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Abstract

Extrinsic information transfer (EXIT) charts have been used extensively for designing concatenated coding

schemes with iterative decoding. The area between the two transfer curves has been shown to approximate the

gap to channel capacity. A curve-fitting procedure on EXIT charts waspreviously suggested for designing low

density parity check codes. In this paper, we develop a similar approachfor shaping the EXIT charts of multiple

parallel concatenated codes (MPCCs) with two or more constituent codes. Random puncturing and unequal

energy distributions across parallel coding streams provide additional degrees of freedom for manipulating the

EXIT functions of the constituent codes. A search over all rate-one convolutional codes of memory length four

or less is performed, identifying all codes with unique EXIT functions. Another search for good combinations of

constituent codes is subsequently conducted. Optimal constituent codes, puncturing ratios, and energy distributions

are found in terms of minimizing the average signal-to-noise ratio thresholdrequired for convergence, leading

to simple MPCCs over a wide range of code rates. The best rate-1/2 codefound has a 0.15 dB gain over the

original turbo code with only half the decoding complexity. Another exampleshows a 0.5 dB gain obtained just

by optimizing the energy distribution.
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I. I NTRODUCTION

Since the invention of parallel concatenated turbo codes [1], the turbo principle has been extended to

symmetric multiple parallel concatenated codes (MPCCs)1 [2, 3] where all constituent codes are identical,

and to asymmetric MPCCs [4] where the constituents can be different. The original turbo code [1] transmits

all uncoded (systematic) bits and punctures half of the coded bits from the two constituents to raise the code

rate from1/3 to 1/2. MPCCs can have systematic doping [5], where some of the parity bits are replaced by

systematic bits preserving the code rate. The ratio betweenthe number of systematic bits replacing parity bits

and the number of coded bits is usually referred to as the doping ratio,d. Usually the doping ratio is fixed

to a small number [3–5], chosen to achieve some satisfactorylevel of performance. In [6], the performance

for different doping ratios,0 ≤ d ≤ 1, is evaluated using approximated error-floors for maximum likelihood

decoding.

Parallel concatenated codes (PCCs) with two constituent codes can be analyzed using two-dimensional

extrinsic information transfer (EXIT) charts [7]. The signal-to-noise ratio (SNR) convergence threshold is

estimated by tracing the evolution of mutual information (MI) in the EXIT chart. The EXIT chart for an

MPCC with N constituents isN -dimensional, and thus, conventional EXIT chart analysis is complicated.

SuchN -dimensional charts have been used for analysis ofN = 3 symmetric and asymmetric MPCCs [8].

Convergence analysis for codes withN ≥ 3 constituents is simplified by “projecting” the multi-dimensional

EXIT charts onto a single two-dimensional chart as shown in [9–12].

In [13] a curve-fitting procedure on EXIT charts was suggested for optimizing joint coding and modulation

schemes based on irregular low-density parity-check codes. The approach was inspired by the area theorem

for the erasure channel, stating that the area between the two transfer curves is equal to the gap to channel

capacity [14]. The EXIT curve for the inner code was shown to be a weighted sum over the EXIT curves for

each variable node degree. Curve fitting was then used for minimizing the area between the two EXIT curves,

leading to a corresponding variable node degree distribution.

In this paper, we develop a similar approach for shaping the EXIT charts of parallel concatenated convolutional

codes. Random puncturing across parallel coding streams providesN degrees of freedom for manipulating the

EXIT functions of the constituent codes. Each of theN constituent codes in an MPCC can have their own

puncturing ratio independent of each other and independentof the puncturing ratio of the systematic bits [11,

15, 16]. Furthermore, in previous work binary phase-shift keying (BPSK) symbols with equal symbol energy

was used (uniform energy distribution). However, the constituent codes can have unequal energy distributions

where each of the bit sequences (systematic or parity) use different transmitted energy under an average overall

transmitted energy constraint. Finally, a search over all rate-one convolutional codes of memory length four or

less is performed, identifying all codes with unique EXIT functions. The search shows that there are 98 classes

of rate-one convolutional codes (CCs) of memory four or lessthat should be considered as constituent codes

in multiple concatenated codes (MCCs). This set of CCs and their EXIT functions are subsequently used to

jointly optimize the energy distribution and theN + 1 puncturing ratios, subject to minimizing the required

1An MPCC contains an arbitrary number (N ≥ 2) of constituent codes concatenated in parallel.
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Fig. 1. Three parallel concatenated codes with puncturing.

SNR to reach a target bit-error rate (BER). A specific choice of N constituents will then have an achievable

SNR-rate region within which it is possible to construct MPCCs with low decoding complexity for any desired

code rate.

The remainder of the paper is organized as follows. In Section II the notation is introduced and the system

model is described. In Section III it is shown that the prior MIs for punctured sequences are simple linear

functions of the prior MIs of the un-punctured sequences. Itis also shown that the extrinsic MIs for randomly

punctured sequences can be expressed by the EXIT functions of the un-punctured constituent codes. The code

search for identifying all classes of rate-one CCs is discussed in Section IV. Within each class, three different

types of CCs are recognized. The optimization problem formulated for finding the optimal puncturing ratios

and energy distributions to minimize the required SNR to reach a target BER is stated and applied to different

example scenarios. The results show several MPCCs with low decoding complexity and good performance in

terms of BER. Concluding remarks are presented in Section V.

II. SYSTEM MODEL

Consider a system withN parallel concatenated constituent codesCn, transmitting binary data over an additive

white Gaussian noise (AWGN) channel. Figure 1 shows an example with three components concatenated in

parallel. The source bits are divided into blocks ofL bits, x ∈ {−1,+1}L andN +1 interleavers2 permute the

source sequence intoN + 1 different sequencesxn = πn(x), n = 0, 1, . . . , N . EncoderCn maps a sequence

of L input bits xn ∈ {−1,+1}L to a sequence ofL/Rn output bitsyn ∈ {−1,+1}L/Rn , whereRn is the

rate of coden = 1, 2, . . . , N . The uncoded (systematic) bit sequence is denotedx0 andR0 = 1, since it

corresponds to the “code rate” of the systematic bits. Individual elements of these sequences are denoted by

xn,i, i = 1, 2, . . . , L and xn = [xn,1, xn,2, . . . , xn,L], n = 0, 1, . . . , N . This notation is naturally extended to

all other sequences.

With reference to Figure 1,Un denotes a randompuncturer for the sequenceyn with a puncturing ratio

δn ∈ [0, 1], for n = 0, 1, . . . , N . 1− δn denotes the fraction of bits inyn that are randomly punctured [11]. If

2Note thatπ0 andπ1 can be removed since it is the relative interleaving between the encoders that is important [1].
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δn = 0.8, it means that20% of the bits inyn are removed, i.e.,zn contains only80% of the bits fromyn,

namelyzn ∈ {−1,+1}Ln , whereLn , Lδn

Rn
.

The output from each puncturer is multiplied by individual signal amplitudes,
√
Es,n for n = 0, 1, . . . , N ,

whereEs,n 6= 0 is the transmitted symbol energy for the output bits fromUn, i.e., sn = Es,nzn for n =

0, 1, . . . , N . In Figure 1,M represents a multiplexer, converting theN + 1 streams of BPSK symbols into a

single stream of symbols to be transmitted successively over the AWGN channel,s = [s0, s1, . . . , sN ]. The

overall code rate of the punctured parallel system is [11]

R =
L

∑N
n=0 Ln

=

(
N∑

n=0

δn
Rn

)−1

. (1)

The receiver’s matched filter output isr = s + w, where each element inw is a zero-mean Gaussian noise

sample with varianceσ2
w = N0/2. The average energy per source bit is

Eb =
1

L

N∑

n=0

LnEs,n =

N∑

n=0

δn
Rn

Es,n, (2)

and the average SNR is defined as

γb ,
Eb
N0

=
N∑

n=0

δn
Rn

γs,n, (3)

whereγs,n = Es,n/N0. Define

ψn ,
Es,n∑N
k=0Es,k

=
γs,n∑N
k=0 γs,k

=
γs,n
Γ
, (4)

as the fraction of transmitted average symbol energy for theoutput bits fromUn, whereΓ ,
∑N
k=0 γs,k. Note

that0 < ψn < 1 for all n = 0, 1, . . . , N and
∑N
n=0 ψn = 1. From now on this will be referred to as the energy

distribution. Using (3) and (4), the average SNR can be rewritten as

γb = Γ
N∑

j=0

δj
Rj
ψj . (5)

Combining (4) and (5) and solving forγs,n gives

γs,n =
ψn∑N

j=0
δj

Rj
ψj
γb. (6)

For later use, collect the code rates, the puncturing ratios, and the energy distributions in three vectors with

N + 1 elements each,

R , [R0, R1, . . . , RN ] , (7)

∆ , [δ0, δ1, . . . , δN ] , (8)

Ψ , [ψ0, ψ1, . . . , ψN ] . (9)

LetA(xn) = [A(xn,1), A(xn,2), . . . , A(xn,L)] ∈ R
L denote a sequence ofa priori information corresponding

to xn. Likewise,E(xn) = [E(xn,1), E(xn,2), . . . , E(xn,L)] ∈ R
L is a sequence ofextrinsic information for

xn. Priors and extrinsics are here represented as sequences oflog-likelihood ratios (LLRs) [11]. This notation

is naturally extended to other sequences,x, yn andzn, n = 0, 1, . . . , N .
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The demultiplexer,M−1 splits the matched filter outputsr = [r0, r1, . . . , rN ] into the correspondingN +1

streams as illustrated in Figure 1. The prior LLRs from the channel,A(zn), n = 0, 1, 2, . . . , N , are calculated

from the matched filter outputs as depicted in Figure 1

A(zn,i) , ln

(
pr|z(rn,i|zn,i = +1)

pr|z(rn,i|zn,i = −1)

)
= λnrn,i, (10)

wherepr|z(rn,i|zn,i) is the conditional probability density function of the matched filter outputrn,i =
√
Es,nzn,i+

wi andλn is the channel reliability constant defined as [1, 7]

λn ,

√
16Es,n

N0
. (11)

To be able to calculate or approximate the prior channel LLRsin (10), Es,n andN0 need to be known or

estimated [17]. Combining (10) and (11) it is clear thatA(zn) is a mixed Gaussian random variable that is

constant during the decoding process

A(zn,i) = λn(
√
Es,nzn,i + wi) =

σ2
n

2
zn,i + vi, (12)

whereσ2
n = 8γs,n is the variance of the zero-mean Gaussianvn [7].

To createA(yn), n = 0, 1, . . . , N , the depuncturerU−1
n in Figure 1 inserts zeros at the positions inA(zn)

where the punctured bits are located. The decoder consists of N a posterioriprobability (APP) decodersC−1
n

[18], interconnected byinterleaversπn and deinterleaversπ−1
n , n = 1, 2, . . . , N . Upon activation3, decoder

C−1
n uses its code constraint and the most recent priorsA(xn) = πn(An(x)) andA(yn) [19] to update the

extrinsics on the source bits [18],En(x) = π−1
n (E(xn)), where

An(x) =

N∑

j=0

j 6=n

Ej(x). (13)

Prior to decoding, the extrinsic values are set to zero,En(x) = {0}L, n = 1, 2 . . . , N . The only extrinsic

sequence with non-zero elements prior to decoding isE0(x) = π−1
0 (A(y0)). In contrast to a serially concate-

nated code, the extrinsic output from the decoder,E(yn), in a parallel concatenated code is never used and is

therefore not included in Figure 1 [10, 11].

Let D(x) ∈ R
L denote the LLR for the decision statistics of the source bitsx. The decision statistics are

updated after each activation according to

D(x) =

N∑

j=0

Ej(x). (14)

The hard decision̂xi on source bitxi is D(xi)
x̂i=+1

≷
x̂i=−1

0 and the system performance is measured in BER, i.e.,

the probabilityPb , Pr(x̂i 6= xi).

3The termactivation is used instead of iteration. In a system with two constituents, one iteration is the same as two activations, one for

each of the two decoders.
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III. M UTUAL INFORMATION AND EXIT FUNCTIONS

Let

IA(xn) ,
1

L

L∑

i=1

I(xn,i;A(xn,i)), (15)

IE(xn) ,
1

L

L∑

i=1

I(xn,i;E(xn,i)) (16)

denote the average MI between the input bits and the prior values, and the extrinsic values, respectively,

(similarly for yn andzn). We shall refer to these as prior and extrinsic MIs [11, 12].Since we are only dealing

with bits, all MIs are between zero and one,0 ≤ IA(xn) ≤ 1 and0 ≤ IE(xn) ≤ 1, for all n = 0, 1, . . . , N .

A. Maximum Rate and Minimum Required SNR

A code is characterized by its EXIT functions [11, 12],

Txn
: [0, 1]2 7→ [0, 1], (17)

Tyn
: [0, 1]2 7→ [0, 1], (18)

where, for example, the extrinsic MI,IE(xn) for decodern = 1, 2, . . . , N is the EXIT function of the prior

MIs IA(xn) andIA(yn)

IE(xn) = Txn

(
IA(xn), IA(yn)

)
. (19)

In practice, this EXIT function is obtained by Monte-Carlo simulations4 of the constituent code for all values

of 0 ≤ IA(xn) ≤ 1 and0 ≤ IA(yn) ≤ 1 by modelling the priors as Gaussian [7], similar to (10).

It can be shown that

IA(zn) = J
(√

8γs,n
)
, where (20)

J(σ) = 1 − 1√
2πσ

+∞∫

−∞

e−
(ξ−σ2/2)2

2σ2 log2

(
1 + e−ξ

)
dξ, (21)

according to [7].J(σ) is monotonically increasing and therefore has a unique inverse,σ = J−1(I). Unfortu-

nately,J andJ−1 can not be expressed in closed form, but they can be closely approximated as suggested in

[11, 12]. Note that (20) is also the constellation-constrained capacity,0 ≤ CBPSK ≤ 1, of a system using BPSK

modulation with symbol energyEs,n over an AWGN channel,CBPSK = J
(√

8γs,n
)
.

Since the system in Figure 1 usesN+1 different symbol energies (Ln symbols withEs,n for n = 0, 1, . . . , N ),

the maximum rate of the concatenated code can be expressed as

C(R,∆,Ψ, γb) =
1

∑N
k=0 Lk

N∑

n=0

LnJ
(√

8γs,n
)

(22)

=
1

∑N
k=0

δk

Rk

N∑

n=0

δn
Rn

J



√

8
ψn∑N

j=0
δj

Rj
ψj
γb


 .

4For certain codes and simple channel models, it is possible to compute the EXIT functions [20, 21].
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A special case of (22) is when the energy distribution is uniform,Es,n = REb, i.e.,ψn = 1/(N + 1) for all

n = 0, 1, . . . , N . This uniform energy distribution is denoted byΨ0,

Ψ0 ,

[
1

N + 1
,

1

N + 1
, . . . ,

1

N + 1

]
. (23)

The systems treated in [11, 15] useΨ0, where the maximum rate is equal toCBPSK

C(R,∆,Ψ0, γb) = J



√

8
1

∑N
j=0

δj

Rj

γb


 = J

(√
8Rγb

)
. (24)

Let γ̃b denote the minimum required SNR for a givenR, ∆ andΨ. γ̃b can be found by lettingC(R,∆,Ψ, γ̃b) =

R and solving forγ̃b. If the energy distribution is uniform,̃γb can be expressed in closed form using (24)

γ̃b =
J−1(R)

2

8R
. (25)

B. EXIT Functions

The puncturer,Un in Figure 1, only removes bits from randomly chosen positions of the sequenceyn, and

U−1
n adds zeros inA(yn) at these positions. Therefore, the relationship betweenIA(yn) and IA(zn) is linear

[11]

I(yn,i;A(yn,i)) ,





I(zn,i;A(zn,i)) if yn,i is transmitted,

0 if yn,i is punctured.
(26)

Sinceδn denotes the fraction of non-zero elements inA(yn), the average MIIA(yn) can be expressed as

IA(yn) =
Rn
L

L∑

i=1

I(yn,i;A(yn,i)) = δnIA(zn) = δnJ
(√

8γs,n
)
, (27)

for all n = 0, 1, . . . , N . The linear relationship in (27) assumes random puncturingand infinitely large

interleavers, similar to the assumptions for the EXIT chartanalysis [7]. The average MI is not affected by

an interleaver or a deinterleaver. Therefore,IE(xn) = IEn(x) and IA(xn) = IAn(x). Since the prior values are

sums ofN extrinsic values (13), they are modelled as sums ofN biased Gaussian random variables. Using

(21) and its inverse,

IA(xn) = J




√√√√√√

N∑

j=0

j 6=n

J−1
(
IE(xj)

)2


 , (28)

sinceIE(xj) need to be added in thevariance domain[8, 11, 12]. LettingID(x) , 1
L

∑L
i=0 I(xi;D(xi)), then

similarly

ID(x) = J




√√√√
N∑

j=0

J−1
(
IE(xj)

)2

 , (29)

whereID(x) = 1.0 corresponds to having full information about the source bits, i.e.,Pb is close to zero. If the

decision statistics are close to a Gaussian model as in (12),the BER can be approximated by [7],

Pb ≈ Q

(
J−1

(
ID(x)

)

2

)
, (30)
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where

Q(φ) ,
1√
2π

∞∫

φ

e−ξ
2/2 dξ (31)

is the GaussianQ-function.

TheN EXIT functions for a parallel concatenated system can therefore be expressed as

IE(xn) = Txn




IA(xn)︷ ︸︸ ︷

J




√√√√√√J−1


δ0J



√

8
ψ0∑N

j=0
δj

Rj
ψj
γb






2

+

N∑

j=1

j 6=n

J−1
(
IE(xj)

)2


,

IA(yn)︷ ︸︸ ︷

δnJ



√

8
ψn∑N

j=0
δj

Rj
ψj
γb







(32)

for all n = 1, 2, . . . , N , using (6), (27), (28) and the fact thatIE(x0) = δ0J
(√

8γs,0
)

[11]. Note that if∆, Ψ,

andγb, together with the EXIT functions of the codes,Txn
, are known5, IE(xn) in (32) depends only on the

remainingIE(xj), j 6= n.

A uniform energy distribution (23) together with a fixedγb givesN + 1 degrees of freedom in∆ to change

the mutually dependence of theN EXIT functions in (32) over a range of code ratesR [11, 15]. From (32) it

is also clear that the energy distributionΨ provides additionalN degrees of freedom6 to modify the mutually

dependence of the EXIT functions facilitating possible performance improvements of the system [16].

IV. CODE DESIGN

It has been shown that, under certain conditions, the area between the two curves in an EXIT chart is related

to the SNR loss as compared to the capacity [14, 21, 22]. A small area, without intersections of the two curves

in the EXIT chart, corresponds to a low convergence threshold close to the capacity limit. The design of good

concatenated codes is therefore similar to a curve-fitting problem minimizing the area between the two curves.

With conventional doping, some of the coded bits are replaced by uncoded (systematic) bits, thus preserving

the code rate [5, 6]. The doping ratio,d, is defined as the ratio between the number of transmitted systematic

bits and the total number of transmitted bits. Changing the doping ratio influences the shape of the EXIT chart

for the code, hence affecting the performance and the convergence threshold. This means that there is one

or several optimal doping ratios, which give the lowest possible convergence threshold. The doping ratio is

usually just fixed to an arbitrary small number yielding satisfactory performance [4, 5]. In contrast to previous

approaches, having only one single parameter in the doping ratio d, there are a total of2N degrees of freedom

in ∆ andΨ, for a specific code rate, to shape the curves in the EXIT chart.

Consider an MPCC withN components using puncturing and a BPSK mapper, as in Figure 1. For this system

there areN EXIT functions as stated in (32). The evolution of MI can be tracked using the EXIT functions for

a fixedγb, ∆, andΨ. All extrinsic MIs converge to fixed values, independent of activation schedule, as long

as the EXIT functions are monotonically non-decreasing andan unlimited number of decoder activations is

5EachTxn corresponds toCn with code rateRn, i.e., R is known if all Txn are known.

6The sum of allψn, n = 0, 1, . . . , N , is equal to one, and that results inN degrees of freedom.
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allowed [9, 11, 12]. This implies that the MI on the decision statistics also converges to a fixed value according

to (29). This fixed value is defined as the convergence point,I?D, and for a specific set of codes and code rate

R, I?D is a function of∆, Ψ, andγb, i.e.,

I?D , f(∆,Ψ, γb) . (33)

A. Constituent Codes

CCs can be classified according to theirinput-output weight enumeration function(IOWEF) [23]. In a system

with a single CC, the CC that has the maximum free distance fora specified code rate and complexity is usually

chosen. Tables of these optimal CCs are easily found in the literature [24]. However, designing concatenated

codes based on EXIT chart analysis only rely on the EXIT functions of the constituent codes. A CC with a

low free distance can result in better performance when concatenated with other CCs, than a CC with larger

free distance. Further, two CCs with different IOWEF can havealmost identical EXIT functions, resulting in

identical convergence behavior predicted by EXIT charts. For these reasons, it is important consider all possible

CCs of a certain rate and complexity, not only the ones that have the largest free distance.

In this paper, only CCs withRn = 1 for n = 0, 1, . . . , N , are considered as constituent codes, i.e.,R = 1. It

is straightforward to include other code rates or types of constituent codes. A CC withRn = 1 is represented

by two generator polynomials, one numerator and one denominator, both given in octal representation. A CC

with ν delay elements is represented byν+1 binary digits. With this description,13 ≡ 1011 (octal and binary

form, respectively) represents1 + D2 + D3 [7]. Note that sometimes the octal representation of the generator

polynomials are defined the reversed way, e.g., as in [25]. Aunitary polynomial is just a ’1’. The binary

representation of a unitary polynomial for a CCs with memoryν is therefore a one followed byν zeros. In

octal representation the unitary polynomials are2, 4, 10 and20 for ν = 1, 2, 3 and4, respectively.

There are three types of CCs with code rateRn = 1: feed-forward, feed-backward and combined feed-

forward/feed-backward. They are here referred to as type F,B, and C, respectively. A CC of type F has a

unitary denominator, a CC of type B has a unitary numerator, while a CC of type C has no unitary polynomials

as its numerator or denominator. Using this notation, CC(7/4) is type F with generator polynomial1+D+D2,

CC(4/7) is type B with generator polynomial1/(1+D+D2), and CC(7/5) is type C with generator polynomial

(1 + D + D2)/(1 + D2). Figure 2 shows the EXIT functions for these three CCs generated by Monte Carlo

Simulations [11, 12]. If these three CCs are used as constituent codes in Figure 1, the MPCC is denoted by

PCC(1 + 7/4 + 4/7 + 7/5), where ’1’ represents the systematic part. The differencebetween the three types

are here easily visualized by the EXIT functions. All three types haveTx
(
IA(x), 0

)
= Ty

(
0, IA(y)

)
= 0 and

Tx
(
IA(x), 1

)
= Ty

(
1, IA(y)

)
= 1. CCs of type F and C haveTx

(
0, IA(y)

)
= 0 andTy

(
IA(x), 1

)
= 1, while

CCs of type B and C haveTx
(
1, IA(y)

)
= 1, andTy

(
IA(x), 0

)
= 0. The impact of the various EXIT functions

characteristics on the decoding convergence is discussed later in this section.

For each memory lengthν there are2ν different polynomials and therefore2ν2ν ways of describing a

rate-one CC with memoryν. This can be reduced to2ν(2ν − 1) by removing all combinations with identical

numerator and denominator. The number of type F CCs with memory ν is 2ν−1, since there is only one unitary
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Fig. 2. EXIT functions for CC(7/4), CC(4/7), and CC(7/5).

polynomial for eachν that can be combined with all the other2ν − 1 polynomials. For the same reason, the

number of type B CCs is also2ν − 1. Hence, the number of type C CCs with memoryν is (2ν − 1)(2ν − 2).

In Table I, the three first columns under “Total” shows the number of CCs with a specificν for type F, B and

C, respectively. The fourth column shows the total number ofCCs with a specificν and the last row shows the

total number of CCs withν ≤ 4 for the three different types. This means that there are 310 different rate-one

CCs withν ≤ 4, where 258 of them are of type C and 26 each of type F and B.

The classification of CCs to be used as constituents in concatenated codes are here not based on the IOWEF,

but instead on the volume of the difference between the EXIT functions describing two CCs. The question

is now how many unique sets of EXIT functions,{Tx, Ty}, are there among the 310 CCs in Table I? In the

Appendix, classes of codes with identical (or almost identical) EXIT functions are identified leading to the four

last column of Table I. This classification reveals 98 sets ofEXIT functions for CCs withν ≤ 4. 82 being of

type C, and 8 of type F and B, respectively.

To get good performance of the MPCC, i.e., a low BER in (30),ID(x) ≈ 1.0. This can only be obtained

if at least one of theIE(xi) in (29) is close to one. For this to happen, Figure 2 shows thatone of the input

arguments of (32),IA(xn) or IA(yn), must be close to one. The second argument,IA(yn), is only close to one
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TABLE I

NUMBER OF CCS WITHR = 1 AND ν = 1, 2, 3, 4.

Total Unique

ν #F #B #C Σ #F #B #C Σ

1 1 1 0 2 1 1 0 2

2 3 3 6 12 1 1 4 6

3 7 7 42 56 2 2 13 17

4 15 15 210 240 4 4 65 73

Σ 26 26 258 310 8 8 82 98

for high SNR, and the first argument is only close to one if one of the IE(xj) (j 6= n) in (32) is close to one.

Type B and C codes haveTxn

(
1, IA(yn)

)
= 1, but type F codes haveTxn

(
1, IA(yn)

)
≤ 1, as illustrated in

Figure 2. Consequently, at least two of the constituent codes must be of type B or C, otherwise the MPCC will

not converge at low SNR.

Type F and C codes haveTxn

(
0, IA(yn)

)
= 0, but type B codes haveTxn

(
0, IA(yn)

)
≥ 0. If no systematic

bits are transmitted (δ0 = 0), the first argument of (32) is initially be zero. This means that type B codes

can be used even when no systematic bits are transmitted while type C and F codes always require that some

systematic bits, i.e.IA(xn) 6= 0, are transmitted to converge, even for high SNR.

B. Classification of Rate-1 Convolutional Codes

Consider a MPCC where the rate of the component codes,R = [R1, R2, . . . , RN ], the puncturing ratios,

∆ = [δ0, δ1, . . . , δN ], and the energy distribution,Ψ = [ψ0, ψ1, . . . , ψN ], are fixed. The overall code rate,R,

is then also fixed according to (1), since it depends only onR and∆. Good combinations of constituent codes

using these fixed∆ and Ψ can be found by performing a search over a restricted set of constituent codes.

The criterion for a good combination of constituent codes can, for example, be low convergence threshold, or

a minimum number of activations required to reach a certain target BER. The restricted set of codes defines

the type and rate of the constituent codes and also constraints the decoding complexity.

Tables VI–IX in the Appendix contain all classes of rate-oneCCs with different EXIT functions forν ≤ 4.

Any CC among those listed in the second columns can be used as component codes in the design of MPCCs.

The number of different combinations ofN CCs, using the rule stated above that at least two CCs need to

be of type B or C, can be calculated as follows. The number of ways to choosek elements fromn possible

elements with replacement, disregarding the order they arechosen, is [26]

n+ k − 1

k


 ,

(n+ k − 1)!

k!(n− 1)!
. (34)

Let NBC denote the number of available CCs of type B or C and letnBC denote the number of CCs (of type B

or C) to be included in the MPCC. The number of possible combinations can then be expressed using (34) as,

NBC + nBC − 1

nBC


 . (35)
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TABLE II

TOTAL NUMBER OF WAYS, NTOT, TO COMBINEN CCS WITH A MEMORY, ν , LESS THAN OR EQUAL TO1, 2, 3AND 4, RESPECTIVELY.

ν ≤ NBC NF N = 2 N = 3 N = 4 N = 5

1 1 1 1 2 3 4

2 6 2 21 98 301 756

3 21 4 231 2 695 20 020 117 964

4 90 8 4 095 158 340 4 071 795 83 261 178

TABLE III

RATE-ONE CCS WITH DIFFERENTEXIT FUNCTIONS AND MEMORYν ≤ 2.

CC 3/2 7/4 2/3 4/7 7/5 7/6 5/7 6/7

ν 1 2 1 2 2 2 2 2

type F F B B C C C C

In a similar way, letNF denote the number of available CCs of type F and letnF denote the number of chosen

CCs of type F. The number of possible combinations is then

NF + nF − 1

nF


 . (36)

UsingnBC CCs of type B or C andnF CCs of type F gives a total ofN = nBC +nF CCs. The total number of

combinations of CCs,Ntot, where at least two CCs are of type B or C is then finally expressed as the product

of (35) and (36) summed over allnBC = 2, 3, . . . , N ,

Ntot =

N∑

nBC=2


NBC + nBC − 1

nBC




NF +N − nBC − 1

N − nBC


 . (37)

Table II showsNtot for N = 2, 3, 4 and5. The second column,NBC, contains the number of CCs of type B

or C (collected from Table I) with a memory less thanν. The third column is also collected from Table I and

contains the number of CCs of type F with a memory less thanν. From Table II it is clear that performing an

exhaustive search over all combinations of CCs to find good MPCCs is computationally challenging for highν

andN . For example, there are over83 million combinations ofN = 5 CCs with memoryν ≤ 4 andRn = 1

for n = 1, 2, 3, 4, 5.

The code search in this paper is therefore restricted to low-complexity CCs withν ≤ 2. Tables VI–VIII in

the Appendix contain the eight classes of rate-one CCs up to memoryν = 2 that have different EXIT functions.

The class representative of these eight classes are also listed in Table III. According to Table II, there are21

combinations ofN = 2 CCs,98 combinations ofN = 3 CCs and301 combinations ofN = 4 CCs that can

be chosen from Table III.
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Fig. 3. Non-systematic PCC.

C. Non-Systematic PCC with Uniform Energy distribution

The code search in this sub-section finds the best7 non-systematic PCC with uniform energy distribution at

R = 1/2, constructed of two CCs with memoryν ≤ 2. This is equivalent to selecting the puncturing ratios

∆ = [0, 1, 1] and Ψ = Ψ0 (defined in (23)). The simple structure of this non-systematic PCC is shown in

Figure 3, whereEs,1 = Es,2 = Eb/2 and thereforeλ =
√

8Eb/N0.

Instead of searching over all 21 combinations ofN = 2 CCs from Table III, the search can here be restricted

to the 11 combinations with at least one CC of type B and no CC oftype F, since the code is non-systematic.

Inspection of these 11 EXIT functions shows that PCC(1 + 4/7 + 7/5) has the lowest convergence threshold

among the 11 combinations of CCs withS = 4 + 4 states and∆ = [0, 1, 1]. This PCC can be written as

PCC(4/7 + 7/5), since no systematic bits are transmitted. Its convergence threshold is found to be around0.4

dB [11].

A similar search is performed in [4], also using EXIT functions, but for fixed puncturing ratios. The search

in [4] is made over1 540 different combinations ofN = 3 CCs and8 855 different combinations ofN = 4

CCs, in both cases with rate-one CCs that haveν ≤ 3. The rules for restricting the set of CCs for the search

in [4] is different from the approach used here, since there are 2 695 and20 020 combinations ofN = 3 and

N = 4 CCs withν ≤ 3 that have different EXIT functions, according to Table II. The puncturing ratio in [4]

for the systematic bits is fixed to a small numberδ0 = ε (systematic doping [27]) and the remaining puncturing

ratios,δn for n = 1, 2, . . . , N , are chosen to give a code rate ofR = 1/N according to (1).

D. Optimal Puncturing and Energy Distribution

The previous sub-section showed that PCC(4/7 + 7/5) gives the lowest convergence threshold among all

combinations of two rate-one CCs withν ≤ 2, uniform energy distributionΨ0, at a fixed∆ = [0, 1, 1], i.e.,

R = 1/2. However, there might be other puncturing ratios and energydistributions that give a lower convergence

threshold for PCC(1 + 4/7 + 7/5) atR = 1/2. Such schemes can be found through an exhaustive search of all

combinations ofδn for n = 0, 1, . . . , N that fulfills the code rate in (1), and all energy distributions Ψ where

the sum is one.

For a given code rateR, the minimum required SNR,γ?b (to reach a target BER,P ?b ), together with the

optimal puncturing,∆?, and the optimal energy distribution,Ψ?, can be found as a solution to the following

7Lowest possible convergence threshold.
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minimization problem.

[∆?,Ψ?, γ?b ] = arg min
[∆,Ψ,γb]

g(∆,Ψ, γb) (38)

subject to

∆ ∈ [0, 1]N+1, R =

(
N∑

n=0

δn
Rn

)−1

, (39)

Ψ ∈ (0, 1)N+1,
N∑

n=0

ψn = 1, (40)

γb ≥ γ̃b, or equivalentR ≤ C(R,∆,Ψ, γb). (41)

The objective function in (38) is defined as

g(∆,Ψ, γb) =





γb f(∆,Ψ, γb) ≥ J
(
2Q−1(P ?b )

)

∞ otherwise,
(42)

wheref(∆,Ψ, γb) is defined in (33). The code rate constraint in (39) is the coderate for a punctured MPCC,

(1). The upper bound forR in (41) is taken from the maximum rate stated in (22). The threshold for I?D =

f(∆,Ψ, γb) in (42) is taken from (30), which corresponds to a target BERP ?b if the decision statistics were

Gaussian [7, 11].

This constrained optimization problem is challenging. Since the arguments,∆, Ψ, andγb of the objective

function are continuous within their corresponding interval of support, an exhaustive search is not possible.

However, a grid search overδn and ψn for n = 0, 1, . . . , N can be performed. Ifδ1 is quantized intoNδ

uniformly spaced levels between0 and1, the resolution isεδ = 1/(Nδ − 1), or equivalent

Nδ ,
1

εδ
+ 1. (43)

If the same quantization is made for allδn, n = 1, 2, . . . , N , there areNN
δ combinations where the last

N elements in∆ are different. Define∆k ,
[
δk0 , δ

k
1 , δ

k
2 , . . . , δ

k
N

]
, for k = 1, 2, . . . , NN

δ , to be all these

combinations. Note that the first element in∆k, δk0 , is so far not specified. For a specific code rateR, the first

element in∆k can be caluculated as

δk0 =
1

R
−

N∑

i=1

δki
Ri
, (44)

using (1) and the fact thatR0 = 1 (the rate of the systematic bits). Note that the calculated value in (44) may

not be valid for this code rate, due to the constraint in (39).

The energy distribution can, in a similar way, also be uniformly quantized intoNψ levels. DefineΨj ,[
ψj0, ψ

j
1, ψ

j
2, . . . , ψ

j
N

]
, for j = 1, 2, . . . , NN

ψ , to be all the combinations of differentΨ, whereψ0 is calculated

as

ψk0 = 1 −
N∑

i=1

ψki . (45)

Let εγ be a small constant and letNδ andNψ be the number of levels perδkn andψjn, respectively. Construct

all the∆k andΨj as described above, using (44) and (45). The search for optimal puncturing ratios and energy
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distribution to reach a specified target BER,P ?b , for a specific set ofN CCs concatenated in parallel with an

overall code rate ofR can now be performed by the following procedure:

Algorithm 1 (Optimal puncturing and energy distribution):

1) Setj = −1, k = 0, and initializeγb with γb = Q−1(P ?b )
2
/2, corresponding to uncoded BPSK.

2) Incrementj with one. If j > NN
ψ , go to Step 7. If0 < ψj0 < 1, go to Step 3. Otherwise, go to Step 2.

3) Incrementk with one. If k > NN
δ , setk = 0 and go to Step 2. If0 ≤ δk0 ≤ 1, go to Step 4. Otherwise,

go to Step 3.

4) If R ≤ C(R,∆k,Ψj , γb), go to Step 5. Otherwise, go to Step 3.

5) Update the extrinsic MIs in (32) for theN decoders in an arbitrary order using∆k, Ψj , andγb until

ID(x) has converged toI?D = f(∆k,Ψj , γb).

6) If I?D ≥ J
(
2Q−1(P ?b )

)
, save∆? = ∆k, Ψ? = Ψj , γ?b = γb, setγb = γb−εγ and go to Step 4. Otherwise,

go to Step 3.

7) Output ∆?, Ψ
?, and γ?b from Step 6 as the optimal puncturing ratios, energy distribution, and the

corresponding convergence threshold.

The small valueεγ , used in Step 6, is chosen arbitrarily to give a certain resolution of the convergence threshold,

γ?b . In Step 1,j = −1 so that the search always starts with the uniform energy distribution Ψ0 from (23). The

algorithm can be improved by sorting the candidate puncturing ratios and energy distributions,∆k and Ψj ,

according to the maximum rateC(R,∆k,Ψj , γb) in (22). The algorithm now terminates in Step 4 instead of

Step 2, since once the rate is aboveC(R,∆k,Ψj , γb) it will stay above for all remaining candidate puncturing

ratios and energy distributions, hence the search can be terminated earlier.

In summary, Algorithm 1 first initializesγb with a high value corresponding to uncoded BPSK. The algorithm

then evaluatesf(∆,Ψ, γb) for all values of∆ and Ψ that satisfy the constraints in (39)–(41). Whenever

f(∆,Ψ, γb) is above the threshold,γb can be decreased with an arbitrary small step size untilf(∆,Ψ, γb) is

below the threshold. The search is continued until there is no ∆ andΨ that satisfy the constraints at the same

time asf(∆,Ψ, γb) is above the threshold.

E. Achievable SNR-rate Region

Using Algorithm 1 withNψ = 0 finds the optimal puncturing ratios with a uniform energy distribution,

since the algorithm will only useΨ0 and terminate whenj = 1. For example, the optimal puncturing ratios

for PCC(1 + 4/7 + 7/5) with uniform energy distribution andR = 1/2 can be found using Algorithm 1 with

Nψ = 0. The results show that∆? = [0, 1, 1] are in fact the optimal puncturing ratios for this code atR = 1/2.

Hence, the convergence threshold for PCC(1 + 4/7 + 7/5) at R = 1/2 cannot be lowered by changing the

puncturing ratios. It may, however, be possible to find othercombinations of two component codes with other

puncturing ratios and energy distribution, providing an even lower convergence threshold atR = 1/2.

With N rate-one CCs, the code rate can be chosen arbitrarily withina range1/(N + 1) ≤ R ≤ 1 by

simply changing the puncturing ratios∆. The lower limit is when no bits are punctured, i.e.,δn = 1 for all

n = 0, 1, . . . , N , and the upper limit is the uncoded case whenδ0 = 1 anddn = 0 for n = 1, 2, . . . , N . There

are other combinations of puncturing ratios that also giveR = 1, but their performance cannot be better than
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the uncoded case. Applying (38) or using Algorithm 1 withNψ = 0 (uniform energy distribution) the optimal

puncturing ratios and the corresponding convergence threshold for PCC(1 + 4/7 + 7/5) with 1/3 ≤ R ≤ 1 is

found. The chosen threshold forf(∆,Ψ, γb) in (42) is set to0.9999 which corresponds to a BERP ?b ≈ 10−5

if the decision statistics are Gaussian (30). The resolution is fixed toεδ = εγ = 0.02. The result is an SNR-rate

region for PCC(1 + 4/7 + 7/5), shown as the light gray shaded region in Figure 4. All points that are inside

the light gray shaded region are according to Algorithm 1 achievable. As a reference, the maximum rate for

BPSK (24) is also included as the dashed curve.

Also, as a reference, the SNR-rate region for the original turbo code: PCC(1 + 21/37 + 21/37), here called

the BGT code referring to its inventors [1], is included in Figure 4 as the dark gray shaded region with

dash-dotted boundaries. ForR ≤ 0.45, the BGT code has a lowerγ?b than PCC(1 + 4/7 + 7/5), but for

0.45 < R ≤ 0.96 PCC(1 + 4/7 + 7/5) has a lowerγ?b . The optimal puncturing for the BGT code atR = 1/2

is ∆
? = [0.74, 0.56, 0.70], which givesγ?b = 0.60 dB. The puncturing used in [1],∆ = [1.0, 0.5, 0.5] gives

a threshold ofγ?b = 0.66 dB. Note that in [1], a fixed puncturing pattern, puncturing every other parity bit

from both encoders is used. However, the convergence threshold predicted here assuming random puncturing is

close to the convergence threshold found by simulations in [1]. According to the achievable SNR-rate regions in

Figure 4, PCC(1+4/7+7/5) with R = 1/2 and optimal puncturing has better performance than the BGT code,

which is also confirmed in the next sub-section. Figure 4 alsoshows thatγ?b = 0.40 dB for PCC(1+4/7+7/5)

atR = 1/2 is lower thanγ?b = 0.84 for R = 1/3. This means that PCC(1+4/7+7/5) has better performance

with ∆ = [0, 1, 1] (R = 1/2) than with∆ = [1, 1, 1] (R = 1/3) [11].

The optimal puncturing ratios∆? for PCC(1 + 4/7 + 7/5) for 1/3 ≤ R ≤ 1 are shown in Figure 5. The

conclusion from Figure 5 is that no systematic bits should betransmitted forR ≥ 1/2. Sinceδn and γb are

quantized, several different∆? can be found for eachR. This explains the discontinuous behavior in Figure 5

for highR. The optimal values forδ0, δ1 andδ2 are almost monotonically decreasing (disregarding the points
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at highR). The PCC is therefore rate-compatible [28], i.e., the coderate can be changed from a higherR to

a lowerR just by transmitting more bits from,y0, y1 andy2 in Figure 1, according to the puncturing ratios

in Figure 5.

F. Code Search with Uniform Energy Distribution

According to Table II, there are 21 ways of combining two of the rate-one CCs withν ≤ 2 listed in Table III.

In this sub-section Algorithm 1 is used to find and compare theSNR-rate region for all these 21 combinations

using the uniform energy distribution.

The results show that no single combination has the lowestγ?b for all R ≥ 1/3. However, PCC(1+5/7+7/6)

has the lowestγ?b for all R ≥ 1/2 and the achievable SNR-rate region is shown in Figure 6 as thelight gray

shaded region. PCC(1 + 5/7 + 5/7) has the lowestγ?b ≈ 0 for R = 1/3 (not shown in the figure), but a higher

γ?b than PCC(1 + 5/7 + 7/6) whenR ≥ 0.45.

Figure 7 shows the EXIT chart for PCC(1 + 5/7 + 7/6) with optimal puncturing∆? = [0.04, 1.0, 0.96]

(R = 1/2) at γb = 0.3 dB. The area between the two EXIT functions is very small since 0.3 dB is close to

the minimum required SNR of 0.19 dB (25). The EXIT chart in Figure 7 indicates that the performance of this

PCC is better than both the best non-systematic PCC(4/7 + 7/5) (found in the previous sub-section) and the

BGT code withR = 1/2.

The BGT code withR = 1/2 in [1] uses∆ = [1.0, 0.5, 0.5] and blocks ofL = 216 = 65 536 information

bits. Each CC in the BGT code has memoryν = 4 (16 states) while PCC(1 + 5/7 + 7/6) only has memory

ν = 2 (4 states) for each CC. The computational decoding complexity per activation is roughly proportional to

the number of states, i.e., approximately 4 times higher forthe BGT code than for the PCC(1 + 5/7 + 7/6).

Figure 8 shows the performance of the BGT code after 40 activations, when the performance has converged.

The performance of PCC(1 + 5/7 + 7/6) after 40, 60 and 80 activations, using optimal puncturing ratios
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∆
? = [0.04, 1.0, 0.96] for R = 1/2, is also shown in Figure 8. Due to the difference in decoding complexity,40,

60 and80 activations corresponds to using approximately25%, 38% and50% of the decoding complexity used

by the decoder for the BGT code after40 activations. It is observed that the performance of PCC(1+5/7+7/6)

is better than the performance of the BGT code, even though only around25% of the decoding complexity is

used. After 80 activations, the performance of PCC(1 + 5/7 + 7/6) has converged. The difference compared

to the BGT code is then0.15 dB at Pb = 10−5, even though PCC(1 + 5/7 + 7/6) is then only using around

1/2 of the complexity that the BGT code is using. The performanceof PCC(4/7 + 7/5) is also included in

Figure 8 as the dashed-dotted curves. The complexity of the decoder for PCC(4/7 + 7/5) is slightly lower

than the complexity for PCC(1 + 5/7 + 7/6), since no systematic bits or puncturer/depuncturer are needed in
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60 and80 activations, and PCC(4/7 + 7/5) after 40 and60 activations. All three PCCs haveR = 1/2 andL = 216 = 65 536.

PCC(4/7 + 7/5) (refer to Figure 3). The performance of PCC(4/7 + 7/5) and the BGT code, both after40

activations, are similar. After 60 activations, PCC(4/7 + 7/5) has similar performance as PCC(1 + 5/7 + 7/6).

The performance of PCC(4/7 + 7/5) has converged after60 activations.

Algorithm 1 can also be used to find the SNR-rate regions of MPCCs with N > 2 CCs. In place of

performing a full search over all 98 combinations ofN = 3 CCs, we can examine all possible extensions

of PCC(1 + 5/7 + 7/6) using the eight candidates in Table III. The resulting MPCChas an SNR-rate region

that includes the previous region since the new MPCC comprises PCC(1 + 5/7 + 7/6) by choosingδ3 = 0.

The search is therefore only made for1/4 ≤ R ≤ 1/2 since PCC(1 + 5/7 + 7/6) is already so close to the

capacity forR ≥ 1/2. The lowestγ?b for R ≥ 1/3 among the eight combinations is found whenCC(7/4) is

added to PCC(1+5/7+7/6). The SNR-rate region for PCC(1+5/7+7/6+7/4) is shown in Figure 6 as the

second lightest shaded region together with the region for PCC(1 + 5/7 + 7/6). As a reference, the SNR-rate

region for the BGT code is included in Figure 6 as the dashed-dotted curve. It is clear that the BGT code has

a smaller SNR-rate region than PCC(1 + 5/7 + 7/6) for all R > 0.45 and a smaller SNR-rate region than

PCC(1 + 5/7 + 7/6 + 7/4) for all R > 1/3.

The search can be continued by adding another CC to PCC(1 + 5/7 + 7/6 + 7/4). The best choice for all

1/4 ≤ R ≤ 1/2, among the eight CCs from Table III, is to add anotherCC(7/4) to PCC(1+5/7+7/6+7/4).

This MPCC has an SNR-rate region shown in Figure 6 as the darkest shaded region together with the two

lighter regions. As for PCC(1 + 5/7 + 7/6 + 7/4), PCC(1 + 5/7 + 7/6 + 7/4 + 7/4) includes the SNR-rate

region of the previous codes since PCC(1 + 5/7 + 7/6 + 7/4 + 7/4) comprises PCC(1 + 5/7 + 7/6 + 7/4)

whenδ4 = 0 and PCC(1 + 5/7 + 7/6) whenδ3 = δ4 = 0.

The SNR-rate region in Figure 6 forN = 2 is found using Algorithm 1 withεδ = εγ = 0.02. For N = 3

andN = 4, a more coarse resolution is used,εδ = εγ = 0.05, due to the larger number ofNN
δ . In order to find

the best combination ofN = 4 CCs of memory up toν = 2, an exhaustive search over all 301 combinations
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TABLE IV

OPTIMAL PUNCTURING AND ENERGY DISTRIBUTION FORPCC(1 + 5/7 + 7/6 + 7/4) TO REACHP ?
b

= 10−5 .

R ∆? Ψ? Ψ0 γ?
b

for Ψ? γ?
b

for Ψ0 γ̃b for Ψ? γ̃b for Ψ0

0.25 [1.00, 1.00, 1.00, 1.00] [0.08, 0.34, 0.24, 0.34] [0.25, 0.25, 0.25, 0.25] -0.36 dB 0.16 dB -0.65 dB -0.79 dB

0.30 [0.35, 1.00, 1.00, 0.98] [0.20, 0.30, 0.20, 0.30] [0.25, 0.25, 0.25, 0.25] -0.30 dB -0.22 dB -0.58 dB -0.61 dB

of four CCs from Table III should be performed. PCC(1 + 5/7 + 7/6 + 7/4 + 7/4) shown in Figure 6 is just

a good MPCC withN = 4, but may not be the best combination.

Algorithm 1 can also be used to find the optimal puncturing in amultiple serial concatenated code (MSCC).

The difference is then the expression for the code rate and how the EXIT functions are mutually dependent [11,

28]. Algorithm 1 is also easily modified to find the optimal puncturing ratios for MCCs with a fixed number of

activations. This can be done by limiting the number of activations in Step 5. Instead of limiting the number

of activations, the computational decoding complexity canbe limited to find the optimal scheduling [10–12],

in Step 5 of Algorithm 1.

G. Optimal Energy Distribution

All codes in Figure 6 are close to the maximum rate using BPSK for all R ≥ 1/N . For code rates below

1/N , the convergence threshold,γ?b , increases asR tends to its lower bound1/(N + 1). By optimizing the

energy distribution using (38) (or Algorithm 1) the convergence threshold can be reduced, which in turn reduces

the gap betweenγ?b and γ̃b.

Consider PCC(1 + 5/7 + 7/6 + 7/4) for R = 1/4 (∆ = ∆
? = 1) in Figure 6. With a uniform energy

distribution γ?b = 0.16 dB. Optimizing the energy distribution using (38) givesΨ
? = [0.08, 0.34, 0.24, 0.34]

andγ?b = −0.36 dB. This is a gain of0.52 dB compared to uniform energy distribution. The optimal puncturing

and energy distribution for PCC(1 + 5/7 + 7/6 + 7/4) at R = 0.25 andR = 0.30 are listed in Table IV. The

same table also listsγ?b for Ψ0 together withγ̃b for Ψ0 and Ψ
?. The predicted gain for0.25 ≤ R ≤ 0.30

is in the range of0.08–0.52 dB usingΨ
? instead ofΨ0. At the same time, the minimum required SNR,γ̃b,

increases with0.03–0.14 dB whenΨ
? is used instead ofΨ0.

The EXIT chart projection [9–12] for PCC(1 + 5/7 + 7/6 + 7/4) at R = 1/4 is shown in Figure 9. Here

it is clear that changing the energy distribution affects the EXIT chart. Figure 9 shows that usingΨ? the

tunnel is open atγb = −0.36 dB, while it is closed usingΨ0. Figure 10 shows the simulated performance of

PCC(1 + 5/7 + 7/6 + 7/4) in BER using both uniform and optimal energy distribution at R = 1/4. The gain

in performance, just by changing the energy distribution isaround0.5 dB and it corresponds well with the

predicted gain listed in Table IV. In the same figure the minimum required SNRs from (22) for the two schemes

are reported. It is clear that even though the minimum required SNR increases by0.14 dB when non-uniform

energy distribution is used, the gain in performance is around 0.5 dB.
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V. CONCLUSIONS

We considered the problem of finding the optimal puncturing ratios together with the optimal energy distri-

bution for MPCCs, using EXIT functions to minimize the average SNR convergence threshold. For such codes,

the individual puncturing ratios for the constituent codescan be chosen freely within a desired code rate. The

energy distribution can also be chosen arbitrary without affecting the code rate, while preserving the average

bit energy. We have shown how to jointly optimize the energy distribution and the puncturing ratios by utilizing

the EXIT functions of the constituents. The result is an SNR-rate region for any combination of an arbitrary

number of constituent codes. For MCCs it is important to investigate all combinations of constituent codes that

provide different performance. A code search is therefore made to identify all rate-one CCs with unique EXIT
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TABLE V

FACTORIZATION IN GF(2).

ν binary octal factors

1 10 2 –

1 11 3 –

2 100 4 2 · 2

2 101 5 3 · 3

2 110 6 2 · 3

2 111 7 –

3 1000 10 2 · 2 · 2

3 1001 11 3 · 7

3 1010 12 2 · 3 · 3

3 1011 13 –

3 1100 14 2 · 2 · 3

3 1101 15 –

3 1110 16 2 · 7

3 1111 17 3 · 3 · 3

4 10000 20 2 · 2 · 2 · 2

4 10001 21 3 · 3 · 3 · 3

4 10010 22 2 · 3 · 7

4 10011 23 –

4 10100 24 2 · 2 · 3 · 3

4 10101 25 7 · 7

4 10110 26 2 · 13

4 10111 27 3 · 15

4 11000 30 2 · 2 · 2 · 3

4 11001 31 –

4 11010 32 2 · 15

4 11011 33 3 · 3 · 7

4 11100 34 2 · 2 · 7

4 11101 35 3 · 13

4 11110 36 2 · 3 · 3 · 3

4 11111 37 –

functions. The result is a list of 98 classes of CCs with memory four or less. To demonstrate the approach, an

example is included showing a performance gain can be obtained using the optimal energy distribution, even

though the minimum required SNR, given by information theory, increases. The ideas presented here are easily

extended to other constituent codes and also to MSCCs.

APPENDIX

In this appendix all CCs withR = 1 and ν ≤ 4 according to their set of EXIT functions{Tx, Ty} are

classified. Table V shows all generator polynomials withν ≤ 4, given in both binary and octal notation. It

also shows the factorization of the numbers under Galois field with 2 elements, denoted by GF(2). Let10012

denote a binary number and118 its equivalent number in octal notation, according to TableV. For example,
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10012 ≡ 118 = 38 ·78 ≡ (1+D)(1+D+D2) = 1+D+D+D2 +D2 +D3 = 1+D3 ≡ 118, since Dk+Dk = 0

for any k = 0, 1, 2, . . . , under GF(2). A factor28 adds a zero to the right side of the binary representation,

e.g.,28 · 38 · 78 = 28 · 118 = 100102 ≡ 228. Using GF(2) arithmetic, it can be concluded that there are eight

prime factors forν ≤ 4, i.e., 2, 3, 7, 13, 15, 23, 31 and37 (given in octal notation).

Note also that some of the binary numbers in Table V are reversible, i.e., they turn into a different number

if they are reversed, e.g.,11012 ≡ 158 turns into10112 ≡ 138. Other reversible numbers are318 (turns into

238), and358 (turns into278). Further, note that if328 is reversed (disregarding the ending zero) it turns into

268, since328 = 28 · 158 turns into28 · 138 = 268. From now on, only the octal notation of the generator

polynomials and their factorization are used. Therefore, the subindex for all numbers are omitted. Collect the

four reversible numbers in a vectorα and their corresponding reversed numbers in a vectorβ,

α = [α1, α2, α3, α4] , [15, 31, 35, 32] , (46)

β = [β1, β2, β3, β4] , [13, 23, 27, 26] . (47)

This feature is used later in this appendix.

Table I shows the total number of rate-one CCs of all types (F,B and C) with memoryν ≤ 4. Each of the

310 CCs can be given a unique indexk starting with CC(3/2) (k = 1), and ending with CC(36/37) (k = 310).

This means that a CC with indexk < n has a lower or equalν than the CC with indexn.

To identify all unique sets of EXIT functions,{Tx, Ty}, among these 310 different CCs withν ≤ 4, the

volume of the difference between their EXIT functions can beinvestigated. Define the following metric

V (k, n) , (48)

1∫

0

1∫

0

|Txk
(φ, ξ)−Txn

(φ, ξ)|+|Tyk
(φ, ξ)−Tyn

(φ, ξ)|dφ dξ,

whereTxk
andTyk

are the EXIT functions for the CC with indexk = 1, 2, . . . , 310 andTxn
andTyn

are the

EXIT functions for the CC with indexn = 1, 2, . . . , 310. Figure 2 shows that the EXIT functions are unstable

in the pointsTx(1, 0), Tx(0, 1), Ty(1, 0), andTy(0, 1). These points are therefore excluded whenV (k, n) in

(48) is evaluated.

The minimum volume of the difference for the CC with indexk to any of the other CCs with indexn < k

is then

Vmin(k) , min
n<k

{V (k, n)} . (49)

After calculating allVmin(k) for k = 1, 2, . . . , 310 they are sorted in decreasing order and plotted in Figure 11

(note that1000Vmin(k) is plotted). Only the minimum difference in volume for the CCs with index k =

92, 93, . . . , 310 is shown. Fork = 1, 2, . . . , 91, Vmin(k) > 0.004. Choosing a thresholdVth = 0.0025 gives 98

unique sets of EXIT functions{Tx, Ty}. The CC with lowest index among all CCs within each of the 98 unique

classes is chosen as the representative for that class. Thisassures that one of the CCs with the lowest decoding

complexity in that class is the representative. Tables VI–IX lists all classes of CCs with unique EXIT functions.

The first column,ν, is the number of memory elements for the class representative, the second column, CC, is
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Fig. 11. The minimum volume of the difference for the 310 CCs.

TABLE VI

ALL 8 CLASSES OFR = 1 CCS OF TYPEF WITH ν ≤ 4.

ν CC Members

1 3/2

5/4, 6/4, 5/6, 11/10, 12/10, 14/10, 17/12, 12/14,

17/14, 11/16, 21/20, 22/20, 24/20, 30/20, 33/22,

21/24, 36/24, 35/26, 24/30, 33/30, 36/30, 27/32,

22/34, 33/34, 21/36

2 7/4 16/10, 11/14, 25/20, 34/20, 33/24, 22/30, 25/34

3 13/10 15/10, 26/20, 32/20, 27/30, 35/30

3 17/10 36/20, 21/30

4 23/20 31/20

4 27/20 35/20

4 33/20 -

4 37/20 -

the class representative, and the third column contains allother members of that class. For example, CC(5/4)

belongs to the class represented by CC(3/2) in Table VI. This is also denoted by5/4 ≡ 3/2 and basically

means that the volume of the difference, according to (48), between these two CCs is less than0.0025.

The following ad hocrules can be applied to find the unique classes of rate-one CCswith ν ≤ 4 listed in

Tables VI–IX, (some of them more obvious than others):

1) All k/k-factors can be removed, e.g.,17/12 = 2/2 · 3/3 · 3/2 ≡ 3/2.

2) Doubles and quadruples can be reduced to one, e.g.,25/21 = 7/5 · 7/5 ≡ 7/5 and21/20 = 3/2 · 3/2 ·
3/2 ·3/2 ≡ 3/2. Note that this is not true for triples, e.g.,17/10 = 3/2 ·3/2 ·3/2 is a class representative.

3) A CC of the formβj/αk from (46)–(47) can be replaced by its correspondingαj/βk, for j = 1, 2, 3, 4

andk = 1, 2, 3, 4, e.g.,13/15 ≡ 15/13 and23/35 ≡ 31/27.

4) A CC of the formαj/αk can be replaced by its correspondingβj/βk, for j 6= k, e.g.,35/31 ≡ 27/23.
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TABLE VII

ALL 8 CLASSES OFR = 1 CCS OF TYPEB WITH ν ≤ 4.

ν CC Members

1 2/3

4/5, 6/5, 4/6, 10/11, 16/11, 10/12, 14/12, 10/14,

12/17, 14/17, 20/21, 24/21, 36/21, 20/22, 34/22,

20/24, 30/24, 32/27, 20/30, 22/33, 30/33, 34/33,

26/35, 24/36, 30/36

2 4/7 14/11, 10/16, 30/22, 20/25, 34/25, 24/33, 20/34

3 10/13 10/15, 20/26, 30/27, 20/32, 30/35

3 10/17 30/21, 20/36

4 20/23 20/31

4 20/27 20/35

4 20/33 -

4 20/37 -

TABLE VIII

ALL 17 CLASSES OFR = 1 CCS OF TYPEC WITH ν ≤ 3.

ν CC Members

2 7/5 16/12, 11/17, 25/21, 33/21, 34/24, 25/33, 22/36

2 7/6 11/12, 16/14, 25/22, 22/24, 25/24, 34/30, 33/36

2 5/7 17/11, 12/16, 36/22, 21/25, 33/25, 21/33, 24/34

2 6/7 12/11, 14/16, 24/22, 22/25, 24/25, 36/33, 30/34

3 13/11 15/11, 26/22, 32/22, 27/33, 35/33

3 13/12 15/12, 26/24, 32/24, 27/36, 35/36

3 11/13 11/15, 22/26, 33/27, 22/32, 33/35

3 12/13 12/15, 24/26, 36/27, 24/32, 36/35

3 14/13 14/15, 30/26, 24/27, 30/32, 24/35

3 15/13 13/15, 32/26, 35/27, 26/32, 27/35

3 16/13 16/15, 34/26, 22/27, 34/32, 22/35

3 17/13 17/15, 36/26, 21/27, 36/32, 21/35

3 13/14 15/14, 27/24, 35/24, 26/30, 32/30

3 13/16 15/16, 27/22, 35/22, 26/34, 32/34

3 17/16 21/22, 36/34

3 13/17 15/17, 27/21, 35/21, 26/36, 32/36

3 16/17 22/21, 34/36

5) Any reversible numberαj in the denominator can be changed to its corresponding reversed numberβj

unless the numerator is a reversed or reversible number, e.g., 25/35 ≡ 25/27. Note that, e.g.,32/35 is

not equivalent to32/27 since32 is a reversible number.

6) Any reversible numberαj in the numerator can be changed to its corresponding reversed numberβj

unless the denominator is a reversed or a reversible number,e.g.,31/21 ≡ 23/21. Note that, e.g.,31/27

is not equivalent to23/27 since27 is a reversed number.

7) Two special cases:3/2 · 7/4 ≡ 3/2 and2/3 · 4/7 ≡ 2/3, e.g.,11/10 = 3/2 · 7/4 ≡ 3/2.
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TABLE IX

ALL 65 CLASSES OFR = 1 CCS OF TYPEC WITH ν = 4.

ν CC Members

4 23/21 31/21

4 26/21 32/21

4 34/21 -

4 37/21 -

4 23/22 31/22

4 37/22 -

4 21/23 21/31

4 22/23 22/31

4 24/23 24/31

4 25/23 25/31

4 26/23 32/31

4 27/23 35/31

4 30/23 30/31

4 31/23 23/31

4 32/23 26/31

4 33/23 33/31

4 34/23 34/31

4 35/23 27/31

4 36/23 36/31

4 37/23 37/31

4 23/24 31/24

4 37/24 -

4 23/25 31/25

4 26/25 32/25

4 27/25 35/25

4 30/25 -

4 36/25 -

4 37/25 -

4 21/26 21/32

4 23/26 31/32

4 25/26 25/32

4 27/26 35/32

4 31/26 23/32

ν CC Members

4 33/26 33/32

4 37/26 37/32

4 23/27 31/35

4 25/27 25/35

4 26/27 32/35

4 31/27 23/35

4 34/27 34/35

4 37/27 37/35

4 23/30 31/30

4 25/30 -

4 37/30 -

4 23/33 31/33

4 26/33 32/33

4 37/33 -

4 21/34 -

4 23/34 31/34

4 27/34 35/34

4 37/34 -

4 23/36 31/36

4 25/36 -

4 37/36 -

4 21/37 -

4 22/37 -

4 23/37 31/37

4 24/37 -

4 25/37 -

4 26/37 32/37

4 27/37 35/37

4 30/37 -

4 33/37 -

4 34/37 -

4 36/37 -

Note that these rules are constructed only to give the same result asVth = 0.0025. They are not theoretically

justified. Note also that rule 1 can be applied together with one of the other rules, e.g.,10/12 = 2/2·2/3·2/3 ≡
2/3 (using rule 1 and 2),32/34 = 2/2 ·15/16 ≡ 13/16 (using rule 1 and 6), and33/30 = 3/3 ·3/2 ·7/4 ≡ 3/2

(using rule 1 and 7).

Using the rules above (or the thresholdVth = 0.0025 in Figure 11) gives 8 classes of CCs of type F listed in

Table VI, 8 classes of CCs of type B listed in Table VII, and 82 classes of CCs of type C listed in Tables VIII–

IX. Note that each CC(k/n) of type F in Table VI has a corresponding CC(n/k) of type B in Table VI. If
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CC(k/n) is a class representative in Tables VIII–IX, CC(n/k) is also a class representative, unlessk = αj

from (46) for j = 1, 2, 3, 4. For example, CC(23/35) is not a class representative in Table IX even though

CC(35/23) is, since23/35 ≡ 31/27 according to rule 3 above.

Each of the possible 310 CCs can be found once in Tables VI–IX,either as a class representative or as a

member of a class. For example, instead of using CC(20/21) (with ν = 4, i.e., 16 states) its class representative

CC(2/3) (with ν = 1, i.e., 2 states) from Table VII should be used. These CCs havesimilar EXIT functions

and therefore also similar performance in the waterfall region if they are used in a concatenated scheme, even

though CC(20/21) has 8 times more states than CC(2/3). However, it should be noted that these two CCs have

different IOWEF [23], so their performance in the error floor region is different.
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Göteborg, Sweden, Sept. 2004.

November 2, 2005 DRAFT


