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ABSTRACT 

Many advanced techniques have been developed recently to help fight against  

intrusion. Significant power in this direction can be gained by better taking 

advantage of the patterns available in the data passing through the network.  

We have conceived various software agents, distributed over a network,  

that are able to collect and filter the data and also consider the firewall  

rules. Preliminary experiments show a significant gain. 
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1 INTRODUCTION 

 

 While Intrusion Detection Systems (IDS) have 

the sole purpose of sensing host and network 

malicious activity, Intrusion Prevention Systems 

(IPS) are also required to act with the goal of 

preventing such activities. This means that besides 

sharing the same detection infrastructure with IDS, 

IPS try to reduce the probability of an attack by 

taking a sequence of actions  meant to increase the 

attack difficulty while degrading the network 

performance metrics ass lower as possible. The most 

common intrusion detection (ID) strategies are 

anomaly detection and misuse detection. They can be 

performed either in a centralised or a decentralised 

manner. While anomaly based IDS build a model of 

the system under normal operation and label the 

observed changes as attacks, misuse based IDS 

detect attack patterns using learnt signatures [1]. 

Hence, anomaly based IDS are able to detect novel 

attack patterns at the cost of producing a larger 

number of false positives, while misuse based IDS 

have lower false positive rates, but are unable to 

detect truly novel attacks [2]. Depending on the 

source of data, IDS can be classified in network 

based or host based. While Network IDS (NIDS) 

collect network device statistics and sense the 

streams of network data passing though the 

network's infrastructure, Host based IDS (HIBDS) 

rely mainly on host information such as login history, 

processor and I/O statistics, to detect an attack or a 

malicious user [2].   

 The paper presents a way of combining host and 

network based IDS, and misuse and anomaly ID 

techniques to enhance packet-filter firewalls. It 

discusses how real network data collected by a set of 

sensors and stored in pools of packets can drive the 

development, evaluation and modification of attack 

signatures and firewall rules, process that we call 

evolution. The architecture that will be presented has 

both sensing and acting capabilities and comprises a 

suite of intelligent components responsible for 

collecting and processing data, and finally, 

generating firewall rules and enforcing them. 

Successful network attacks, lack of network 

connectivity and the degradation of network 

performance metrics are perceived by the system as 

quantifiable penalties and are assumed to be 

acceptable, while they are not in the case of IPS. 

 The Erlang [3] programming language has been 

chosen for building a distributed system, capable of 

learning and taking actions on the basis of collected 

information.  Due to the offered location 

transparency, data collection and processing can be 

done either in a centralised or a decentralised manner. 

Erlang is a functional language featuring lightweight 

concurrent processes and process hibernation, hot 

code loading and supervision trees. Erlang was 

initially developed for creating scalable systems able 

to recover from failure [4]. 

 This paper continues the work done on 

developing an IDS system as a pattern recognition 

task, using Erlang [5], with the goal of specifying 

agents meant for enforcing security policies in Local 

Area Networks. The approach employs information 

obtained, both from the individual hosts and from the 

network domain. The agent based approach has 

several important benefits over the traditional 

centralised systems. The absence of a single point of 

failure, the exploitation of local context and the 

ability to take local decisions in addition to the 

offered scalability in terms of data collection and 

processing, are just some of the advantages that 

agent based systems have.  Despite this, the 

centralised approach has been the main focus of the 

security world, while the agent based techniques for 

the computer security domain have been explored in 

[6][7][8][9]. Therefore, we envision autonomous 

agents designed to react to network threats and take 

actions for eliminating or diminishing their effects. 
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The agents have multiple competing goals and are 

distributed into an insecure and loosely connected 

computer network. To simplify the design, we model 

user needs and actions by an information agent that 

we call User Agent, which is responsible for: 

retrieving information from the given host or from 

the local network, and performing actions that a 

normal user might do. A single User Agent runs on a 

given host, and no collaboration with other User 

Agents from different hosts is assumed.  Furthermore, 

the attacker's behaviour is modeled by an Attacker 

Agent having the purpose of disrupting, biasing or 

gathering information from the User Agent's host. 

The Security Agent is responsible for the User 

Agent’s safety, and for handling the authentication 

and authorization process. 

 The agent design has been specified in GOAL 

(Goal Oriented Agent Language) [10] having 

temporally extended declarative goals [11]. As 

described in [11], the symbols □ stands for "always", 

◊ for "eventually" and ○ for "in next state” and are 

used to denote operators from temporal logic. For 

expressing the agents beliefs and desires the symbol 

B for "belief" and G for "goal" are employed. 

Conditional actions are expressed using ɸ  do(*), 

where ɸ is a mental condition, and * a basic action; 

time information is introduced using before and 

until; for further details please refer to [10] and [11]. 

  

2 MOTIVATION OF THE APPROACH  

 

 Firewalls, antivirus applications, intrusion 

detection / prevention systems and audit tools are the 

most prominent tools for enforcing security policies, 

detecting and responding to security attacks. Even 

though great effort has been put into automating the 

security infrastructure, there is still a need for 

security professionals. They are supposed to know 

the best practices, the context in which they apply, 

and, more importantly, they must be able to predict 

the impact that such practices might have. In addition, 

tools have different vendors and this has an impact 

on compatibility. It is often a practical requirement to 

use tools from the same vendor hoping that they 

would be able to cooperate. Yet, the security domain 

often requires multi-layer and multi-vendor tools. 

Furthermore, there is the problem of ensuring that 

security policies are actually enforced throughout the 

local domain. While domain controllers help in this 

aspect, there is still the issue of users deliberately try 

to violate the policy for a gain in processing speed or 

the problem of delayed responses in the case of 

online attacks. Hence, one needs to enforce 

distributed control in the local domain. A suitable 

means of accomplishing this is by using agents. They 

offer the means of exploiting existing knowledge and 

the underlying infrastructure. They offer means of 

modeling interaction, are able to reproduce, to a 

smaller scale, the activity of a user and can be 

replicated, tuned, tested and run in a virtual world 

without time limits. By being able to generate 

network traffic, they can be used to check whether a 

security policy is actually enforced and moreover 

what would be its impact on the real system. 

Furthermore, agents could be used to detect security 

vulnerabilities or weaknesses in an automated 

manner by using specially crafted attack sequences.  

Furthermore, a pool of attacking agents could be 

used to actively determine the coverage of firewall 

rules or a pool of agents modeling user behavior 

might be used to generate relevant network traffic. 

Moreover, agents might replace, in the near future, 

security professionals and act as glue between 

different tools belonging to different vendors. For 

example, the abstract concept of "drop packet" can 

be mapped to two different firewalls yet preserve its 

meaning. Agents can be equipped with the 

knowledge of a security professional and be able to 

adapt the actions to the given context, using their 

perception. Currently there is a major problem 

related to the gap between what agents can and what 

it should do. While agents work with abstract 

concepts, security tools require a detailed knowledge 

about their inner workings.  

 The paper intends to model such agents and 

show how an agent percepts and actions would map 

to existing security tools and information sources. 

For example, in an agent specification src_ip(packet) 

would reduce to a logic proposition (true/false) that 

can be mapped, behind the scenes to an actual value 

('192.168.1.1'). The reason why Erlang we employed 

is that its concurrency model, based on Actor 

interaction, offers the possibility of running multiple 

agents and by integrating the sensors a small step is 

made towards building a security framework.  

 

3 AGENT SPECIFICATION 

 

 Since users are able to prioritize their goals and 

choose inconsistent or unpredictable sequences of 

actions that often exceed the capabilities of the 

frameworks developed so far, a User Agent is used to 

model the behaviour of a user. We enforce agents to 

employ sequences of actions which with their beliefs 

and goals, and require them to have a consistent goal 

base. While a User Agent models the actions of a 

hypothetical user, the Security Agent models the 

maintenance tasks and the response to attacks. Its 

goals are to defend the User Agent, prevent and 

counteract attacks and assess the security of the 

communication link. The goals of the agents might 

compete between themselves, as it is the case of the 

connection maintenance goal and the security goal: 

dropping network connectivity might ensure 

protection against attacks and therefore fulfill the 

security goal, while the communication ensures the 

flow of information that is needed by the User Agent 

to fulfill the task. We discuss now about the tasks of 

Special issue of The Romanian Educational Network - RoEduNet

UbiCC Journal, Volume 6 651



 

the Security Agent using some simple examples. 

Identity management. The Security Agent is 

required to establish the connection with a Broker 

Agent (foreign). The Security Agent believes that it 

knows the User Agent's credentials: □ B username, □ B 

password, □ B broker_agent. Whenever there is no 

connection, exactly one such connection is set up: 
□ (B username ˄ B password ˄ B broker_agent) → 

connect(broker_agent,username,password) 

Logging. The agent's goal is to ensure individual 

liability. Whenever the User Agent sends a request to 

a broker, the Security Agent stores a copy of it for 

accounting purposes.         □ request → ◊ store(request) 

Whenever the broker replies, a copy of the message 

is also stored.                     □ reply → ◊ store(reply) 

Resource management. The Security Agent acts as 

a mediator between User Agents and its operation 

follows strict guidelines. Accessing a shared resource 

(access_req) and altering their state require User 

Agents to be authenticated (auth) and authorized 

(aut) to perform such actions. 
  □valid(id,password)→B authenticated 

 Note that due to the fact that GOAL employs 

linear temporal logic, valid(id,password) must 

reduce to a logic proposition. The rule says that 

whenever the id (or username) and the password are 

correct, the User Agent is authenticated (auth). Since 

GOAL agents have their internal state represented 

through mental states, beliefs and goals, the 

authentication process implies that the agent believes 

in the given user authentication. An agent is 

authorized to use a resource (res) if it is 

authenticated and has the permission to use it:  
□(B auth˄B has_permission(resources)) →B aut (res) 

 An authorized (aut) agent must be given access 

(ag) before a given moment can be expressed as:  
□((B aut (res)→G ag(res) before 15:00) 

 Note that granting access to resources is viewed 

as an achievable goal having a temporal hard 

constraint, 15:00 meaning that access must be 

ensured up to that time (the starvation problem).  

Hence, there is a maintenance condition that a User 

Agent eventually releases (rel) the resource. 
□ag(res)˄B peers_need(res)→◊ G rel(res) before  15:00 

 Note that using this specification we are unable 

to ensure that the other agents would be able to use 

the resources until the time expires. If the Security 

Agent believes that the User Agent has been 

compromised by an attacker, the Security Agent is 

able to drop the resource usage goal.  
□B compromised→drop(G access_granted (resources)) 

 Since the Security Agent is required always to 

run, a portion of the memory should be dedicated for 

it. This would require killing processes whenever it 

believes that there is insufficient memory left:   
□ B ¬ sufficient_memory → G kill_process 

Network connectivity. The Security Agent is 

responsible for ensuring that User Agents are entitled 

to use the computer network. Whenever a User 

Agent has authenticated itself and is authorized to 

use the computer network, the Security Agent 

performs a sequence of actions to grant the user 

access (gua) to the network.  
□(B auth ˄ B network_autorized)→G gua 

 The actions meant for providing network access 

are constrained by a conjunction of preconditions 

expressed as beliefs (ex. B administrator): 

□do(allow_all_user_traffic)→B administrator 

□do(allow_all_web_traffic)→B regular_user 

 If no packet is received in a given time frame, 

the agent should check whether there are some 

connectivity problems. The agent has the goal of 

maintaining the connectivity between end-points.  

The agent believes that it is configured with an IP 

address B dhcp(ip), and that it is able to ping to the 

outside of the network B ping(outside). The strategy 

is to check if the interface is up, perform a Layer 2 

broadcast and see whether there are any replies, 

perform a Layer 3 broadcast and see whether there 

are any replies, ping to outside of the local network. 

In case one of the first three tests fails, the actions 

performed are to re-enable the interface, and if only 

the last test fails the strategy is to request a new IP 

address from the DHCP server.  

 
Πconectivity ={G connected ˄ B layer2_reply(none)  

 create_layer2_broadcast(layer2_frame), 

buffer(layer2_packet)  send(layer2_frame), 

 (G connected ˄ B layer3_reply(none)  

 create_layer3_broadcast(layer3_packet), 

buffer(layer3_packet)  send(layer3_packet),  

B layer2_reply(local_network) ˄  

B icmp_reply(local_network)  ping(gateway),  

B icmp_reply(gateway)  ping(broker), 

B icmp_reply(broker)  network_working, 

¬ B layer2_reply(local_network) until 30 sec 

 reenable(interface), 

¬ B icmp_reply(local_network) until 30 sec ˄  

B layer2_reply(local_network)  release(ip), 

B ip(no_lease)  dhcp_request(ip)}, 

Σo
connectivity = {B layer2_reply(none), B icmp_reply(none)},  

Γo
connectivity = {connected} 

 

Network protection. The agent has the goal of 

maintaining the security of the communication link. 

When the Security Agent believes that the system is 

under attack it has the goal of blocking incoming 

packets. When this happens it can either simply drop 

them or explicitly send a reset message, which has 

the benefit of decreasing the attacker’s speed and the 

price of increasing the workload on the Security 

Agent in case of Denial of Service attacks (DoS). The 

same strategy may not apply also for a Distributed 

DoS (DDoS) when reset messages have an impact 

only on a limited number of hosts, and a negative 

influence on the throughput of the link. Hence, we 

condition the activation of an action based on a belief.  
enabled(silently_drop(packet))  

enabled(drop_and_send_reset(packet)) 

B DoS  drop_and_send_reset(packet) 

B DDoS  silently_drop(packet) 
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Data security. The agent's goal is that of 

maintaining the confidentiality of corporate data. If 

the Security Agent believes that the information sent 

by the User Agent infringes a confidentiality 

constraint, it must drop the packets corresponding to 

that stream. If the source of a message is not known, 

the message must be discarded. Furthermore, if the 

Security Agent believes that the alleged source is not 

the true one, the message is always discarded.          
□ B infringes(packet) → drop(packet) 

□ B ¬source(packet) → drop(packet) 

              □ ¬B source(packet) → drop(packet) 
Monitoring. The User Agent can terminate under 

three conditions: internal error, attack and normal 

exit. If the Security Agent believes that the User 

Agent has not terminated normally, it has to restart it: 
□ B ¬normal_exit(user_agent) → restart(user_agent) 

 If in three consecutive states the agent believes 

that the CPU consumption increases (cpui), the event 

is considered to be a sign of an attack.  
□ (○B cpui)˄ (○○B cpui)˄(○○○B cpui) → B attack 

 In the other extreme, high traffic volumes might 

generate a high number of interrupts that will be 

perceived as processor idle time. When corroborated 

with the fact that the traffic is composed mainly from 

SYN packets, this might be seen as an attack. 
□ processor_iddle ˄ SYN_packets → B attack 

Collaboration with other security tools. 
 The Security Agent can be easily integrated with 

the existing security tools. One can add external 

security information in the form of beliefs and map 

the agent's actions to firewall rules or system call 

policies. For example, when the system calls 

performed by an application violate the exiting 

systrace security policy, the host based security tool 

can add the belief B priviledged_syscall to the agent's 

belief state, and the agent will take the decision of 

allowing or denying the system call based on its 

mental state, beliefs and goals. While systrace can 

deny any deviation from the established security 

policy by itself, the technique is not scalable since 

users might require some functionality so rarely that 

it does appear in the learning phase. Testing every 

option that an application may have, in the hope of 

learning the collection of system calls that the 

application might make during its lifetime is a 

challenging task. The agent based approach has the 

advantage that the required functionality can be split 

among several components that can take information 

from multiple sources. The complexity of the overall 

system is reduced and the individual components can 

be more easily tailored to the user needs. While 

considering a mainstream IPS, the anomaly 

notifications triggered by the system can be 

integrated in the agent using the aforementioned 

beliefs. Once the agent has the belief that the system 

is undergoing a port sweep B reconnaissance_attack, it 

uses a maintenance condition to adopt the goal 

blocking unused ports (block_up): 
□ (B reconnaissance_attack →adopt(G block_up)) 

that is fulfilled using the action : 
do(close_up) → G block_up 

 The agent's action, such as close_up, can then be 

translated into firewall rules. As an implementation 

suggestion, the netstat utility can be used to retrieve 

the currently open ports and the applications that use 

them. These can be added as agent beliefs such as    

B port_80_opened. Using a deny any rule or under the 

firewall's Closed World Assumption, the open ports 

remain opened since the agent will assert a firewall 

rule to let them opened, and the rest of the ports 

would be closed.  

Attacks. Several attack scenarios [12] will be 

described next and for each one of them a possible 

agent specification is provided. Just three classes of 

attacks will be discussed, mainly those: intended to 

disrupt or degrade the communication flow, those in 

which the attacker masquerades itself as another 

agent, and those where the purpose of the attacker is 

to collect information regarding the victim. These 

could be expressed as the goals: to disrupt the 

communication between the other agents G disrupt, 

bias G bias or gather information G gather_information. 

We make the assumption that the attacker believes 

that the Security Agent has software vulnerabilities B 

software_vulnerabilities, has unused services running B 

running(unused_service) and the corresponding ports 

are open B open(unused_ service_port). Furthermore, 

it assumes that it can take over the control of Secure 

agent B control(secure _agent). Knowing that the sub-

goals G directed_broadcast, G fragmentation_attack, G 

ip_options_attack, G syn_flood, G reset_attack entail the 

goal G disrupt the attacking agent selects one of 

them to accomplish it. 
 

Πdirected_broadcast ={ 

  G directed_broadcast ˄  B ip_dst_addr(ip) 

 change_ip_src_addr(broadcast_ip), 

G directed_broadcast ˄B mac_dst_addr(broadcast_mac) 

  change_mac_dst_addr(broadcast_mac), 

G directed_broadcast ˄B mac_dst_addr(broadcast_mac) 

˄ B ip_src_addr(broadcast_ip)  send(packet)} 

Σo
directed_broadcast ={ip_src_addr(src_ip),  

mac_src_addr(src_mac),  ip_dst_addr(dst_ip), 

mac_dst_addr(dst_mac)}  

Γo
directed_broadcast ={directed_broadcast} 

 

Πreset_attack = {G reset_attack ˄B ip_src_addr(src_ip) ˄  

B ip_dst_addr(dst_ip) ˄ B mac_src_addr(src_mac) ˄  

B mac_dst_addr(dst_mac) ˄B flags(ack)  

 change_flags_to(ack,rst)  

G reset_attack ˄ B flags(ack,rst)  send(packet)}  

Σo
reset_attack = {ip_src_addr(src_ip),  

mac_src_addr(src_mac),sequence_number, flags(ack), 

 ip_dst_addr(dst_ip), mac_dst_addr(dst_mac)} 

Γo
reset_attack ={reset_attack} 

Disruption using unknown format or parameter. 

The attacker sends packets with some invalid format 

or parameters the attacker hopping to crash the 

victim. To prevent this, the Security Agent always 

drops the non-compliant packets that it receives: 
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□ has_ip_options(packet) → drop(packet) 

□zero_fragment_number(packet)  →drop(packet) 

□ ip_source_routing(packet) → drop(packet) 

TTL attacks. The attacker sends IP packets with 

small TTL (Time To Live) hopping they would expire 

at the victims interface, to force the User Agent 

dropped them and send an error message requiring 

computational resources and consuming the agent’s 

bandwidth which leads to a decrease in productivity 

since fewer resources are available. When receiving 

such an IP packets, it will believe that either this is a 

normal event, since it is allowed event, or constitutes 

an attack ttl_expire→B(attack ˅ legal_event). Note that 

even though, the Security Agent could, at a certain 

point, believe that this was not a legal event 

¬Blegal_event, one cannot infer B attack using this 

specification. In contrast, if such packets originate 

from a single machine then this might be an attack: 
same_source_ip ˄ ttl_expire → B ttl_attack  

since after the first error message was received, the 

original sender should have stopped sending packets:  
□ ttl_expire → stop_sending 

Generally though, several attackers are needed for 

this attack to be successful, which can be specified 

by dropping the restriction that TTL packets come 

from the same source IP. The agent will believe it is 

subject to an attack until there are no expired IP 

packets:                        □ B ttl_attack until ◊ ¬ ttl_expire  

Directed broadcast attack. Packets sent to the 

broadcast address are expected to be processed by all 

the networking devices on a local segment:  
□broadcast_address˄dev_on_local_net → process_packet 
 If the source address is also a broadcast address, 

the networking devices will broadcast their replies 

and as a consequence the network segment will be 

filled by high volumes of useless traffic. Packets 

having the source IP address a broadcast address are 

unusual at least, hence □¬ source_ip_broadcast_address. 

TCP attacks. There is a large range of TCP attacks, 

among which TCP SYN attacks, TCP SYN-ACK. 

Firewall cope with this by sending TCP RST (reset) 

whenever the number of synchronization requests 

exceeds a given threshold. The advantage of this 

strategy is that it can prevent resource depletion, but 

this depends on how fast it can reset incoming 

connections. Since alternative strategies are available, 

by incorporating firewall blocking strategies into an 

agent, we employ a decision process that is more 

adapted to the context. For example, another strategy 

is to use TCP keepalives which forces the attacker to 

respond with the effect of reducing its send rate: 
send_keepalive until (received_RST ˅ received_FIN) 

Expressing the fact that many SYN packets are 

received is rather awkward, that might be stated: 
□◊synchronization(packet)  → ins(B syn_flood) 

B syn_flood  silently_drop(packet)  

B syn_flood  drop_and_send_reset(packet) 
The Security Agent will then have two actions at his 

disposal for accomplishing the goal of protecting the 

system from a SYN flood attack. 

Biasing or Collecting Information. The Man in The 

Middle Attack is meant to bias flow of information 

between a broker and the User Agent. The Security 

Agent's job is to detect when there are signs of an 

attacker's presence. For this, suppose that the 

Security Agent is allowed to drop packets only in the 

case of a Man in The Middle Attack. For an attacker 

to put itself in between the two agents, it has to guess 

the sequence number of the TCP connection, must 

reset the connections between the two endpoints and 

establish a connection between itself-Security Agent 

and itself-User Agent. Suppose that the Attacker 

accomplishes this and it requests some confidential 

data from the User Agent. The User Agent receives 

such the request and since it believes that the attacker 

is the broker it sends the secret data.   
 B broker_request(attacker)   ins(broker(attacker)) 

 B broker(attacker)   send_secrets(packet) 

 Since this is an active attack, a rather noisy one, 

the Security Agent can detect it by observing packets 

with an invalid TCP sequence number. If such a 

situation occurs, the drop action is  enabled. Next, if 

the Security Agent believes it has received an IP 

packet from the attacker who triggered the invalid 

sequence number condition, the IP packet will be 

dropped.  
□tcp_sequence_error → enable(drop(packet)) 

 B packet_src(attacker)   drop(packet) 

Port sweep. A common requirement is to always 

close unused ports:      □ ¬ used_port → do(close_port).  

 This can be enforced for well known IP ports 

(ports smaller than 1024), while for the others, one 

could specify:              □¬B used_port →do(close_port). 

Furthermore, if a packet addresses an unused port 

this would indicate a possible vertical scan. 
□unused(port)˄ packet_dest_port(port)→B vertical_scan 
 If the Security Agents were able to collaborate, 

horizontal scans would be detected in a similar 

fashion. 
 

4 IMPLEMENTATION 

 

 According to the specification, the Security 

Agent uses the belief base as an internal 

representation of the world and a goal base to 

express its purpose for which it operates. The agent 

strives to achieve these goals while exploiting its 

capabilities and taking into consideration the 

constraints imposed on it. We view the agent as a 

layered architecture, in which each layer is an 

instantiation of the agent for a given role, rather an 

aggregation of components. Hence, we have an 

instance of the agent dealing with data acquisition, 

an agent instance handling goal adoption, belief 

update and action selection, and one which performs 

the adopted action in the environment. These are the 

Sensor, the Reasoner and the Efector Agent. The 

main benefits of this approach appear during the 

implementation phase. As it will be described in the 

next sections, the Sensors need to access low level 
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resources to sniff network related data, which usually 

requires administrative privileges. On the other hand, 

the Efector Agent performs the adopted actions, such 

as setting a firewall rule, in the environment. It too 

requires administrative privileges, but by enforcing a 

distinction between the different layers, a more 

granular permission control is used. The sensor only 

has to have permission to access the sniffing 

interface (or the raw sockets), and the Efector Agent 

has to have elevated rights only for the firewall 

interface. The deliberative part, performed by the 

Reasoning agent is then isolated both from the data 

acquisition and action roles, and has the role of 

processing the data. The direct consequence is that 

we have different components on which we can 

impose different security constraints, rather than on a 

unique one. Furthermore, this allows us to replicate 

the Efector Agent on all the local domain's computers 

and let it execute in parallel the actions specified by 

Reasoning Agent. In turn, we may have a unique 

Reasoning agent which fuses the data received from 

multiple sensors and specifies the actions that are to 

be performed by a single  Efector Agent (gateway / 

firewall) or multiple ones (multiple Access Layer 

devices and / or domain computers). From the 

implementation point of view the architecture 

resemblances to a classical management system 

while on a higher level to an agent. Hence, we 

benefit both from the well defined semantics of the 

agents and from the already existing tools and APIs 

(Application Programming Interface).   

Layout. The system is built upon a collection of 

sensors and Reasoner/s. On each monitored host 

there exists at least one sensor that can be an 

Operating System (OS) related tool, whose output 

will be parsed, a C based application or an Erlang 

node. Attack signatures, stored in the form of real 

network packets, are used for the dynamic creation 

and online testing of firewall rules. Based on these 

signatures and on host and network statistics, the 

Reasoner, built in Erlang, creates the firewall rules. 

Collecting and processing data can be done either in 

a centralized manner, when all sensors in the 

network send their observations to a single location, 

or decentralized when monitored network hosts are 

responsible for processing their own data and the 

neighbors’ data [13]. The centralized approach has 

the advantage of not affecting the monitored host's 

statistics, at the cost of raising privacy and security 

concerns, while the decentralized approach 

overcomes these privacy issues, but puts a load on 

the monitored machine, thus affecting its statistics. In 

the case of the centralized approach, a single host or 

a set of dedicated hosts that share the workload are 

used. Since Erlang has first class functions, both 

approaches can be implemented: in the centralized 

approach we send the data to the dedicated group of 

Erlang nodes for processing, while in the 

decentralised host based approach, functions are sent 

to operate on the host's data.  We have used a 

centralised approach for collecting data, and a 

distributed system for processing it.  

 The major components of the generic IDS/IPS 

architecture are presented next. We distinguish 

among Communication Agents, Sensor Agents, 

Processing Agents or Reasoners, and Efector Agents. 

Each such agent fulfills a set of related tasks, using 

OS tools or applications developed using Erlang and 

C programming languages.  

 Communication Agents deal with the secure 

transmission of data between nodes, by establishing 

a secure connection through a Virtual Private 

Network (VPN) or port mapping with the help of ssh. 

They also deal with the representation of data shared 

by applications running on different physical nodes 

(hosts).  

 Sensors collect host based information and 

network related statistics using either syslog 

messages or Simple Network Management Protocol 

(SNMP) packets, or by using existing OS querying 

tools. Sniffing network packets is also their 

responsibility. Erlang provides support for building 

UDP, TCP, and SNMP sensors, and a framework for 

communicating with C or Java applications. Since 

packet inspection is computationally demanding but 

is of great importance for detecting attacks, sensors 

are required to filter the data to be sent for 

processing. Because support for packet sniffing is 

not present, the C framework was used for 

implementing this functionality. The sensors are 

intelligent, in the sense that they can filter data that 

this sent for processing.  

 Reasoners or Processing agents are the 

component where the firewall rules are managed and 

the amount of needed feedback data is established, 

by creating special purpose filters. They determine 

the significance of system wide observations and 

decide whether an attack is ongoing and what actions 

should be taken. Communication is done through 

message passing and their state is kept either locally, 

or in a distributed fashion (Mnesia database). Efector 

Agents execute the actions specified by the 

Processing agents on single hosts or on the overall 

system. Their most common task is that of applying 

firewall rules.  

 
Figure 1: Network Topology 
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 Considering Figure 1, between the two 

screening routers, rightmost handling the 

communication with the Internet Service Provider, 

and the leftmost with internal traffic, such as inter-

VLAN (Virtual Local Area Network) routing, a host 

is placed in inline configuration. A network sensor, 

responsible for collecting network related data, an 

Efector Agent, enforcing firewall rules, and a 

Communication Agent, handling the traffic from the 

sensor to the reasoner, run on it. On the work group 

switch, on the left side, another such host is 

connected to the mirroring / span port. All the data 

collected by sensors is sent to a Processing Agent, 

composed of a group of Erlang nodes that share the 

workload. They are connected through a switch, as 

shown in the bottom of the figure.  

Selection and Evaluation of Firewall Rules.  
The IDS relies on sensors to collect data from the 

local network [13]. These packets are temporarily 

stored by the Reasoner in two pools of packets: 

normal traffic and attack packets, which are used to 

create the firewall rules. In the learning phase, the 

packets arriving on the local network interface are 

put in the normal packets pool. During a penetration 

testing procedure, the resulting packets are stored in 

the attack pattern pool. The normal and attack 

packets are later combined using a similar procedure 

with that of genetic algorithms. A new packet is 

created by combining packets extracted, with a given 

probability, from each of the pools. Although the 

combination of packets at arbitrary points should 

have been allowed, due to efficiency reasons we 

extract at each layer the header fields and the 

corresponding payload. We call them features, and 

let them suffer arbitrary mutation and undergo a 

crossover process. Layer hashes and packet length 

fields are not considered features and therefore they 

are automatically computed for each resulting packet. 

The TCP sequence and acknowledgement numbers 

are considered features, but are subjected to the 

protocol constraints. The genetically evolved packets 

are then put in the tentative packets pool containing 

packets whose threat characteristics were not 

established. Firewall rules are generated by an 

evolutionary process, and the valid ones are set on 

the local interface. An arbitrary pool is selected, and 

packet is extracted from it and sent through the 

specified network interface. Since no firewall rule 

specifies options such as connection tracking, batch 

send is used. In the case of connection-oriented 

protocols, such as TCP, a connection can be initiated 

by an OS script that either opens a port and listens on 

it, or makes requests for services. If the packet is 

dropped due to invalid format, it is not taken into 

consideration any more. Each rule has six scores 

assigned: true positive, true negative, false positive, 

false negative, positive-generality and negative-

generality. A false positive is a dropped packet that 

does not belong to an attack sequence, while a false 

negative is an attack packet that was not recognized 

as such. Packets from the tentative pool are used for 

establishing the generality of a firewall rule, while 

normal and attack packets are used for the other four. 

If a rule drops or allows passing a high number of 

packets from the tentative pool, the rule is considered 

very general. Dropping a tentative packet increases 

the negative-generality, while allowing one to pass 

increases the positive-generality. If a rule affects a 

limited number of tentative packets, the rule is 

considered to be very specific. Since firewalls 

evaluate the rules in a top-down fashion, the 

generality score helps in the positioning of rules. For 

example, depending on the default policy we may 

put rules with high negative/positive generality 

closer to the top or to the end of the firewall list. 

Since both iptables and, for example ipfilter, require 

setting a default policy, such as drop or pass, the 

positioning of rules allows packets to be dropped, or 

passed, more quickly. Furthermore, we may set a 

threshold for the generality scores, above which the 

rule is discarded. The fitness function for firewall 

rules is given by a weighted sum of the six scores. 

The weights are set a priori. The fitness function for 

tentative packets is more complex since if a packet 

matches a firewall rule that has a high generality, it 

receives a penalty, and if it matches a specific rule 

then it receives a reward. If the packet does not 

match any rule and the action is based on the default 

policy, the score is given by the similarity with the 

other packets in the tentative pool. If a packet 

novelty is high, the score it receives is also high. The 

packets in the normal packet pool can be replaced by 

new packets sniffed from the local network, if they 

participated in at least one crossover operation or 

their novelty, with respect to other packets, is low. 

This would ensure that some trails of normal packets 

would be kept in the tentative packets pool. Since we 

presume that attack packets are more difficult to 

obtain than normal packets, all are kept across 

generations.  By employing this mechanism a direct 

link is made between the agent’s perception and 

possible actions that emphasizes the role that of 

perception plays in the adaptability of the agent. 

Collect, Filter & Process Network Data. Gathering 

network data is a challenging task for software based 

ID applications since the amount of data that can be 

captured under heavy load and the latency that this 

operation induces depend heavily on the OS's 

network stack implementation [14]. Furthermore, 

processing and sending network data raises a suite of 

problems, since large volumes of network traffic are 

accompanied by a large number of interrupts, 

serviced by kernel code leaving little processor time 

available for user space applications. Firewall 

applications cope with this issue by using a given 

kernel interface and taking simple decisions based 

mainly on packet header information. The criteria 

used for discriminating packets is given by firewall 
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rules in the form of fixed values, so that as little 

processing as possible is done. The situation gets 

complicated in the case of misuse or anomaly based 

IDS, since the criteria used for discrimination is 

either not readily available, or requires expensive 

computations. In the case of anomaly based IDS, OS 

statistics, such as processor time, memory 

consumption, number of packets received on an 

interface or the number of interrupts can help in 

deciding the sampling time interval. Such 

information can be collected by parsing the output of 

available user space OS tools, or by using a kernel 

module which would retrieve such data from within 

the kernel. In the case of misuse IDS, the similarity 

computation process, usually done in an user space 

application, requires copying packets from kernel 

space to user space. If the traffic volume is high, the 

user space application might not respond in due time 

and even lose packets. The goal of minimizing this 

traffic can be achieved either by doing more 

processing work inside the kernel or by passing just 

a portion of the packet to the user-space IDS 

application. By implementing the IDS's basic 

classifier as a kernel module, we would solve not 

only the problem of the data transfer, but also the 

user space IDS scheduling issue. This is done at the 

cost of bloating the kernel. Several issues that make 

such an implementation rather difficult were 

identified. Floating point operations are not usually 

allowed inside kernel space, which would rule out 

classical Artificial Neural Networks that heavily use 

them. A solution would be to emulate such 

operations using integer arithmetic, but the increase 

in the number of arithmetic operations and in the 

amount of required memory might cost more than 

the processing done in user space. Resources 

available in the kernel are rather limited and the 

kernel code is expected to accomplish well balanced 

tasks as fast as possible.  If the number of hidden 

layers and neurons used are kept at manageable sizes, 

an implementation of an Artificial Neural Network 

would be possible, depending on the employed 

algorithm. The same remarks apply for other similar 

strategies such as Self Organizing Maps and Support 

Vector Machines. The use of Genetic Algorithms 

raises memory and performance concerns. A small 

set of individuals and a careful choice of the 

evaluation / fitness function are required. The metric 

used must not require floating point operations, so 

Manhattan or Hamming distances are possible 

candidates. Another important issue is related to 

network packet's length. Since they are different, a 

common denominator must be enforced. If the 

payload is not used, but just the header, then using 

handwritten firewall rules and existing dump 

facilities is probably a better choice. Hence, Bloom 

filters [15] were used to address such issues, mainly 

the kernel memory limit and the problem of variable 

packet payloads. They employ just a bit-string and a 

set of hashing functions to detect whether an 

example has been previously encountered (similar to 

the strategy used by the ipset package in case of 

header fields). The problem with this resides on 

finding the set of hashing functions which best 

expresses the novelty or the similarity of packet 

payloads, since Bloom filters can produce false 

positives when the bit-string is too small or the 

hashing functions are not efficient. All of these 

classifiers require training, testing and an evaluation 

phase. While evaluation is done using the kernel 

sensor, the learning and testing phases are 

accomplished in Erlang since it allows the 

development of distributed applications and provides 

the bit syntax that facilitates parsing binary data. 

Moreover, development and experimentation is done 

more easily in Erlang. The downside is that multiple 

machines are needed to share the computational 

workload. The advantages of the presented kernel 

based IDS is the access to low level information and 

the high processing speed. The disadvantages are the 

high level of expertise required, not for building it, 

but for ensuring that it does not become the 

component causing machines to crash.  Before going 

further a clarifying example is provided, in which 

packet payloads are used for classification. Suppose 

decentralised approach for collecting network related 

data is used in which each host has a Reasoner (the 

Processing agent) and a sensor (classifier running in 

kernel space). The Reasoner stores the 

aforementioned pools of packets, normal, attack and 

tentative, in Erlang dets tables.  While the sensor 

implements a simple Bloom filter, the Processing 

Agent can use more complex algorithms. The 

Reasoner and the sensor share a set of hashing 

functions, and the sensor has an entry in the /proc 

file systems, allowing both read and write operations. 

The Processing Agent selects a set of packets from 

the attack pool, extracts the payload using the bit-

syntax and computes the bit-string corresponding to 

the Bloom Filter which gets written to the sensor’s 

corresponding /proc entry. When a network packet 

arrives and a payload is presented, the sensor 

computes the corresponding hashes and checks the 

bit-string to see if it the packet is a match. If it is, it 

stores the whole packet, a part of it or a value into 

another buffer (but it does not take dropping 

decisions). The Processing Agent periodically pools 

the /proc entry trying to read from it, thus fetching 

the corresponding data. On the basis of this data, the 

Processing Node can extract, for example, the 

corresponding IP addresses and build a firewall rule 

which will be set by the Efector Agent. Similar 

packets generate similar rules, and therefore the 

system is responsible for selecting the firewall rules 

with the highest generality or specificity. 

Furthermore, the Processing Agent can generate not 

a single one, but a set of firewall rules, and using the 

Efector Agent set them on the network interface. By 
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sending the same, or similar, packets and checking 

which firewall rule matched, the efficiency of the 

firewall rules could be computed. This, can be 

viewed as feedback and can be used to test the 

perception and the acting capabilities.   

 This architecture can also be used for raw 

filtering of training datasets. Suppose that we have a 

large dataset containing attack patterns. If we are 

limited to a single host, processing the dataset in 

Erlang's Processing Agent would take a considerable 

amount of time. A possible strategy is to send those 

packets through the local interface, allow the sensor 

to alter its internal bit-string as packets arrive and 

put the latest version of the bit-string into a buffer for 

the Processing Agent to read it. If this strategy is also 

applied on a different interface for a dataset 

containing normal traffic, the Processing Agent 

could then fetch both bit-strings, set them on the 

ingress and egress sensor and pass again through 

both datasets and store only the interesting packets, 

those for which the Bloom filters give contradictory 

answers, thus effectively filtering the datasets.  

 A strategy that uses the in place infrastructure, 

namely Berkeley Packet Filter (BPF) [16], has also 

been studied. Mainly, the BPF network interface 

provides access to a virtual machine capable of 

filtering network packets. Due to its high level of 

configurability, it allows the development of a 

'program' through an evolutionary approach that 

would describe the criteria or the algorithm used for 

selecting packets while running inside the kernel.  

 Furthermore, BPF allows specifying the portion 

of the packets to be transferred from the kernel space 

to user space. The suitability of 'zero buffer copy' 

[17] for developing IDS is yet another interesting 

feature that needs to be explored further. The BPF 

offers a scratch memory and a small instruction set, 

comprising load operations, arithmetic and logic 

statements and forward jumps, making it suitable for 

genetic programming. Using the distributed 

programming facility offered by Erlang, such BPF 

'programs' can be executed at the same time on 

multiple hosts and the selected packets can be sent, 

even remotely, for processing. Therefore population 

based genetic algorithm can be designed in Erlang, 

tested on real data and the corresponding filters 

created, since the operations executed by the the 

BPF's VM can be emulated in Erlang using the 

provided bit syntax.   

 Efector nodes were implemented mainly as 

Erlang C Nodes. They run with superuser rights and 

their primary task is setting firewall rules and 

modifying OS configuration files.  

 User-space sensors use a mixture of Erlang and 

C programming languages. Although they implement 

similar algorithms, they differ from kernel sensors by 

the fact that they more flexible. Since, Erlang does 

not provide libraries for sniffing or sending network 

packets, we have built an Erlang C Node and an 

Erlang Port Driver for sniffing or sending network 

packets. To manage the security risk involved, 

superuser rights are targeted to the specific resource 

that need to be accessed. In the case of network 

packet sniffing, the Erlang sensor can either listen on 

the network interface itself or parse the output 

provided by a dedicated OS tool. If a centralized 

approach is used, on each monitored host there 

would be an Erlang C Node acting as a sensor. No 

Erlang VM installation would then be required. But, 

in the case of a decentralized approach, since Erlang 

must be present to perform data processing, we 

would use Erlang Port drivers and require the 

installation of Erlang. Commonly used when low 

level access is required or for performing tasks that 

would take too much time when done in a functional 

language, Erlang Port Drivers provide high 

performance at a higher risk, because data 

marshalling takes less time since they run in the 

Erlangs's Virtual Machine (VM) address space. But, 

even though the throughput is much higher, if the 

application experiences some errors, the VM might 

crash and the design of port drivers is a complex task. 

Furthermore, synchronization might pose problems, 

and corroborated with the fact the library's thread of 

execution is mapped on VM threads, issues occur. 

Furthermore, as the documentation states, no 

blocking operations should be performed. The Erlang 

version R13B03 tries alleviating these issues and 

proposes the Network Function Interface (NIF) 

which makes development easier. C nodes are the 

Erlang's solution to creating, porting or integrating C 

applications. A similar interface exists for the Java 

programming language. We focused mainly on this 

approach, since these nodes are standalone 

applications running outside the Erlang VM. As such, 

they `should` not crash or affect the Erlang VM, but 

at the same time they do not benefit from the failure 

robustness provided by the Erlang system. C / Java 

Nodes communicate with Erlang through message 

passing using TCP/IP. The Erlang VM periodically 

sends heartbeats to see whether a connected node is 

down. Data marshalling between Erlang nodes and 

Erlang C / Java nodes incurs a great performance 

penalty. This is an important aspect in the following 

scenario: in client-server architecture, the Erlang 

system sends data for processing to a remote C Node. 

If the client Erlang VM sends too many messages to 

the server C Node and data marshalling takes too 

much time, or in the case the data processing takes 

too long and the server is not threaded, the C Node 

will not process and respond to the heartbeat in due 

time. Thus, the C Node will be considered to be 

down. A possible solution is to develop the C 

application outside the Erlang platform and 

communicate using TCP / IP. In both cases there 

should be a balance between message size and 

message number. While taking into consideration 

that TCP is used, sending a large message seems to 
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be better, with respect to marshalling, than sending 

many small messages. The Erlang nodes, as well as 

C or Java Nodes, enter in a thrust domain only if 

they have the same shared secret, called cookie. 

Erlang nodes are able to execute Remote Procedure 

Calls (RPC), spawn processes on the local and on 

remote nodes, run applications on the current host 

OS or on remote hosts. Communication is done using 

TCP and it is not encrypted by default. Thus the 

Erlang VM poses a security risk: if one of the Erlang 

Nodes, member in a thrust group, is compromised 

then it can affect all the other nodes.  To diminish the 

changes of affecting the monitored hosts, a 

Communication Agent in the form of a TCP server, 

to handle the communication task, has been built. 

This denies many of the Erlang benefits, and was 

solely used when collecting network and host related 

data. Taking these security concerns into 

considerations, we believe that they do not affect our 

choice to develop an IDS using Erlang, since its 

primary scope is data collection and processing.  

 

5 Experimentation 

 

 Several sensors have been developed for 

selectively sniffing packets, running either in user 

space as standalone agents or integrated into the 

kernel, employing similar selection algorithms, 

mainly neural networks, genetic algorithms, and 

Bloom filters. While general purpose Erlang C 

Nodes, employing either the PCAP or the BPF 

interface, were implemented as user-space sensors, a 

genetic algorithm sensor and a Bloom filter were 

integrated in the kernel (having a /proc entry on 

Linux kernel and as new functions on *BSD). When 

payload features were not considered, the OS's 

firewall was used for filtering the packets, based on 

header information. The fallowing example employs 

ulog (similar to *BSD's pflog) to collect all incoming 

HTTP packets: 
iptables -A INPUT-p tcp--sport80-jULOG--ulog-nlgroup1 

 On FreeBSD extra functions were added to the 

BPF virtual machine, allowing packets to be 

processed using these algorithms. For example, the 

next listing shows a sequence of BPF instructions to 

select IP packets having a specified source IP 

address:  

 
static struct bpf_insn src_filter[] ={  

BPF_STMT(BPF_LD+BPF_H+BPF_ABS, 12), 

BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, 0x0800, 0, 3), 

BPF_STMT(BPF_LD+BPF_W+BPF_ABS,26),  

BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K,mysrcip,0,1), 

BPF_STMT(BPF_RET+BPF_K, (u_int)-1),  

BPF_STMT(BPF_RET+BPF_K, 0)}; 

struct bpf_program prg={6,(struct bpf_insn*)&src_filter}; 

 

 Besides the load (BPF_LD), jump (BPF_JMP, 

BPF_JEQ jump equal) and return (BPF_RET) 

instructions, BPF_NEURAL, BPF_GENETIC and 

BPF_BLOOM instructions were added to process the 

whole packet or starting from a specified absolute 

position (BPF_ABS) expressed in bytes. Since 

filtering rules are run in kernel space, a user space 

application that used the BPF interface was then able 

to select packets to be passed to user space by simply 

constructing a filter involving calls to these functions. 

Parameters were passed using sysctl. For both the 

Linux or BSD kernel sensors, kernel memory had to 

be assigned and it had to be persistent across 

multiple calls of the processing function. Besides the 

issues previously discussed in the article, the 

possibility of a DoS attack to be successful increases 

with the complexity of the processing algorithms 

(number of individuals, number of neurons or hidden 

layer). Another downside of the kernel sensors is that 

an extra user space sensor is needed for sending the 

data to the processing nodes. The advantage of such 

sensors is that they can greatly reduce the amount of 

data that needs to be sent and processed by the 

Processing Agents. 

 For testing purposes the Ubuntu 9.10 and 

FreeBSD 8.0 were used. The FreeBSD used a 

custom made kernel and had the pf, pflog and  pfsync 

devices enabled and the BPF_JITTER option set, 

among others. For generating attack traffic arpon, 

dsniff, guessnet, hping, hunt, maptha, medusa, 

ncrack, netdiscover, nikto, nmap,  p0f, packit, ping, 

ptunnel, ssahi, kipfish, xprobe, and the developed 

PCAP Erlang Port Driver (for replaying existing 

attack signatures) were used. During the process of 

evolving network packets the following were 

observed: packets with SYN=1, ACK=0 with 

payload; UDP packets with TCP's fields, for example 

Sequence Number or Acknowledgement Number;  

ICMP packets with non-radom / non-fixed large 

payloads. We assumed that hashes and packets 

lengths were generated automatically. The genetic 

algorithm based sensor had a 63% detection rate, the 

Bloom filter 78%, while the Processing's Agent 

Artificial Neural Network 67%. These results can be 

explained by the fact that the machine used for attack 

was used later for sending legitimate traffic. We 

consider that this is the correct approach, since in the 

context of IPv4's NAT the public address of an 

attacker and of a legitimate user should be the same, 

and the classifiers role is to distinguish between them. 

Furthermore, we tried to minimize the needed 

memory and reduce the incurred delay when 

processing packets. The Bloom filter's detection rate 

depends heavily on the dataset and on the bit-string 

length. Since the payload was primarily used, some 

legitimate packets as well as attack packets had no 

payload. These kinds of packets were not taken into 

consideration. Furthermore, attack and normal 

packets having the same payload were also not taken 

into consideration.  
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6 Related and Future work 

 

 There is a vast literature regarding Intrusion 

Detection Systems (IDS) and an endless pool of 

algorithms ranging from Artificial Neural Networks 

and Expert Systems to Artificial Immune Systems 

[18][19], but there are far fewer taking the 

declarative approach or the time into consideration. 

The benefits of augmenting IDS with prevention 

capabilities, as an Intrusion Prevention Systems 

(IPS) is, are often overseen also.  

 While the purpose of this paper is to present 

ways in which an agent could contribute in enforcing 

security constraints, we cannot oversee the 

advantages that an agent based approach could have 

over a centralised IDS. While having a local view of 

the system, and being allowed to take local actions, 

agents can change their environment by performing 

actions and adapt their perception, for example by 

reducing the amount of data to process. Since the 

paper does not handle the case in which agents 

collaborate, an obvious downside of the local view is 

the lack of a global perspective provided by data 

correlation. While this can be achieved locally, such 

an agent may have problems with distributed attacks. 

This obvious downside is compensated by the fact 

that while the centralised IDS must process 

information from all the sensors, an agent can take 

advantage of its local view and filter or selectively 

sample the data or observations needed to update its 

internal state. While it is possible for an attacker to 

target the host on which the IDS runs, in the case 

when agents are used it would have to attack all of 

them. An agent based approach playing the role of an 

IPS can also adapt to the environment on which it 

runs, to the specific hardware devices for example, 

with respect to commands or configuration files. 

Rather than a complex centralised system controlling 

the whole system, the agent based approach ensures 

that the control is distributed across the whole 

network. While the use of agents for IDS [20] or for 

enforcing policies is already present in the literature, 

the use of agents with declarative goals playing the 

role of IPS is to best of our knowledge novel. 

Although the paper presents only the design of such 

agents, we believe that their implementation is 

feasible and the offered flexibility outweighs the 

complexity of their implementation. Furthermore, the 

paper shows how the perception of the environment 

can be achieved and used to adapt the actions. The 

next step would be to establish the collaboration 

between such agents, to achieve the advantage that 

distributed collaborating agents would have over 

them [21]. While in the case of the algorithms 

described in [18][19], explicit or implicit thresholds 

or quantifiable values are present, in the case of the 

agents described in this paper variables reduces to 

boolean values at a higher level. Therefore, the 

actual data processing operations must reduce to 

boolean values. We believe that an implementation 

could overcome this issue by the use of internal 

buffers.  

 The agents described in this paper use 

temporally extended goals, in the context of [11]. 

Similar uses of temporal logic in Intrusion Detection 

are explored in [22]. A characteristic of IDS based 

on temporal logic is their use of past experience (past 

temporal logic). Therefore what distinguishes the 

presented agent from them is the fact that a GOAL 

agent with temporally extended goals is allowed to 

look only into the future and it can maintain past 

experiences only through its belief base. To the best 

of our knowledge, creating network packets through 

an evolutionary approach for testing the suitability of 

firewall rules has not been addressed. The use of 

genetic programming or genetic algorithms for 

evolving rules for IDS has been investigated in 

[23][24][25][26] with an overview regarding the use 

of a distributed system in [13]. To the best of our 

knowledge, evolving firewall rules and testing their 

suitability has not yet been done for BPF based 

firewalls. We are unaware of the existence of open 

source kernel modules designs playing the role of an 

IDS, although we think that commercial applications 

are using this approach. The creation of `programs` 

by an evolutionary approach targeting buffer 

overflow was investigated in [27]. We consider that 

the idea of evolving 'programs' using the BPF 

instruction set by an evolutionary approach for 

reducing the amount of data transfer between kernel 

space and user space is novel. Furthermore, the use 

of the Erlang programming language for collecting 

and processing of network and host related data 

doesn't seem to be covered in the existing literature. 

The use of an evolutionary approach for developing 

BPF filters remains to be further investigated in a 

future paper. Such a strategy is promising, but 

currently we are not satisfied by the assumptions that 

we had to enforce.   

 

7 Conclusions 

 

 IDS rely on the collected data when deciding 

whether the network is under attack. Obtaining and 

processing relevant data is changeling since it 

depends on many factors. The paper describes the 

design of kernel and user space sensors and presents 

a ways in which the data can be filtered and 

processed. Based on the data received from the 

sensors, the paper describes a way in which the 

firewall rules can be built by evolutionary means. 

Equipped with perception and given a set of actions 

that translate to firewall rules, the paper presents the 

design of a Security Agent that exploits existing 

security tools, such as the firewall, in its endeavor of 

protecting the User Agent, modeling a common user, 

from an attacker. The Security Agent is put in a 

realistic environment that illustrates the interaction 
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with the attacker and the Security Agent and several 

scenarios are depicted.  

 To simplify its implementation, we consider it as 

having a layered architecture, where each layer 

represents an instance of the agent fulfilling a 

specific purpose. For implementing the components 

of the system, a mixture of the Erlang and C 

programming languages has been used. A description 

of how existing OS tools can help and an insight on 

how an IDS can be enhanced to the level of an IPS 

was also described. The benefits and tradeoffs of 

different approaches along with their motivation 

were also presented. 
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