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Optimal Puncturing Ratios and Energy
Distribution for Multiple Parallel

Concatenated Codes

Fredrik Biannstdbm, Lars K. Rasmussen, and Alex J. Grant

Abstract

Extrinsic information transfer (EXIT) charts have been used extelysfor designing concatenated coding
schemes with iterative decoding. The area between the two transferschias been shown to approximate the
gap to channel capacity. A curve-fitting procedure on EXIT charts pvesiously suggested for designing low
density parity check codes. In this paper, we develop a similar appfoashaping the EXIT charts of multiple
parallel concatenated codes (MPCCs) with two or more constituent .c&glom puncturing and unequal
energy distributions across parallel coding streams provide additi@ggkes of freedom for manipulating the
EXIT functions of the constituent codes. A search over all rate-omeddotional codes of memory length four
or less is performed, identifying all codes with unique EXIT functionsother search for good combinations of
constituent codes is subsequently conducted. Optimal constituent poghesuring ratios, and energy distributions
are found in terms of minimizing the average signal-to-noise ratio threslegjdired for convergence, leading
to simple MPCCs over a wide range of code rates. The best rate-1/2feodé has a 0.15 dB gain over the
original turbo code with only half the decoding complexity. Another examsplevs a 0.5 dB gain obtained just
by optimizing the energy distribution.
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bution.
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I. INTRODUCTION

Since the invention of parallel concatenated turbo codésthle turbo principle has been extended to
symmetric multiple parallel concatenated codes (MP&Q2)3] where all constituent codes are identical,
and to asymmetric MPCCs [4] where the constituents can Werdift. The original turbo code [1] transmits
all uncoded (systematic) bits and punctures half of the ddats from the two constituents to raise the code
rate from1/3 to 1/2. MPCCs can have systematic doping [5], where some of theypaits are replaced by
systematic bits preserving the code rate. The ratio betwlsemumber of systematic bits replacing parity bits
and the number of coded bits is usually referred to as thendogitio, d. Usually the doping ratio is fixed
to a small number [3-5], chosen to achieve some satisfadtost of performance. In [6], the performance
for different doping ratiosp < d < 1, is evaluated using approximated error-floors for maximukalihood
decoding.

Parallel concatenated codes (PCCs) with two constituedesa@an be analyzed using two-dimensional
extrinsic information transfer (EXIT) charts [7]. The sa#to-noise ratio (SNR) convergence threshold is
estimated by tracing the evolution of mutual informationlNh the EXIT chart. The EXIT chart for an
MPCC with N constituents isN-dimensional, and thus, conventional EXIT chart analysicomplicated.
Such N-dimensional charts have been used for analysigvo&= 3 symmetric and asymmetric MPCCs [8].
Convergence analysis for codes with > 3 constituents is simplified by “projecting” the multi-dims&anal
EXIT charts onto a single two-dimensional chart as showrBirlLP].

In [13] a curve-fitting procedure on EXIT charts was suggeste optimizing joint coding and modulation
schemes based on irregular low-density parity-check cotles approach was inspired by the area theorem
for the erasure channel, stating that the area between thdransfer curves is equal to the gap to channel
capacity [14]. The EXIT curve for the inner code was shown eécabweighted sum over the EXIT curves for
each variable node degree. Curve fitting was then used famizimg the area between the two EXIT curves,
leading to a corresponding variable node degree distabuti

In this paper, we develop a similar approach for shaping ¥i& Eharts of parallel concatenated convolutional
codes. Random puncturing across parallel coding streaovides N degrees of freedom for manipulating the
EXIT functions of the constituent codes. Each of tNeconstituent codes in an MPCC can have their own
puncturing ratio independent of each other and indepenafetiite puncturing ratio of the systematic bits [11,
15, 16]. Furthermore, in previous work binary phase-shifyikg (BPSK) symbols with equal symbol energy
was used (uniform energy distribution). However, the dtunstt codes can have unequal energy distributions
where each of the bit sequences (systematic or parity) dfseatit transmitted energy under an average overall
transmitted energy constraint. Finally, a search overaa#i-one convolutional codes of memory length four or
less is performed, identifying all codes with unique EXIThétions. The search shows that there are 98 classes
of rate-one convolutional codes (CCs) of memory four or kbsd should be considered as constituent codes
in multiple concatenated codes (MCCs). This set of CCs apit #XIT functions are subsequently used to

jointly optimize the energy distribution and th€ + 1 puncturing ratios, subject to minimizing the required

1An MPCC contains an arbitrary numbel (> 2) of constituent codes concatenated in parallel.
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Fig. 1. Three parallel concatenated codes with puncturing.

SNR to reach a target bit-error rate (BER). A specific choiteVoconstituents will then have an achievable
SNR-rate region within which it is possible to construct MBOwith low decoding complexity for any desired
code rate.

The remainder of the paper is organized as follows. In Sedtithe notation is introduced and the system
model is described. In Section Il it is shown that the priotsMor punctured sequences are simple linear
functions of the prior Mls of the un-punctured sequenceis #lso shown that the extrinsic Mls for randomly
punctured sequences can be expressed by the EXIT functidhs an-punctured constituent codes. The code
search for identifying all classes of rate-one CCs is disedsn Section IV. Within each class, three different
types of CCs are recognized. The optimization problem fdéawed for finding the optimal puncturing ratios
and energy distributions to minimize the required SNR ta&hea target BER is stated and applied to different
example scenarios. The results show several MPCCs with &meding complexity and good performance in

terms of BER. Concluding remarks are presented in Section V.

Il. SYSTEM MODEL

Consider a system witly parallel concatenated constituent codgstransmitting binary data over an additive
white Gaussian noise (AWGN) channel. Figure 1 shows an examvjith three components concatenated in
parallel. The source bits are divided into blockslobits, z € {1, +1} and N + 1 interleaver$ permute the
source sequence inty + 1 different sequences,, = ., (x), n =0,1,..., N. EncoderC,, maps a sequence
of L input bitsx,, € {—1,+1}" to a sequence of,/R,, output bitsy, € {—1,+1}/%» whereR, is the
rate of coden = 1,2,...,N. The uncoded (systematic) bit sequence is denatgénd Ry = 1, since it
corresponds to the “code rate” of the systematic bits. idd®l elements of these sequences are denoted by
Tng t=1,2,...,Landx, = [Xn1,Zn2,---,Zn,r], » =0,1,..., N. This notation is naturally extended to
all other sequences.

With reference to Figure 14, denotes a randorpuncturerfor the sequence,, with a puncturing ratio

on €10,1], forn=0,1,...,N. 1 — ¢, denotes the fraction of bits ig,, that are randomly punctured [11]. If
2Note thatmo and7; can be removed since it is the relative interleaving betwaerencoders that is important [1].
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d, = 0.8, it means that0% of the bits iny,, are removed, i.e.z,, contains only80% of the bits fromy,,,
namelyz, € {—1,+1}*~, whereL,, £ %ﬂ

The output from each puncturer is multiplied by individugjral amplitudes,\/m forn=0,1,..., N,
where E, ,, # 0 is the transmitted symbol energy for the output bits frodn i.e., s, = E; 2, for n =
0,1,...,N. In Figure 1, M represents a multiplexer, converting the+ 1 streams of BPSK symbols into a
single stream of symbols to be transmitted successively thhvee AWGN channels = [sg, s1,...,8n]. The
overall code rate of the punctured parallel system is [11]

N

L 5\

n=0 —N" n=0" "

The receiver’'s matched filter output is= s + w, where each element v is a zero-mean Gaussian noise

sample with variance? = N, /2. The average energy per source bit is

1 )
By =7 ;)LnEn = ;::O szEn @)
and the average SNR is defined as
N
w2 = > o ®
where~; ,, = E, ,/Ny. Define
Esm Ysm s

Un : (4)

s
- Ei:v:o Esk - E]kvzo sk T
as the fraction of transmitted average symbol energy fortitput bits fromis,,, wherel’ £ zszo vs,k- Note
thato <, < 1foralln=0,1,..., N and Zf:fzo ¥, = 1. From now on this will be referred to as the energy
distribution. Using (3) and (4), the average SNR can be t&wrias

N s
w=T> ﬁ¢j- ®)
j=0""

Combining (4) and (5) and solving foy; ,, gives

L%
6] :

Z;’V:O R_jl/)j

For later use, collect the code rates, the puncturing ratind the energy distributions in three vectors with

Vs,n = (6)

N + 1 elements each,

R 2[Ry, Ry,..., RN, ©)
A 2 [50,01,...,0n], (8)
U 2 [tho, ¢1,...,¥N]. 9)
Let A(z,) = [A(zn1), A(@n2), ..., Az, )] € RE denote a sequence afpriori information corresponding
to x,,. Likewise, E(x,) = [E(zp,1), E(¥n2),..., E(z,,1)] € R is a sequence oéxtrinsicinformation for

x,,. Priors and extrinsics are here represented as sequentmslifelihood ratios (LLRs) [11]. This notation

is naturally extended to other sequencesy,, andz,, n=0,1,...,N.

November 2, 2005 DRAFT



SUBMITTED TO THE IEEE TRANSACTIONS ON INFORMATION THEORY 5

The demultiplexer M~ splits the matched filter outpuis= [rg, 71, ..., ry] into the correspondingV + 1
streams as illustrated in Figure 1. The prior LLRs from tharofel, A(z,,), n =0,1,2,..., N, are calculated

from the matched filter outputs as depicted in Figure 1

pr|z(rn,i|zn,i = +1))
A Zn.i £ 111( = An’rn.iv 10
( ’ ) pr|z(7ﬂn,i|zn,i - _1) / ( )

wherep,|.(rn,i|2,,:) is the conditional probability density function of the miad filter outputr,, ; = \/Es 12+
w; and \,, is the channel reliability constant defined as [1, 7]

16E, .,
Ny

2\ 2

(11)

To be able to calculate or approximate the prior channel LirR§10), E, ,, and N, need to be known or
estimated [17]. Combining (10) and (11) it is clear th#tz,) is a mixed Gaussian random variable that is

constant during the decoding process
2

A(Zn,z) = )‘n( V Es,nzn,i + wz) = 0-2_nzn,i + v, (12)
whereos? = 8v,.,, is the variance of the zero-mean Gaussigr{7].
To createA(y,,), n =0,1,..., N, thedepuncturer/,* in Figure 1 inserts zeros at the positionsAiz,,)

where the punctured bits are located. The decoder congis¥ @ posteriori probability (APP) decoder§;*

[18], interconnected bynterleaversn, and deinterleaversr ', n = 1,2,..., N. Upon activatiod, decoder

n

C,! uses its code constraint and the most recent prits,,) = m,(A,(z)) and A(y,,) [19] to update the

n

extrinsics on the source bits [18%,(z) = 7' (E(x,)), where

N
A(m) =) Ej(). (13)
=0
J#n
Prior to decoding, the extrinsic values are set to zéfp(z) = {0}, n = 1,2..., N. The only extrinsic
sequence with non-zero elements prior to decodinggr) = 7, (A(y,)). In contrast to a serially concate-
nated code, the extrinsic output from the decod#ry,,), in a parallel concatenated code is never used and is
therefore not included in Figure 1 [10, 11].
Let D(z) € RL denote the LLR for the decision statistics of the source #it§he decision statistics are

updated after each activation according to

N
D(x) =) Ej). (14)
j=0
;=41
The hard decisiori; on source bit;; is D(x;) = 0 and the system performance is measured in BER, i.e.,
:iizfl

the probability P, £ Pr(Z; # x;).

3The termactivationis used instead of iteration. In a system with two constitsieane iteration is the same as two activations, one for
each of the two decoders.
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IIl. MUTUAL INFORMATION AND EXIT FUNCTIONS

Let

IA(:rn) ZI Tn,i; xnz ) (15)

E(wn é ZI In L’ ’Inﬂ)) (16)

denote the average MI between the input bits and the priaregaland the extrinsic values, respectively,
(similarly for y,, andz,,). We shall refer to these as prior and extrinsic MlIs [11, Bihce we are only dealing

with bits, all MIs are between zero and ores 14,y <1 and0 < Ig(, ) <1, foralln=0,1,...,N.

A. Maximum Rate and Minimum Required SNR

A code is characterized by its EXIT functions [11, 12],

Te, 0,1 = [0,1], (17)
T, :[0,1)* — [0,1], (18)
where, for example, the extrinsic MIg(,, ) for decodern = 1,2,..., N is the EXIT function of the prior
MIs 14,y and Iy,
I, = Trn (Lage,) La.)) - (19)

In practice, this EXIT function is obtained by Monte-Carimslations$ of the constituent code for all values
of 0 < I4(,,) <1 and0 < Iy, <1 by modelling the priors as Gaussian [7], similar to (10).

It can be shown that

Iacz) = J(\/8%sm), Where (20)
+
1 - (6—o /2 )2
J(U) =1 27‘-0’ /6 1Og2(1 + e ) df’ (21)

according to [7].J (o) is monotonically increasing and therefore has a uniquerseye = J (7). Unfortu-
nately,.J and J~! can not be expressed in closed form, but they can be closeipximated as suggested in
[11, 12]. Note that (20) is also the constellation-considi capacity) < Cgpsk < 1, of a system using BPSK
modulation with symbol energy, ,, over an AWGN channelCspsk = J (1/87s,n)-

Since the system in Figure 1 us¥’s-1 different symbol energied4, symbols withE ,, forn =0,1,..., N),

the maximum rate of the concatenated code can be expressed as
N

1
C(R, A, ‘I’, ’Yb) = =N LnJ(\/ 8"/57»,1) (22)
Zk:o Ly =

<N 65 Z}T‘J

Zk =0 Rj, n=0

4For certain codes and simple channel models, it is possiblernguate the EXIT functions [20, 21].
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A special case of (22) is when the energy distribution isamif, E, ,, = RE, i.e., v, = 1/(N +1) for all

n=0,1,..., N. This uniform energy distribution is denoted M,

N 1 1
‘PO_[N+1’N+1""’N+1} (23)

The systems treated in [11, 15] udg,, where the maximum rate is equal (&psk

OR. A o) =T | [Sst—w | = 7(VERm) (24)

Z]‘:o R;
Let7, denote the minimum required SNR for a givBn A and¥. 7, can be found by letting'(R, A, ¥, 5,) =
R and solving fory,. If the energy distribution is unifornty;, can be expressed in closed form using (24)
_ JY(R)?

= (25)

B. EXIT Functions

The puncturer{4, in Figure 1, only removes bits from randomly chosen pos#iohthe sequencg,,, and
U," adds zeros iM(y,,) at these positions. Therefore, the relationship betwegp,) and 1., ) is linear
[11]

I(zpi; A(zn,)) If yn, is transmitted
I(yn,i; A(yn,i)) £ i i (26)
0 if y,; is punctured

Sinced,, denotes the fraction of non-zero elementsiify,,), the average Mll4(,, ) can be expressed as

Yn

L
R,
IA(yn) = T Zl(ymi;A(ynﬂ')) = 6nIA(zn) = 6nJ(\/ 8’737n> ’ (27)
i=1
for all n = 0,1,...,N. The linear relationship in (27) assumes random punctueng infinitely large

interleavers, similar to the assumptions for the EXIT ctaralysis [7]. The average MI is not affected by
an interleaver or a deinterleaver. Therefofgy,, ) = Ig, (») andI4(,,) = 14, () Since the prior values are
sums of N extrinsic values (13), they are modelled as sumsVobiased Gaussian random variables. Using

(21) and its inverse,

N
2
Loy = 7| | D77 Up@y)) | (28)
§=0
J#n
since I (,,) need to be added in theariance domair{8, 11, 12]. Letting/p ) = %Zf:o I(x;; D(x;)), then

similarly

N
Ing = J (4| D7 (Iew)” | (29)
=0

wherelp(,) = 1.0 corresponds to having full information about the sourcs,bie., P, is close to zero. If the

decision statistics are close to a Gaussian model as in {iI2)BER can be approximated by [7],

P, %Q<@> : (30)
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where
a1 i —£2/2

is the Gaussiaid)-function.

The N EXIT functions for a parallel concatenated system can fbezebe expressed as

Ta(en)
N TA(yn)

Ip,)y=Te, | J

(32)
forall n=1,2,..., N, using (6), (27), (28) and the fact thag,,) = do.J (\/87s,0) [11]. Note that ifA, ¥,
and~,, together with the EXIT functions of the cod€E, , are knowA, Ig(s,) in (32) depends only on the
remaining/g(.,), j # n.

A uniform energy distribution (23) together with a fixegd gives N + 1 degrees of freedom ih to change
the mutually dependence of thé EXIT functions in (32) over a range of code ratBj11, 15]. From (32) it
is also clear that the energy distributidn provides additionalV degrees of freedofrto modify the mutually

dependence of the EXIT functions facilitating possiblefpenance improvements of the system [16].

IV. CoDE DESIGN

It has been shown that, under certain conditions, the areeeba the two curves in an EXIT chart is related
to the SNR loss as compared to the capacity [14, 21, 22]. Alsamah, without intersections of the two curves
in the EXIT chart, corresponds to a low convergence threshluse to the capacity limit. The design of good
concatenated codes is therefore similar to a curve-fitthodplpm minimizing the area between the two curves.

With conventional doping, some of the coded bits are repldgeuncoded (systematic) bits, thus preserving
the code rate [5, 6]. The doping ratid, is defined as the ratio between the number of transmitteigrspdic
bits and the total number of transmitted bits. Changing thgirdy ratio influences the shape of the EXIT chart
for the code, hence affecting the performance and the cgemee threshold. This means that there is one
or several optimal doping ratios, which give the lowest faesconvergence threshold. The doping ratio is
usually just fixed to an arbitrary small number yielding sfatttory performance [4, 5]. In contrast to previous
approaches, having only one single parameter in the dopitigyd, there are a total &NV degrees of freedom
in A and ¥, for a specific code rate, to shape the curves in the EXIT chart

Consider an MPCC wittv components using puncturing and a BPSK mapper, as in FiglerIhis system
there areN EXIT functions as stated in (32). The evolution of Ml can becked using the EXIT functions for
a fixedv,, A, and¥. All extrinsic MIs converge to fixed values, independent cfivation schedule, as long

as the EXIT functions are monotonically non-decreasing andunlimited number of decoder activations is

SEachT,,, corresponds t&, with code rateR,, i.e., R is known if all T;,, are known.

5The sum of ally,, n = 0,1,..., N, is equal to one, and that results N degrees of freedom.
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allowed [9, 11, 12]. This implies that the MI on the decisidatistics also converges to a fixed value according
to (29). This fixed value is defined as the convergence péftand for a specific set of codes and code rate

R, I} is a function of A, ¥, and,, i.e.,

Ih = f(A, 8, y). (33)

A. Constituent Codes

CCs can be classified according to thajput-output weight enumeration functigQf@WEF) [23]. In a system
with a single CC, the CC that has the maximum free distanca &pecified code rate and complexity is usually
chosen. Tables of these optimal CCs are easily found in thelure [24]. However, designing concatenated
codes based on EXIT chart analysis only rely on the EXIT fiamst of the constituent codes. A CC with a
low free distance can result in better performance when atenated with other CCs, than a CC with larger
free distance. Further, two CCs with different IOWEF can halmost identical EXIT functions, resulting in
identical convergence behavior predicted by EXIT charts.tRese reasons, it is important consider all possible
CCs of a certain rate and complexity, not only the ones thet ltlae largest free distance.

In this paper, only CCs witl,, = 1 forn = 0,1,..., N, are considered as constituent codes, Re= 1. It
is straightforward to include other code rates or types ofsttuent codes. A CC witlR,, = 1 is represented
by two generator polynomials, one numerator and one deraiorinboth given in octal representation. A CC
with v delay elements is representediby- 1 binary digits. With this description,3 = 1011 (octal and binary
form, respectively) represenis+ D? + D? [7]. Note that sometimes the octal representation of theeigetar
polynomials are defined the reversed way, e.g., as in [25un#&ary polynomialis just a '1'. The binary
representation of a unitary polynomial for a CCs with memoris therefore a one followed by zeros. In
octal representation the unitary polynomials arel, 10 and 20 for v = 1, 2, 3 and4, respectively.

There are three types of CCs with code rdtg = 1: feed-forward, feed-backward and combined feed-
forward/feed-backward. They are here referred to as typB, Bnd C, respectively. A CC of type F has a
unitary denominator, a CC of type B has a unitary numerathilena CC of type C has no unitary polynomials
as its numerator or denominator. Using this notation, @Y is type F with generator polynomial+ D + D?,
CC{/7) is type B with generator polynomial/(1+D+D?), and CC{/5) is type C with generator polynomial
(14D + D?)/(1 + D?). Figure 2 shows the EXIT functions for these three CCs geeerhy Monte Carlo
Simulations [11, 12]. If these three CCs are used as coaatittodes in Figure 1, the MPCC is denoted by
PCC( + 7/4 + 4/7 + 7/5), where "1’ represents the systematic part. The differdmetveen the three types
are here easily visualized by the EXIT functions. All thrgees haveT), (14(,),0) = T, (0,14(,) = 0 and
Ty (Ta@),1) = Ty(1,14¢,) = 1. CCs of type F and C hav&, (0, 14(,)) = 0 and Ty, (I (,),1) = 1, while
CCs of type B and C havé, (1,14(,)) = 1, andT, (14(.),0) = 0. The impact of the various EXIT functions
characteristics on the decoding convergence is discussedih this section.

For each memory lengtlr there are2” different polynomials and therefor®’2” ways of describing a
rate-one CC with memory. This can be reduced @' (2" — 1) by removing all combinations with identical

numerator and denominator. The number of type F CCs with mgmés 2¥ — 1, since there is only one unitary
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Ip@) =To(Ia@w) Taw)  Type F: o) = Ty (Ta@), Taw)
> CC(7/4)

Iaw) 00 Iy Taw)y 00 Iy

~
2
8
~
ES
<
N}

Ip@) =Te(Ia@) Taw))  Type B: ) =Ty
ccu/7)

Ip@) = To(Ia@w) Taw)  Type ¢ o) =Ty (Ta@), Taw)
cc@/s)

Fig. 2. EXIT functions for CC{/4), CC@/7), and CC{/5).

polynomial for eachv that can be combined with all the oth2f — 1 polynomials. For the same reason, the
number of type B CCs is als®’ — 1. Hence, the number of type C CCs with memerys (2¥ — 1)(2¥ — 2).

In Table I, the three first columns under “Total” shows the bemof CCs with a specific for type F, B and
C, respectively. The fourth column shows the total numbe€@6 with a specifiez and the last row shows the
total number of CCs withv < 4 for the three different types. This means that there are ¥€reht rate-one
CCs withv < 4, where 258 of them are of type C and 26 each of type F and B.

The classification of CCs to be used as constituents in cenat#d codes are here not based on the IOWEF,
but instead on the volume of the difference between the EXifictions describing two CCs. The question
is now how many unique sets of EXIT functiongl’;, T, }, are there among the 310 CCs in Table 1? In the
Appendix, classes of codes with identical (or almost idedfiEXIT functions are identified leading to the four
last column of Table I. This classification reveals 98 set&XfT functions for CCs withv < 4. 82 being of
type C, and 8 of type F and B, respectively.

To get good performance of the MPCC, i.e., a low BER in (3Q),,) ~ 1.0. This can only be obtained
if at least one of thg,,) in (29) is close to one. For this to happen, Figure 2 showsdhatof the input

arguments of (32)/ 4(,,,) Or I4(y,), Must be close to one. The second argumént, ), is only close to one
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TABLE |

NUMBER OFCCSWITHR =1AND v = 1,2, 3,4.

Total Unique
v #F#Buc] = [#Fr[#B[#c] s
1 1t o2 1] 1o
2 3 |6 |12 1] 1] 4
3| 7] 7 a]se| 2] 2] 13]17
4| 15| 15 [210] 240 4 | 4 [ 65 | 73
w || 26 | 26 [ 258310 8 | 8 | 82 | o8]

for high SNR, and the first argument is only close to one if ohéhe I (,,) (j # n) in (32) is close to one.
Type B and C codes hav&,, (1,14(,,)) = 1, but type F codes havé,, (1,14(,)) < 1, as illustrated in
Figure 2. Consequently, at least two of the constituent €adast be of type B or C, otherwise the MPCC will
not converge at low SNR.

Type F and C codes havg,, (0,14(,,)) = 0, but type B codes havé,, (0,14(,,)) > 0. If no systematic
bits are transmitteddf = 0), the first argument of (32) is initially be zero. This meahsatttype B codes
can be used even when no systematic bits are transmitted tyipié C and F codes always require that some

systematic bits, i.el4(,,) # 0, are transmitted to converge, even for high SNR.

B. Classification of Rate-1 Convolutional Codes

Consider a MPCC where the rate of the component coBes; [Ry, Rs, ..., Ry], the puncturing ratios,
A = [bp,d1,...,dn], and the energy distributiont = [¢)g, 1, ...,9¥n], are fixed. The overall code rat&,
is then also fixed according to (1), since it depends onl\Roand A. Good combinations of constituent codes
using these fixedA and ¥ can be found by performing a search over a restricted set mdtitoent codes.
The criterion for a good combination of constituent codes, ¢ar example, be low convergence threshold, or
a minimum number of activations required to reach a certaiget BER. The restricted set of codes defines
the type and rate of the constituent codes and also cortstithie decoding complexity.

Tables VI-IX in the Appendix contain all classes of rate-&@fes with different EXIT functions for < 4.
Any CC among those listed in the second columns can be usedngsooent codes in the design of MPCCs.
The number of different combinations & CCs, using the rule stated above that at least two CCs need to
be of type B or C, can be calculated as follows. The number gfswta choose: elements fromn possible

elements with replacement, disregarding the order thelansen, is [26]

n+k—1 s M+ k—1)!
k n El(n—1)! -~ (34)

Let Ngc denote the number of available CCs of type B or C andhjgt denote the number of CCs (of type B
or C) to be included in the MPCC. The number of possible coatiins can then be expressed using (34) as,
Ngc +npc — 1

(35)
nBc

November 2, 2005 DRAFT



SUBMITTED TO THE IEEE TRANSACTIONS ON INFORMATION THEORY 12

TABLE Il

TOTAL NUMBER OF WAYS, Ntot, TO COMBINE N CCS WITH A MEMORY, v, LESS THAN OR EQUAL TO1, 2, 3AND 4, RESPECTIVELY

v< | Nec | Ne | N=2| N=3| N=4 N=5
1 1|1 1 2 3 4
2 6 | 2 21 98 301 756
3 | 21 | 4 231 | 2695 | 20020 | 117964
4 | 90 | 8 | 4095 | 158340 | 4071795 | 83261178

TABLE Il

RATE-ONE CCs WITH DIFFERENTEXIT FUNCTIONS AND MEMORY v < 2.

cc || 3/2 | 7/a | 2/3 | 47|75 | 7/6 | 5/7 | 6/7
v 1 2 1 2 2 2 2 2
type | F F|B|B|]C|C|C]|cC

In a similar way, letNg denote the number of available CCs of type F andiletienote the number of chosen

CCs of type F. The number of possible combinations is then

Ne+ng—1
F F (36)
nE
Using ngc CCs of type B or C andie CCs of type F gives a total oV = ngc + ng CCs. The total number of
combinations of CCspVy, where at least two CCs are of type B or C is then finally exgess the product

of (35) and (36) summed over alc = 2,3,..., N,

N ZN: Nec+nsc—1) [ Ne+N—ngc—1] 37
npc=2 nec N —ngc

Table 1l showsN, for N = 2,3,4 and5. The second columnygc, contains the number of CCs of type B
or C (collected from Table I) with a memory less thanThe third column is also collected from Table | and
contains the number of CCs of type F with a memory less thafrom Table Il it is clear that performing an
exhaustive search over all combinations of CCs to find goo€¥is computationally challenging for high
and N. For example, there are ov88 million combinations ofN = 5 CCs with memory < 4 andR,, = 1
forn=1,2,3,4,5.

The code search in this paper is therefore restricted toclomplexity CCs withv < 2. Tables VI-VIII in
the Appendix contain the eight classes of rate-one CCs upetaaryr = 2 that have different EXIT functions.
The class representative of these eight classes are aisd iis Table Ill. According to Table Il, there atd
combinations ofN = 2 CCs, 98 combinations ofN = 3 CCs and301 combinations ofN = 4 CCs that can

be chosen from Table IlI.
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Fig. 3. Non-systematic PCC.

C. Non-Systematic PCC with Uniform Energy distribution

The code search in this sub-section finds the ‘besh-systematic PCC with uniform energy distribution at
R = 1/2, constructed of two CCs with memory < 2. This is equivalent to selecting the puncturing ratios
A =[0,1,1] and ¥ = ¥, (defined in (23)). The simple structure of this non-systé&nBCC is shown in
Figure 3, whereF; ; = E, > = E,/2 and therefore\ = /8E,,/Np.

Instead of searching over all 21 combinations\of= 2 CCs from Table lll, the search can here be restricted
to the 11 combinations with at least one CC of type B and no C§ué F, since the code is non-systematic.
Inspection of these 11 EXIT functions shows that PCE(4/7 + 7/5) has the lowest convergence threshold
among the 11 combinations of CCs with= 4 + 4 states andA = [0, 1,1]. This PCC can be written as
PCCd/7 + 7/5), since no systematic bits are transmitted. Its convegé¢me@shold is found to be arouidd
dB [11].

A similar search is performed in [4], also using EXIT funet® but for fixed puncturing ratios. The search
in [4] is made overl 540 different combinations ofV = 3 CCs andg8 855 different combinations ofV = 4
CCs, in both cases with rate-one CCs that have 3. The rules for restricting the set of CCs for the search
in [4] is different from the approach used here, since thee2&95 and 20 020 combinations ofN = 3 and
N =4 CCs withv < 3 that have different EXIT functions, according to Table Ihelpuncturing ratio in [4]
for the systematic bits is fixed to a small numbgr= ¢ (systematic doping [27]) and the remaining puncturing

ratios,d,, forn =1,2,..., N, are chosen to give a code rate Bf= 1/N according to (1).

D. Optimal Puncturing and Energy Distribution

The previous sub-section showed that PCC(+ 7/5) gives the lowest convergence threshold among all
combinations of two rate-one CCs with< 2, uniform energy distribution¥, at a fixedA = [0,1, 1], i.e.,
R = 1/2. However, there might be other puncturing ratios and endigfyibutions that give a lower convergence
threshold for PCC(+4/7 + 7/5) at R = 1/2. Such schemes can be found through an exhaustive seardh of al
combinations ob,, for n =0,1,..., N that fulfills the code rate in (1), and all energy distribnsol where
the sum is one.

For a given code raté?, the minimum required SNRy; (to reach a target BERE), together with the

optimal puncturing,A*, and the optimal energy distributiod*, can be found as a solution to the following
"Lowest possible convergence threshold.
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minimization problem.

A, W* ~F] = i AW 38
[A*, 7, ;] = arg Ar}g{;b]g( ) (38)
subject to
N s -1

Ac[0,1]V*, R= =1 39
€ [0,1] R(%m) (39)

N
v e (07 1)N+1! Z wn = 1; (40)

n=0
Y > 7, Or equivalentR < C(R, A, ¥, ). (41)

The objective function in (38) is defined as

b f(A7 ‘Ila ’Yb) > J(2Q71(Pb*))
00 otherwise,

9(A, ¥, y) = (42)

where f(A, ¥, ;) is defined in (33). The code rate constraint in (39) is the aadie for a punctured MPCC,
(1). The upper bound foR in (41) is taken from the maximum rate stated in (22). Theshodd for I}, =
f(A,¥,v,) in (42) is taken from (30), which corresponds to a target BERIf the decision statistics were
Gaussian [7, 11].

This constrained optimization problem is challenging.c8ithe argumentsA, ¥, and~, of the objective
function are continuous within their corresponding ingref support, an exhaustive search is not possible.
However, a grid search ove¥, and, for n = 0,1,..., N can be performed. 15, is quantized intoNy
uniformly spaced levels betweénand 1, the resolution iss = 1/(Ns — 1), or equivalent

Nye Ll (43)
€5
If the same quantization is made for dl,, n = 1,2,..., N, there areN}’ combinations where the last
N elements inA are different. DefineA, £ [65,67,65,...,0%], for k = 1,2,..., N, to be all these
combinations. Note that the first elementxy,, 6%, is so far not specified. For a specific code mBtethe first

element inA, can be caluculated as

N
1 ok
h=——-) 2L 44
0 R P Ri’ ( )

using (1) and the fact thaky = 1 (the rate of the systematic bits). Note that the calculatddevin (44) may

not be valid for this code rate, due to the constraint in (39).

The energy distribution can, in a similar way, also be umifigr quantized into/N,, levels. Define¥; =S

[wg, T, 71/;{\[}, for j =1,2,..., N}, to be all the combinations of differenlr, where, is calculated
as
N
v =1-> . (45)
=1

Let e, be a small constant and 1&& and IV, be the number of levels péf and?, respectively. Construct

nl

all the A, and¥; as described above, using (44) and (45). The search for appumcturing ratios and energy
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distribution to reach a specified target BER;;, for a specific set ofV CCs concatenated in parallel with an
overall code rate of? can now be performed by the following procedure:

Algorithm 1 (Optimal puncturing and energy distribution):

1) Setj = —1, k =0, and initialize~y, with ~, = Q—l(Pb*)2/2, corresponding to uncoded BPSK.

2) Incrementj with one. If j > N{b\’, go to Step 7. 10 < % < 1, go to Step 3. Otherwise, go to Step 2.

3) Incrementk with one. If k > N, setk = 0 and go to Step 2. 16 < &% < 1, go to Step 4. Otherwise,

go to Step 3.
4) If R<C(R,A, ¥,;,7), go to Step 5. Otherwise, go to Step 3.
5) Update the extrinsic Mls in (32) for th& decoders in an arbitrary order usidy;, ¥;, and~, until
Ip() has converged td7, = f(Ag, ¥, 7).
6) If I, > J(2Q7'(Py})), saveA* = Ay, O* = U, 77 =, sety, = 7, —¢, and go to Step 4. Otherwise,
go to Step 3.
7) Output A*, ¥*, and v} from Step 6 as the optimal puncturing ratios, energy distiam, and the
corresponding convergence threshold.
The small value:,, used in Step 6, is chosen arbitrarily to give a certain td&ni of the convergence threshold,
v In Step 1,j = —1 so that the search always starts with the uniform energyildigion ¥, from (23). The
algorithm can be improved by sorting the candidate punguratios and energy distribution&);, and ¥,
according to the maximum rat€(R, Ay, ¥,,.v;) in (22). The algorithm now terminates in Step 4 instead of
Step 2, since once the rate is ab@veR, A, ¥;, ;) it will stay above for all remaining candidate puncturing
ratios and energy distributions, hence the search can bentted earlier.

In summary, Algorithm 1 first initializes, with a high value corresponding to uncoded BPSK. The algarit
then evaluates’ (A, ¥,~,) for all values of A and ¥ that satisfy the constraints in (39)—(41). Whenever
f(A, ¥ ~,) is above the thresholdy, can be decreased with an arbitrary small step size (M, ¥, ~,) is
below the threshold. The search is continued until theraig\nand ¥ that satisfy the constraints at the same

time asf(A, ¥,~,) is above the threshold.

E. Achievable SNR-rate Region

Using Algorithm 1 with Ny, = 0 finds the optimal puncturing ratios with a uniform energytrilisition,
since the algorithm will only us&, and terminate wher = 1. For example, the optimal puncturing ratios
for PCC(Q + 4/7 + 7/5) with uniform energy distribution an&® = 1/2 can be found using Algorithm 1 with
N, = 0. The results show thah* = [0, 1, 1] are in fact the optimal puncturing ratios for this codeRat= 1/2.
Hence, the convergence threshold for PC&(4/7 + 7/5) at R = 1/2 cannot be lowered by changing the
puncturing ratios. It may, however, be possible to find ott@nbinations of two component codes with other
puncturing ratios and energy distribution, providing aerelower convergence threshold At= 1/2.

With N rate-one CCs, the code rate can be chosen arbitrarily wihiangel/(N + 1) < R < 1 by
simply changing the puncturing ratia&. The lower limit is when no bits are punctured, i.&,, = 1 for all
n=20,1,..., N, and the upper limit is the uncoded case wlgn=1 andd,, =0 forn=1,2,..., N. There

are other combinations of puncturing ratios that also dive: 1, but their performance cannot be better than
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Fig. 4. SNR-rate regions foP; = 10~5 with uniform energy distribution.

the uncoded case. Applying (38) or using Algorithm 1 with = 0 (uniform energy distribution) the optimal
puncturing ratios and the corresponding convergencetblédor PCC{ + 4/7 + 7/5) with 1/3 < R < 1is
found. The chosen threshold fg{A, ¥, ;) in (42) is set t00.9999 which corresponds to a BER} ~ 1075

if the decision statistics are Gaussian (30). The resaluidixed toes = €, = 0.02. The result is an SNR-rate
region for PCC[ + 4/7 + 7/5), shown as the light gray shaded region in Figure 4. All poihiat are inside
the light gray shaded region are according to Algorithm liaable. As a reference, the maximum rate for
BPSK (24) is also included as the dashed curve.

Also, as a reference, the SNR-rate region for the origindldicode: PCC(+ 21/37 + 21/37), here called
the BGT code referring to its inventors [1], is included ingliie 4 as the dark gray shaded region with
dash-dotted boundaries. Fét < 0.45, the BGT code has a lowey; than PCC{ + 4/7 + 7/5), but for
0.45 < R <0.96 PCC(Q + 4/7 + 7/5) has a lowery. The optimal puncturing for the BGT code Bt= 1/2
is A* = [0.74,0.56,0.70], which givesy} = 0.60 dB. The puncturing used in [1]A = [1.0,0.5,0.5] gives
a threshold ofy; = 0.66 dB. Note that in [1], a fixed puncturing pattern, puncturingrg other parity bit
from both encoders is used. However, the convergence thicephedicted here assuming random puncturing is
close to the convergence threshold found by simulation&Jinccording to the achievable SNR-rate regions in
Figure 4, PCCI(+4/7+7/5) with R = 1/2 and optimal puncturing has better performance than the BSIE,c
which is also confirmed in the next sub-section. Figure 4 alsmws thaty; = 0.40 dB for PCC( +4/7+7/5)
atR =1/2 is lower thamy; = 0.84 for R = 1/3. This means that PCC¢4/7+ 7/5) has better performance
with A =[0,1,1] (R = 1/2) than withA = [1,1,1] (R = 1/3) [11].

The optimal puncturing ratio®* for PCC( + 4/7 + 7/5) for 1/3 < R < 1 are shown in Figure 5. The
conclusion from Figure 5 is that no systematic bits shouldrbasmitted forR > 1/2. Sinced,, and~y, are
qguantized, several differeh* can be found for eaclk. This explains the discontinuous behavior in Figure 5

for high R. The optimal values fody, §; andd, are almost monotonically decreasing (disregarding thatpoi
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Fig. 5. A* = [do, d1,82] for PCC(L + 4/7 + 7/5) with uniform energy distribution and} = 10~5.

at high R). The PCC is therefore rate-compatible [28], i.e., the crde can be changed from a highkrto
a lower R just by transmitting more bits fromy,, y, andy, in Figure 1, according to the puncturing ratios

in Figure 5.

F. Code Search with Uniform Energy Distribution

According to Table Il, there are 21 ways of combining two of thte-one CCs witlr < 2 listed in Table III.

In this sub-section Algorithm 1 is used to find and compareSN&-rate region for all these 21 combinations
using the uniform energy distribution.

The results show that no single combination has the lowges$br all R > 1/3. However, PCC(+5/7+7/6)
has the lowest; for all R > 1/2 and the achievable SNR-rate region is shown in Figure 6 atighegray
shaded region. PCC¢-5/7 + 5/7) has the lowest; ~ 0 for R = 1/3 (not shown in the figure), but a higher
v than PCC{ + 5/7 + 7/6) when R > 0.45.

Figure 7 shows the EXIT chart for PCC§ 5/7 + 7/6) with optimal puncturingA* = [0.04,1.0,0.96]

(R =1/2) atv, = 0.3 dB. The area between the two EXIT functions is very small esific3 dB is close to
the minimum required SNR of 0.19 dB (25). The EXIT chart inuig 7 indicates that the performance of this
PCC is better than both the best non-systematic RCC¢ 7/5) (found in the previous sub-section) and the
BGT code withR = 1/2.

The BGT code withR = 1/2 in [1] usesA = [1.0,0.5,0.5] and blocks ofL = 216 = 65536 information
bits. Each CC in the BGT code has memory= 4 (16 states) while PCQ(+ 5/7 + 7/6) only has memory
v = 2 (4 states) for each CC. The computational decoding contyl@er activation is roughly proportional to
the number of states, i.e., approximately 4 times highetferBGT code than for the PCC¢ 5/7 + 7/6).

Figure 8 shows the performance of the BGT code after 40 dictihve when the performance has converged.

The performance of PCCH 5/7 + 7/6) after 40, 60 and 80 activations, using optimal puncturing ratios
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Fig. 7. EXIT chart for PCC( 4 5/7 + 7/6) with A* = [0.04, 1.0, 0.96] and uniform energy distribution, at SNR; = 0.3 dB.

A* =1[0.04,1.0,0.96] for R = 1/2, is also shown in Figure 8. Due to the difference in decodiommlexity, 40,

60 and80 activations corresponds to using approximatglfn, 38% and50% of the decoding complexity used
by the decoder for the BGT code aftér activations. It is observed that the performance of PIGE{/7+7/6)

is better than the performance of the BGT code, even thoughayound25% of the decoding complexity is
used. After 80 activations, the performance of PC&(5/7 + 7/6) has converged. The difference compared
to the BGT code is then.15 dB at P, = 10~°, even though PCQ(+ 5/7 + 7/6) is then only using around
1/2 of the complexity that the BGT code is using. The performaot®CC¢/7 + 7/5) is also included in
Figure 8 as the dashed-dotted curves. The complexity of doeder for PCCL/7 + 7/5) is slightly lower
than the complexity for PCQC(+ 5/7 + 7/6), since no systematic bits or puncturer/depuncturer aeelezt in
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Fig. 8. Performance of BGT witlA = [1.0,0.5,0.5] after 40 activations, PCQ(+ 5/7 + 7/6) with A* = [0.04, 1.0, 0.96] after 40,
60 and 80 activations, and PC@(7 + 7/5) after 40 and 60 activations. All three PCCs hav@ = 1/2 and L = 26 = 65 536.

PCC@/7 + 7/5) (refer to Figure 3). The performance of PQZT + 7/5) and the BGT code, both aftel0
activations, are similar. After 60 activations, P@Z{ + 7/5) has similar performance as PQCG{ 5/7 + 7/6).
The performance of PC&(7 + 7/5) has converged aftet0 activations.

Algorithm 1 can also be used to find the SNR-rate regions of MP®ith N > 2 CCs. In place of
performing a full search over all 98 combinations &f = 3 CCs, we can examine all possible extensions
of PCC(l + 5/7 + 7/6) using the eight candidates in Table Ill. The resulting MPI&S an SNR-rate region
that includes the previous region since the new MPCC comefCCI[ + 5/7 + 7/6) by choosingd; = 0.
The search is therefore only made fof4 < R < 1/2 since PCC[ + 5/7 + 7/6) is already so close to the
capacity forR > 1/2. The lowesty; for R > 1/3 among the eight combinations is found whé@(7/4) is
added to PCQ(+5/7+ 7/6). The SNR-rate region for PCC¢ 5/7 + 7/6 + 7/4) is shown in Figure 6 as the
second lightest shaded region together with the region &E®+ 5/7 + 7/6). As a reference, the SNR-rate
region for the BGT code is included in Figure 6 as the dashatted curve. It is clear that the BGT code has
a smaller SNR-rate region than PQC{ 5/7 + 7/6) for all R > 0.45 and a smaller SNR-rate region than
PCC(l +5/7+7/6 +7/4) for all R > 1/3.

The search can be continued by adding another CC to PEG(/7 + 7/6 + 7/4). The best choice for all
1/4 < R < 1/2, among the eight CCs from Table Ill, is to add anotbk¥(7/4) to PCCQ +5/7+7/6+7/4).
This MPCC has an SNR-rate region shown in Figure 6 as the sladleaded region together with the two
lighter regions. As for PCQ(+ 5/7 + 7/6 + 7/4), PCC + 5/7 + 7/6 + 7/4 + 7/4) includes the SNR-rate
region of the previous codes since PCG{5/7 + 7/6 + 7/4 + 7/4) comprises PCQ(+ 5/7 + 7/6 + 7/4)
whenés = 0 and PCC{ + 5/7 + 7/6) whends = 64 = 0.

The SNR-rate region in Figure 6 fa¥ = 2 is found using Algorithm 1 withe; = ¢, = 0.02. For N = 3
and N = 4, a more coarse resolution is usegl= e, = 0.05, due to the larger number ¢f} . In order to find

the best combination oV = 4 CCs of memory up tar = 2, an exhaustive search over all 301 combinations
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TABLE IV

OPTIMAL PUNCTURING AND ENERGY DISTRIBUTION FORPCC(l + 5/7 4 7/6 + 7/4) TO REACH P} = 1075,

R A* w* AL vy for ®* |~ for ¥ | 7 for T* | 5, for ¥o

0.25 | [1.00,1.00,1.00,1.00] | [0.08,0.34,0.24,0.34] | [0.25,0.25,0.25,0.25] -0.36 dB 0.16 dB -0.65 dB -0.79 dB

0.30 | [0.35,1.00,1.00,0.98] | [0.20,0.30,0.20,0.30] | [0.25,0.25,0.25,0.25] -0.30 dB -0.22 dB -0.58 dB -0.61 dB

of four CCs from Table IIl should be performed. PQGG{ 5/7 + 7/6 + 7/4 + 7/4) shown in Figure 6 is just
a good MPCC withN = 4, but may not be the best combination.

Algorithm 1 can also be used to find the optimal puncturing mutiple serial concatenated code (MSCC).
The difference is then the expression for the code rate andti® EXIT functions are mutually dependent [11,
28]. Algorithm 1 is also easily modified to find the optimal pturing ratios for MCCs with a fixed number of
activations. This can be done by limiting the number of ations in Step 5. Instead of limiting the number
of activations, the computational decoding complexity tanlimited to find the optimal scheduling [10-12],
in Step 5 of Algorithm 1.

G. Optimal Energy Distribution

All codes in Figure 6 are close to the maximum rate using BP&Kafl R > 1/N. For code rates below
1/N, the convergence thresholdl;, increases af? tends to its lower bound/(N + 1). By optimizing the
energy distribution using (38) (or Algorithm 1) the convemnge threshold can be reduced, which in turn reduces
the gap between; and7;.

Consider PCQ(+ 5/7 + 7/6 + 7/4) for R = 1/4 (A = A* = 1) in Figure 6. With a uniform energy
distribution~} = 0.16 dB. Optimizing the energy distribution using (38) giv@s" = [0.08,0.34, 0.24, 0.34]
andy} = —0.36 dB. This is a gain 00.52 dB compared to uniform energy distribution. The optimal gunng
and energy distribution for PCC& 5/7 4 7/6 + 7/4) at R = 0.25 and R = 0.30 are listed in Table IV. The
same table also lists; for ¥, together withy, for ¥, and ¥*. The predicted gain f00.25 < R < 0.30
is in the range 00.08-0.52 dB using ¥* instead of¥,. At the same time, the minimum required SN,
increases with0.03-0.14 dB when¥* is used instead of.

The EXIT chart projection [9-12] for PCCH 5/7 + 7/6 + 7/4) at R = 1/4 is shown in Figure 9. Here
it is clear that changing the energy distribution affects #XIT chart. Figure 9 shows that using* the
tunnel is open at;, = —0.36 dB, while it is closed usingly. Figure 10 shows the simulated performance of
PCC( +5/7+ 7/6 4+ 7/4) in BER using both uniform and optimal energy distributiadnfa= 1/4. The gain
in performance, just by changing the energy distributiorarisund0.5 dB and it corresponds well with the
predicted gain listed in Table 1V. In the same figure the mimmrequired SNRs from (22) for the two schemes
are reported. It is clear that even though the minimum regu8NR increases hy.14 dB when non-uniform

energy distribution is used, the gain in performance is raddu5 dB.
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Fig. 10. Performance of PCC{5/7+7/6+7/4) with R = 1/4 (A* = [1,1,1,1]) andL = 216 = 65536 after 20 and 80 activations.

V. CONCLUSIONS

We considered the problem of finding the optimal puncturiaigos together with the optimal energy distri-
bution for MPCCs, using EXIT functions to minimize the avgeeSNR convergence threshold. For such codes,
the individual puncturing ratios for the constituent codas be chosen freely within a desired code rate. The
energy distribution can also be chosen arbitrary withotécéihg the code rate, while preserving the average
bit energy. We have shown how to jointly optimize the eneripyrihution and the puncturing ratios by utilizing
the EXIT functions of the constituents. The result is an SidfR-region for any combination of an arbitrary
number of constituent codes. For MCCs it is important to stigate all combinations of constituent codes that

provide different performance. A code search is therefoaglento identify all rate-one CCs with unique EXIT
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TABLE V

FACTORIZATION IN GF(2).

v I binaryl octal ‘ factors

1 10 2 -

1 11 3 -

2 100 4

2 101 5

2 110 6

2 111 7 -

3 1000 10 2.2.2

3 1001 11

3 1010 12 2-3-3

3 1011 13 -

3 1100 14 2-2-3

3 1101 15 -

3 1110 16 2.7

3 1111 17 3-3-3

4 | 10000 20 2:2.2-
4 | 10001 21 3:-3-3-3
4 | 10010 22 2-3-7

4 | 10011 23 -

4 | 10100 24 2-2-3-3
4 | 10101 25 7-

4 | 10110 26 2-13

4 | 10111 27 3-15

4 | 11000 30 2:2.2-3
4 | 11001 31 -

4 | 11010 32 2-15

4 | 11011 33 3-3-7

4 | 11100 34 2:2-7

4 | 11101 35 3-13

4 | 11110 36 2-3-3-3
4 | 11111 37 -

functions. The result is a list of 98 classes of CCs with menfour or less. To demonstrate the approach, an
example is included showing a performance gain can be autaising the optimal energy distribution, even
though the minimum required SNR, given by information tlyegrcreases. The ideas presented here are easily

extended to other constituent codes and also to MSCCs.

APPENDIX

In this appendix all CCs withR = 1 and v < 4 according to their set of EXIT function§I,,T,} are
classified. Table V shows all generator polynomials witi< 4, given in both binary and octal notation. It
also shows the factorization of the numbers under Galoid figlh 2 elements, denoted by GF(2). LEi01,

denote a binary number andg its equivalent number in octal notation, according to Tabld=or example,
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10015 = 11g = 3573 = (1+D)(1+D+D?) = 1+D+D+D*+D?+D?* = 14+ D? = 11g, since O +D* = 0
forany k = 0,1,2,..., under GF(2). A factoRg adds a zero to the right side of the binary representation,
e.9.,2g - 33 - 7g = 25 - 11g = 10010, = 22g. Using GF(2) arithmetic, it can be concluded that there &gbte
prime factors forv < 4, i.e.,2,3,7,13,15,23,31 and37 (given in octal notation).

Note also that some of the binary numbers in Table V are riblerd.e., they turn into a different number
if they are reversed, e.gl101, = 15g turns into1011, = 13g. Other reversible numbers aBadg (turns into
23g), and35g (turns into27g). Further, note that iB2s is reversed (disregarding the ending zero) it turns into
26g, since32g = 2g - 15g turns into2g - 13g = 26g. From now on, only the octal notation of the generator
polynomials and their factorization are used. Therefdne, gubindex for all numbers are omitted. Collect the

four reversible numbers in a vecter and their corresponding reversed numbers in a ve@tor
a = [a1, a9, a3,a4] = [15,31, 35,32, (46)
B = [B1, B2, Bs, Ba] = [13,23,27,26]. (47)

This feature is used later in this appendix.

Table | shows the total number of rate-one CCs of all type8(Bnd C) with memory < 4. Each of the
310 CCs can be given a unique indestarting with CC8/2) (k = 1), and ending with CQ6/37) (k = 310).
This means that a CC with indéx< n has a lower or equal than the CC with index.

To identify all unique sets of EXIT functiongT;,, T, }, among these 310 different CCs with< 4, the

volume of the difference between their EXIT functions canitbeestigated. Define the following metric

V(k,n) = (48)

11
00

whereT,, andT,, are the EXIT functions for the CC with inde&x=1,2,...,310 and7},, andT, are the
EXIT functions for the CC with index. = 1,2,...,310. Figure 2 shows that the EXIT functions are unstable
in the pointsT}(1,0), T,,(0,1), T,,(1,0), and T, (0,1). These points are therefore excluded whéfk,n) in
(48) is evaluated.

The minimum volume of the difference for the CC with indexo any of the other CCs with index < k

is then
Vain(k) = min{V (k, n)} . (49)

After calculating allVimin(k) for k = 1,2,...,310 they are sorted in decreasing order and plotted in Figure 11
(note that1000Vmin(k) is plotted). Only the minimum difference in volume for the €@ith indexk =
92,93,...,310 is shown. Fork = 1,2,...,91, Vqin(k) > 0.004. Choosing a threshol#fi, = 0.0025 gives 98
unique sets of EXIT function§T;, T}, }. The CC with lowest index among all CCs within each of the 98jue
classes is chosen as the representative for that classa3¢uses that one of the CCs with the lowest decoding
complexity in that class is the representative. Tables X lidts all classes of CCs with unique EXIT functions.

The first columny, is the number of memory elements for the class represemtdtie second column, CC, is
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Fig. 11. The minimum volume of the difference for the 310 CCs.

TABLE VI

ALL 8 CLASSES OFR = 1 CCs OF TYPEF WITH v < 4.

v CcC Members
5/4, 6/4, 5/6, 11/10, 12/10, 14/10, 17/12, 12/14,

1| s 17/14, 11/16, 21/20, 22/20, 24/20, 30/20, 33/22
21/24, 36/24, 35/26, 24/30, 33/30, 36/30, 27/32
22/34, 33/34, 21/36

2| 7/4 | 16/10, 11/14, 25/20, 34/20, 33/24, 22/30, 25/34

3 | 13/10 | 15/10, 26/20, 32/20, 27/30, 35/30

3 | 17/10 | 36/20, 21/30

4| 23/20 | 31/20

4 | 27/20 | 35/20

4 | 33/20

4 | 37/20

the class representative, and the third column containstilair members of that class. For example, @)
belongs to the class represented by £Qf in Table VI. This is also denoted by/4 = 3/2 and basically
means that the volume of the difference, according to (48wéen these two CCs is less than025.
The following ad hocrules can be applied to find the unique classes of rate-onevitisy < 4 listed in
Tables VI-IX, (some of them more obvious than others):
1) All k/k-factors can be removed, e.d7/12=2/2-3/3-3/2=3/2.
2) Doubles and quadruples can be reduced to one, 21 =7/5-7/5="7/5 and21/20 = 3/2-3/2-
3/2-3/2 = 3/2. Note that this is not true for triples, €.4.7/10 = 3/2-3/2-3/2 is a class representative.
3) A CC of the formg;/«y from (46)—(47) can be replaced by its correspondinggy, for j =1,2,3,4
andk =1,2,3,4, e.g.,13/15 = 15/13 and 23/35 = 31/27.
4) A CC of the forme; /oy, can be replaced by its correspondifig/ 8x, for j # k, e.g.,35/31 = 27/23.
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TABLE VI

ALL 8 CLASSES OFR =1 CCs OF TYPEB WITH v < 4.

v CcC Members
4/5, 6/5, 4/6, 10/11, 16/11, 10/12, 14/12, 10/14,
| oays 12/17, 14/17, 20/21, 24/21, 36/21, 20/22, 34/22,
20/24, 30/24, 32/27, 20/30, 22/33, 30/33, 34/33
26/35, 24/36, 30/36
2 | 4/7 | 14/11, 10/16, 30/22, 20/25, 34/25, 24/33, 20/34
3 | 10/13 | 10/15, 20/26, 30/27, 20/32, 30/35
3 | 10/17 | 30/21, 20/36
4 | 20/23 | 20/31
4 | 20/27 | 20/35
4| 20/33 | -
4 | 20/37 | -
TABLE VIl
ALL 17 CLASSES OFR = 1 CCs OF TYPEC WITH v < 3.
v cC Members
2 7/5 16/12, 11/17, 25/21, 33/21, 34/24, 25/33, 22/36
2| 7/6 | 11/12,16/14, 25/22, 22/24, 25/24, 34/30, 33/36
2| 5/7 | 17/11,12/16, 36/22, 21/25, 33/25, 21/33, 24/34
2| 6/7 | 12/11,14/16, 24/22, 22/25, 24/25, 36/33, 30/34
3 | 13/11 | 15/11, 26/22, 32/22, 27/33, 35/33
3 | 13/12 | 15/12, 26/24, 32/24, 27/36, 35/36
3 | 11/13 | 11/15, 22/26, 33/27, 22/32, 33/35
3 | 12/13 | 12/15, 24/26, 36/27, 24/32, 36/35
3 | 14/13 | 14/15, 30/26, 24/27, 30/32, 24/35
3 | 15/13 | 13/15, 32/26, 35/27, 26/32, 27/35
3 | 16/13 | 16/15, 34/26, 22/27, 34/32, 22/35
3 | 17/13 | 17/15, 36/26, 21/27, 36/32, 21/35
3 | 13/14 | 15/14, 27/24, 35/24, 26/30, 32/30
3 | 13/16 | 15/16, 27/22, 35/22, 26/34, 32/34
3| 17/16 | 21/22, 36/34
3 | 13/17 | 15/17, 27/21, 35/21, 26/36, 32/36
3 | 16/17 | 22/21, 34/36

25

5) Any reversible numbety; in the denominator can be changed to its corresponding segenumbers;

unless the numerator is a reversed or reversible number,26/35 = 25/27. Note that, e.9.32/35 is

not equivalent t32,/27 since32 is a reversible number.

6) Any reversible numbety; in the numerator can be changed to its corresponding reversmbers;

unless the denominator is a reversed or a reversible nurlger31/21 = 23/21. Note that, e.g.31/27

is not equivalent t®3/27 since27 is a reversed number.

7) Two special cases}/2-7/4=3/2 and2/3-4/7=2/3, e.g.,11/10 =3/2-7/4 = 3/2.
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TABLE IX

ALL 65CLASSES OFR =1 CCs OF TYPEC WITH v = 4.

CcC Members
23/21 | 31/21
26/21 | 32/21

CcC Members
33/26 | 33/32
37/26 | 37/32

34/21 23/27 | 31/35
37/21 25/27 | 25/35
23/22 | 31/22 26/27 | 32/35
37/22 31/27 | 23/35

21/23 | 21/31
22/23 | 22/31
24/23 | 24/31
25/23 | 25/31
26/23 | 32/31
27/23 | 35/31
30/23 | 30/31
31/23 | 23/31
32/23 | 26/31
33/23 | 33/31
34/23 | 34/31

34/27 | 34/35
37/27 | 37/35
23/30 | 31/30
25/30
37/30
23/33 | 31/33
26/33 | 32/33
37/33
21/34
23/34 | 31/34
27/34 | 35/34

e I N I N I S S B S B N N Y R R R R R RN E R R R R R E RN E N E NS

35/23 | 27/31 37/34
36/23 | 36/31 23/36 | 31/36
37/23 | 37/31 25/36
23/24 | 31/24 37/36
37/24 21/37
23/25 | 31/25 22/37
26/25 | 32/25 23/37 | 31/37
27/25 | 35/25 24/37
30/25 25/37
36/25 26/37 | 32/37
37/25 27/37 | 35/37
21/26 | 21/32 30/37
23/26 | 31/32 33/37
25/26 | 25/32 34/37
27/26 | 35/32 36/37

B N I T S I S N R S R S (R~ R S B S (S (Y S [ S I S I 0 S R S R S I S I S [ S I S i S B e N R N N LN

31/26 | 23/32

Note that these rules are constructed only to give the sasudt r@sVi, = 0.0025. They are not theoretically
justified. Note also that rule 1 can be applied together with of the other rules, e.gl0/12 =2/2-2/3-2/3 =
2/3 (using rule 1 and 2)32/34 = 2/2-15/16 = 13/16 (using rule 1 and 6), and3/30 = 3/3-3/2-7/4 = 3/2
(using rule 1 and 7).

Using the rules above (or the threshdlgd = 0.0025 in Figure 11) gives 8 classes of CCs of type F listed in
Table VI, 8 classes of CCs of type B listed in Table VII, and &%ses of CCs of type C listed in Tables VIII-
IX. Note that each CG{/n) of type F in Table VI has a corresponding GZk) of type B in Table VI. If
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CC(k/n) is a class representative in Tables VIII-IX, GQk) is also a class representative, unléss- «;
from (46) for j = 1,2,3,4. For example, CQ3/35) is not a class representative in Table IX even though
CC(35/23) is, since23/35 = 31/27 according to rule 3 above.
Each of the possible 310 CCs can be found once in Tables VlieitKer as a class representative or as a
member of a class. For example, instead of using20CX1) (with v = 4, i.e., 16 states) its class representative
CC(@2/3) (with v =1, i.e., 2 states) from Table VIl should be used. These CCs kamgar EXIT functions
and therefore also similar performance in the waterfalloregf they are used in a concatenated scheme, even
though CC20/21) has 8 times more states than @LY). However, it should be noted that these two CCs have

different IOWEF [23], so their performance in the error floegion is different.
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