

IMPLEMENTING AGENTS FOR INTRUSION DETECTION

Ioan Alfred Letia †, Dan Alexandru Marian ‡

Technical University of Cluj-Napoca, Romania

† letia@cs.utcluj.ro, ‡ marian.dan.alexandru@gmail.com

ABSTRACT

Many advanced techniques have been developed recently to help fight against

intrusion. Significant power in this direction can be gained by better taking

advantage of the patterns available in the data passing through the network.

We have conceived various software agents, distributed over a network,

that are able to collect and filter the data and also consider the firewall

rules. Preliminary experiments show a significant gain.

Keywords: intrusion, anomaly, agent, firewall

1 INTRODUCTION

 While Intrusion Detection Systems (IDS) have

the sole purpose of sensing host and network

malicious activity, Intrusion Prevention Systems

(IPS) are also required to act with the goal of

preventing such activities. This means that besides

sharing the same detection infrastructure with IDS,

IPS try to reduce the probability of an attack by

taking a sequence of actions meant to increase the

attack difficulty while degrading the network

performance metrics ass lower as possible. The most

common intrusion detection (ID) strategies are

anomaly detection and misuse detection. They can be

performed either in a centralised or a decentralised

manner. While anomaly based IDS build a model of

the system under normal operation and label the

observed changes as attacks, misuse based IDS

detect attack patterns using learnt signatures [1].

Hence, anomaly based IDS are able to detect novel

attack patterns at the cost of producing a larger

number of false positives, while misuse based IDS

have lower false positive rates, but are unable to

detect truly novel attacks [2]. Depending on the

source of data, IDS can be classified in network

based or host based. While Network IDS (NIDS)

collect network device statistics and sense the

streams of network data passing though the

network's infrastructure, Host based IDS (HIBDS)

rely mainly on host information such as login history,

processor and I/O statistics, to detect an attack or a

malicious user [2].

 The paper presents a way of combining host and

network based IDS, and misuse and anomaly ID

techniques to enhance packet-filter firewalls. It

discusses how real network data collected by a set of

sensors and stored in pools of packets can drive the

development, evaluation and modification of attack

signatures and firewall rules, process that we call

evolution. The architecture that will be presented has

both sensing and acting capabilities and comprises a

suite of intelligent components responsible for

collecting and processing data, and finally,

generating firewall rules and enforcing them.

Successful network attacks, lack of network

connectivity and the degradation of network

performance metrics are perceived by the system as

quantifiable penalties and are assumed to be

acceptable, while they are not in the case of IPS.

 The Erlang [3] programming language has been

chosen for building a distributed system, capable of

learning and taking actions on the basis of collected

information. Due to the offered location

transparency, data collection and processing can be

done either in a centralised or a decentralised manner.

Erlang is a functional language featuring lightweight

concurrent processes and process hibernation, hot

code loading and supervision trees. Erlang was

initially developed for creating scalable systems able

to recover from failure [4].

 This paper continues the work done on

developing an IDS system as a pattern recognition

task, using Erlang [5], with the goal of specifying

agents meant for enforcing security policies in Local

Area Networks. The approach employs information

obtained, both from the individual hosts and from the

network domain. The agent based approach has

several important benefits over the traditional

centralised systems. The absence of a single point of

failure, the exploitation of local context and the

ability to take local decisions in addition to the

offered scalability in terms of data collection and

processing, are just some of the advantages that

agent based systems have. Despite this, the

centralised approach has been the main focus of the

security world, while the agent based techniques for

the computer security domain have been explored in

[6][7][8][9]. Therefore, we envision autonomous

agents designed to react to network threats and take

actions for eliminating or diminishing their effects.

Special issue of The Romanian Educational Network - RoEduNet

UbiCC Journal, Volume 6 650

mailto:letia@cs.utcluj.ro
mailto:marian.dan.alexandru@gmail.com

The agents have multiple competing goals and are

distributed into an insecure and loosely connected

computer network. To simplify the design, we model

user needs and actions by an information agent that

we call User Agent, which is responsible for:

retrieving information from the given host or from

the local network, and performing actions that a

normal user might do. A single User Agent runs on a

given host, and no collaboration with other User

Agents from different hosts is assumed. Furthermore,

the attacker's behaviour is modeled by an Attacker

Agent having the purpose of disrupting, biasing or

gathering information from the User Agent's host.

The Security Agent is responsible for the User

Agent’s safety, and for handling the authentication

and authorization process.

 The agent design has been specified in GOAL

(Goal Oriented Agent Language) [10] having

temporally extended declarative goals [11]. As

described in [11], the symbols □ stands for "always",

◊ for "eventually" and ○ for "in next state” and are

used to denote operators from temporal logic. For

expressing the agents beliefs and desires the symbol

B for "belief" and G for "goal" are employed.

Conditional actions are expressed using ɸ do(*),

where ɸ is a mental condition, and * a basic action;

time information is introduced using before and

until; for further details please refer to [10] and [11].

2 MOTIVATION OF THE APPROACH

 Firewalls, antivirus applications, intrusion

detection / prevention systems and audit tools are the

most prominent tools for enforcing security policies,

detecting and responding to security attacks. Even

though great effort has been put into automating the

security infrastructure, there is still a need for

security professionals. They are supposed to know

the best practices, the context in which they apply,

and, more importantly, they must be able to predict

the impact that such practices might have. In addition,

tools have different vendors and this has an impact

on compatibility. It is often a practical requirement to

use tools from the same vendor hoping that they

would be able to cooperate. Yet, the security domain

often requires multi-layer and multi-vendor tools.

Furthermore, there is the problem of ensuring that

security policies are actually enforced throughout the

local domain. While domain controllers help in this

aspect, there is still the issue of users deliberately try

to violate the policy for a gain in processing speed or

the problem of delayed responses in the case of

online attacks. Hence, one needs to enforce

distributed control in the local domain. A suitable

means of accomplishing this is by using agents. They

offer the means of exploiting existing knowledge and

the underlying infrastructure. They offer means of

modeling interaction, are able to reproduce, to a

smaller scale, the activity of a user and can be

replicated, tuned, tested and run in a virtual world

without time limits. By being able to generate

network traffic, they can be used to check whether a

security policy is actually enforced and moreover

what would be its impact on the real system.

Furthermore, agents could be used to detect security

vulnerabilities or weaknesses in an automated

manner by using specially crafted attack sequences.

Furthermore, a pool of attacking agents could be

used to actively determine the coverage of firewall

rules or a pool of agents modeling user behavior

might be used to generate relevant network traffic.

Moreover, agents might replace, in the near future,

security professionals and act as glue between

different tools belonging to different vendors. For

example, the abstract concept of "drop packet" can

be mapped to two different firewalls yet preserve its

meaning. Agents can be equipped with the

knowledge of a security professional and be able to

adapt the actions to the given context, using their

perception. Currently there is a major problem

related to the gap between what agents can and what

it should do. While agents work with abstract

concepts, security tools require a detailed knowledge

about their inner workings.

 The paper intends to model such agents and

show how an agent percepts and actions would map

to existing security tools and information sources.

For example, in an agent specification src_ip(packet)

would reduce to a logic proposition (true/false) that

can be mapped, behind the scenes to an actual value

('192.168.1.1'). The reason why Erlang we employed

is that its concurrency model, based on Actor

interaction, offers the possibility of running multiple

agents and by integrating the sensors a small step is

made towards building a security framework.

3 AGENT SPECIFICATION

 Since users are able to prioritize their goals and

choose inconsistent or unpredictable sequences of

actions that often exceed the capabilities of the

frameworks developed so far, a User Agent is used to

model the behaviour of a user. We enforce agents to

employ sequences of actions which with their beliefs

and goals, and require them to have a consistent goal

base. While a User Agent models the actions of a

hypothetical user, the Security Agent models the

maintenance tasks and the response to attacks. Its

goals are to defend the User Agent, prevent and

counteract attacks and assess the security of the

communication link. The goals of the agents might

compete between themselves, as it is the case of the

connection maintenance goal and the security goal:

dropping network connectivity might ensure

protection against attacks and therefore fulfill the

security goal, while the communication ensures the

flow of information that is needed by the User Agent

to fulfill the task. We discuss now about the tasks of

Special issue of The Romanian Educational Network - RoEduNet

UbiCC Journal, Volume 6 651

the Security Agent using some simple examples.

Identity management. The Security Agent is

required to establish the connection with a Broker

Agent (foreign). The Security Agent believes that it

knows the User Agent's credentials: □ B username, □ B

password, □ B broker_agent. Whenever there is no

connection, exactly one such connection is set up:
□ (B username ˄ B password ˄ B broker_agent) →

connect(broker_agent,username,password)

Logging. The agent's goal is to ensure individual

liability. Whenever the User Agent sends a request to

a broker, the Security Agent stores a copy of it for

accounting purposes. □ request → ◊ store(request)

Whenever the broker replies, a copy of the message

is also stored. □ reply → ◊ store(reply)

Resource management. The Security Agent acts as

a mediator between User Agents and its operation

follows strict guidelines. Accessing a shared resource

(access_req) and altering their state require User

Agents to be authenticated (auth) and authorized

(aut) to perform such actions.
 □valid(id,password)→B authenticated

 Note that due to the fact that GOAL employs

linear temporal logic, valid(id,password) must

reduce to a logic proposition. The rule says that

whenever the id (or username) and the password are

correct, the User Agent is authenticated (auth). Since

GOAL agents have their internal state represented

through mental states, beliefs and goals, the

authentication process implies that the agent believes

in the given user authentication. An agent is

authorized to use a resource (res) if it is

authenticated and has the permission to use it:
□(B auth˄B has_permission(resources)) →B aut (res)

 An authorized (aut) agent must be given access

(ag) before a given moment can be expressed as:
□((B aut (res)→G ag(res) before 15:00)

 Note that granting access to resources is viewed

as an achievable goal having a temporal hard

constraint, 15:00 meaning that access must be

ensured up to that time (the starvation problem).

Hence, there is a maintenance condition that a User

Agent eventually releases (rel) the resource.
□ag(res)˄B peers_need(res)→◊ G rel(res) before 15:00

 Note that using this specification we are unable

to ensure that the other agents would be able to use

the resources until the time expires. If the Security

Agent believes that the User Agent has been

compromised by an attacker, the Security Agent is

able to drop the resource usage goal.
□B compromised→drop(G access_granted (resources))

 Since the Security Agent is required always to

run, a portion of the memory should be dedicated for

it. This would require killing processes whenever it

believes that there is insufficient memory left:
□ B ¬ sufficient_memory → G kill_process

Network connectivity. The Security Agent is

responsible for ensuring that User Agents are entitled

to use the computer network. Whenever a User

Agent has authenticated itself and is authorized to

use the computer network, the Security Agent

performs a sequence of actions to grant the user

access (gua) to the network.
□(B auth ˄ B network_autorized)→G gua

 The actions meant for providing network access

are constrained by a conjunction of preconditions

expressed as beliefs (ex. B administrator):

□do(allow_all_user_traffic)→B administrator

□do(allow_all_web_traffic)→B regular_user

 If no packet is received in a given time frame,

the agent should check whether there are some

connectivity problems. The agent has the goal of

maintaining the connectivity between end-points.

The agent believes that it is configured with an IP

address B dhcp(ip), and that it is able to ping to the

outside of the network B ping(outside). The strategy

is to check if the interface is up, perform a Layer 2

broadcast and see whether there are any replies,

perform a Layer 3 broadcast and see whether there

are any replies, ping to outside of the local network.

In case one of the first three tests fails, the actions

performed are to re-enable the interface, and if only

the last test fails the strategy is to request a new IP

address from the DHCP server.

Πconectivity ={G connected ˄ B layer2_reply(none)

 create_layer2_broadcast(layer2_frame),

buffer(layer2_packet) send(layer2_frame),

 (G connected ˄ B layer3_reply(none)

 create_layer3_broadcast(layer3_packet),

buffer(layer3_packet) send(layer3_packet),

B layer2_reply(local_network) ˄

B icmp_reply(local_network) ping(gateway),

B icmp_reply(gateway) ping(broker),

B icmp_reply(broker) network_working,

¬ B layer2_reply(local_network) until 30 sec

 reenable(interface),

¬ B icmp_reply(local_network) until 30 sec ˄

B layer2_reply(local_network) release(ip),

B ip(no_lease) dhcp_request(ip)},

Σo
connectivity = {B layer2_reply(none), B icmp_reply(none)},

Γo
connectivity = {connected}

Network protection. The agent has the goal of

maintaining the security of the communication link.

When the Security Agent believes that the system is

under attack it has the goal of blocking incoming

packets. When this happens it can either simply drop

them or explicitly send a reset message, which has

the benefit of decreasing the attacker’s speed and the

price of increasing the workload on the Security

Agent in case of Denial of Service attacks (DoS). The

same strategy may not apply also for a Distributed

DoS (DDoS) when reset messages have an impact

only on a limited number of hosts, and a negative

influence on the throughput of the link. Hence, we

condition the activation of an action based on a belief.
enabled(silently_drop(packet))

enabled(drop_and_send_reset(packet))

B DoS drop_and_send_reset(packet)

B DDoS silently_drop(packet)

Special issue of The Romanian Educational Network - RoEduNet

UbiCC Journal, Volume 6 652

Data security. The agent's goal is that of

maintaining the confidentiality of corporate data. If

the Security Agent believes that the information sent

by the User Agent infringes a confidentiality

constraint, it must drop the packets corresponding to

that stream. If the source of a message is not known,

the message must be discarded. Furthermore, if the

Security Agent believes that the alleged source is not

the true one, the message is always discarded.
□ B infringes(packet) → drop(packet)

□ B ¬source(packet) → drop(packet)

 □ ¬B source(packet) → drop(packet)
Monitoring. The User Agent can terminate under

three conditions: internal error, attack and normal

exit. If the Security Agent believes that the User

Agent has not terminated normally, it has to restart it:
□ B ¬normal_exit(user_agent) → restart(user_agent)

 If in three consecutive states the agent believes

that the CPU consumption increases (cpui), the event

is considered to be a sign of an attack.
□ (○B cpui)˄ (○○B cpui)˄(○○○B cpui) → B attack

 In the other extreme, high traffic volumes might

generate a high number of interrupts that will be

perceived as processor idle time. When corroborated

with the fact that the traffic is composed mainly from

SYN packets, this might be seen as an attack.
□ processor_iddle ˄ SYN_packets → B attack

Collaboration with other security tools.
 The Security Agent can be easily integrated with

the existing security tools. One can add external

security information in the form of beliefs and map

the agent's actions to firewall rules or system call

policies. For example, when the system calls

performed by an application violate the exiting

systrace security policy, the host based security tool

can add the belief B priviledged_syscall to the agent's

belief state, and the agent will take the decision of

allowing or denying the system call based on its

mental state, beliefs and goals. While systrace can

deny any deviation from the established security

policy by itself, the technique is not scalable since

users might require some functionality so rarely that

it does appear in the learning phase. Testing every

option that an application may have, in the hope of

learning the collection of system calls that the

application might make during its lifetime is a

challenging task. The agent based approach has the

advantage that the required functionality can be split

among several components that can take information

from multiple sources. The complexity of the overall

system is reduced and the individual components can

be more easily tailored to the user needs. While

considering a mainstream IPS, the anomaly

notifications triggered by the system can be

integrated in the agent using the aforementioned

beliefs. Once the agent has the belief that the system

is undergoing a port sweep B reconnaissance_attack, it

uses a maintenance condition to adopt the goal

blocking unused ports (block_up):
□ (B reconnaissance_attack →adopt(G block_up))

that is fulfilled using the action :
do(close_up) → G block_up

 The agent's action, such as close_up, can then be

translated into firewall rules. As an implementation

suggestion, the netstat utility can be used to retrieve

the currently open ports and the applications that use

them. These can be added as agent beliefs such as

B port_80_opened. Using a deny any rule or under the

firewall's Closed World Assumption, the open ports

remain opened since the agent will assert a firewall

rule to let them opened, and the rest of the ports

would be closed.

Attacks. Several attack scenarios [12] will be

described next and for each one of them a possible

agent specification is provided. Just three classes of

attacks will be discussed, mainly those: intended to

disrupt or degrade the communication flow, those in

which the attacker masquerades itself as another

agent, and those where the purpose of the attacker is

to collect information regarding the victim. These

could be expressed as the goals: to disrupt the

communication between the other agents G disrupt,

bias G bias or gather information G gather_information.

We make the assumption that the attacker believes

that the Security Agent has software vulnerabilities B

software_vulnerabilities, has unused services running B

running(unused_service) and the corresponding ports

are open B open(unused_ service_port). Furthermore,

it assumes that it can take over the control of Secure

agent B control(secure _agent). Knowing that the sub-

goals G directed_broadcast, G fragmentation_attack, G

ip_options_attack, G syn_flood, G reset_attack entail the

goal G disrupt the attacking agent selects one of

them to accomplish it.

Πdirected_broadcast ={

 G directed_broadcast ˄ B ip_dst_addr(ip)

 change_ip_src_addr(broadcast_ip),

G directed_broadcast ˄B mac_dst_addr(broadcast_mac)

 change_mac_dst_addr(broadcast_mac),

G directed_broadcast ˄B mac_dst_addr(broadcast_mac)

˄ B ip_src_addr(broadcast_ip) send(packet)}

Σo
directed_broadcast ={ip_src_addr(src_ip),

mac_src_addr(src_mac), ip_dst_addr(dst_ip),

mac_dst_addr(dst_mac)}

Γo
directed_broadcast ={directed_broadcast}

Πreset_attack = {G reset_attack ˄B ip_src_addr(src_ip) ˄

B ip_dst_addr(dst_ip) ˄ B mac_src_addr(src_mac) ˄

B mac_dst_addr(dst_mac) ˄B flags(ack)

 change_flags_to(ack,rst)

G reset_attack ˄ B flags(ack,rst) send(packet)}

Σo
reset_attack = {ip_src_addr(src_ip),

mac_src_addr(src_mac),sequence_number, flags(ack),

 ip_dst_addr(dst_ip), mac_dst_addr(dst_mac)}

Γo
reset_attack ={reset_attack}

Disruption using unknown format or parameter.

The attacker sends packets with some invalid format

or parameters the attacker hopping to crash the

victim. To prevent this, the Security Agent always

drops the non-compliant packets that it receives:

Special issue of The Romanian Educational Network - RoEduNet

UbiCC Journal, Volume 6 653

□ has_ip_options(packet) → drop(packet)

□zero_fragment_number(packet) →drop(packet)

□ ip_source_routing(packet) → drop(packet)

TTL attacks. The attacker sends IP packets with

small TTL (Time To Live) hopping they would expire

at the victims interface, to force the User Agent

dropped them and send an error message requiring

computational resources and consuming the agent’s

bandwidth which leads to a decrease in productivity

since fewer resources are available. When receiving

such an IP packets, it will believe that either this is a

normal event, since it is allowed event, or constitutes

an attack ttl_expire→B(attack ˅ legal_event). Note that

even though, the Security Agent could, at a certain

point, believe that this was not a legal event

¬Blegal_event, one cannot infer B attack using this

specification. In contrast, if such packets originate

from a single machine then this might be an attack:
same_source_ip ˄ ttl_expire → B ttl_attack

since after the first error message was received, the

original sender should have stopped sending packets:
□ ttl_expire → stop_sending

Generally though, several attackers are needed for

this attack to be successful, which can be specified

by dropping the restriction that TTL packets come

from the same source IP. The agent will believe it is

subject to an attack until there are no expired IP

packets: □ B ttl_attack until ◊ ¬ ttl_expire

Directed broadcast attack. Packets sent to the

broadcast address are expected to be processed by all

the networking devices on a local segment:
□broadcast_address˄dev_on_local_net → process_packet
 If the source address is also a broadcast address,

the networking devices will broadcast their replies

and as a consequence the network segment will be

filled by high volumes of useless traffic. Packets

having the source IP address a broadcast address are

unusual at least, hence □¬ source_ip_broadcast_address.

TCP attacks. There is a large range of TCP attacks,

among which TCP SYN attacks, TCP SYN-ACK.

Firewall cope with this by sending TCP RST (reset)

whenever the number of synchronization requests

exceeds a given threshold. The advantage of this

strategy is that it can prevent resource depletion, but

this depends on how fast it can reset incoming

connections. Since alternative strategies are available,

by incorporating firewall blocking strategies into an

agent, we employ a decision process that is more

adapted to the context. For example, another strategy

is to use TCP keepalives which forces the attacker to

respond with the effect of reducing its send rate:
send_keepalive until (received_RST ˅ received_FIN)

Expressing the fact that many SYN packets are

received is rather awkward, that might be stated:
□◊synchronization(packet) → ins(B syn_flood)

B syn_flood silently_drop(packet)

B syn_flood drop_and_send_reset(packet)
The Security Agent will then have two actions at his

disposal for accomplishing the goal of protecting the

system from a SYN flood attack.

Biasing or Collecting Information. The Man in The

Middle Attack is meant to bias flow of information

between a broker and the User Agent. The Security

Agent's job is to detect when there are signs of an

attacker's presence. For this, suppose that the

Security Agent is allowed to drop packets only in the

case of a Man in The Middle Attack. For an attacker

to put itself in between the two agents, it has to guess

the sequence number of the TCP connection, must

reset the connections between the two endpoints and

establish a connection between itself-Security Agent

and itself-User Agent. Suppose that the Attacker

accomplishes this and it requests some confidential

data from the User Agent. The User Agent receives

such the request and since it believes that the attacker

is the broker it sends the secret data.
 B broker_request(attacker) ins(broker(attacker))

 B broker(attacker) send_secrets(packet)

 Since this is an active attack, a rather noisy one,

the Security Agent can detect it by observing packets

with an invalid TCP sequence number. If such a

situation occurs, the drop action is enabled. Next, if

the Security Agent believes it has received an IP

packet from the attacker who triggered the invalid

sequence number condition, the IP packet will be

dropped.
□tcp_sequence_error → enable(drop(packet))

 B packet_src(attacker) drop(packet)

Port sweep. A common requirement is to always

close unused ports: □ ¬ used_port → do(close_port).

 This can be enforced for well known IP ports

(ports smaller than 1024), while for the others, one

could specify: □¬B used_port →do(close_port).

Furthermore, if a packet addresses an unused port

this would indicate a possible vertical scan.
□unused(port)˄ packet_dest_port(port)→B vertical_scan
 If the Security Agents were able to collaborate,

horizontal scans would be detected in a similar

fashion.

4 IMPLEMENTATION

 According to the specification, the Security

Agent uses the belief base as an internal

representation of the world and a goal base to

express its purpose for which it operates. The agent

strives to achieve these goals while exploiting its

capabilities and taking into consideration the

constraints imposed on it. We view the agent as a

layered architecture, in which each layer is an

instantiation of the agent for a given role, rather an

aggregation of components. Hence, we have an

instance of the agent dealing with data acquisition,

an agent instance handling goal adoption, belief

update and action selection, and one which performs

the adopted action in the environment. These are the

Sensor, the Reasoner and the Efector Agent. The

main benefits of this approach appear during the

implementation phase. As it will be described in the

next sections, the Sensors need to access low level

Special issue of The Romanian Educational Network - RoEduNet

UbiCC Journal, Volume 6 654

resources to sniff network related data, which usually

requires administrative privileges. On the other hand,

the Efector Agent performs the adopted actions, such

as setting a firewall rule, in the environment. It too

requires administrative privileges, but by enforcing a

distinction between the different layers, a more

granular permission control is used. The sensor only

has to have permission to access the sniffing

interface (or the raw sockets), and the Efector Agent

has to have elevated rights only for the firewall

interface. The deliberative part, performed by the

Reasoning agent is then isolated both from the data

acquisition and action roles, and has the role of

processing the data. The direct consequence is that

we have different components on which we can

impose different security constraints, rather than on a

unique one. Furthermore, this allows us to replicate

the Efector Agent on all the local domain's computers

and let it execute in parallel the actions specified by

Reasoning Agent. In turn, we may have a unique

Reasoning agent which fuses the data received from

multiple sensors and specifies the actions that are to

be performed by a single Efector Agent (gateway /

firewall) or multiple ones (multiple Access Layer

devices and / or domain computers). From the

implementation point of view the architecture

resemblances to a classical management system

while on a higher level to an agent. Hence, we

benefit both from the well defined semantics of the

agents and from the already existing tools and APIs

(Application Programming Interface).

Layout. The system is built upon a collection of

sensors and Reasoner/s. On each monitored host

there exists at least one sensor that can be an

Operating System (OS) related tool, whose output

will be parsed, a C based application or an Erlang

node. Attack signatures, stored in the form of real

network packets, are used for the dynamic creation

and online testing of firewall rules. Based on these

signatures and on host and network statistics, the

Reasoner, built in Erlang, creates the firewall rules.

Collecting and processing data can be done either in

a centralized manner, when all sensors in the

network send their observations to a single location,

or decentralized when monitored network hosts are

responsible for processing their own data and the

neighbors’ data [13]. The centralized approach has

the advantage of not affecting the monitored host's

statistics, at the cost of raising privacy and security

concerns, while the decentralized approach

overcomes these privacy issues, but puts a load on

the monitored machine, thus affecting its statistics. In

the case of the centralized approach, a single host or

a set of dedicated hosts that share the workload are

used. Since Erlang has first class functions, both

approaches can be implemented: in the centralized

approach we send the data to the dedicated group of

Erlang nodes for processing, while in the

decentralised host based approach, functions are sent

to operate on the host's data. We have used a

centralised approach for collecting data, and a

distributed system for processing it.

 The major components of the generic IDS/IPS

architecture are presented next. We distinguish

among Communication Agents, Sensor Agents,

Processing Agents or Reasoners, and Efector Agents.

Each such agent fulfills a set of related tasks, using

OS tools or applications developed using Erlang and

C programming languages.

 Communication Agents deal with the secure

transmission of data between nodes, by establishing

a secure connection through a Virtual Private

Network (VPN) or port mapping with the help of ssh.

They also deal with the representation of data shared

by applications running on different physical nodes

(hosts).

 Sensors collect host based information and

network related statistics using either syslog

messages or Simple Network Management Protocol

(SNMP) packets, or by using existing OS querying

tools. Sniffing network packets is also their

responsibility. Erlang provides support for building

UDP, TCP, and SNMP sensors, and a framework for

communicating with C or Java applications. Since

packet inspection is computationally demanding but

is of great importance for detecting attacks, sensors

are required to filter the data to be sent for

processing. Because support for packet sniffing is

not present, the C framework was used for

implementing this functionality. The sensors are

intelligent, in the sense that they can filter data that

this sent for processing.

 Reasoners or Processing agents are the

component where the firewall rules are managed and

the amount of needed feedback data is established,

by creating special purpose filters. They determine

the significance of system wide observations and

decide whether an attack is ongoing and what actions

should be taken. Communication is done through

message passing and their state is kept either locally,

or in a distributed fashion (Mnesia database). Efector

Agents execute the actions specified by the

Processing agents on single hosts or on the overall

system. Their most common task is that of applying

firewall rules.

Figure 1: Network Topology

Special issue of The Romanian Educational Network - RoEduNet

UbiCC Journal, Volume 6 655

 Considering Figure 1, between the two

screening routers, rightmost handling the

communication with the Internet Service Provider,

and the leftmost with internal traffic, such as inter-

VLAN (Virtual Local Area Network) routing, a host

is placed in inline configuration. A network sensor,

responsible for collecting network related data, an

Efector Agent, enforcing firewall rules, and a

Communication Agent, handling the traffic from the

sensor to the reasoner, run on it. On the work group

switch, on the left side, another such host is

connected to the mirroring / span port. All the data

collected by sensors is sent to a Processing Agent,

composed of a group of Erlang nodes that share the

workload. They are connected through a switch, as

shown in the bottom of the figure.

Selection and Evaluation of Firewall Rules.
The IDS relies on sensors to collect data from the

local network [13]. These packets are temporarily

stored by the Reasoner in two pools of packets:

normal traffic and attack packets, which are used to

create the firewall rules. In the learning phase, the

packets arriving on the local network interface are

put in the normal packets pool. During a penetration

testing procedure, the resulting packets are stored in

the attack pattern pool. The normal and attack

packets are later combined using a similar procedure

with that of genetic algorithms. A new packet is

created by combining packets extracted, with a given

probability, from each of the pools. Although the

combination of packets at arbitrary points should

have been allowed, due to efficiency reasons we

extract at each layer the header fields and the

corresponding payload. We call them features, and

let them suffer arbitrary mutation and undergo a

crossover process. Layer hashes and packet length

fields are not considered features and therefore they

are automatically computed for each resulting packet.

The TCP sequence and acknowledgement numbers

are considered features, but are subjected to the

protocol constraints. The genetically evolved packets

are then put in the tentative packets pool containing

packets whose threat characteristics were not

established. Firewall rules are generated by an

evolutionary process, and the valid ones are set on

the local interface. An arbitrary pool is selected, and

packet is extracted from it and sent through the

specified network interface. Since no firewall rule

specifies options such as connection tracking, batch

send is used. In the case of connection-oriented

protocols, such as TCP, a connection can be initiated

by an OS script that either opens a port and listens on

it, or makes requests for services. If the packet is

dropped due to invalid format, it is not taken into

consideration any more. Each rule has six scores

assigned: true positive, true negative, false positive,

false negative, positive-generality and negative-

generality. A false positive is a dropped packet that

does not belong to an attack sequence, while a false

negative is an attack packet that was not recognized

as such. Packets from the tentative pool are used for

establishing the generality of a firewall rule, while

normal and attack packets are used for the other four.

If a rule drops or allows passing a high number of

packets from the tentative pool, the rule is considered

very general. Dropping a tentative packet increases

the negative-generality, while allowing one to pass

increases the positive-generality. If a rule affects a

limited number of tentative packets, the rule is

considered to be very specific. Since firewalls

evaluate the rules in a top-down fashion, the

generality score helps in the positioning of rules. For

example, depending on the default policy we may

put rules with high negative/positive generality

closer to the top or to the end of the firewall list.

Since both iptables and, for example ipfilter, require

setting a default policy, such as drop or pass, the

positioning of rules allows packets to be dropped, or

passed, more quickly. Furthermore, we may set a

threshold for the generality scores, above which the

rule is discarded. The fitness function for firewall

rules is given by a weighted sum of the six scores.

The weights are set a priori. The fitness function for

tentative packets is more complex since if a packet

matches a firewall rule that has a high generality, it

receives a penalty, and if it matches a specific rule

then it receives a reward. If the packet does not

match any rule and the action is based on the default

policy, the score is given by the similarity with the

other packets in the tentative pool. If a packet

novelty is high, the score it receives is also high. The

packets in the normal packet pool can be replaced by

new packets sniffed from the local network, if they

participated in at least one crossover operation or

their novelty, with respect to other packets, is low.

This would ensure that some trails of normal packets

would be kept in the tentative packets pool. Since we

presume that attack packets are more difficult to

obtain than normal packets, all are kept across

generations. By employing this mechanism a direct

link is made between the agent’s perception and

possible actions that emphasizes the role that of

perception plays in the adaptability of the agent.

Collect, Filter & Process Network Data. Gathering

network data is a challenging task for software based

ID applications since the amount of data that can be

captured under heavy load and the latency that this

operation induces depend heavily on the OS's

network stack implementation [14]. Furthermore,

processing and sending network data raises a suite of

problems, since large volumes of network traffic are

accompanied by a large number of interrupts,

serviced by kernel code leaving little processor time

available for user space applications. Firewall

applications cope with this issue by using a given

kernel interface and taking simple decisions based

mainly on packet header information. The criteria

used for discriminating packets is given by firewall

Special issue of The Romanian Educational Network - RoEduNet

UbiCC Journal, Volume 6 656

rules in the form of fixed values, so that as little

processing as possible is done. The situation gets

complicated in the case of misuse or anomaly based

IDS, since the criteria used for discrimination is

either not readily available, or requires expensive

computations. In the case of anomaly based IDS, OS

statistics, such as processor time, memory

consumption, number of packets received on an

interface or the number of interrupts can help in

deciding the sampling time interval. Such

information can be collected by parsing the output of

available user space OS tools, or by using a kernel

module which would retrieve such data from within

the kernel. In the case of misuse IDS, the similarity

computation process, usually done in an user space

application, requires copying packets from kernel

space to user space. If the traffic volume is high, the

user space application might not respond in due time

and even lose packets. The goal of minimizing this

traffic can be achieved either by doing more

processing work inside the kernel or by passing just

a portion of the packet to the user-space IDS

application. By implementing the IDS's basic

classifier as a kernel module, we would solve not

only the problem of the data transfer, but also the

user space IDS scheduling issue. This is done at the

cost of bloating the kernel. Several issues that make

such an implementation rather difficult were

identified. Floating point operations are not usually

allowed inside kernel space, which would rule out

classical Artificial Neural Networks that heavily use

them. A solution would be to emulate such

operations using integer arithmetic, but the increase

in the number of arithmetic operations and in the

amount of required memory might cost more than

the processing done in user space. Resources

available in the kernel are rather limited and the

kernel code is expected to accomplish well balanced

tasks as fast as possible. If the number of hidden

layers and neurons used are kept at manageable sizes,

an implementation of an Artificial Neural Network

would be possible, depending on the employed

algorithm. The same remarks apply for other similar

strategies such as Self Organizing Maps and Support

Vector Machines. The use of Genetic Algorithms

raises memory and performance concerns. A small

set of individuals and a careful choice of the

evaluation / fitness function are required. The metric

used must not require floating point operations, so

Manhattan or Hamming distances are possible

candidates. Another important issue is related to

network packet's length. Since they are different, a

common denominator must be enforced. If the

payload is not used, but just the header, then using

handwritten firewall rules and existing dump

facilities is probably a better choice. Hence, Bloom

filters [15] were used to address such issues, mainly

the kernel memory limit and the problem of variable

packet payloads. They employ just a bit-string and a

set of hashing functions to detect whether an

example has been previously encountered (similar to

the strategy used by the ipset package in case of

header fields). The problem with this resides on

finding the set of hashing functions which best

expresses the novelty or the similarity of packet

payloads, since Bloom filters can produce false

positives when the bit-string is too small or the

hashing functions are not efficient. All of these

classifiers require training, testing and an evaluation

phase. While evaluation is done using the kernel

sensor, the learning and testing phases are

accomplished in Erlang since it allows the

development of distributed applications and provides

the bit syntax that facilitates parsing binary data.

Moreover, development and experimentation is done

more easily in Erlang. The downside is that multiple

machines are needed to share the computational

workload. The advantages of the presented kernel

based IDS is the access to low level information and

the high processing speed. The disadvantages are the

high level of expertise required, not for building it,

but for ensuring that it does not become the

component causing machines to crash. Before going

further a clarifying example is provided, in which

packet payloads are used for classification. Suppose

decentralised approach for collecting network related

data is used in which each host has a Reasoner (the

Processing agent) and a sensor (classifier running in

kernel space). The Reasoner stores the

aforementioned pools of packets, normal, attack and

tentative, in Erlang dets tables. While the sensor

implements a simple Bloom filter, the Processing

Agent can use more complex algorithms. The

Reasoner and the sensor share a set of hashing

functions, and the sensor has an entry in the /proc

file systems, allowing both read and write operations.

The Processing Agent selects a set of packets from

the attack pool, extracts the payload using the bit-

syntax and computes the bit-string corresponding to

the Bloom Filter which gets written to the sensor’s

corresponding /proc entry. When a network packet

arrives and a payload is presented, the sensor

computes the corresponding hashes and checks the

bit-string to see if it the packet is a match. If it is, it

stores the whole packet, a part of it or a value into

another buffer (but it does not take dropping

decisions). The Processing Agent periodically pools

the /proc entry trying to read from it, thus fetching

the corresponding data. On the basis of this data, the

Processing Node can extract, for example, the

corresponding IP addresses and build a firewall rule

which will be set by the Efector Agent. Similar

packets generate similar rules, and therefore the

system is responsible for selecting the firewall rules

with the highest generality or specificity.

Furthermore, the Processing Agent can generate not

a single one, but a set of firewall rules, and using the

Efector Agent set them on the network interface. By

Special issue of The Romanian Educational Network - RoEduNet

UbiCC Journal, Volume 6 657

sending the same, or similar, packets and checking

which firewall rule matched, the efficiency of the

firewall rules could be computed. This, can be

viewed as feedback and can be used to test the

perception and the acting capabilities.

 This architecture can also be used for raw

filtering of training datasets. Suppose that we have a

large dataset containing attack patterns. If we are

limited to a single host, processing the dataset in

Erlang's Processing Agent would take a considerable

amount of time. A possible strategy is to send those

packets through the local interface, allow the sensor

to alter its internal bit-string as packets arrive and

put the latest version of the bit-string into a buffer for

the Processing Agent to read it. If this strategy is also

applied on a different interface for a dataset

containing normal traffic, the Processing Agent

could then fetch both bit-strings, set them on the

ingress and egress sensor and pass again through

both datasets and store only the interesting packets,

those for which the Bloom filters give contradictory

answers, thus effectively filtering the datasets.

 A strategy that uses the in place infrastructure,

namely Berkeley Packet Filter (BPF) [16], has also

been studied. Mainly, the BPF network interface

provides access to a virtual machine capable of

filtering network packets. Due to its high level of

configurability, it allows the development of a

'program' through an evolutionary approach that

would describe the criteria or the algorithm used for

selecting packets while running inside the kernel.

 Furthermore, BPF allows specifying the portion

of the packets to be transferred from the kernel space

to user space. The suitability of 'zero buffer copy'

[17] for developing IDS is yet another interesting

feature that needs to be explored further. The BPF

offers a scratch memory and a small instruction set,

comprising load operations, arithmetic and logic

statements and forward jumps, making it suitable for

genetic programming. Using the distributed

programming facility offered by Erlang, such BPF

'programs' can be executed at the same time on

multiple hosts and the selected packets can be sent,

even remotely, for processing. Therefore population

based genetic algorithm can be designed in Erlang,

tested on real data and the corresponding filters

created, since the operations executed by the the

BPF's VM can be emulated in Erlang using the

provided bit syntax.

 Efector nodes were implemented mainly as

Erlang C Nodes. They run with superuser rights and

their primary task is setting firewall rules and

modifying OS configuration files.

 User-space sensors use a mixture of Erlang and

C programming languages. Although they implement

similar algorithms, they differ from kernel sensors by

the fact that they more flexible. Since, Erlang does

not provide libraries for sniffing or sending network

packets, we have built an Erlang C Node and an

Erlang Port Driver for sniffing or sending network

packets. To manage the security risk involved,

superuser rights are targeted to the specific resource

that need to be accessed. In the case of network

packet sniffing, the Erlang sensor can either listen on

the network interface itself or parse the output

provided by a dedicated OS tool. If a centralized

approach is used, on each monitored host there

would be an Erlang C Node acting as a sensor. No

Erlang VM installation would then be required. But,

in the case of a decentralized approach, since Erlang

must be present to perform data processing, we

would use Erlang Port drivers and require the

installation of Erlang. Commonly used when low

level access is required or for performing tasks that

would take too much time when done in a functional

language, Erlang Port Drivers provide high

performance at a higher risk, because data

marshalling takes less time since they run in the

Erlangs's Virtual Machine (VM) address space. But,

even though the throughput is much higher, if the

application experiences some errors, the VM might

crash and the design of port drivers is a complex task.

Furthermore, synchronization might pose problems,

and corroborated with the fact the library's thread of

execution is mapped on VM threads, issues occur.

Furthermore, as the documentation states, no

blocking operations should be performed. The Erlang

version R13B03 tries alleviating these issues and

proposes the Network Function Interface (NIF)

which makes development easier. C nodes are the

Erlang's solution to creating, porting or integrating C

applications. A similar interface exists for the Java

programming language. We focused mainly on this

approach, since these nodes are standalone

applications running outside the Erlang VM. As such,

they `should` not crash or affect the Erlang VM, but

at the same time they do not benefit from the failure

robustness provided by the Erlang system. C / Java

Nodes communicate with Erlang through message

passing using TCP/IP. The Erlang VM periodically

sends heartbeats to see whether a connected node is

down. Data marshalling between Erlang nodes and

Erlang C / Java nodes incurs a great performance

penalty. This is an important aspect in the following

scenario: in client-server architecture, the Erlang

system sends data for processing to a remote C Node.

If the client Erlang VM sends too many messages to

the server C Node and data marshalling takes too

much time, or in the case the data processing takes

too long and the server is not threaded, the C Node

will not process and respond to the heartbeat in due

time. Thus, the C Node will be considered to be

down. A possible solution is to develop the C

application outside the Erlang platform and

communicate using TCP / IP. In both cases there

should be a balance between message size and

message number. While taking into consideration

that TCP is used, sending a large message seems to

Special issue of The Romanian Educational Network - RoEduNet

UbiCC Journal, Volume 6 658

be better, with respect to marshalling, than sending

many small messages. The Erlang nodes, as well as

C or Java Nodes, enter in a thrust domain only if

they have the same shared secret, called cookie.

Erlang nodes are able to execute Remote Procedure

Calls (RPC), spawn processes on the local and on

remote nodes, run applications on the current host

OS or on remote hosts. Communication is done using

TCP and it is not encrypted by default. Thus the

Erlang VM poses a security risk: if one of the Erlang

Nodes, member in a thrust group, is compromised

then it can affect all the other nodes. To diminish the

changes of affecting the monitored hosts, a

Communication Agent in the form of a TCP server,

to handle the communication task, has been built.

This denies many of the Erlang benefits, and was

solely used when collecting network and host related

data. Taking these security concerns into

considerations, we believe that they do not affect our

choice to develop an IDS using Erlang, since its

primary scope is data collection and processing.

5 Experimentation

 Several sensors have been developed for

selectively sniffing packets, running either in user

space as standalone agents or integrated into the

kernel, employing similar selection algorithms,

mainly neural networks, genetic algorithms, and

Bloom filters. While general purpose Erlang C

Nodes, employing either the PCAP or the BPF

interface, were implemented as user-space sensors, a

genetic algorithm sensor and a Bloom filter were

integrated in the kernel (having a /proc entry on

Linux kernel and as new functions on *BSD). When

payload features were not considered, the OS's

firewall was used for filtering the packets, based on

header information. The fallowing example employs

ulog (similar to *BSD's pflog) to collect all incoming

HTTP packets:
iptables -A INPUT-p tcp--sport80-jULOG--ulog-nlgroup1

 On FreeBSD extra functions were added to the

BPF virtual machine, allowing packets to be

processed using these algorithms. For example, the

next listing shows a sequence of BPF instructions to

select IP packets having a specified source IP

address:

static struct bpf_insn src_filter[] ={

BPF_STMT(BPF_LD+BPF_H+BPF_ABS, 12),

BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, 0x0800, 0, 3),

BPF_STMT(BPF_LD+BPF_W+BPF_ABS,26),

BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K,mysrcip,0,1),

BPF_STMT(BPF_RET+BPF_K, (u_int)-1),

BPF_STMT(BPF_RET+BPF_K, 0)};

struct bpf_program prg={6,(struct bpf_insn*)&src_filter};

 Besides the load (BPF_LD), jump (BPF_JMP,

BPF_JEQ jump equal) and return (BPF_RET)

instructions, BPF_NEURAL, BPF_GENETIC and

BPF_BLOOM instructions were added to process the

whole packet or starting from a specified absolute

position (BPF_ABS) expressed in bytes. Since

filtering rules are run in kernel space, a user space

application that used the BPF interface was then able

to select packets to be passed to user space by simply

constructing a filter involving calls to these functions.

Parameters were passed using sysctl. For both the

Linux or BSD kernel sensors, kernel memory had to

be assigned and it had to be persistent across

multiple calls of the processing function. Besides the

issues previously discussed in the article, the

possibility of a DoS attack to be successful increases

with the complexity of the processing algorithms

(number of individuals, number of neurons or hidden

layer). Another downside of the kernel sensors is that

an extra user space sensor is needed for sending the

data to the processing nodes. The advantage of such

sensors is that they can greatly reduce the amount of

data that needs to be sent and processed by the

Processing Agents.

 For testing purposes the Ubuntu 9.10 and

FreeBSD 8.0 were used. The FreeBSD used a

custom made kernel and had the pf, pflog and pfsync

devices enabled and the BPF_JITTER option set,

among others. For generating attack traffic arpon,

dsniff, guessnet, hping, hunt, maptha, medusa,

ncrack, netdiscover, nikto, nmap, p0f, packit, ping,

ptunnel, ssahi, kipfish, xprobe, and the developed

PCAP Erlang Port Driver (for replaying existing

attack signatures) were used. During the process of

evolving network packets the following were

observed: packets with SYN=1, ACK=0 with

payload; UDP packets with TCP's fields, for example

Sequence Number or Acknowledgement Number;

ICMP packets with non-radom / non-fixed large

payloads. We assumed that hashes and packets

lengths were generated automatically. The genetic

algorithm based sensor had a 63% detection rate, the

Bloom filter 78%, while the Processing's Agent

Artificial Neural Network 67%. These results can be

explained by the fact that the machine used for attack

was used later for sending legitimate traffic. We

consider that this is the correct approach, since in the

context of IPv4's NAT the public address of an

attacker and of a legitimate user should be the same,

and the classifiers role is to distinguish between them.

Furthermore, we tried to minimize the needed

memory and reduce the incurred delay when

processing packets. The Bloom filter's detection rate

depends heavily on the dataset and on the bit-string

length. Since the payload was primarily used, some

legitimate packets as well as attack packets had no

payload. These kinds of packets were not taken into

consideration. Furthermore, attack and normal

packets having the same payload were also not taken

into consideration.

Special issue of The Romanian Educational Network - RoEduNet

UbiCC Journal, Volume 6 659

6 Related and Future work

 There is a vast literature regarding Intrusion

Detection Systems (IDS) and an endless pool of

algorithms ranging from Artificial Neural Networks

and Expert Systems to Artificial Immune Systems

[18][19], but there are far fewer taking the

declarative approach or the time into consideration.

The benefits of augmenting IDS with prevention

capabilities, as an Intrusion Prevention Systems

(IPS) is, are often overseen also.

 While the purpose of this paper is to present

ways in which an agent could contribute in enforcing

security constraints, we cannot oversee the

advantages that an agent based approach could have

over a centralised IDS. While having a local view of

the system, and being allowed to take local actions,

agents can change their environment by performing

actions and adapt their perception, for example by

reducing the amount of data to process. Since the

paper does not handle the case in which agents

collaborate, an obvious downside of the local view is

the lack of a global perspective provided by data

correlation. While this can be achieved locally, such

an agent may have problems with distributed attacks.

This obvious downside is compensated by the fact

that while the centralised IDS must process

information from all the sensors, an agent can take

advantage of its local view and filter or selectively

sample the data or observations needed to update its

internal state. While it is possible for an attacker to

target the host on which the IDS runs, in the case

when agents are used it would have to attack all of

them. An agent based approach playing the role of an

IPS can also adapt to the environment on which it

runs, to the specific hardware devices for example,

with respect to commands or configuration files.

Rather than a complex centralised system controlling

the whole system, the agent based approach ensures

that the control is distributed across the whole

network. While the use of agents for IDS [20] or for

enforcing policies is already present in the literature,

the use of agents with declarative goals playing the

role of IPS is to best of our knowledge novel.

Although the paper presents only the design of such

agents, we believe that their implementation is

feasible and the offered flexibility outweighs the

complexity of their implementation. Furthermore, the

paper shows how the perception of the environment

can be achieved and used to adapt the actions. The

next step would be to establish the collaboration

between such agents, to achieve the advantage that

distributed collaborating agents would have over

them [21]. While in the case of the algorithms

described in [18][19], explicit or implicit thresholds

or quantifiable values are present, in the case of the

agents described in this paper variables reduces to

boolean values at a higher level. Therefore, the

actual data processing operations must reduce to

boolean values. We believe that an implementation

could overcome this issue by the use of internal

buffers.

 The agents described in this paper use

temporally extended goals, in the context of [11].

Similar uses of temporal logic in Intrusion Detection

are explored in [22]. A characteristic of IDS based

on temporal logic is their use of past experience (past

temporal logic). Therefore what distinguishes the

presented agent from them is the fact that a GOAL

agent with temporally extended goals is allowed to

look only into the future and it can maintain past

experiences only through its belief base. To the best

of our knowledge, creating network packets through

an evolutionary approach for testing the suitability of

firewall rules has not been addressed. The use of

genetic programming or genetic algorithms for

evolving rules for IDS has been investigated in

[23][24][25][26] with an overview regarding the use

of a distributed system in [13]. To the best of our

knowledge, evolving firewall rules and testing their

suitability has not yet been done for BPF based

firewalls. We are unaware of the existence of open

source kernel modules designs playing the role of an

IDS, although we think that commercial applications

are using this approach. The creation of `programs`

by an evolutionary approach targeting buffer

overflow was investigated in [27]. We consider that

the idea of evolving 'programs' using the BPF

instruction set by an evolutionary approach for

reducing the amount of data transfer between kernel

space and user space is novel. Furthermore, the use

of the Erlang programming language for collecting

and processing of network and host related data

doesn't seem to be covered in the existing literature.

The use of an evolutionary approach for developing

BPF filters remains to be further investigated in a

future paper. Such a strategy is promising, but

currently we are not satisfied by the assumptions that

we had to enforce.

7 Conclusions

 IDS rely on the collected data when deciding

whether the network is under attack. Obtaining and

processing relevant data is changeling since it

depends on many factors. The paper describes the

design of kernel and user space sensors and presents

a ways in which the data can be filtered and

processed. Based on the data received from the

sensors, the paper describes a way in which the

firewall rules can be built by evolutionary means.

Equipped with perception and given a set of actions

that translate to firewall rules, the paper presents the

design of a Security Agent that exploits existing

security tools, such as the firewall, in its endeavor of

protecting the User Agent, modeling a common user,

from an attacker. The Security Agent is put in a

realistic environment that illustrates the interaction

Special issue of The Romanian Educational Network - RoEduNet

UbiCC Journal, Volume 6 660

with the attacker and the Security Agent and several

scenarios are depicted.

 To simplify its implementation, we consider it as

having a layered architecture, where each layer

represents an instance of the agent fulfilling a

specific purpose. For implementing the components

of the system, a mixture of the Erlang and C

programming languages has been used. A description

of how existing OS tools can help and an insight on

how an IDS can be enhanced to the level of an IPS

was also described. The benefits and tradeoffs of

different approaches along with their motivation

were also presented.

ACKNOWLEDGEMENTS
 We are grateful to the anonymous reviewers for

the very useful comments. Part of this work was

supported by the grant ID 170/672 from the National

Research Council of the Romanian Ministry for

Education and Research.

8 REFERENCES

[1] S. Chebrolu, A. Abraham, and J. P. Thomas:

Feature deduction and ensemble design of

intrusion detection systems, Computers &

Security, vol. 24, pp. 295-307 (2005).

[2] S. X. Wu and W. Banzhaf: The use of

computational intelligence in intrusion detection

systems: A review, Applied Soft Computing

(2010).

[3] J. Armstrong: Programming Erlang: Software

for a Concurrent World, The Pragmatic

Bookshelf (2007)

[4] J. Armstrong: Making reliable distributed

systems in the presence of software, Ph.D.

dissertation, The Royal Institute of Technology

(2003)

[5] I. A. Letia and D. A. Marian: Embarking on the

road of Intrusion Detection, with Erlang, In:

Proc. of the 10th International Conference on

Development and Application Systems (2010).

[6] M. Crosbie and G. Spafford: Defending a

computer system using autonomous agents, In:

Proc. of the 18th National Information Systems

Security Conference, vol. 2, pp. 549–558 (1995).

[7] N. Basilico, N. Gatti, and F. Amigoni:

Developing a deterministic patrolling strategy

for security agents, In: WI-IAT ‘09, pp. 565–572

(2009).

[8] F. A. Barika, N. E. Kadhi, and K. Ghedira:

Agent IDS based on Misuse Approach, Journal

Of Software (2009).

[9] N.Jaisankar, R.Saravanan, and K. D. Swamy:

Intelligent intrusion detection system framework

using mobile agents, International Journal of

Network Security & Its Applications (2009).

[10] F. de Boer, K. Hindriks, W. van der Hoek, and

J.-J. Meyer: A verification framework for agent

programming with declarative goals, Journal of

Applied Logic (2007).

[11] K. V. Hindriks, W. van der Hoek, and M. B. van

Riemsdijk: Agent programming with temporally

extended goals, In: Proc. AAMAS ’09 (2009).

[12] J. Mirkovic and P. Reiher: A taxonomy of ddos

attack and ddos defense mechanisms,

SIGCOMM Comput. Commun. Rev., (2004).

[13] A. Abraham, R. Jain, J. Thomas, S. Y. Han:

D-SCIDS:Distributed soft computing intrusion

detection system, Journal of Network and Comp.

Applications, vol. 30, no. 1, pp. 81–98 (2007)

[14] Q. Li and K. Macy, Optimizing the BSD routing

system for parallel processing, In: Proc. ACM

SIGCOMM, pp. 37–42, (2009).

[15] S. Dharmapurikar, P. Krishnamurthy, T. S.

Sproull, and J. W. Lockwood: Deep packet

inspection using parallel bloom filters, IEEE

Micro, vol. 24, no. 1, pp. 52–61 (2004).

[16] S. McCanne and V. Jacobson: The BSD packet

filter: a new architecture for user-level packet

capture, In: Proc. USENIX Winter 1993 (1993).

[17] R. N. M. Watson C. S. J. Peron: Zero-copy bpf

buffers, FreeBSD Developer Summit (2007).

[18] S. X. Wu W. Banzhaf, The use of computational

intelligence in intrusion detection systems: A

review, Applied Soft Computing (2010).

[19] V. Chandola, A. Banerjee, V. Kumar: Anomaly

detection: A survey, ACM Comput. Surv. (2009).

[20] G. Helmer, J. S. K.Wong, V.Honavar, L. Miller:

Lightweight agents for intrusion detection,

Journal of Systems and Software(2000)

[21] P. Kannadiga and M. Zulkernine, Didma: A

distributed intrusion detection system using

mobile agents, In: Proc. SNPD-SAWN (2005).

[22] P. Naldurg, K. Sen, and P. Thati: A temporal

logic based framework for intrusion detection,

Proc. 4th IFIP WG 6.1 (2004).

[23] W. Lu and I. Traore, Detecting new forms of

network intrusion using genetic programming,

Computational Intelligence, Vol. 20, (2004)

[24] W. Li: Using Genetic Algorithm for Network

Intrusion Detection. Proc. of the United States

Department of Energy Cyber Security Group

2004 Training Conference, pp. 24-27 (2004).

[25] A. Abraham and C. Grosan: Evolving intrusion

detection systems, Genetic Systems Program-

ming: Theory and Experiences, vol.13, (2006).

[26] H.G.Kayack,A.N.Zincir-heywood, M. Heywood,

Evolving successful stack overflow attacks for

vulnerability testing, In: Proc. ACSAC, pp.225-

234 (2005).

Special issue of The Romanian Educational Network - RoEduNet

UbiCC Journal, Volume 6 661

