence uctuation in its neighborhoods and the density of mined rulesthere. The purpose of this paper is to introduce the neighborhood-based unexpectednessand to examine interestingness in terms of such unexpectedness.We �rst present some novel notions of distance between rules and of neighborhoods ofrules. The interestingness of a rule is then de�ned in terms of the pattern of the uctuation ofcon�dences or the density of mined rules in some of its neighborhoods. Such interestingnesscan also be de�ned for sets of rules (e.g. plateaus and ridges) when their neighborhoodshave certain properties. We rank the interesting rules by combining some neighborhood-based characteristics, the support and con�dence of these rules, and users' feedback. Wediscuss how to implement the proposed ideas and compare our work with related works. We2



also give a few expected tendencies of changes due to rule structures, which should be takeninto account when considering unexpectedness. We will mainly concentrate on associationrules and will briey discuss generalization to other types of rules (by de�ning appropriatedistance functions).For the case of association rules, one might argue that it is possible to solve the post-mining rule analysis problem by increasing the thresholds { the number of mined rules willthen decrease. Continuing with the world map analogy, one can easily see that as a result ofsuch an approach only those global peaks will be shown to the user, thus missing the usefulinformation conveyed by those local peaks over vast plains.Our neighborhood-based interestingness is proposed as a complementary measure tothose proposed previously in the literature, including those cited at the beginning of theintroduction and the following. The issue of interestingness of general discoveried knowl-edge was discussed in [7]. Interestingness can also be measured in terms of the statisticalstrength of a pattern such as con�dence and support [2], and ancestor rules' con�dences [9].The problem of how to �nd patterns satisfying multiple criteria of interestingness has beeninvestigated in [13]. A comprehensive survey about measurements of interestingness can befound in [11].The rest of this paper is organized as follows. In Section 2, we present the preliminariesof association rules. In Section 3 we introduce the notion of distance among rules. In Section4 we de�ne neighborhoods of rules. In Section 5 we de�ne interestingness of rules in terms ofneighborhood-based unexpectness, and similarly interestingness of sets of rules. In Section6 we present some expected changes. In Section 7 we discuss how to rank interesting rules.In Section 8 we cover some implementation issues. In Section 9 we compare our work withrelated ones. In Section 10 some concluding remarks are given.2 Preliminaries on association rulesLet I = fi1; i2; � � � ; ing be a set of literals, called items. Let D be a set of transactions, whereeach transaction1 is a subset T of I. Given a set of items X from I, we say a transactionT contains, or matches, X if X � T ; let m(X) denote the set of transactions in D whichmatch X.An association rule R is an implication of the form X ! Y , where X � I, Y � I,and X \ Y = ;. The support of R, denoted as support(R), is jm(XY )jjDj : the percentage of1A transaction is also referred to as a basket in the literature.3



transactions in D which contain2 XY . The con�dence of R, denoted as conf(R), is jm(XY )jjm(X)j :the percentage of transactions containing X which also contain Y . (So con�dence is de�nedonly if m(X) > 0.)The task of mining association rules is to �nd all association rules whose supports andcon�dences are larger than, respectively, some given minimum support threshold,min support,and some minimum con�dence threshold, min con�dence.Given the item set I, there is a unique set of potential association rules. Given di�erentthresholds for support and con�dence, di�erent sets of rules can be mined from a given setof transactions.3 Distance de�nitionThe central theme of this paper is to consider interestingness of rules in terms of neighborhood-based unexpectedness. To this end, we need to have some distance functions between rules.Such distance can be de�ned in more than one way, including semantics-based ways andsyntax-based ways; we will review a semantics-based distance and introduce a syntax-basedone. The syntax-based de�nition has several parameters which can be adjusted to suit theneed of particular applications.3.1 A semantics-based distanceA semantics-based distance between association rules was given in [12]. It measures thedi�erence between rules in terms of their sets of matching rows. More speci�cally, thematching-set distance between two rules X1 ! Y1 and X2 ! Y2 is de�ned as jm(X1Y1)j +jm(X2Y2)j � 2 � jm(X1Y1X2Y2)j. We will use Distmset to denote this function.Using this de�nition, there can be di�erent rules R1 and R2, namely A ! B andB ! A, such that Distmset(R1; R2) = 0. Thus Distmset is not a metric distance over the setof all potential rules. This may lead to \more crowded" neighborhoods, and may have somee�ect on neighborhood-based unexpectedness.2Following the tradition of database literature and for the sake of clarity, we write XY for X [ Y whereX and Y are sets of items. We use jSj to denote the cardinality of a set S.
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3.2 A syntax-based distanceWe now introduce a syntax-based distance, which is intended to measure the item-set dif-ference between rules. This turns out to be a metric distance.Our distance function is de�ned in such a way that one can give di�erent scales ofimportance to di�erences for di�erent parts of rules. Item-set di�erences are divided intothree parts3: (i) the symmetric di�erence of all items in the two rules, (ii) the symmetricdi�erence of the left-hand sides of the two rules, (iii) the symmetric di�erence of the right-hand sides.De�nition 3.1 Given three non negative real numbers �1; �2; �3, de�ne an item-set distancebetween two rules R1 : X1 ! Y1 and R2 : X2 ! Y2 as4Dist iset(R1; R2) = �1 � j(X1Y1)	 (X2Y2)j+�2 � jX1 	X2j+ �3 � jY1 	 Y2j:Example 3.2 To illustrate this de�nition, consider the following rules:R1 : D ! BCR2 : AD ! BCR3 : BC ! DR4 : BC ! ADThen Dist iset(R1; R2) = �1 + �2 and Dist iset(R3; R4) = �1 + �3. Both of �1 + �2 and �1 + �3are contributed by A, as items B, C, and D make no contribution to the two distances.To illustrate the point that di�erent \positional" di�erences make di�erent contribu-tions to the distance, consider the following rules:R5 : AB ! CDR6 : ADF ! CEThen Dist iset(R5; R6) = 3 � �1 + 3 � �2 + 2 � �3. The di�erent �'s are contributed as follows.� Item A occurs in both rules and occurs on the same sides of the two rules. So A makesno contribution to the distance. The same happens with C.3We can de�ne distance functions using the di�erence of (i) only. However, there can be di�erent rules,namely A! B and B ! A, such that the distance between them is 0.4Given two sets X and Y , X	Y denotes the symmetric di�erence between X and Y , i.e., X�Y [Y �X .5



� Item D occurs in both rules but occurs on di�erent sides of the two rules. So D makesa contribution of �2 + �3 to the distance.� Item B occurs in one rule and on its left-hand side; it does not occur in the other rule.So B makes a contribution of �1 + �2 to the distance. The same happens with F .� Item E occurs in one rule, and on its right-hand side; it does not occur in the otherrule. So E makes a contribution of �1 + �3 to the distance.
Di�erent choice of values for �1; �2; �3 can be used to reect users' preferences. For mostof the paper we will set �1 = 1; �2 = n�1n2 and �3 = 1n2 , where n = jIj. However, the approachworks for other distance functions.Having �1 > �2 > �3 reects our belief that the three kinds of item-set di�erencesshould contribute di�erently to the distance: the whole di�erence (X1Y1)	 (X2Y2) is moreimportant than the left-hand side di�erence X1	X2, which in turn is more important thanthe right-hand side di�erence Y1 	 Y2.We set �2 = n�1n2 and �3 = 1n2 to ensure that (*) rules with identical set of items are closerto each other than to rules with di�erent sets of items. Suppose R1 : X1 ! Y1 and R2 : X2 !Y2 are two rules such that X1Y1 = X2Y2. Then Dist iset(R1; R2) = �2�jX1	X2j+�3�jY1	Y2j.We wish to ensure that Dist iset(R1; R2) < Dist iset(R1; R3), for every rule R3 : X3 ! Y3 wherejX1Y1	X3Y3j > 0 (that is R3's item set is di�erent from that of R1's). We use the followingexample to further illustrate why (*) holds.Example 3.3 Consider the following rules:R1 : ABC ! DER02 : DE ! ABCR03 : ABC ! D:Then Dist iset(R1; R02) = 0 � �1 + 5 � �2 + 5 � �3 = 5(n�1)n2 + 5n2 = 5n � 1 < Dist iset(R1; R03) =1 � �1 + 1 � �3 = 1 + 1n2 = n2+1n2 . It is easy to see that R02 is a rule farthest away from R1,among all R2 containing the same set of items as R1. Furthermore, R03 is a rule closest to R1,among all R3 containing an item set di�erent from that of R1's. Therefore Dist iset(R1; R2) <Dist iset(R1; R3) for all R2 and R3 satisfying the conditions given above.The Dist iset distance behaves like the usual distances we know:6



Proposition 3.4 The Dist iset distance is a metric distance over the set of all potential rules.That is, the following properties hold for all rules R1, R2 and R3:1. Dist iset(R1; R1) = 0,2. Dist iset(R1; R2) > 0 if R1 6= R2,3. Dist iset(R1; R2) = Dist iset(R2; R1),4. Dist iset(R1; R3) �Dist iset(R1; R2) +Dist iset(R2; R3).The proofs of (1{3) are easy, and that of (4) can be given by utilizing a vector repre-sentation of item sets (after �xing an ordering on elements of I).As an aside, observe that the potential rule space may not be dense in the sense thatevery \realizable" distance is the sum of two \realizable" distances. That is, there can berules R1 and R2 such that Dist iset(R1; R2) < Dist iset(R1; R3) + Dist iset(R2; R3) for everyrule R3; this happens for R1 : AB ! C and R2 : AB ! CD and for R1 : AB ! C andR2 : A ! BC. Sometimes, though, a \realizable" distance is the sum of two \realizable"distances: There can be rules R1, R2 and R3 such that Dist iset(R1; R2) = Dist iset(R1; R3) +Dist iset(R2; R3); for example, R1 : AB ! CDE, R2 : B ! CD and R3 : AB ! CD.3.3 Other variants of Dist isetWe now suggest some variants of the syntax-based distance by setting �1; �2; �3 di�erently;these can be useful for di�erent user preferences, though not used in the sequel.If we want to emphasize the changes on the left-hand side of rules, we can set �1 = 0,�2 = 1, and �3 = 1n+1 . For any two rules R1 : X1 ! Y1 and R2 : X2 ! Y2 we haveDist iset(R1; R2) = jX1 	X2j+ 1n + 1 jY1 	 Y2j:If we want to emphasize the changes on the right-hand side of rules, we can set �1 = 0,�2 = 1n+1 , and �3 = 1. For any two rules R1 : X1 ! Y1 and R2 : X2 ! Y2 we haveDist iset(R1; R2) = 1n + 1 jX1 	X2j+ jY1 	 Y2j:
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3.4 Distance on other types of rulesWe can also de�ne distances for rules of other types. For Datalog (or Horn clauses), we cande�ne distance between two rules in terms of their largest uni�able parts. One can use areaof overlap for de�ning distances between interval-based rules such as < Age : 20::30 >)<car : 1::2 > (8% support; 70% confidence).4 NeighborhoodsIn this section, we introduce the notion of neighborhoods of rules. These will be used tode�ne interestingness in the next section.De�nition 4.1 An r-neighborhood of a rule R0 (r > 0), denoted as N(R0; r), is the followingset fR : Dist iset(R;R0) � r; R a potential ruleg:Although other types of neighborhoods are possible, in this paper we will only beconcerned with neighborhoods de�ned by circles.One example type of neighborhoods is the 1-neighborhoods such as NR0;1.Example 4.2 Suppose I = fA;B;C;D;Eg. Then the 1-neighborhood of the rule AB !CD consists of the following rules:A! BCD B ! ACD C ! ABDD ! ABC AB ! CD AC ! BDAD ! BC BC ! AD BD ! ACCD ! AB ABD ! C ABC ! DACD ! B BCD ! AIn general, as a consequence of the way Dist iset is de�ned, all rules in a 1-neighborhoodhave the same item set as the center and consequently they all have the same support.We will also talk about interestingness of collections of rules in terms of their neighbor-hoods. For example, we can consider the interestingness of the collection of rules in NR0;1 interms of the set of rules in NR0;2�NR0;1 = fR : 1 < Dist iset(R;R0) � 2, R a potential ruleg.One can also view this set as the union of 1-neighborhoods of all rules whose item set di�erfrom that of the center by exactly one item. 8



5 Interestingness of rulesIn this section we introduce several neighborhood-based interestingness. One of these isin terms of unexpected con�dence, and the other is in terms of unexpected density. Wethen de�ne neighborhood-based interestingness of sets of rules. We also discuss the needfor distinguishing the true unexpected changes from the inherent changes in con�dence andsupport due to rule structures.Similarly one can consider interestingness in terms of unexpected support, especially forcollections of rules within some 1-neighborhoods of rules. The details of these are omitted.5.1 Interesting rules with unexpected con�denceTo capture \unexpected con�dence", we need to introduce two measures of the uctuation ofthe con�dences of mined rules in a neighborhood: average con�dence and standard deviationof con�dence.SupposeM is a set of mined rules for given minimum support and con�dence thresholdsmin support and min con�dence, R0 is a mined rule in M and r > 0.� The average con�dence of the r-neighborhood of R0 is de�ned as the average of thecon�dences of rules in the set M \N(R0; r)� fR0g; we use avg conf(R0; r) to denotethis value.� The standard deviation of the r-neighborhood of R0 is de�ned as the standard deviationof the con�dences of rules in the set M \N(R0; r)�fR0g; we will use std conf(R0; r)to denote this value.When the set M \ N(R0; r)� fR0g is empty, we choose to de�ne these two values as zero,although other choices are possible.Observe that the value std conf(R0; r) gives the average uctuation of con�dences inthe r-neighborhood of R0.We choose to identify unexpected con�dence of a rule R0 in its r-neighborhood withthe condition that jconf(R0) � avg conf(R0; r)j is much larger than std conf(R0; r). Thisis the basis of our �rst interestingness in terms of neighborhood-based unexpectedness.De�nition 5.1 A rule R0 is said to be interesting, of the unexpected con�dence type, inits r-neighborhood if jjconf(R0) � avg conf(R0; r)j � std conf(R0; r)j is large5; in other5The meaning of large can be speci�ed by a threshold.9
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( b )Figure 1: Unexpected Con�dencewords, if the con�dence of R0 deviates from the avg conf(R0; r) much more than the averagedeviation.Example 5.2 Figure 1(a) shows that this de�nition indeed captures rules with unexpectedcon�dence in a neighborhood. Suppose there are only �ve mined rules R1; � � � ; R5 in somer-neighborhood, whose con�dences are 0:25, 0:3, 0:75, 0:32, and 0:4 respectively. Thenavg conf(R3; r) = 0:3175 and std conf(R3; r) = (((0:25 � 0:3175)2 + (0:3 � 0:3175)2 +(0:32�0:3175)2+(0:4�0:3175)2)=4) 12 = 0:026. Thus, conf(R3)�avg conf(R3; r) = 0:4325,a di�erence which is about 16 times as large as std conf(R3; r). So, the con�dence of R3 isunexpected in its r-neighborhood.The value of jjconf(R0) � avg conf(R0; r)j � std conf(R0; r)j was chosen because itavoids some de�ciencies of two other possible alternatives. (i) De�ning a rule R0 as havingunexpected con�dence if it achieves near maximum di�erence of con�dence between pairsof rules in their r-neighborhood { if there exists R0 2 M \ N(R0; r) such that jconf(R0) �conf(R0)j � maxfjconf(R1) � conf(R2)j : R1; R2 2 M \ N(R0; r)g. This su�ers from theinability to di�erentiate between the unexpected minority and the prevailing majority. Forexample, in Figure 1(a), R1; R2; R3; R4 (the prevailing majority) will then all be consideredas having unexpected con�dence. (ii) De�ning a rule R0 as having unexpected con�denceif it has no competitors in con�dence among rules in a neighborhood { if maxfjconf(R0)�conf(R1)j : R1 2 M \ N(R0; r)g is large. This de�nition is not able to capture ruleswith unexpected con�dence when there are two or more rules with outstanding and equalcon�dence. For example, in Figure 1(b), neither R3 not R6 will then be considered as havingunexpected con�dence.The values used in the above de�nition can be used for ranking the interestingness ofrules. For example, the larger the neighborhood the more interesting the rule is, and the10



larger jjconf(R0)�avg conf(R0; r)j�std conf(R0; r)j the more interesting the rule is. Thiswill be the topic of Section 6.Rules with unexpected con�dence can have around the highest con�dence among rulesin the neighborhood or the lowest. For the latter, however, caution is needed when thecon�dence of the rule is not su�ciently larger than the minimum con�dence threshold:there might be many potential rules in the neighborhood whose con�dences are just belowthe threshold.5.2 Interesting rules with sparse neighborhoodsA second kind of rules are considered interesting because there are many potential rules intheir neighborhoods but there are very few mined rules there.De�nition 5.3 A rule R0 is interesting, of the isolated type, if it has an unexpectedly sparser-neighborhood: if the number of potential rules in N(R0; r) is large but and the number ofmined rules there, i.e. jM \N(R0; r)j, is relatively small.If we call jM\N(R0;r)jjN(R0;r)j the density of the r-neighborhood of R0, then the condition in theabove de�nition can be reworded as \if the number of potential rules in N(R0; r) is largebut the density of the r-neighborhood of R0 is relatively small."Consider Example 4.2. There are 14 potential rules in the 1-neighborhood of ABC !D. If ABD ! C is the only other mined rule in this neighborhood, then the density of thisneighborhood is 214 � 14:3%. If no rule other than ABC ! D is mined in this neighborhood,then the density is 114 � 7%.We choose to use the number of potential rules as well as the density jM\N(R0;r)jjN(R0;r)j inthe de�nition, because we believe that the �rst number can help determine the degree ofinterestingness of isolated rules. For example, as shown in Figure 2, the r0-neighborhoods ofR1 and R2 can both be sparse neighborhoods; the r0-neighborhood R1 is more sparse thanthat of R2 if the number of potential rules in N(R1; r0) is equal to that in N(R2; r0).The meaning of \the number of mined rules is relatively small" can be speci�ed bysome threshold, either given by the user or calculated from the application (e.g. jM jN , whereN is the total number of potential rules).An isolated rule in a neighborhood may not be a rule with the highest con�dence in thesame neighborhood. Isolated rules with unexpected con�dence are clearly more interestingthan isolated rules which do not have unexpected con�dence.11
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Figure 2: Sparse neighborhoodsWhether a rule is interesting or not is dependent on the min support andmin con�dencethresholds. For example, when these thresholds are increased, rules which were not isolatedmay become isolated.5.3 Interestingness of collections of rulesNeighborhood-based unexpectedness can also be used to de�ne interestingness of collectionsof rules. We now briey describe two such collections, including plateau-like, ridge-like rulegroups.De�nition 5.4 Let M be a set of mined rules, R0 a rule in M , and r0 < r1 be two pos-itive numbers. We say the r0-neighborhood of R0 has unexpected con�dence in its r1-neighborhood if the following hold:� The standard deviation of con�dences of the rules in M \N(R0; r0) is small.� The average con�dence of rules in N(R0; r0) is much larger or smaller than the averagecon�dence of the rules in M \ (N(R0; r1)�N(R0; r0)).While the interesting group of rules de�ned above is about a region with a very regularborder, it is also possible to consider regions of rules with irregular borders or even curves. Forexample, one can de�ne an interesting ridge as a sequence of rules with very high con�dence.Such a ridge can be obtained by iteratively choosing rules with the highest con�dence, withinsome small neighborhood of the rule chosen last.
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6 Expected change due to rule structureThere are certain expected changes of supports and con�dences of rules implied by thestructure of the rules. Such expected changes should be taken into account when consideringthe (un)expectedness of changes.We �rst note two such expected changes.(1) Given two rules R1 and R2, if R1's item set is a subset of that of R2, thensupport(R1) � support(R2). For example, support(A! C) � support(AB ! C).(2) If R1's left-hand side is a subset of that of R2 and R1 and R2 have the same itemsets, then conf(R1) � conf(R2). For example, conf(A ! CDB) � conf(AB ! CD) �conf(ABC ! D); this is because jm(A)j � jm(AB)j � jm(ABC)j.Such expected changes can happen in a larger scale.Proposition 6.1 Let U be a �xed item set and PGroupUj be the subset of the potentialrules whose item sets are U and which have exactly j items on their left-hand sides. Thenthe average con�dence of rules in PGroupUi is less than or equal to the average con�dence ofrules in PGroupUi+1 for any given set of transactions.Proof: Let k be the number of elements in U . Let R1; � � � ; Rm be an enumeration of therules in PGroupi and R01; � � � ; R0n an enumeration of the rules in PGroupi+1. Then m = (ki )and n = (ki+1); observe that m = n(i+1)k�i .For each Rj, let Sj be the set of rules in PGroupi+1 whose left-hand sides contain theleft-hand side of Rj. Then the average of con�dences of rules in PGroupi+1 isPnj=1 conf(R0j)n = (i+ 1)Pnj=1 conf(R0j)(i+ 1)n= Pmj=1PR02Sj conf(R0)(i+ 1)n� (k � i)Pmj=1 conf(Rj)(i + 1)n= Pmj=1 conf(Rj)mwhich is equal to the average of con�dences of rules in PGroupi.One might tend to believe that such expected changes can happen for the rules satisfyinggiven support and con�dence thresholds as well { that the average con�dence of rules inMGroupUi is less than or equal to the average con�dence of rules in MGroupUi+1, where13



U is a �xed item set and MGroupUj is the subset of the rules (i) satisfying given supportand con�dence thresholds, (ii) whose item sets are U and (iii) which have exactly j itemson their left-hand sides. Interestingly, this is false. Indeed, suppose U = fA;B;Cg and thefollowing set of transactions is given: the transaction ABC occurs 100 times, the transactionAB 50 times, the transaction AC once, the transaction BC 2 times, the transaction A 9times, the transaction B 8 times, and the transaction C once. Therefore, jm(ABC)j =100, jm(AB)j = 150, jm(AC)j = 101, jm(BC)j = 102, jm(A)j = 160, jm(B)j = 160,and jm(C)j = 104. If min confidence is set as 0:65, then Group1 = fC ! AB(0:9615)gand Group2 = fAB ! C(0:6667); AC ! B(0:9901); BC ! A(0:9804)g. So, the averagecon�dence of Group1 is greater than that of Group2.7 Ranking of interesting rulesThe mined rules can be ranked according to their degree of interestingness and then givento the user in the ranked order. Ranking of rules can be done using some primitive char-acteristics, including support and con�dence and some neighborhood-based characteristics.In this section we �rst list the important primitive characteristics, and then discuss how torank the rules using these characteristics.7.1 Primitive characteristicsWe associate with each rule some primitive characteristics, each of them being a function.Given a rule R and a positive number r, we consider important the following primitivecharacteristics: support(R), conf(R), avg conf(R; r), std conf(R; r),avg supp(R; r), std supp(R; r), potent size(R; r),density(R; r). The meaning of the �rst four items have been explained earlier; avg supp(R; r)and std supp(R; r) can be de�ned in manners similar to avg conf(R; r) and std conf(R; r);potent size(R; r) is de�ned as the number of potential rules of R in its r-neighborhood(which can be calculated from R's item set, r and I). Recall that density(R; r) is de�ned asjM\N(R0;r)jjN(R0;r)j .Given a radius r, the primitive characteristics can be obtained quite e�ciently usingthe partitioning method discussed later.
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7.2 RankingThe above primitive characteristics can be combined to form combined characteristics.One example of such combined characteristics is the function we used earlier in de�ninginteresting rules with unexpected con�dence; that function is de�ned by f(R; r) =jjconf(R)� avg conf(R; r)j � std conf(R; r)j. Another example of such combined charac-teristics is g(R; r) de�ned as g(R) = 1 if jN(R; r)j < 50 and g(R; r) = jM\N(R;r)jjN(R;r)j otherwise.This function can be viewed as a way of specifying what rules are interesting because theyhave large and sparse r-neighborhoods.In general, ranking can be speci�ed by weighted sum of several of such combined char-acteristics. The ways the combined characteristics are formed and the weighting togetherspecify what are important in an application (or what the users' preferences are).Ranking can also be augmented by reacting to user feedback. At any moment oftime, the user should have looked at the \most interesting rules" produced by the system.After examining a rule R, the user may indicate the relative interestingness of this rulecompared with the others, whether he/she is interested in seeing more interesting rules inthe neighborhood of the rule just seen, and whether she/he is interested in seeing more ruleshaving the same left-hand side as R, etc. The system can accumulate such feedback andtry to adapt to the user's preferences, by perhaps adjusting the functions for the combinedcharacteristics or the weightings. Techniques from neural networks might be helpful here.8 Implementation issues and a detailed exampleIn this section, we discuss some implementation issues for �nding interesting rules from aset of mined rules. We then give a detailed example to illustrate our ideas.8.1 First partition then �ndTo �nd the interesting rules e�ciently from a set M of mined rules, we will �rst partitionM into a number of 1-neighborhoods. We need to have one bucket for each nonempty 1-neighborhood. Recall that rules with the same item sets have identical 1-neighborhoods.Consequently, we can identify buckets with item sets whose corresponding 1-neighborhoodsare not empty.To be able to �nd a bucket for an item set fast, we have a(n ordered) tree to manage thecorrespondence between an item set and the physical address of the corresponding bucket.15



For each node of the tree we have a pair (U;Ad) where U is an item set and Ad is the addressof the bucket.The parent node of a node (U;Ad) is the node whose item set is V such that V is thesmallest item set containing U as a subset. (We �x an order on the items. Then we use thelexical order on item sets when we talk about order between item sets.) The tree can bemaintained e�ciently { we only need to consider insertions.The partition based on 1-neighborhoods can be directly used to �nd interesting rulesfor radius r � 1. For radius r > 1 we can �nd all dre-neighborhoods using the tree, bybrute force in time O(p2) where p is the number of nonempty 1-neighborhoods. Observethat the dre-neighborhoods can be formed by merging the pointer sets for the constituent1-neighborhoods.After the proper partitioning is done, we can then �nd those rules which have unex-pected con�dence or which are isolated from the proper buckets. For each r and each bucket,this can be done in roughly O(k2), where k is the number of rules in the bucket.One might wish to �nd all radius r and rule R such that R has unexpected con�dence(or isolated) in its r-neighborhood. When there are too many of such radius, we can getapproximate answers by considering only, say, those radius of the form i+0:25� jRj(�2+ �3),i + 0:5 � jRj(�2 + �3), i + 0:75 � jRj(�2 + �3), and i + jRj(�2 + �3), where i is a non negativeinteger.8.2 A detailed exampleA synthetic example is given below to demonstrate the procedures of �nding interestingrules. Suppose the total item set is I = fA;B;C;D;E; Fg. Suppose the thresholds for thecon�dence and support are set as 0:205 and 0:05, respectively, and the following rules aremined.
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CDE ! F (:78125) CDF ! E(:7143)CEF ! D(:625) DEF ! C(:833)CD ! EF (:2451) CE ! DF (:4167)CF ! DE(:3205) DE ! CF (:2551)DF ! CE(:333) EF ! CD(:3125)E ! CDF (:2083) CD ! E(:3137)CE ! D(:5333) DE ! C(:3265)D ! CE(:256) E ! CD(:267)CD ! F (:3431) CF ! D(:4487)DF ! C(:4667) D ! CF (:28)F ! CD(:233) CE ! F (:6667)CF ! E(:5128) EF ! C(:5)E ! CF (:333) F ! CE(:2667)DE ! F (:3061) DF ! E(:4)EF ! D(:375) D ! EF (:24)E ! DF (:25) C ! D(:51)D ! C(:816) C ! E(:3)E ! C(:5) C ! F (:39)F ! C(:52) D ! E(:784)E ! D(:8167) D ! F (:6)F ! D(:5) E ! F (:67)F ! E(:5333)The percentage following each rule represents its con�dence.The above 43 mined rules can be partitioned into 11 clusters, each of these being a 1-neighborhood. The biggest one is for the 1-neighborhood centered at the rule of CDE ! Fand contains all rules whose item set is fC;E;D; Fg; the other ten 1-neighborhoods are muchsmaller and are for rules whose item sets are fC;D;Eg, fD;E; Fg, fC;D; Fg, fC;E; Fg,fC;Dg, fC;Eg, fC; Fg, fD;Eg, fD;Fg, and fE; Fg respectively.Observe that the 2-neighborhood of CDE ! F is the union of the 1-neighborhoods forfC;D;E; Fg, fC;D;Eg, fD;E; Fg, fC;D; Fg, fC;E; Fg, fA;C;D;E; Fg and fB;C;D;E; Fg.For the rule R1 : CDE ! F , the following table shows the neighborhood-based pa-rameters for the di�erent radius values of �j = i + jR1j4 � j � (�2 + �3), where i = 0 andj = 1; 2; 3; 4. Observe that R1 is a relatively interesting rule with unexpected con�dence inits �1-neighborhood where �1 = 0:17. There are no isolated rules.17



r �1 �2 �3 �4avg conf 0:3056 0:4711 0:4264 0:4264std conf 0:0786 0:2310 0:2075 0:2075* 0:4757 0:3102 0:3549 0:3549Density 100% 80% 85% 79%** 4 10 13 14Table 1: The con�dence uctuation in �j-neighborhoods of R1, where�j = jR1j4 � j � (�2 + �3). * stands for jconf(R1)� avg conf(R1; r)j, ** for number ofpotential rules.9 More discussion on related worksTypical measures of interestingness can be divided into two classes: the objective ones andthe subjective ones. The objective ones, such as rule template and rule cover, focus on theimportance of rules' structures. The subjective ones, in contrast, depend not only on thestructure of a rule and the data, but also on the user who examines the rules.Two useful subjective interestingnesses are actionability and unexpectedness. The notionof actionability [8, 10] of association rules is based on the usefulness of the rules to user {whether the users can do something because of the rules to their advantage. Actionabilityis an important subjective measure of interestingness because users are mostly interested inthe knowledge that permits them to do their jobs better by taking some speci�c actions inresponse to the newly discovered knowledge. However, it is not an easy matter to decidewhat rules are actionable; the answer might be obtained only after a period of practicalvalidation.Unexpectedness can be either subjective or objective. Apparently, if a newly discoveredpattern is surprising to the user, then it is certainly interesting. For the subjective ones[6, 11], \surprising" means the discovered knowledge contradicts the user's beliefs. Therefore,unexpectedness is closely related to beliefs or general impressions. Beliefs can be classi�edinto two types: hard beliefs and soft beliefs. The hard beliefs are the constraints that cannotbe changed with new evidence, whereas the soft ones are those that the user is willing tochange with new evidence.The objective unexpectedness can be speci�ed in statistical terms. For example, havingsupport and con�dence larger than their corresponding thresholds is one such speci�cation;having a higher chance than that under the independence assumption is another.18



Our neighborhood-based interestingness belongs to the class of objective measures ofinterestingness, because the neighborhoods are determined by the rules' structures. Clearly,useful interestingness measures should help identify those rules that are surprising to theuser. We believe that our neighborhood-based unexpectedness is very useful in this regard,and can be used in complement the other measures.Rule template was also used to help �nd interesting rules [5] and it is an objectivemeasure for interestingness. A template is an expressionA1; : : : ; Ak ) Ak+1;where, each Ai is either an item name, a class name, or an expression C+ or C� (C is a classname). Here C+ and C� correspond to one or more and zero or more instances of the classC, respectively.10 Concluding remarksWe have proposed neighborhood-based unexpectedness as a way of identifying interestingrules. In this approach, the interestingness of a rule depends not only on its own support andcon�dence but also on the support and con�dence of rules in its neighborhood. This idea hasnot been used by previous interestingness measures, including unexpectedness, actionability,rule cover, rule template.Neighborhood-based interesting rules proposed in this paper include those with unex-pected con�dence and those with sparse neighborhood. Similar ideas have been used foridentifying interesting sets of rules such as plateaus and ridges. The neighborhood-basedparameters have been combined with other parameters to rank the interesting rules. Wehave also addressed some implementation issues for �nding neighborhood-based interestingrules.We gave a few expected tendencies of changes due to rule structures, which should betaken into account when considering unexpectedness. There might be other similar usefulproperties.There are also some issues requiring further research, including: How to use users'feedback to adjust the functions used in the ranking of interesting rules? How to adjust thevalues of �1, �2, and �3 to best �t the application? It is also possible to �nd other types ofneighborhood-based interesting rules.
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