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Abstract. We propose a mathematical model for the growth of cell-cycle-specific dose limiting
bone marrow. In an attempt to determine effective methods of treatment without overdestruction of
the bone marrow we implement optimal control theory. We design the control functional to maximize
both the bone marrow mass and the dose over the treatment interval. Next we show that an optimal
control exists for this problem, and then we characterize our optimal control in terms of the solutions
to the optimality system, which is the state system coupled with the adjoint system. We show that
the optimality system is unique for suitably small time intervals. Finally, we analyze the optimal
control and the optimality system using numerical techniques. This allows us to suggest optimal
methods of treatment that prevent excessive destruction of the bone marrow based on the specific
weights in our objective functional.
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1. Introduction. Cell-cycle-specific chemotherapy drugs are a common type of
drug used in treating cancer. The main action of these drugs works against cells in
a specific phase of the cell cycle. That is, all cells go through a well-studied cycle of
growth which includes a resting phase, a DNA replication phase, and a cell division
(mitosis) phase. For example, the drug Cyclophosphamide acts upon cells in the
DNA replication phase of the cycle, while other drugs, such as Taxol, more effectively
influence cells in the division phase. These types of drugs do not affect cells in the
resting state (i.e., cells that are quiescent). Hence, cells in the quiescent state are
thought of as kinetically resistant to these drugs.

Experimental and clinical trials (Hainsworth and Greco [6], Lopes et al. [9],
ten Bokkel Huinink, Eisenhauer, and Swenerton [19], and Wilson et al. [22]) and
mathematical models (Agur [1], Agur, Arnon, and Schechter [2], Cojocaru and Agur
[3], Panetta [14], Panetta and Higgins [15], and Webb [20, 21]) of cell-cycle-specific
chemotherapy provide some intriguing results. Agur [1], Agur, Arnon, and Schechter
[2], and Cojocaru and Agur [3] use both age-structured and probabilistic models with
an “on-off” type drug function (the drug is either active or inactive) to describe the
effects of cell-cycle-specific drugs on the bone marrow. They consider only the active
phases of the cell-cycle (no resting state). Their main result is that there is reduced
toxicity to the bone marrow when the drugs are administered at integer multiples of
the bone marrow’s mean cell-cycle length. (This is referred to as resonance.) They
conclude that short drug pulses at appropriate intervals are less toxic to the bone
marrow compared to arbitrary treatment intervals or slowly infused continuous treat-
ments. Similar results are shown in Webb [20, 21], using age- and maturity-structured
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models to describe the effects of the drugs on cancer cells. In a different approach,
Panetta [14] and Panetta and Higgins [15] use deterministic systems of ordinary dif-
ferential equations, which include both the active and resting phases of the cell-cycle,
to analyze the effects of cell-cycle-specific chemotherapy. One of the main results is
that drug regimens with shorter infusion times (but equivalent doses) destroys fewer
bone marrow cells. Similar results are observed in experimental and clinical trials
[6, 9, 19, 22].

In the process, the above regimen also destroy fewer cancer cells. This leads to the
question, Should the drug infusion time be shortened to reduce toxicity to the bone
marrow or should it be increased to destroy more cancer cells? A similar question
concerning other important aspects of the treatment regimen, such as the period
and dose, create further challenging discussions. The answers to these questions are
generally not known. This leads to the following question: How is it possible to
minimize destruction of host cells and simultaneously maximize destruction of cancer
cells? We will apply the method of optimal control theory to address the issue.

Some mathematical work that has been done in the optimal control setting in-
cludes two non-cell-cycle-specific (drugs that are effective in all the phases of the cell
cycle) models by Murray [12, 13]. In addition, Swan [17] provides a good review
of the role of optimal control in non-cell-cycle-specific cancer chemotherapy. Since
we are most interested in optimal control problems as applied to cell-cycle-specific
chemotherapy, we will discuss models related to this topic. First, Eisen [4] has de-
signed a system of linear differential equations describing the growth dynamics of the
proliferating (drug-sensitive phase) and quiescent (drug-resistant phase) cells. The
control reduces the cancer to a fixed level over a given interval while minimizing total
drug use. Another work by Swierniak, Polanski, and Kimmel [18] uses optimal control
theory on a cell-cycle-specific chemotherapeutic model. They investigate a variety of
ways to model the cell-cycle by various groupings of the cell-cycle phases. In each
case, they attempt to minimize the total cancer mass at the end of some specified
time interval using the least amount of drug possible. Their main results include
that optimal solutions are periodic and that the characterization of the solution is
insensitive to the particular choice of the model.

By minimizing the dose, these models only indirectly take into account the effects
of the drug on the normal tissue, which we consider in this paper as bone marrow. But,
the toxicity to the bone marrow is one of the main limiting factors in cell-cycle-specific
chemotherapy and should be considered directly. Swierniak, Polanski, and Kimmel
[18] along with Swan [17] investigate the effects of the drugs on the normal tissue
and use this to limit the drug strength, but only for non-cell-cycle-specific treatment.
Therefore, we develop an optimal control problem that will directly determine the
effects of cell-cycle-specific treatments on the normal tissue, and we attempt to relate
the mathematical results to known clinical information. Since bone marrow produces
blood cells, clinicians typically will take a blood cell count from a patient prior to
giving further doses of chemotherapy to see if the blood cell count is above some
minimum level. If it is too low the clinician will either delay the treatment or give
a reduced treatment. They gauge when to give the next treatment based on the
constraint of keeping the blood cell count above a fixed level. In this paper, we
analyze a system in order to understand better how to effectively treat the cancers so
that the blood cell count (and indirectly the bone marrow) can be maintained above
this minimum.



OPTIMAL CONTROL 1061

γ

Proliferating
Cells

Quiescent

α

sf(t)δ λ

β

QP

Cells

Fig. 2.1. The cell-cycle.

2. The model. We analyze the model originally discussed in Panetta [14] which
is similar to the state equations in Eisen [4]. It is shown diagrammatically in Figure
2.1 and has the form

dP

dt
= (γ − δ − α− sf(t))P + βQ,(2.1)

dQ

dt
= αP − (λ + β)Q(2.2)

with P (0) = P0 and Q(0) = Q0. P is the proliferating cell mass and Q is the qui-
escent cell mass in the bone marrow. The parameters are all considered constant,
positive, and are defined as follows: γ, cycling cells’ growth rate; α, transition rate
from proliferating to resting; δ, natural cell death; β, transition rate from resting to
proliferating; λ, cell differentiation—mature bone marrow cell leaving the bone mar-
row and entering the blood stream as various types of blood cells; and s, the strength
or effectiveness of the treatment. All the units for the parameters are days−1. The
function f(t) is the control describing the effects of the chemotherapeutic treatment
only on the proliferating cells. We choose as our control class measurable functions
defined on [0,T] with the condition that 0 ≤ f(t) ≤ 1. Note that f(t) = 1 repre-
sents maximal chemotherapy and f(t) = 0 represents no chemotherapy. Hence the
depiction of the class of admissible controls is

U = {f measurable |0 ≤ f(t) ≤ 1, t ∈ [0, T ]} .(2.3)

In order to properly pose the optimal control problem we must define the goal we
wish to maximize (i.e., the objective functional). We would like to give as much drug
as possible while not excessively destroying the bone marrow. Therefore we define
the objective functional as

J(f) =

∫ T

0

[
a(P + Q)− b

2
(1− f(t))2

]
dt,(2.4)

where the parameters a and b are weights describing the importance of each term
in the objective functional. Here we maximize the total amount of bone marrow
(first term in (2.4)) and maximize the amount of drug given (second term in 2.4).
These two “maximizations” have competing effects because giving large drug doses
will lower the amount of bone marrow. This objective functional represents balancing
these two effects. Note that as a function of f , the objective functional is increasing
and concave down. Also observe that we are assuming the objective functional is a
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Table 2.1
Bone marrow parameters.

Mean, (Range) Units = days−1

γ = 1.47, (0.6667− 2) δ = 0

α = 5.643, (4.92− 6.12) β = 0.48

λ = 0.164

nonlinear function of f , taken to be quadratic here, for the desired increasing and
concavity properties. The goal is to characterize the optimal control f∗ satisfying

max
0≤f≤1

J(f) = J(f∗).(2.5)

It will be seen in sections 6.1 and 6.2 that the weights a and b affect the amount
of bone marrow destruction over the interval. Therefore, the weight factors will be
chosen such that we obtain an acceptable minimal bone marrow mass.

2.1. Parameter estimation. The basic model parameters for bone marrow are
obtained from Mackey [11] and are given in Table 2.1. The treatment interval (T )
can either relate to the period of one or multiple treatment regimens. We have used
a method involving periodic treatment whereby we consider sequential treatments of
period T . In essence, the initial conditions of the current treatment are set to the end
conditions of the previous treatment. Moreover, the parameters a and b need not be
identical for each period, only within a given period. In treatment of breast or ovarian
cancer with the drug Taxol the typical period of one treatment ranges from 7 to 21
days. As mentioned above, a and b relate to the amount of bone marrow destruction
and are chosen to prevent overdestruction of the bone marrow tissue. Although the
values of a and b may not be specifically measurable from blood cell counts oncologists
perform, we can obtain indirect data for these weights by studying the ratio a/b. If
the blood cell count is low resulting from a large reduction in bone marrow, then
we choose the ratio a/b larger to more heavily weight maximizing bone marrow as
opposed to dose. But if the blood cell count is in an acceptable range, then we set
a/b smaller, in which case the optimal treatment will allow a larger dose to be given.

3. Existence of optimal control. In this section we examine the existence of
an optimal control for the state system. Upper bounds of the state system (2.1)–(2.2)
are needed for the existence of an optimal control and are used in the uniqueness
proof of the optimality system. Since the state system (2.1)–(2.2) is a linear system
in finite time with bounded coefficients, the solution to the state system is uniformly
bounded. Utilizing the theory from Fleming and Rishel [5], we prove the existence of
an optimal control.

Theorem 3.1. There exists an optimal control f∗ that maximizes the functional
J(f) over the control set U .

Proof. To prove this theorem, the following conditions must be satisfied:
(i) The class of all initial conditions with a control f in the admissible control

set along with the state system being satisfied is not empty.
(ii) The admissible control set U is closed and convex.
(iii) The right-hand side of the state system (2.1)–(2.2) is continuous, is bounded

above by a sum of the bounded control and the state, and can be written as a linear
function of f with coefficients depending on the time and the state.
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(iv) The integrand of the objective functional is concave on U and is bounded
above by c2 − c1|f |η with c1 > 0, and η > 1.

First, an existence result in Lukes [10, Theorem 9.2.1] for the state system for
bounded coefficients is invoked. Then, by definition, U is closed and convex. We
notice that the right-hand side of the state system (2.1)–(2.2) can be written as

(
(γ − α− δ − sf) β

α −(β + λ)

)(
P
Q

)

= �d

(
t,

(
P
Q

))
+ �h

(
t,

(
P
Q

))
f(t),

where

�d

(
t,

(
P
Q

))
=

(
(γ − α− δ) β

α −(β + λ)

)(
P
Q

)

and �h

(
t,

(
P
Q

))
=

( −sP
0

)
.

Also, the bound of the right-hand side of the state system is obtained as follows:∣∣∣∣ (γ − α− δ − sf) β
α −(β + λ)

∣∣∣∣
∣∣∣∣ P
Q

∣∣∣∣ ≤
∣∣∣∣ γ β
α 0

∣∣∣∣
∣∣∣∣ P
Q

∣∣∣∣+ |sf |
∣∣∣∣ P
Q

∣∣∣∣
≤ C

(∣∣∣∣ P
Q

∣∣∣∣+ |f |
)

,

where C incorporates the upper bound of the given constant matrix and the bound
on s.

Next we show that the integrand of the functional is concave on U . We suppose
that 0 < ε < 1 and show that for f1 and f2 ∈ U

(P + Q) − b

2
(1− [(1− ε)f1 + εf2])

2
(3.1)

≥ (1− ε)
[
(P + Q)− b

2
(1− f1)

2
]
+ ε

b

2
[(P + Q)(1− f2)

2].

Ultimately, we must show that

− b

2
(1− [(1− ε)f1 + εf2])

2
+ (1− ε)

b

2
(1− f1)

2 + ε
b

2
(1− f2)

2 ≥ 0.(3.2)

To obtain concavity we recognize that

(1− [(1− ε)f1 + εf2])
2 ≤ (1− ε)(1− f1)

2 − ε(1− f2)
2.

Therefore the inequality (3.1) is proven, and the concavity is determined for the
integrand of the functional. To complete the proof we see that P and Q are uniformly
bounded. Hence, there exists a B > 0 such that |P (t)| < B and |Q(t)| < B on [0,T].
Moreover,

a(P + Q)− b

2
(1− f)2 ≤ 2aB − b

2
+ bf − b

2
f2

≤ 2aB + b− b

2
f2.

Here, we choose c2 = 2aB + b and c1 = b
2 with η = 2.
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4. Characterization of optimal control. Since an optimal control exists for
maximizing the functional (2.4) subject to (2.1) and (2.2), then a version of Pontrya-
gin’s maximum principle is used to derive necessary conditions for the optimal control
(Kamien and Schwartz [7]).

Theorem 4.1. Given an optimal control f∗ and solutions of the corresponding
state system, there exist adjoint variables λi for i = 1, 2 satisfying the following:

dλ1

dt
= − ∂L

∂P
= −

[
a + λ1

(
γ − δ − α− sf

)
+ λ2α

]
,(4.1)

dλ2

dt
= − ∂L

∂Q
= −

[
a + λ1β − λ2(λ + β)

]
,

where λi(T ) = 0 for i = 1, 2. Further, f∗ can be represented by

f∗ = min

(
1,

(
b− λ1sP

b

)+
)

,

where the notation is [16]

r+ =

{
r if r > 0,
0 if r ≤ 0.

(4.2)

Proof. We form the Lagrangian as follows:

L(P,Q, f, λ1, λ2, w1, w2) = a(P + Q)− b

2
(1− f)2 + λ1 ((γ − δ − α− sf)P + βQ)

+ λ2 (αP − (λ + β)Q) + w1(t)f(t) + w2(t) (1− f(t)) ,(4.3)

where w1(t) ≥ 0, w2(t) ≥ 0 are penalty multipliers satisfying

w1(t)f(t) = 0, w2(t) (1− f(t)) = 0(4.4)

at the optimal f∗. First, the maximum principle gives existence of the adjoint vari-
ables satisfying (4.1). To complete the representation for f∗ we analyze the optimality
condition ∂L

∂f = 0. Upon some algebraic manipulation, the representation of f∗ be-
comes

f∗(t) =
b− λ1sP + w1(t)− w2(t)

b
.

To determine an explicit expression for the optimal control, without w1 and w2, a
standard optimality technique is utilized. We consider three cases:

(i) On the set {t|0 < f∗(t) < 1}, w1(t) = 0 = w2(t). Hence the optimal control
is

f∗(t) =
b− λ1sP

b
.

(ii) On the set {t|f∗(t) = 1}, w1(t) = 0. Hence,

1 = f∗(t) =
b− λ1sP − w2(t)

b
.

Furthermore, b−λ1sP
b = 1 + w2(t)

b ≥ 1. Consequently, 1 = f∗ ≤ b−λ1sP
b .
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(iii) On the set {t|f∗(t) = 0}, w2(t) = 0. Hence,

0 = f∗(t) =
b− λ1sP + w1(t)

b
.

Since w1(t) ≥ 0, then b−λ1sP
b ≤ 0. Notice

(
b−λ1sP

b

)+
= 0 = f∗(t) in this case.

Combining these three cases, the optimal control is characterized as

f∗(t) = min

(
1,

(
b− λ1sP

b

)+
)

.(4.5)

Also it is noted that f∗(T ) = 1 since λ1(T ) = 0.
After obtaining an explicit representation for the control, the adjoint equations

coupled with the state equations and the initial and transversality conditions form
the optimality system below:

dP

dt
=

[
γ − δ − α− smin

(
1,

(
b− λ1sP

b

)+
)]

P + βQ,(4.6)

dQ

dt
= αP − (λ + β)Q,

dλ1

dt
= − ∂L

∂P
= −

[
a + λ1

(
γ − δ − α− smin

(
1,

(
b− λ1sP

b

)+
))

+ λ2α

]
,

dλ2

dt
= − ∂L

∂Q
= −[a + λ1β − λ2(λ + β)]

with P (0) = P0, Q(0) = Q0, λi(T ) = 0 for i = 1, 2.
In addition, the second derivative of the Lagrangian with respect to f is negative,

indicating a maximum at f∗.

5. Uniqueness. In order to successively discuss uniqueness of the optimality
system we notice that the adjoint system (4.1) is also linear in λi for i = 1, 2 with
bounded coefficients. Thus, there exists a D > 0 such that |λi(t)| < D for i = 1, 2 on
[0, T ].

Theorem 5.1. For T sufficiently small the solution to the optimality system
(4.6) is unique.

Proof. To discuss the uniqueness explicitly, we suppose that (P,Q, λ1, λ2) and
(P ,Q, λ1, λ2) are two distinct solutions to the optimality system (4.6). Let m > 0
be chosen such that P = emtu, Q = emtv, λ1 = e−mtw, λ2 = e−mtz, P = emtu,
Q = emtv, λ1 = e−mtw, and λ2 = e−mtz. In addition,

f = min

(
1,

(
b− swu

b

)+
)

(5.1)

and

f = min

(
1,

(
b− swu

b

)+
)

.(5.2)
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Consequently, substitution of P = emtu and λ1 = e−mtw into the first and the
third differential equation of the optimality system (4.6) produces

u̇ + mu = (γ − α− δ − sf)u + βv

−ẇ + mw = 2e2mt(u + v) + (γ − α− δ − sf)w + αz,

where u(0) = P0e
−mt, v(0) = Q0e

−mt, w(T ) = 0, and z(T ) = 0. Note that u̇ = du
dt .

The next step is to subtract the equations for u and u, v and v, etc. Then each
new equation is multiplied by an appropriate function and integrated from zero to T.
Consider the u− u equation after multiplying by u− u and integrating from zero to
the final time.

1

2
[u(T ) − u(T )]2 + m

∫ T

0

(u− u)2dt

= (γ − α− δ)

∫ T

0

(u− u)2 −
∫ T

0

(
sfu− sfu

)
(u− u) dt

+ β

∫ T

0

(v − v)(u− u)dt.

Since bounds on the right-hand sides of the integral equations are necessary, we specif-

ically analyze − ∫ T

0

(
sfu− sfu

)
(u− u) dt. To obtain this estimate, we use Cauchy’s

inequality in order to separate the linear terms into quadratic terms. Also, we recog-

nize that
∣∣f − f

∣∣2 ≤ (w − w)
2
u2 + (u− u)

2
w2. Therefore, we obtain

−
∫ T

0

(
sfu− sfu

)
(u− u) dt ≤ −

∫ T

0

[
s
(
f − f

)
u (u− u) + sf (u− u)

2
]
dt

≤ Bs

∫ T

0

(
f − f

)
(u− u) dt

≤ C1

∫ T

0

(w − w)
2
dt + C2e

mT

∫ T

0

(u− u)
2
dt,

where C1 depends on B, s, and b, and C2 depends on B, s, b, and D.
To complete this uniqueness proof, the integral representations of (u− u), (v − v),

(w − w), and (z − z) are combined, and estimates are utilized to obtain the following
inequality:

1

2
[u(T ) − u(T )]2 +

1

2
[v(T )− v(T )]

2
+

1

2
[w(0)− w(0)]

2
+

1

2
[z(0)− z(0)]

2

+ m

∫ T

0

[
(u− u)

2
+ (v − v)

2
+ (w − w)

2
+ (z − z)

2
]
dt

≤ (γ + β + α + C2e
mT )

∫ T

0

[
(u− u)

2
+ (v − v)

2
]
dt + C1

∫ T

0

(w − w)
2
dt

+
(
C5 + C4e

2mT
) ∫ T

0

[
(u− u)

2
+ (v − v)

2
+ (w − w)

2
+ (z − z)

2
]
dt

≤ (C6 + C7e
2mT

) ∫ T

0

[
(u− u)

2
+ (v − v)

2
+ (w − w)

2
+ (z − z)

2
]
dt,

where C4 depends on D, s, and b, and C5, C6, and C7 depend on γ, α, s, D, B, b,
and β.
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Using the nonnegativity of the variable expressions evaluated at the initial and
the final time, the inequality is reduced to the following:

m

∫ T

0

[
(u− u)

2
+ (v − v)

2
+ (w − w)

2
+ (z − z)

2
]
dt

≤ (C6 + C7e
2mT

) ∫ T

0

[
(u− u)

2
+ (v − v)

2
+ (w − w)

2
+ (z − z)

2
]
dt.

Moreover, the simplification gives

(
m− (C6 + C7e

2mT
)) ∫ T

0

[
(u− u)

2
+ (v − v)

2
+ (w − w)

2
+ (z − z)

2
]
dt ≤ 0.

Hence, m is chosen such that m− (C6 + C7e
2mT

)
> 0. Since the natural logarithm

is an increasing function, then

ln

(
m− C6

C7

)
> (2m)T(5.3)

if m > C6 + C7. In essence, this gives that T < 1
2m ln (m−C6

C7
).

Via the uniqueness of the optimality system, the optimal control is thus unique.
Hence, the optimal control is completely characterized in terms of λ1 and P , which
are incorporated in the unique solution of the optimality system (4.6).

6. Numerical results. To numerically solve the optimality system (4.6) we use
the Fortran subroutine “TWPBVP” written by J. R. Cash and M. H. Wright and
available through Netlib. One example of an optimal solution with a = 1, b = 1,
s = 1 is seen in Figure 6.1. We observe that the optimal control (4.5) always ends
with the treatment at full strength since λ1(T ) = 0. This helps us understand the
optimal solution. We are trying to maximize both the total cell mass (P + Q) along
with drug f(t) over the interval T . As can be seen in Figure 6.1 this happens when
the treatment begins on approximately day 13, thus allowing the bone marrow to stay
larger longer. As we will see in the following sections, modifying the weights a and b
along with the dose strength parameter s allows us to adjust for an acceptable bone
marrow loss for the interval T .

6.1. The effects of a and b. By changing the weights we can alter the optimal
treatment. By increasing the weight b while fixing a (a/b—smaller) we place more
importance on maximizing the dose. From Figure 6.2 we observe that as b is increased
more drug is used and the bone marrow is decreased. In a similar manner, increasing
a with b fixed (a/b—larger) signifies that it is more important to maximize the bone
marrow mass rather than the dose.

In general the ratio a/b should be chosen to account for a patient’s condition.
In patients who have not had any treatment and whose bone marrow is at normal
levels, a/b should be small. This means a larger dose may be given. But in a patient
who has received several courses of therapy and whose bone marrow is depressed, a/b
should be increased to preserve the bone marrow.

One example depicting the changes in the ratio a/b is portrayed in Figure 6.3,
where two intervals of T = 7 are compared to one interval of T = 14. We attempt
to keep P + Q above 50% of the initial bone marrow mass. First we consider two
intervals of seven days. For the first period (0 ≤ t ≤ 7) we choose a/b = 1/1.5
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0.0 10.0 20.0
Time (days)

0.0

0.5

1.0

Bone Marrow

f (t)*

Fig. 6.1. Optimal solution. a = 1, b = 1, s = 1, T = 21.

0.0 2.0 4.0 6.0 8.0
Time (days)

0.0

0.5

1.0

1.5

Bone Marrow

f (t)

increasing b

increasing b

*

Fig. 6.2. Optimal solution with a = 2, s = 1, T = 7 and with 0.5 ≤ b ≤ 2, where b is
incremented by 0.5 for each of the four runs. The arrows indicate the direction of increasing b.
Thus larger b allows for a larger dose.

which allows a larger dose and a larger bone marrow kill. But for the second period
(7 ≤ t ≤ 14) we increase a/b to 2.1/1 since the bone marrow is depressed from the
first treatment. Therefore, in this second period, the treatment involves less drug.
Hence, the bone marrow remains at acceptable levels. If we instead consider one
interval of T = 14 with a/b = 1/1.17 we obtain an equivalent reduction of the bone
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Fig. 6.3. Optimal solution. T = 7: a = 1, b = 1.5 for 0 ≤ t ≤ 7, a = 2.1, b = 1 for 7 ≤ t ≤ 14
(periodic treatment of period 2T). T = 14: a = 1, b = 1.17(single period treatment).

marrow (P (14) + Q(14) is the same as the first case) but in a very different manner.
In this case, the bone marrow stays at higher levels since treatment is delayed until
day four. Also, the total treatment time is about 1.7 days shorter when T = 14 (9.9
days compared to 11.6 days for treatments for two periods of seven days). Finally,
we observe in Figure 6.3 that the total dosage (i.e., the integral or AUC (area under
the curve) of f∗(t) over the treatment interval) for the one interval of 14 days is 10%
less than with two intervals of seven days.

At first, the second option (T = 14) appears to be better since there is less
bone marrow damage overall (more area under the bone marrow curve). But there
are several reasons why this might not be the best choice. First, waiting four days
before treating allows the cancer to continue to grow. Since cancer grows faster
than the bone marrow, this could be detrimental to the patient. Secondly, we have
previously stated that the longer the treatment time (related to f∗(t)) and the shorter
the treatment period (related to T ), the more effective the regimen is at destroying
the cancer [14, 15]. This would suggest the treatment described in Figure 6.3 with
two treatment intervals of seven days is the better choice since the period is shorter,
the total treatment time is longer, and the total dosage is greater.

6.2. The effects of s. Next, if we fix all the parameters except s we can observe
how changes in the drug strength affects the optimal treatment. Figure 6.4 shows
several interesting facts. First, if a and b are held fixed, the end bone marrow mass
(P (T ) + Q(T )) remains constant as s is varied. This shows that changes in s affect
the total bone marrow over the treatment interval (i.e., the integral of P (t) + Q(t)
increases as s increases) but not the end amount of bone marrow.

Also, if the stronger drug (larger s) is used, then the total dosage required is
smaller. In addition, the bone marrow remains at a higher level for a longer period
of time. But this effect is limiting. That is, as s is increased the optimal treatment
f∗(t) and the total bone marrow mass approach a limiting function. For example, the
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Fig. 6.4. Optimal solution. a = 1, b = 1, T = 10. Larger s (a more effective drug) allows for
a smaller optimal dose.

total drug needed for optimal treatment at s = 3 is only 3% greater than that needed
at s = 4 (a 33% increase in the parameter s). Therefore, the stronger drug (s = 4)
requires about the same total dose as the less effective drug (s = 3) to do equivalent
damage to the bone marrow. This is because as the strength of the drug is increased,
the cell mass sensitive to the drug decreases. Eventually increasing s will not improve
cell kill since most of the drug sensitive cells have already been killed. (This effect is
seen mathematically in Panetta [14], Panetta and Higgins [15], and experimentally in
Liebmann et al. [8].)

7. Conclusions. We have developed a basic model to study effects of a cell-
cycle-specific drug on the treatment limiting tissue, bone marrow. In this process
we have designed an optimal control problem that will maximize the dose while also
maximizing the total bone marrow mass over the treatment interval. First we have
shown that an optimal control exists and that it can be characterized in terms of
the solution to the optimality system. We also determined that the solution to the
optimality system is unique for a suitably small interval. Next, we solved the system
numerically in an attempt to understand how to treat cancer more effectively without
excessive destruction of bone marrow.

The numerical results show that the weights (a and b) influence the amount of
acceptable bone marrow damage in the model. By adjusting them appropriately we
prevent excessive destruction of the bone marrow while administering the treatment
in an optimal way. We also consider repeated treatments of the optimal control
using the final conditions for the previous treatment as the initial conditions of the
next treatment. The model shows that treating with repeated shorter periods (T )
allows more drug to be given without excess damage to the bone marrow. This result
compares well with previous results which show that shorter treatment periods kill
more cancer [14, 15]. Finally, we observe that optimal treatment for stronger drugs
(larger s) allows for more total bone marrow over the treatment interval. But, this
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effect is limiting. After a point increasing s does not allow for an equivalent increase
in total bone marrow and decrease in total dose. Similar results are observed in [8, 14]
when considering the effects of cell-cycle-specific drugs on cancer cells.

Our work compares to the results in [1, 2, 3, 20, 21] in that we all conclude
that shorter periods are less toxic to the bone marrow. But one main difference is
that we explicitly consider the resting phase cells. Introducing these cells makes our
model more realistic in the clinical setting. This is because a larger percentage of a
cancerous mass (around 80–90% in some breast and ovarian cancers) is resting and
thus not affected at all by cell-cycle-specific treatments.

This model and variations of it can be useful to experimental and clinical cancer
researchers because it gives them possible guidelines for effective methods of treating
cancer without excessive side effects to the bone marrow. Currently, we are testing
the results of this model experimentally to validate the theoretical results.

Possible future directions include (1) incorporating similar equations for cancer
cell growth into the model and then applying optimal control to the new design and
(2) utilizing state constraints for the bone marrow cells in an optimal control setting
to maintain the normal cells above a certain limit. This would be comparable to the
clinician’s procedure of analyzing a blood cell count to determine if it is above a fixed
level before administering treatment.
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