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ABSTRACT

In recent years data on cancer incidence in the USA, the Netherlands, and in
Hong Kong indicate a flattening and perhaps a turnover at advanced age, but no
model has been successful in fitting this data and thus providing clues to the
underlying biology. In this work we assume these data are reliable and free from
bias. We find that a Beta distribution fits SEER age-specific cancer incidence data for
all adult cancers extremely well, and its interpretation as a model leads to the
possibility that there is a beneficial cancer extinction process that becomes impor-
tant at elevated age. Particularly evident from the data is the apparent remarkable
uniformity of adult cancers peaking in incidence at about the same age, including
cancers in other countries. Possible biological mechanisms include increasing
apoptosis and cell senescence with age. Further, the model suggests that cancer is
not inevitable at advanced age, but reaches a maximum cumulative probability of
affliction with any cancer of about 70% for men and 53% for women in the US, and
much smaller values for individual cancers.
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INTRODUCTION

It is well known that most cancers arise late in life. There is also substantial
evidence that there is a latency period between the time of the initiation of a cancer
to its observation. An early model was that the cancer cells multiply exponentially,
at a slow but steady rate, and that only when they reach a certain critical number can
the cancer be identified. The latency is then the time for this multiplication to
occur. The assumption that cancers may be initiated throughout life leads naturally
to observed age specific cancer incidence I(t) increasing exponentially with age t as
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I(t)=Aebt . The study of the age distribution of cancers began with national mortality
data records of the deaths caused by cancers. It soon became apparent that the
cancer death rate increases less steeply with age than the exponential.

Nordling (1953) and Armitage and Doll (1954), working with national mortality
data in the UK, proposed an alternative multistage theory of cancer to describe the
age distribution data. According to this theory, the cell multiplication is assumed to
be rapid and the time from initiation to cancer observation (the latent period) is
assumed to be the time of passing several discrete stages. This leads to the formula
I(t)=at k–1 or ln I = ln a + (k-1)ln t, where k is the number of stages and a includes
various factors representing environmental exposure, genetic susceptibility, and
dietary factors. Armitage and Doll successfully fitted age specific cancer mortality
rates, which they assumed to approximately represent age specific incidence rates,
from several sites and countries and found fits with values of k between 4 and 8. They
omitted death rates above age 75, arguing that at such an advanced age, physicians
would tend to assign the nebulous “old age” as the cause of death rather than make
a more careful diagnosis. They therefore ignored the apparent flattening in age
specific mortality rates in the data.

In the years since 1947, cancer registries recording incidence data have much
improved. Also, the increase in survival times and cure rates for many cancers has
made it desirable to examine incidence rates rather than death rates as indicators
of biological mechanisms. Great improvements in the collection of incidence data
suggest to us that the concerns of Armitage and Doll about using data from ages over
75, and using incidence data at all, may now be resolved. The reader must be warned
that the conclusions of this paper depend critically on the assumption of validity of
the modern incidence data, which is discussed further later in this paper.

This study follows the same steps as the cancer modelers of the 1950s: (1) taking
the most recent data including the turnover to be considered reliable (SEER data,
Reis et al. 2000); (2) attempting to fit them with as simple a model as necessary to
obtain a good fit; (3) comparing curve shapes to other cancers and data from other
countries; then (4) discussing possible clues to the underlying biology implied by
the model. It is found that a good fit of all adult cancers can be made with a form
of Beta distribution (Olkin et al. 1978) for age-specific incidence: I(t)=(αt) k–1(1-βt),
which includes 3 arbitrary constants. We extrapolate this distribution to older ages
(~100 years) where few data exist and explore the implications of assuming the
reliability of the model implied by the fits. As shown in Figure 1, a Beta fit to the
SEER data for all cancers is a very different fit than the curves for the two historically
important models, the A-D power law and the MVK clonal expansion models (both
to be discussed in more detail) which have been frequently analyzed for insights to
biological causes of cancer. Since there is a large difference, the Beta fit might be
evaluated as a model, and its biological implications are briefly explored.

METHODS

SEER Data

This study takes the most recent age specific incidence data (1993 to 97) from the
Surveillance, Epidemiology, and End Results (SEER) Program, based within the
Cancer Surveillance Research Program at the National Cancer Institute (Ries et al.
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2000). Established by the National Cancer Act of 1971, the SEER program routinely
collects cancer incidence and mortality data from designated population based
cancer registries in various areas of the country, representing about 14% of the US
population. The cancer site and histology are coded according to the International
Classification of Diseases for Oncology, second edition (ICD-O-2) (Percy et al. 1990).

We emphasize that the reliability of the SEER data is central to this work, and the
conclusions depend on an explicit acceptance of the data as an accurate represen-
tation of the actual incidence in the US population. SEER follow a number of
careful procedures to insure the quality of the data, including “abstracting records
for resident cancer patients seen in every hospital both inside and outside each
coverage area; searches of records of private laboratories, radiotherapy units, nurs-
ing homes, and other health services units that provide diagnostic service to ensure
complete ascertainment of cases; records data on all newly diagnosed cancers,
including selected patient demographics, primary site, morphology, diagnostic
confirmation, extent of disease, and first course of cancer-directed therapy; and
conduct periodic quality control studies to correct errors.”

Age-specific cancer incidence is defined by SEER as Cancer incidence=(di/ni)*100,000;
where i = the 18 age groups 0-4, 5-9, …, 85+; di = number of new cancers diagnosed
in age group i; ni = person-years in group i. The denominator used by SEER
represents the entire population in the relevant age group, including all who have been

Figure 1. Age specific incidence vs. age curve shapes for the two major historical model
types, compared to the Beta model and SEER data for combined male and
female cancers.
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diagnosed with the cancer at an earlier age and have not yet died of that cancer. This point
will be important in discussing age-specific incidence data when interpreted as a
hazard function (see Appendix).

The age-specific incidence data is organized as entries in 5-year age intervals
starting from 0 to 4 to 80 to 84, ending with an 85+ category. For all intervals except
the last, the center age was considered as representing that interval. For the 85+
category, a weighted mean value of 90 was computed from life tables (National Vital
Statistics Report 1999) for persons living beyond 85, and used for the 85+ category.
The database for age-specific cancer incidence includes data for 19 male and 21
female primary cancer sites in addition to all sites combined. No attempt was made
to correct the data for population cohort effects such as hysterectomy, which would
remove people from the denominator; or smoking status, which would provide
variable sensitivities.

Comparisons to Other Datasets

Three other data sets were examined to assess the validity of the model at
higher ages than reported by SEER, and to people from markedly different gene
pools, diet, and environment. A study by de Rijke et al. (2000) presenting cancer
incidence data to age 95+ for the Dutch population over the period 1989 to 1995
includes data at higher ages than SEER and from a different culture and environ-
ment. The cancer registries that the authors rely upon have been confirmed to
have high (96.2%) completeness even in the highest age groups, and are consid-
ered reliable. For each age interval reported by de Rijke, the weighted mean age
for that group was computed and used for all analyses and figures. Since the
absolute numbers of cancer incidences are much smaller than the SEER data,
particularly in the higher age groups, error bars representing ±2 SEM are indi-
cated in the figures.

A cancer incidence dataset (Parkin et al. 1997) for the Hong Kong population
over the period 1988 to 1992 provides 35,000 cancer incidences over 50 organ sites.
The population, 98% of whom are Chinese, and 90% from a single nearby province
in China, provides a comparison for a different gene pool, culture, and environ-
ment than Americans or Europeans. Participation in the cancer registry is voluntary,
but data collection processes and checking procedures are believed to be effective
in ensuring reliable data. Parkin et al.’s analysis indicates that its method of site
incidence tabulation results in incidences within 5% of that employing the SEER
method. The data extend over the same age range as SEER, ending at 85+. Only data
for six major sites are examined.

A study by Saltzstein et al. (1998) examined cancer incidence recorded for the
35 million people of California over the period 1988 to 1993, and reported age-
specific cancer rates in 5-year age groups from 50 to 54 to 95 to 99 and ≥100 years
old. This study included 14,086 cancer patients over age 90, 70.8% of which had
histological confirmation of their cancer diagnoses, compared to 94.5% of those
less than 90. Although cancer cases in California are a major component of the
SEER data and thus are expected to be similar, the investigators specifically
designed their study to examine the incidences for older age groups than SEER
report.
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Beta Function Selection for Fits

Historically, a good fit to incidence data up to age 60 or 70 is given by I(t)=λt k–

1. This suggests a modification of this formula to include a factor to produce the
turnover. One possibility is a form of the Beta probability density function, de-
scribed in statistics texts as: f(x)=λx k–1(1-x); 0≤ x≤ 1. We parameterize the Beta
function by x =βt, giving: I(t)=(αt) k–1(1-βt)*100,000; 0≤ t≤ β−1, and we find a good fit
for the SEER data by adjusting the constants α, k-1, and β. Although an additional
arbitrary constant always enables a better fit, we suggest that the additional factor
producing the turnover might represent a cancer extinction process. Unlike the
mathematical models (described later) that have been used in the past to fit the
incidence data, the Beta function has value 0 for t≥β−1, thus suggesting the possi-
bility of a limit to the cumulative probability of cancer that is less than one. The full
derivation is in the Appendix.

The SEER cancer sites are divided into the 17 non-gender-specific sites (unre-
lated to reproductive organs), and the 6 gender-specific sites (related to reproduc-
tive organs) to be separately analyzed. The Beta fit to the 17 non-gender sites are
performed with t = age. As first suggested by Armitage and Doll (1954) the sex organs
may have different timing of carcinogenic influences compared to the non-gender-
specific sites due to sexual maturity and activity. The simplest assumption is that the
carcinogenic influences start at sexual maturity, taken as age 15. Thus for the 6
gender-specific sites the fits are performed with t = (age-15) ≥ 0.

Goodness of Fit

We employ a fraction of variance method introduced to cancer modeling by
Cox (1995). The fits were produced by manipulation of the three variables of the
Beta model α, k−1, β to maximize the “Fit” value, which we define as the fraction
of the variance in the observed data points accounted for by the model. The
expression employed is Fit = 1 - {E[(O-M)2]/ E[(O-µ)2]} = 1- {[Σ(oi-mi)2]/ [Σ(oi-µ)2]},
each summation taken over i= 1 to r, where O and M are the observations and
model results random variables respectively, µ is the mean of all of the age-group
observations for that cancer, oi and mi the observed and modeled values for each
age group for that cancer, and r the number of age group data points to be fit.
As indicated by the equation, a perfect model (Σ(oi-mi)= 0) gives a Fit value of
unity, since the model fully accounts for all variance of the observations from the
mean, and no model at all gives a value of zero, since it accounts for none of the
variance.

No attempt was made to include the effect of the uncertainty in the mean for
each data point value, since the SEER data is a record of about 35 million people
(14% of the U.S. population), about 1% of which is in the smallest (85+) age group.
Thus the maximum sampling error is about 1 per 100,000, which is smaller than the
variability of the data for individual cancers by one to three orders of magnitude.
The Beta function curve fit is extended a few years beyond the end of the SEER data
in order to clearly show the location of the predicted peak in incidence. It should
be emphasized that the SEER data by themselves do not show a peak for all sites
within the age range reported, but when data are available to age ~100 (as in the
Dutch and California data) a peak occurs for all organ sites reported.
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A possible source of error in modeling the SEER data are birth cohort effects, in
which persons in certain age groups are exposed to a non time-homogeneous cause
or new diagnosis of cancer, such as popularity of smoking, introduction of a new
diagnostic test, or a cataclysmic singularity in exposure to a carcinogen such as
Hiroshima and Nagasaki. We have not attempted to correct any of the data for these
effects, and although they might be important in modeling individual cancers, the
main conclusions of this work are based on all 35 of the adult cancers, which are
unlikely to be uniformly distorted by birth cohort effects.

RESULTS

Fits of the Beta Function to SEER Data

Figures 2(a-q) present the SEER data and Beta fits for each of the 17 non-gender-
specific cancer sites for both males and females. While 31 of the 34 fits can be seen
to be quite good (Fit values near 1), male and female Hodgkin’s disease, and female
thyroid cancer appear to be significantly different cancer types than those which are
central to this work. The

Fit values for the 31 cancers range from 0.93 to 1.00 with a mean of 0.97 of the
variance accounted for by the Beta function fit. For comparison, the A-D power law
model of figure 1 produces modeled fraction of variance fit values of 0.99, 0.94, 0.69,
and –0.3 for ages 0 to 74, 0 to 79, 0 to 84, and 0 to 90, respectively, for male liver
cancer (a 1% cumulative incidence cancer, where the A-D approximation is math-
ematically accurate, as discussed below). The corresponding values for the Beta fit
are 1.00, 1.00, 0.99, and 0.99 for the same cancer over the same age ranges.

Figure 2(r) shows the total incidence for all 17 non-gender-specific sites for males
and females separately, created by summing the SEER data and the Beta fits for each
age category (not a true probability but a commonly used approximation). Clearly
the male and female incidence curves have the same shape, both reaching a peak
at about age 80, but a factor of two difference in incidence. Figures 3(a-f) present
the Beta fits for the six gender-specific sites, which are all based on t=0 at age 15. All
four of the female site fits are quite good (mean Fit value = 0.97), but the two male
sites are not quite as good (mean Fit value = 0.92). Testicular cancer (Fit = 0.87)
clearly is a very different cancer. Prostate cancer (Fit = 0.96) might be somewhat
influenced by the SEER data itself, which the SEER investigators warn is heavily
influenced by the prostate specific antigen (PSA) test entering into common use
over the last few years. The SEER reported overall age-adjusted incidence rate shows
a distinct “bump” in the years 1989 to 1996, but the age distribution of this bump
is not reported.

Tables 1 and 2 present the tabulation of the Beta parameters for the fits for males
and females respectively ranked by peak incidence, and calculated implications
compared to the SEER data. The α parameter varies with the ranking of peak
incidence when (k-1) values are similar, departing somewhat from this ranking when
(k-1) is different. The β parameter is remarkably consistent, varying by only about
20% for the 35 adult cancers, even as the peak incidences vary by a factor of 100.
Also, the value of α is always less than the value of β, suggesting that the probabilities
of the (k-1) uniform random variables representing cancer creation are always less
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Figure 2a-r. Age specific incidence (per 100,000) vs. age for males and females. Beta distri-
bution fits of SEER (Reis et al. 2000) data for non-gender-specific sites. Param-
eter values are listed for the Beta function form: I(t) = (αt)k–1(1-βt)*100,000. The
fit values are calculated as the fraction of the variance of the observed data,
which are accounted for by the Beta model with the listed parameter values.
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FIGURE 2. (continued)
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FIGURE 2. (continued)
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Figure 3a-f.  Age specific incidence (per 100,000) vs. age. Beta distribution fits of SEER (Reis
et al. 2000) data for gender-specific sites. Parameter values are listed for the Beta
function form: I(t) = (αt)k–1(1-βt)*100,000, where t= age-15. The fit values are
calculated as the fraction of the variance of the observed data, which are
accounted for by the Beta model with the listed parameter values.
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Table 1. Beta fits to SEER data for males: Parameter values and their
implications compared to SEER data.
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Table 2. Beta fits to SEER data for females: Parameter values and their
implications compared to SEER data.
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than the probability of the one random variable representing cancer extinction (see
Appendix).

The Beta calculated peak incidence I(tp) and age at peak incidence tp are com-
pared to the SEER values. Several of the entries for the SEER data are noted to
indicate that a peak was not recorded for those cancers in the age intervals reported,
thus providing an uncertain SEER value for peak incidence and age at peak. For
these cases it is best to refer to the figures to judge the adequacy of the estimate of
SEER peak and age at peak. Since tp is derived from the Beta function as tp = (k-1)/
kβ, there is no dependence on α and only weak dependence on k. Accordingly, the
age at peak incidence, which can be described as the turnover age, is almost entirely
dependent on β, and as shown in the tables is consistent over all adult cancers and
over a factor of 100 in incidence. The age at zero incidence represents the upper
bound of the Beta function, and is equal to β−1. None of the SEER data extends to
high enough age to test this model prediction, but cancers of the lung, larynx, brain,
and corpus uteri show marked downturn of incidence within the age range re-
ported. The Dutch and California data with older age groups show data tending to
zero incidence at β−1 age.

The final column of each of the two tables present calculated cumulative prob-
ability of each cancer, based on the Beta fit, and assuming the individual lives to at
least age β−1. The SEER comparison is the sum of the age specific incidence over
all age groups. Since the SEER data does not extend to zero incidence, the SEER
result should be somewhat lower than the Beta result, particularly if β−1 is higher
than 90, which is the case. Individual cancer site probabilities rank approximately
in order of the peak incidences, indicating that the incidence curve shapes are not
too different from cancer to cancer, which can also be concluded from the con-
stancy of k and β. For males, the maximum lifetime probability of an individual
cancer ranges from 0.3% for Hodgkin’s disease to 36.7% for prostate cancer. For
females, the range is 0.2% for Hodgkin’s disease to 20.7% for breast cancer. The
calculated upper limit to the lifespan probability of any cancer for males at 70% and
for females at 53%.

Comparison to Other Datasets

Figures 4(a-f) and Table 3 presents the de Rijke data for six major cancer sites,
compared to the SEER data curve fits with the Beta function. Colorectal cancer
incidence for Dutch males and females is not very different than the values for
Americans, and closely agrees with the predicted turnover age and shape, even
though the model was fit to SEER data that did not actually reach a peak (Figure
2b). Lung cancer shows different levels of incidence, but the location of the peak
and curve shapes are similar to SEER. Of interest, the oldest male lung cancer group
has incidence almost zero at age 100, which is close to the predicted β−1 value.
Prostate cancer also shows about equal incidence and similar curve shape as the
SEER fits, although the reported incidence appears to occur about 10 years later in
the Dutch than in the SEER population. Female breast cancer appears to be a good
match to the SEER fit curve shape at a somewhat lower incidence level, and suggests
near-zero incidence at an age not too different from β−1. Bladder cancer and
stomach cancer also show similar curve shapes to the SEER data fits, with the age at
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Figure 4a-f. Age specific incidence (per 100,000) vs. age data for Holland 1989-1995 (de
Rijke 2000) compared to the SEER data fits with the Beta function for major
cancer sites. Error bars indicate ± 2 SEM.
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peak incidence correctly predicted. The model is particularly accurate in predicting
stomach cancer peak, since the SEER data does not show a peak in its age range.

Figures 5(a-f) and Table 3 present Hong Kong age-specific incidence data for six
major cancer sites, both male and female, with comparisons to the SEER model fits.
Colorectal cancer incidence is about three-fourths of the SEER value, but the shape
is similar, along with the age at peak incidence, to the SEER. Lung cancers are very
close to SEER data in shape and age at peak incidence, with levels about one-third
higher. Stomach cancer incidence is about twice that of the US, but appears to peak
at about the same age. For bladder cancer, the incidence is lower than SEER for men
in Hong Kong, but appears similar in age at peak incidence for both sexes. Con-
versely, prostate cancer is only one-sixth the SEER value, but with peak incidence
appearing at about the same age. Breast cancer incidence appears quite different
for Hong Kong women than their US counterparts, for reasons that are unknown.

Figures 6(a-d) present the Saltzstein et al. (1998) data compared to the Beta fit
of the SEER data for six cancers. There is the expected good agreement for the age
range up to about 90, which is the range reported by SEER. However, as we observed
in the Dutch data, the turnover in incidence, and the continued decrease in
incidence to age 100 predicted by the Beta model, is present. The slight rise in
incidence for the oldest age group is ascribed by the investigators to be due to

Table 3. Age-specific cancer incidence for major cancers in other countries
compared to beta fits of SEER data: Holland*and Hong Kong+.
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Figure 5a-f. Age specific incidence (per 100,000) vs. age data for Hong Kong 1988-1992
(Parkin et al. 1997) compared to the SEER data fits with the Beta function for
major cancer sites.
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Figure 6a-d. Age specific incidence (per 100,000) vs. age data for California 1988-1993
(Saltzstein et al. 1998) compared to the SEER data fits with the Beta function for
major cancer sites.

underreporting of the population of the ≥100 population over the relevant time
period.

Comparisons of All Cancer Sites and All Populations

By normalizing each cancer vs. age data point to the peak value for that particular
cancer and age group, we can plot the results on a single chart. Figure 7 shows all
of the SEER incidences for adult male cancers (leaving out Hodgkin’s disease,
thyroid, testes) plotted together, along with the mean value of all of the SEER
incidences at each age. The Beta model fit to the SEER data is included, extending
to age 101. Also plotted are the Dutch, Hong Kong and California incidence data.
The Dutch and California data are particularly valuable because they extend to age
97 and 102, respectively, where the SEER data ends at 90. By inspection of Figure
7, all of the male adult cancers incidences fall into a well-defined band, despite the
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factor of 100 variation in peak incidence for the range of cancers considered. The
band scatter standard deviation averages approximately ± 8% of the peak incidence
about the mean at each age group of each cancer.

DISCUSSION

There are five alternative ways of describing the modeling of the cancer inci-
dence data (all of them assuming the data at elevated age are valid, a point discussed
further later):

1. The simple Beta function fits the age distribution including the turnover at
elevated age well, while previous biologically based models have been unable to
do so, which in turn leads to a search for a biological basis for the Beta model.

2. The curve shape for adult cancers, including the turnover, appears consistent
from male to female, from culture to culture, and even from cancer to cancer,
varying only in level of incidence.

Figure 7. Cancer incidence vs. age for all SEER male sites except for childhood cancers
(Hodgkin’s, thyroid, testes). Each incidence is normalized to the peak value for
that specific cancer. Included for comparison are the data for Dutch, Hong
Kong, and California male sites, and a Beta fit of the SEER data.
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3. There is apparent remarkable uniformity of the age at peak incidence across
all adult cancers, despite a factor of 100 difference in peak incidence in these
cancers.

4. Extrapolation of the Beta function fits beyond the age for which there are data
allows us to calculate the age at which incidence is expected to be zero. Then
we may integrate the incidence to calculate a lifespan cumulative probability
for each cancer, and all cancers combined.

5. The cumulative probability of a person contracting any cancer is less than one,
and of each individual cancer it is much less than one. The conventional
wisdom that everyone will eventually contract any or a specific cancer if he or
she does not die of some other cause, may be incorrect.

Curve Shape: Comparison to Other Models

The earlier models directed to explaining age distribution of cancer are of two
general types: multistage, and clonal expansion. The earliest derivations of the
multistage view approximated the model as the product of independent probabili-
ties of stage transitions, µ1t…µk-1t. Specifying the order of the transitions resulted in
the age distribution of cancer incidence as I(t)=t k–1(µ1µ2… µk)/(k-1)!, where µi are the
transition rates for each stage, a result first proposed by Armitage and Doll (1954).
This form we refer to as the A-D power law model. Although highly successful in
fitting the rising side of cancer incidence data (up to age 74), it is obvious by
inspection that this model cannot fit the turnover, and thus cannot produce the
desired shape. Moreover it became clear that the formula was only an approxima-
tion, valid only for low cancer rates. A mathematically exact form is discussed later.

The clonal expansion model is based on the hypothesis that no more than two
stages were supported by biological evidence, and that a cell need undergo only two
transitions to become malignant, with the first transition conferring a survival
advantage causing exponential growth of the cell by division. The second transition
is required in order to release the cell from control completely and become
malignant. Accordingly the incidence may be approximated as I(t)=µ1µ2ebt, where µ1,
µ2 are the rates of the two transitions, and b a growth factor, as Armitage and Doll
noted (1957). Although useful for fitting incidence at small values of t, this model,
which we can refer to as the simplified A-D clonal expansion form, cannot produce
the age turnover. A more complete derivation results in I(t) = Nµ1{1-exp[-µ2( eat-1)/b]},
where N is the mean number of cells per person exposed to the first transition. This
incidence function increases monotonically and approaches Nµ1 as t → ∞, thus
avoiding the fate of limitless growth of incidence in the simpler A-D clonal expan-
sion expression, but it likewise cannot produce a turnover.

By adding additional features to the clonal expansion model: that the number of
cells at risk might be a variable, and that transformed cells have a death rate as well
as a proliferation rate, the incidence may be approximated as: I(t) ≈ µ1µ2∫ N(s)exp[(α2

- β2 )(t -s)]ds. The integration is taken from 0 to t, α2 and β2 are growth and death rate
of transformed cells respectively, and N(s) is a variable cell number function.
Holding N(s) constant, we integrate to: I(t) = µ1µ2 N{exp[t(α2 - β2)]-1}/ (α2 - β2), which
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produces a convex monotonically increasing exponential curve if α2 >β2, or a
concave asymptotically limited curve if α2<β2 as t → ∞. This approach, well known
as the simplified MVK model, was developed by Moolgavkar and colleagues (1981)
and has been very successful in modeling many cancers. It is clear the model can
produce an age turnover by applying a suitable function N(s), and specifying that
α2<β2 , which Moolgavkar et al. (1981) proposed. Although quite successful, this
simplified form is known to have limitations and therefore the exact form of the two-
stage clonal expansion model is currently recommended, although it requires
numerical procedures, with no closed form of solution readily accessible (Moolgavkar
et al. 1999).

As shown in the Appendix, the Beta model results from adding to the A-D power
law model, the probability of a cancer extinction step, which is modeled as a
uniformly distributed random variable over the interval (0, βt). Applying the same
cancer extinction step to the simplified MVK clonal expansion model with constant
parameters might fit the cancer incidence data with turnover as well as the Beta
model, as can be inferred from Figure 1. Although the simplified MVK form already
includes an explicit factor (α2 - β2) modeling the difference between birth and death
rates of initiated cells, current thought is that this deterministic approach is incor-
rect since the initiated cells appear to have a stochastic character: the probability of
initiated cells being present in the tissue and consequently the probability of cancer
per unit time, is greater than zero even if α2<β2 for long times (Moolgavkar et al.
1999 p.197). This stochasticity assumption is an important part of the exact form of
the MVK model. The Beta model prediction that the probability of cancer per unit
time goes to zero with certainty at t≥β−1 is clearly different.

Age at Peak Incidence: Comparisons to Other Models

The tabulations of age at peak incidence of Tables 1 and 2, derived from the Beta
fits, also evident in Figure 7, are quite uniform for the adult cancers: male 85.0 mean
± 3.7 s.d., and female 84.5 ± 7.1 (the s.d. indicating the standard deviation of the age
at peak incidence over all cancers). The Beta distribution formula for the age at
peak incidence, tp=(k-1)/kβ , has no dependence on the cancer creation coefficient
α , is only weakly dependent on the number of stages k, and is almost entirely
dependent on the value of the cancer extinction factor β. Earlier models have not
produced this constancy of tp , and when tested tend to predict a much different
result as discussed below.

Armitage and Doll (1954) fitted a power law to age-specific mortality data to age
74, which they assumed was a good representation of age-specific incidence since
cancer victims quickly died, and found I(t) = at k–1 . This fit should be interpreted as
a hazard function h(t)=f(t)/[1-F(t)]: the probability of dying at age t (a probability
distribution function, pdf, which is f(t)), is conditioned on survival to age t (one
minus the associated cumulative distribution function, cdf, which is F(t)); since the
victims’ death removes them from the denominator when computing the ratio of
cancer deaths to population at risk. We denote age-specific mortality m(t) to indicate
this hazard function. For individual cancer mortality data, the cumulative probabil-
ity of death from any specific cancer F(t) by end of normal life is of order a few
percent, and the A-D approximation that the incidence I(t)=m(t)≈ f(t) is quite good.

200438.pgs 10/30/01, 5:02 PM20



Hum. Ecol. Risk Assess. Vol. 7, No. 6, 2001 21

Outliving Our Cancers — Modeling Cancer Decreases at Old Age

It is only when considering the turnover in I(t), which must occur to the pdf by the
unitarity criterion (must integrate to one), do we need consider the exact pdf
expression derived from the data fits.

Accordingly we write I(t)=m(t)=at k–1= f(t)/[1-F(t)] exactly, and note that for small
values of cancer cumulative probability F(t), I(t)=at k–1 ≈ f(t), which is the usual
approximation taken, resulting in a pdf that appears to grow without limit. However
to consider age at peak incidence we must consider high values of F(t), and thus use
only the exact hazard function implied by the A-D power law fit: at k–1= f(t)/[1-F(t)],
to derive the exact pdf implied by that power law fit.

Rewriting the hazard function in its differential form and integrating, we obtain
the exact probability of cancer based on the fit as F(t)=1-exp[-∫ h(t)dt]=1-exp[-∫ at k–1 dt]
=1-exp[-(at k)/k ] (integration from 0 to t), which clearly gives F(t)= 1 as t→ ∞ , and thus
is a cdf (this is so for any h(t)>0). Differentiating with respect to time, we write the
pdf associated with the cdf as: f(t)= (at k–1) exp[-(at k)/k ]. Noting that f(0)= 0 and f(∞)=
0 , there is a peak in f(t), which we derive as tp = [k(k-1)/a]1/k. Since the incidence level
at any age is determined by a and k, and k ~ 7 for most cancers, a variation of a factor
of 100 in incidence from rare cancers to common cancers implies a shift in the value
in tp of a factor of two, which is a very different result than for the Beta model and
the SEER data.

The exact pdf derived from the A-D power law hazard function fit to age-specific
mortality data, is the unconditional age-specific incidence, which would be mea-
sured if all cancer victims remained in the population. This is based entirely on the
assumption that the mortality data is accurately fitted by at k–1. This is clearly not the
case above age 75, but its failure to fit at high age does not appear to be due to
mathematical approximations, but due to additional biology not modeled by the
power law.

Armitage and Doll (1954) inferred a detailed multistage model for cancer from
their biological interpretation of the power law fit (and other evidence), for which the
power law model is an approximation. Their model can be made mathematically
exact by solving the system of differential equations describing the probability of
finding a cell in each of the stages in its transitions to cancer. Moolgavkar (1978, 1999)
found a method of expressing this exact pdf as a MacLaurin series expansion as: f(t)=[t
k–1(µ0µ1… µk-1)/(k-1)!][1-µt+f(µ,t)], where µi are the transition rates for each stage, and
µ is the mean of the transition rates. It is important to note that the above expression
was derived as a pdf, and the approximation taken that I(t)≈ f(t), valid for small values
of I(t), as was assumed by Armitage and Doll for the power law model. The reader is
carefully alerted to the fact that there is a difference between epidemiological data
inferring hazard function, and theoretical derivations inferring pdfs.

We can immediately note that the first term is the A-D power law as a first order
approximation to the multistage model, or the exact hazard function of the power
law fit. Adding the second term results in an expression that is very similar to the
Beta function, but with constants that are not arbitrary. Since this derivation is based
on the exact multistage pdf, and there is similarity of form to the Beta function, we
might investigate its properties further.

Assuming that the two terms are adequate to test the model for its prediction of
the shift of age at peak incidence with incidence level, we can then derive: tp=(k-1)/
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(µk). Since incidence is proportional to the product of the transition rates µi , and
if those rates are all approximately equal such that µ varies with incidence to the k
–1 power, and k ~ 7, it is easy to see that that tp shifts by a factor of two for 100-fold
change in peak incidence. However, this two-term expansion form of the exact
multistage model leaves open the mathematical possibility that large changes in
incidence may be produced by making one or more µi very much smaller than the
others. The average of the µi then becomes constant, while permitting unlimited
change in incidence by changing the small µi , thus making tp constant. Accordingly
we cannot rule out this model from also producing the SEER data fits observed with
the Beta function, but observe that all of the µi for all adult cancer sites (probably
in all countries) must conspire to produce exactly the same average value, within a
few percent, while producing peak cancer incidences for each of those sites that vary
over a factor of 100.

The Beta distribution model is, as are the A-D and Moolgavkar models, derived
as a pdf, f(t)=(αt)k–1(1-βt); 0≤ t≤ β –1, with the approximation taken that the pdf is a
good model of the SEER incidence data: I(t) ≈ f(t). This is clearly accurate for small
values of cumulative cancer probability F(t), but leads to the question as to whether
the SEER data should be considered a hazard function (all people with that cancer
removed from the denominator) or a pdf (all people with that cancer remain in the
denominator) when modeling high values of F(t) at the turnover age of common
cancers (lung, colorectal, prostate, and breast cancers have cumulative probabilities
greater than 10%: see Tables 1 and 2). Since the overall mortality rate from cancers
in the SEER data is about one-half of the overall incidence, the SEER data suggests
an interpretation about midway between a hazard function and a pdf, i.e., about
halfway between I(t)≈ m(t) and I(t)≈ f(t).

One possibility is to carefully account for the survival fractions for each cancer for
each age group and construct a fit to f(t)=[I(t)][1-M(t)], where M(t) is the cumulative
number of people to die of the cancer. For example, mortality is high for lung
cancer, thus M(t)~F(t), and prostate cancer mortality is low, thus M(t)~0. It should
be noted that for prostate cancer, the high cumulative incidence with low mortality
would tend to increase the fraction with the cancer in the population in the SEER
data, thus reducing the pool without prostate cancer, and causing a turnover in
reported incidence as the cumulative incidence approaches unity. However maxi-
mum cumulative incidence is only 37%, which too far from unity to cause the
marked turnover observed, particularly in the Dutch and California data.

The Beta distribution proves to be very robust when modeling data with uncer-
tain removal by death, giving the same results in curve shape, quality of curve fit, and
constant tp, with either M(t)=F(t) or M(t)=0 interpretation of the data. This observa-
tion results from writing the exact hazard function bh(t)=b(t)/[1-B(t)], where b(t) is the
Beta distribution, B(t) its integral, and bh(t) the hazard function associated with the
Beta distribution. Then bh(t)= [(αt)k–1(1-βt)]/[1−(at)k(1-bt)] ; 0≤ t≤ β –1 , where a=[α/k1/

(k–1)](k–1)/k and b=kβ/(k+1). Since b<β, then bh(t)→0 as b(t)→0, thus predicting the
identical age at zero incidence, which is a critical feature of the model. If the SEER
data is fitted as I(t)= bh(t), then the parameters α, β, and (k-1) will change slightly, but
produce the same curve shapes with same fit quality, and the same age at peak
incidence. Accordingly, we can conclude that the Beta distribution, b(t) models the
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incidence data in a robust way, and is not sensitive to mortality rates for its major
features.

Extrapolation of the Beta Distribution Fit

Since the Beta distribution is a successful fit we venture to extrapolate the
distributions beyond the turn over where data are non-existent for the SEER data
or limited for the Dutch and California data. Figure 7 suggests that all adult cancers
might share a uniform characteristic of power law or exponential growth at about
the same rate to about age 70, where the incidences level off and eventually reduce
toward zero at age ca. 100. Accordingly, the Beta fit equation: I(t)=(αt)k–1(1-βt); 0≤ t≤
β–1, with α=0.01655, (k-1)=5.1, β=0.0098 provides a useful general formula for the
age distribution of any adult cancer as a fraction of its peak value. When considering
absolute values of incidence, the cancer creation coefficient α scales the curve to the
appropriate level.

The extrapolation of the beta distribution yields the interesting parameter, which
is the age at predicted zero incidence, which is simply t0 = β−1. This discussion is
clearly more speculative, but if we make the obvious interpretation, after about age
100 cancer incidence falls to zero. There is general agreement in the literature that
cancer is a less threatening disease for persons living to age near 100 (Smith 1996,
Stanta 1997, Saltzstein 1998), but the Beta prediction that cancer incidence (both
the pdf and hazard function) will fall to zero with probability one is new. These
observations suggest a new view that is different from the conventional wisdom,
which was largely based on the historically important models described above: that
cancer probability continues to increase with age until it reaches certainty.

Cumulative Cancer Probability

Tables 1 and 2 show the cumulative probabilities, calculated from the beta
distribution fit I(t)=b(t), of each cancer and all cancers over a lifespan (defined as
surviving to age>β−1). For males, these range from 0.3% to 31% for individual
cancers, and 70% for at least one cancer of any type. For females the range is 0.2%
to 20% for individual cancers, and 53% for any cancer. The simple and obvious
conclusion is contrary to the common understanding that: “if a person lives long
enough he or she will get cancer,” which is a result of the historical success of the
simple power law and clonal expansion models, both of which imply a rising
probability that always reaches unity at large enough values of t.1 The data, as
interpreted with the Beta model, suggest that “if a person lives long enough, he or
she may avoid cancer entirely,” with about a one in three chance for men and an
even chance for women.

Modeling Susceptibility and Sensitivity

Both the multistage and clonal expansion hazard function models, whether
approximations or exact, have the characteristic that the pdf of any cancer inte-
grates to one over sufficiently long time {∫f(t)dt=F(t)=1-exp[-∫h(t)dt]=1, integration limits
0→∞ ; valid for any positive function h(t)≠ 0 as t→∞} . As the data (including the

1 This applies also to the mathematically more exact versions of the multistage model.
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extrapolation with the Beta function) indicate, however, the cancer incidence yields
cumulative probabilities much lower than one, and range over a factor of 100, while
maintaining similar curve shape. One simple and obvious assumption is that only a
fraction C of the population is susceptible, which leads to modification of the Beta
function model as b(t)≈ I(t)=C(γ t)k–1(1-βt); where C=∫(αt)k–1(1-βt)dt, and ∫(γ t)k–1(1-βt)dt
= 1 ; 0≤ t≤ β –1. Numerically, the susceptibles fraction is identical to the cumulative
probability over lifespan tabulated in Tables 1 and 2. Inherent in this interpretation
is that the fraction of susceptible people is different from one cancer site to another
by about a factor of 100.

Cook et al. (1969) added a limited pool of susceptibles expression to the A-D
power law, which produced a turnover, but they found that the location of the age
of peak incidence varied markedly with the incidence level. Since the data did not
support variation in the age at peak incidence, they deemed this hypothesis unsup-
ported. Herrero-Jimenez et al. (1998, 2000) employed a biologically detailed modi-
fied clonal expansion model to examine colon cancer mortality turnover, which
might avoid the Cook problem with their hypothesis of an exposure factor in
addition to a susceptibles factor. This allows the shape to be held constant with one
factor, with the level controlled by the other factor, but relies on the same assump-
tion: turnover occurs because we “run out of candidates” beyond about age 80.

Finkel (1995) raises the importance of distribution in susceptibility in risk assess-
ment and formulates an interesting analytical method of modeling susceptibility by
combining a lognormal distribution assumption with a modified Armitage-Doll
cancer model. He shows that including the susceptibility distribution assumption
causes the modeled age-specific incidence to plateau at an elevated age, thus
improving the fit to colon cancer mortality data compared to an unmodified A-D
model. The biological basis for a distribution in susceptibility is certainly plausible,
given the heterogeneity in genetic, environmental, and life style influences on
cancers. Finkel clearly supports the idea that the data indicating flattening at old age
is not artifactual, but like the Cook and Herrero-Jimenez models, the flattening
occurs in his model because the susceptibles pool is being depleted. However,
Finkel’s model cannot predict an actual decrease in cancer incidence until the
cumulative incidence approaches unity, which no individual cancer approaches.

The weight of the evidence seems to argue against a distribution of susceptibles
view, since the distribution would have to be quite similar for each of the 35 adult
cancers to peak at close to the same age over an incidence range of a factor of 100.
This suggests a biological mechanism, which is uniform in its genetic or environ-
mental influence, opposite to the Finkel view that requires heterogeneity. Addition-
ally, in a study performed in parallel with this work, Pompei et al. (2001) analyzed
animal data for a single species of inbred mice living their lives in a controlled
uniform environment, which show similar curve shapes and turnover in cancer
incidence. Interestingly the turnover for mice also occurred at about 80% of the
lifespan. These new observations clearly tend to weaken the susceptibles view based
on heterogeneity, and strengthen the view that a biological process, yet to be
modeled, must be considered.

2 Thus it is not in contradiction to the observation that 100% of the highly exposed β-
naphthylamine workers developed cancer.
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A further consideration for the susceptibles hypothesis is data on persons heavily
exposed occupationally. In one well-documented case, exposure to β-naphthy-
lamine, 15 out of 15 persons exposed developed bladder cancer (Case et al. 1966).
) These data suggest that everyone is susceptible to cancer if the dose is suitably
high, although variations in basic sensitivity by a factor of 3 are possible, as discussed
by Finkel. The Beta model does not preclude rates of cancer approaching unity at
high doses, but does require that they occur at younger ages, where the age-related
slowing of the cancer process suggested by the (1-βt) term is less important.2 The
Case et al. paper is instructive on this point, showing convincing data that chemical
workers with high bladder cancer rates contracted the cancer at ages 20 years
younger than the general population contracted the same cancer. This observation
suggests that susceptibility and exposure might be a valid method of modeling the
rising side (and perhaps flattening, as Finkel suggested) of the age distribution.
However, at age greater than about 80% of lifespan, the SEER, Dutch, Hong Kong,
and California data suggest a uniform cancer extinction biology may dominate.

Decreased stage sensitivity at old age might produce both a flattening of the
cancer incidence and a turnover if sensitivity approaches zero. Consider the A-D
multistage model for a relatively uncommon cancer such as liver cancer (cumulative
lifespan incidence ~ 1%), where the A-D approximation is accurate: I(t) = at k–1. If the
stage probabilities are not equal and constant, the A-D model becomes I(t)= (p1t)(p2t)...
( pk-1t)pk /(k-1)!, where (pit) are the transition probabilities for each stage. Since this
model includes the requirement that the stages (1,2,…,k) must occur in order, then
it is the later stages that are of interest, since the earlier stages have already occurred
if they are going to, and a change in early stage probability at larger t will not alter
the overall probability (Armitage and Doll 1954). By inspection, it is clear that if pk-

1 or pk approaches value 0 at some time t approaching age ~100 years, then I(t)→ 0,
and thus produces a turnover. Thus if a decrease in sensitivity is interpreted as a
reduction in probability of a late stage transition, a flattening will be produced,
followed by turnover as the probability of the late stage approaches zero. A similar
argument can be made for the clonal expansion models. Accordingly, the Beta
model cancer extinction factor might be equally interpreted as a linear sensitivity
decrease with age of a late stage: pk = µk(1-ct), with no loss of generality or goodness
of fit.

Other forms for this sensitivity reduction factor, such as e–ct might appear also to
work adequately (since the first two terms of its expansion are also (1-ct)). This
produces a Gamma function form (αt)k–1e–ct when combined with the A-D power law,
and avoids the slight mathematical discomfort of negative incidence when t>β−1 with
the Beta form. However the fit is not nearly as satisfactory as the Beta function form,
and the values of the constants become seemingly unrealistic when as good a fit as
possible is forced. For example, (k-1) is about 5 for the Beta, but is about 15 for the
Gamma to fit the SEER data, suggesting an unrealistically large number of stages.
Also the extinction coefficient, β, has to be much larger in the Gamma, and seriously
distorts the fit at low values of age. We conclude that the Beta form, although having
an abrupt limit at t=β−1, nonetheless is what the data suggests. The exponential form
of extinction factor might, however, work well if applied to a different cancer
creation model, particularly an exact form, but this has not yet been explored.
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Biological Hypotheses

The fact that the Beta distribution fits the data well, and that the multistage and
clonal expansion models appear not to do so, even when made mathematically
exact, suggests that we call the Beta distribution a “model” and enquire about its
possible biological plausibility. The Beta model suggests a very different cause of the
turnover: the active involvement of a cancer extinction step such that the probability
of a cancerous cell survival (or proliferative ability) approaches zero at ages corre-
sponding to approximately a human lifespan. The model can be derived from the
first order multistage model (power law fit hazard function) by adding a “cancer
extinction factor” (1-βt ) by which the transformed cells are eventually destroyed or
deactivated at a rate greater than their creation (derived in the Appendix). How-
ever, it might be incorrect to interpret the constant β in the fits as this factor, since
an exact multistage or clonal expansion model with cancer extinction might have
a somewhat different formulation.

The Beta model applied to the biology can be viewed as a simple combination of
two factors: (1) cancer creation, which is most simply modeled with a power law
multistage assumption, although it would fit equally well with an exponential clonal
expansion assumption or most any other rapidly increasing function; and (2) cancer
extinction, which is modeled as a cumulative probability that linearly increases to
certainty at age ~100. The first factor may be interpreted in the same way as all of
the relevant historical models: caused by mutations and promotion steps from
genetic, environmental, etc. exposures. The extinction factor is new, and its biology
must be carefully considered.

Commonly accepted, but not entirely understood, inexorable changes due to
ageing might lead to clues. As a first possibility, apoptosis is a candidate for the
mechanism of “cancer extinction”. Although we added this term by assuming a
process that is uniform with age, an age dependence might also be included. In vitro
human cell studies by Schindowski et al. (2000), Lechner et al. (1996), and Potestio
et al. (1998) found that apoptosis increases with age due to reduced defense from
oxidative attack. Higami et al. (2000) suggest apoptosis increases in vivo with level
of accumulated injury related to ageing. Ogawa et al. (2000) found apoptosis rates
low in the young, and increased in the old from bone marrow samples from
newborns to age 100. Lee et al. (2000) found that rat colon epithelial cells were more
sensitive to apoptosis stimulation with advancing age.

A second possibility is cell senescence, or loss of proliferative ability, which may
be interpreted as a loss of sensitivity. This point has been discussed by Faragher
(1998, 2000) who suggest that cell senescence, like apoptosis, occurs as an anti-
cancer mechanism, and that a large body of evidence suggests cell senescence
contributes to a variety of pathological changes seen in the aged. Hayflick (2000),
Jennings et al. (2000), Oloffson et al. (1999), and Rubelj et al. (1999) all suggest cell
senescence or the related observation of telomere shortening increases with age,
and thus may profoundly influence the cancer process. Rubelj further raises the
interesting possibility that telomeres may shorten abruptly by a stochastic process,
thus producing senescence in some cells even at young age.

If the probability of abrupt shortening were uniform with time, this mechanism
could be modeled exactly as causing cell senescence with probability of βt, and thus
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the cancer extinction factor becomes the (1- βt) proposed in the Beta model. Such
a process is suggested by observations beginning decades ago showing that replica-
tive ability of cells markedly decreases as they age, which ultimately defines senes-
cence (Hart et al. 1976, 1979). Further, the loss of replicative ability appears to
reduce approximately linearly with age, thus suggesting a factor such as (1- βt). This
approach is proposed and discussed in Pompei et al. (2001).

Data Reliability

The conclusions of this work rely critically on the assumption that the modern
cancer registry data is truly representative of cancer incidence, particularly above
age 80. The concern first expressed by Armitage and Doll (1954), that less extensive
workups are performed in diagnosing cancer for older persons than for younger,
cannot be completely dismissed. However, there are accumulating evidence via
autopsy of the oldest old that cancer prevalence indeed reduces with increasing age.
The Stanta autopsy study mentioned earlier, which included 507 people who died
between the ages of 75 and 106, was designed to investigate this very question. The
authors state “Ö our autoptic population may be considered representative of the
general population” and “We discovered a cancer in 36% of the people between 75
and 90 years of age, but only in 22% of those over 95, and in 16% of the centenar-
ians.” The details of the histologic examinations were not reported. However the
authors do find substantial and increasing underreporting of cancer with age when
the autopsy results are compared to the original clinical diagnoses. Imaida et al.
(1997) studied autopsies of 871 patients aged 48 to 113 at death and also found that
prevalence of malignancies reduce at the older ages, but also found increasing
prevalence of latent cancers with age, latent cancers defined as those not diagnosed
clinically.

The de Rijke study reported histologically or cytologically confirmed cancer
diagnoses in 98% of males and 97% of females in the 55 to 64 age group, and 87%
and 84% for those in the ≥95 age group, suggesting the possibility of a reduction in
thoroughness for the older ages. Referring to Figure 1, we see that without some
important effect(s) at age > ~75 (these effects might be depletion of susceptibles,
increased apoptosis, increased senescence, slowing of proliferation, and/or
underreporting of cancers), cancer incidence is expected to continue to increase
strongly, by the historical paradigm, until the cumulative incidence reaches unity.
At about age 75, 10 to 15% deficit in cancer diagnosis might be sufficient to account
for the deficit between expected and observed incidence. At age ≥ 95, however,
deficits of a factor of two or more from the aforementioned effects are required to
reduce incidence to the observed values. Referring to Figures 4 and 5 for the Dutch
and California data for individual cancers, we observe that the deficit in incidence,
compared to even a conservative straight line trajectory extended from the 60, 70,
80-year-old incidence rates, is a factor of two or much more by age 95.

SEER have not specifically addressed the issue of the reliability of the cancer
incidence reporting for the oldest age groups, but believe the data is at least as
reliable as that reported by other countries (Ries 2001 personal communication).
SEER themselves seem to accept the data are reliable enough to describe a turnover,
and further have observed, “Whatever is occurring, fortunately cancer is not inevi-
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table for all older persons” (Yancik and Ries 1995). We have also not considered
other possible influences such as altered diet, lifestyle or environment for the oldest,
which may tend to reduce cancers by mechanisms other than age, which suggests
further study. Although we are not yet able to rule out concern about cancer
reporting (or lifestyle effects) in the oldest, the weight of the evidence, including
the previously discussed mice data, is tending to support the validity of the reported
data.

Future Work

The questions raised by this work are centered ultimately on the compelling
possibility of outliving our cancers. From epidemiology, is there evidence that as
population longevity increases, that cancer incidence naturally reduces, indepen-
dent of prevention measures? Mathematically, this question seems the same as
choosing whether incidence reduces because a pool of susceptibles is depleting, or
that there is a mechanism that arrests cancer development at elevated age, that
might be independent of an individual’s lifespan. The latter might be clarified by
examination of the various exact formulations of the cancer models, which all in
some way must include depleting a susceptibles pool with age. If such models do not
fit the data, does addition of the cancer extinction factor produce a fit?

The specific areas that might be considered are

1. Improve our confidence in the reliability of the data particularly above age 80,
and the variation of that reliability with age, and include possible birth cohort
effects.

2. Compare the Beta model fits to more data sets, again particularly above age 80
and in registries with historically reliable data, including detailed analyses of
the unpublished age-specific SEER data to age 100.

3. Explore a more exact form for the Beta fit by including the mortality data in
the hazard function interpretation of the SEER data.

4. Investigate results of animal bioassays for evidence of the incidence turnover,
particularly for bioassays without terminal sacrifice.

5. Add a cancer extinction factor to the exact multistage and clonal expansion
models, exploring the fits and biological implications.

6. Search for evidence of a cancer extinction effect in dose-response and other
aspects of carcinogenesis, particularly as dose might influence a biological
effect modeled parametrically as β.
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APPENDIX

The selection of the Beta distribution for the data fits arises from the observation
that the power law equation I(t) = at k–1 well fits many cancer site incidence data up
to about age 74 (ignoring childhood cancers) At older ages, the incidence data
markedly flatten, and show reduction at sufficiently elevated age. Accepting the
validity of the power law fits at younger ages (but not necessarily the validity of the
power law model itself), we add the hypothesis that a “cancer extinction” term is
influencing the carcinogenesis process, eventually becoming dominant at suffi-
ciently elevated age.

Adding this cancer extinction term to the power law is accomplished directly by
forming the probability statement: probability of cancer = the probability of reaching k
stages and the cancerous cell does not die (or lose its proliferative ability). We write this
probability and expand as: Pc = P(bt k ∩ not death) = P(bt k|not death)P(not death) = bt
k * P(not death). The simplest assumption for a probability density for cancerous cell
death is a uniform distribution over the time interval 0 to ct, leading to Pc=bt k(1-ct),
where c is a constant. Taking the time derivative to convert the probability to a
probability density function for a single cell: f(t)=αt k–1(1-βt), where α and β are
constants. We immediately recognize the Beta distribution f(x)=λt r–1(1-x) over the
interval 0≤ x≤ 1, where x=βt. A textbook interpretation of f(x) is the density for the
(r-1)th largest of r uniform (0,1) random variables (Larson 1982), which can be
restated as the probability density function for achieving (r-1) stages (cancer cre-
ation) without achieving the rth stage (cancer extinction).

Expanding from consideration of a single cell to N cells in an organ, and
denoting f(t)=F’(t), the probability of cancer is G(t)=1-[1-F(t)]N. For large N, this
simplifies to G(t)=1-e–NF(t), which is accurate to 10–10 for N=10 8 cells. As discussed by
both Moolgavkar (1978) and Armitage (1985), the age-specific incidence function
for the organ tissue is not the density function G’(t) itself, but the associated hazard
function, given by hc(t)=G’(t)/[1-G(t)], which represents the incremental risk of
cancer per unit time given that the tissue has been cancer-free to time t. Completing
the derivation, hc(t)=e–NF(t) Nf(t)/ e–NF(t) = Nf(t). We note that the age-specific cancer
incidence for a site tissue is related to the probability density function for one cell
by the constant N, thus leaving the Beta model as f(t)=αtk–1(1-βt), modified by only
by a constant (absorbed into α) to apply to a multicellular organ site. The final
expression chosen immerses the α constant into the k-1 power in order to preserve
the historical view of k-1 stages, each with its own transition rate (assumed to be
equal in this case), thus denoting the final form as b(t)=(αt)k–1(1-βt).

To apply the Beta model to fit epidemiological age-specific incidence data for a
specific cancer,’I(t), we consider whether the data is properly interpreted as a hazard
function or a pdf. Since the hazard function is given by I(t)=fe(t)/[1-Fe(t)], the
subscript e denoting a pdf and cdf derived from epidemiological data, which is the
number of new cancer cases divided by the population at risk; the question reduces
to whether the data set modeled has in the denominator only the population at risk
for that cancer or the entire population for that group. For the SEER data, the
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denominator includes all members of an age group still alive at time t, which
includes all who have been diagnosed with a cancer still alive. If the mortality due
to cancer were zero, then the usual approximation I(t)≈ fe(t)=b(t) (valid for small
Fe(t)) would be exactly I(t)=fe(t)=b(t). Since mortality rate is about one-half of inci-
dence rate overall for the SEER data, the exact statement cannot be made, and the
approximation must be taken. It should be noted that since only one-half of the Fe(t)
are removed from the denominator, this approximation is considerably more accu-
rate than if incidence is inferred by age-specific mortality in which the approxima-
tion is taken that I(t)≈ fe(t). Further discussion of this point is in the main text.

As employed for the fits, the Beta model does not integrate to 1, as a correct
density function must, but integrates to the cumulative probability for that cancer
site, which is always less than 1 from the data. The Beta model may be converted into
a density by writing b(t)=C(γ t)k–1(1-βt); where C=∫(αt)k–1(1-βt)dt, and ∫( γ t)k–1(1-βt)dt =
1 ; 0≤ t≤ β–1. The factor C might be interpreted as a susceptibility factor, suggesting
that a fraction C of the population will contract the site cancer with probability 1 if
they live long enough.
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