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Abstract

In this paper a new Monte-Carlo algorithm for the propagation of probabilities in Bayesian networks
is proposed. This algorithm has two stages: in the �rst one an approximate propagation is carried out
by means of a deletion sequence of the variables. In the second stage a sample is obtained using
as sampling distribution the calculations of the �rst step. The di�erent con�gurations of the sample
are weighted according to the importance sampling technique. We show how the use of probability
trees to store and to approximate probability potentials, and a careful selection of the deletion sequence,
make this algorithm able to propagate over large networks with extreme probabilities. c© 2000 Elsevier
Science B.V. All rights reserved.
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1. Introduction

It is known that exact probabilistic inference in Bayesian networks may be infeasi-
ble in large networks (Cooper, 1990). This motivates the development of approximate
algorithms, most of them based on Monte Carlo simulation.
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We can distinguish two groups of Monte Carlo algorithms: those based on Gibbs
sampling (Jensen et al., 1995; Pearl, 1987) and those based on importance sam-
pling (Dagum and Luby, 1997; Fung and Chang, 1990; Henrion, 1988; Hern�andez
et al., 1996,1998; Shachter and Peot, 1990). However, when dealing with very
large networks with extreme probabilities, only the most sophisticated of them are
able to provide accurate results, namely blocking Gibbs sampling (Jensen et al.,
1995) and importance sampling based on approximate pre-computation (Hern�andez
et al., 1996,1998). In both cases, the goal is to draw samples from a probabil-
ity distribution that is di�cult to manage, in the sense that its size is
too big.
Some importance sampling algorithms such as likelihood weighting (Fung and

Chang, 1990; Shachter and Peot, 1990) or backward simulation (Fung and Favero,
1994) start simulating values for some variables of the graph without taking into
account the information stored in other parts of the graph. For example, likelihood
weighting starts simulating the root nodes, without considering how these values are
a�ected by the observations in other parts of the graph. Backward simulation tries
to overcome this problem starting to simulate in the nodes observed, but again this
problem appears when we continue obtaining values for the parents of the nodes
observed: the information in other parts of the graph is not taken into account. In
the extreme case, when the values obtained are incompatible with the observations
or the ‘a priori’ probabilities then the con�guration obtains a weight of value 0 and
has to be discarded. An extension of likelihood weighting is the bounded-variance
algorithm, described in Dagum and Luby (1997). This method provides very good
approximations in polynomial time for a wide class of networks: those without ex-
treme probabilities. However, if extreme probabilities are present, the problem de-
scribed above can arise. In fact, Dagum and Luby (1993) proved that the problem
of approximating probabilities in Bayesian networks is NP-hard in the worst case.
This motivates the study of heuristic procedures to make inferences in large networks
with extreme probabilities.
A class of these heuristic procedures is composed by the importance sampling

algorithms based on approximate pre-computation. These methods perform �rst a
fast but non-exact propagation, following a node removal process (Zhang and Poole,
1996). In this way, an approximate ‘a posteriori’ distribution is obtained. In a second
stage, a sample is drawn using the approximate distribution and the probabilities are
estimated according to the importance sampling methodology. A similar idea can be
found in consistency algorithms for propositional logic (Dechter and Rish, 1994),
when a bounded directional resolution procedure is followed by a Davis–Putnam
backtracking algorithm. The bounded directional resolution is as the approximate
probabilistic computation, and the Davis–Putnam backtracking uses the previous ap-
proximate computations in the same way as the sample is obtained from the sampling
distribution.
Known approximate pre-computation algorithms, proposed in Hern�andez et al.

(1996,1998), use probability tables (see Jensen, 1996) to represent the sampling
distributions. The main problem of the probability tables representation is that the
size of a table is proportional to the product of the number of possible values of
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each of the variables for which the potential is de�ned, with independence of the
possible existence of regularities or repetitions.
Under limited resources, it turns out necessary to �nd a method able to concentrate

more information in less space. To this end, two kinds of sparse representations
have been used in the context of Bayesian networks: rule bases (Poole, 1997a,b)
and probability trees (Boutilier et al., 1996; Cano and Moral, 1997; Kozlov and
Koller, 1997). They both try to use the regularities of the conditional distributions,
i.e., context-speci�c independence (Boutilier et al., 1996) to simplify the network in
order to facilitate the inference procedures, as in Zhang and Poole (1996).
The advantage of these methods over probability tables is more important when

we cannot a�ord to compute exact values and we have to approximate the poten-
tials. Probability trees (rule bases too) have the possibility of approximating in an
asymmetrical way, concentrating more resources (�ner discrimination) where they
are more necessary: higher values with more variability.
In this paper we present a Monte Carlo algorithm based on pre-computation, in

which the approximation is based on the probability tree representation. Computa-
tions are carried out directly over probability trees. The performance of the resulting
algorithm is compared with previous importance sampling based on pre-computation
with the probability tables representation, showing how the new methods reduce both
the error and computing time.
We start o� establishing some notation and the concept of probability propagation

in Section 2. Approximate propagation by means of importance sampling technique
is analyzed in Section 3, including a very simple motivating example. Probability
trees are studied in Section 4, including tree construction and operations necessary
to perform probability propagation using them. In Section 5 an importance sampling
algorithm using probability trees is proposed, pointing out the advantages of this
new representation. Section 6 is devoted to describe the experimental tests carried
out for testing the algorithm proposed, and to discuss their results. The paper ends
with conclusions in Section 7.

2. Notation and problem formulation

A Bayesian network is a directed acyclic graph where each node represents a
random variable, and the topology of the graph shows the independence relations
among the variables, according to the d-separation criterion (Pearl, 1988). Given the
independences attached to the graph, the joint distribution is determined giving a
probability distribution for each node conditioned on its parents.
Let A= {X1; : : : ; Xn} be the set of variables in the network. Assume each variable

Xi takes values on a �nite set Ui. For any set U , |U | stands for the number of
elements it contains. If I is a set of indices, we will write XI for the set {Xi | i∈ I}.
N ={1; : : : ; n} will denote the set of indices of all the variables in the network; thus,
XN = A. We will denote by UI the Cartesian product

∏
i∈ I Ui. Given x∈UI and

J ⊆ I; xJ will denote the element of UJ obtained from x dropping the coordinates
not in J .
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A potential f de�ned on UI will be a mapping f :UI → R+0 , where R+0 is the set of
non-negative real numbers. Probabilistic information (including ‘a priori’, conditional
and ‘a posteriori’ distributions) will always be represented by means of potentials,
as in Lauritzen and Spiegelhalter (1988).
If f is a potential de�ned on UI ; s(f) will denote the set of indices of the

variables for which f is de�ned (i.e. s(f) = I).
The marginal of a potential f over a set of variables XJ with J ⊆ I is denoted by

f↓J . The conditional distribution of each variable Xi; i = 1; : : : ; n, given its parents
in the network, XF(i), is denoted by a potential pi(xi|xF(i)) where pi is de�ned over
Ui∪F(i).
Then, the joint probability distribution for the n-dimensional random variable XN

can be expressed as

p(x) =
∏
i∈N

pi(xi|xF(i)) ∀x∈UN : (1)

An observation is the knowledge about the exact value Xi = ei of a variable. The
set of observations will be denoted by e, and called the evidence set. E will be the
set of indices of the variables observed.
Every observation, Xi = ei, is represented by means of a potential which is a

Dirac function de�ned on Ui as �i(xi; ei) = 1 if ei = xi; xi ∈Ui, and �i(xi; ei) = 0 if
ei 6= xi.
The goal of probability propagation is to calculate the ‘a posteriori’ probability

function p(x′k |e), for every x′k ∈Uk , where k ∈{1; : : : ; n}. This probability could be
obtained from the joint distribution (1), but we assume that it is di�cult to manage
due to its size, since we are interested in large networks and the number of values
necessary to specify the joint distribution grows exponentially in the number of
variables in the network. Notice that p(x′k |e) is equal to p(x′k ; e)=p(e), and, since
p(e)=

∑
x′k ∈Uk p(x

′
k ; e), we can calculate the posterior probability if we compute the

value p(x′k ; e) for every x
′
k ∈Uk , normalizing afterwards. p(x′k ; e) can be expressed

in the following way:

p(x′k ; e) =
∑
x∈UN
xE=e
xk=x

′
k

∏
i∈N

pi(xi|xF(i))

=
∑
x∈UN

( ∏
i∈N

pi(xi|xF(i))
)∏

j∈ E
�j(xj; ej)


 �k(xk ; x′k)

=
∑
x∈UN

g(x); (2)

where g(x)=(
∏
i∈N pi(xi|xF(i)))(

∏
j∈ E �j(xj; ej))�k(xk ; x

′
k) for all x∈UN and �k(xk ; x′k)

is equal to 1 if xk = x′k and 0 otherwise. One way of estimating the addition in (2)
is the importance sampling technique.
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3. Importance sampling in Bayesian networks

Importance sampling is well known as a variance reduction technique for esti-
mating integrals by means of Monte Carlo methods (see, for instance, Rubinstein,
1981). Here we study how to use it to estimate additions instead of integrals.
The technique is based on a transformation of formula (2). We consider a proba-

bility function p∗ :UN → [0; 1], verifying that p∗(x)¿ 0 for every point x∈UN such
that g(x)¿ 0. Then, we can write formula (2) as follows:

p(x′k ; e) =
∑
x∈UN ;
g(x)¿0

g(x)
p∗(x)

p∗(x) = E
[
g(X ∗)
p∗(X ∗)

]
;

where X ∗ is a random variable with distribution p∗. Then,

�=
g(X ∗)
p∗(X ∗)

(3)

is an unbiased estimator of p(x′k ; e) with variance var(�)=E[�
2]−[E�]2=(∑x∈UN g

2(x)
=p∗(x))− p2(x′k ; e).
Since the sample mean is an unbiased estimator of the expectation, we can estimate

p(x′k ; e) from a sample {x(j)}mj=1 for variable X ∗ as

1
m

m∑
j=1

g(x(j))
p∗(x(j))

: (4)

Minimizing the variance of this sample mean is the same as minimizing the vari-
ance of �. It can be shown that this minimum is equal to zero, and it can only be
achieved if we sample with a distribution p∗(x)=g(x)=(

∑
y∈UN g(y))=g(x)=p(x

′
k ; e)

for all x∈UN .
However, in general, we will not be able to use a sampling distribution proportional

to g(x), but at most a distribution close to it, in some sense.
The drawback of this method, as formulated above, is that it is necessary to ap-

ply it separately to every value of variable Xk . And if we want to estimate the ‘a
posteriori’ probability for a di�erent variable Xl, then we have to repeat the cal-
culations obtaining a sample for each one of the possible values of variable Xl.
If we want to calculate the ‘a posteriori’ probability for all the variables in the
network, then for each case of each variable, a sampling distribution has to be
computed and a sample drawn from it. This is the solution adopted in Cano et
al. (1996). Dagum and Luby (1997) use a slightly di�erent method; they estimate
p(x′k ; e) and p(e) with di�erent samples in order to obtain and approximation for
p(x′k |e). However, this process may be too costly if the size of the network is large
enough.
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Hern�andez et al. (1998) propose a variation over the former scheme that allows
to estimate the probabilities for all of the variables more quickly. The idea is to
perform a simulation as if we wanted to estimate p(e). In this case,

p(e) =
∑
x∈UN
xE=e

∏
i∈N

pi(xi|xF(i))

=
∑
x∈UN

( ∏
i∈N

pi(xi|xF(i))
)∏

j∈ E
�j(xj; ej)


= ∑

x∈UN
f(x); (5)

with f(x) = (
∏
i∈N pi(xi|xF(i)))(

∏
j∈ E �j(xj; ej)) for all x∈UN .

We can construct an estimator � for p(e) in the same way as we did before:

�=
f(X ∗)
p∗(X ∗)

; (6)

where f is as in Eq. (5).
Using distribution p∗, we generate a sample x(i) ∈UN ; i = 1; : : : ; m. This single

sample is used to estimate all the probability values in the following way: for each
value x′k of variable Xk , we take all the con�gurations x

(j), j∈ J (x′k )⊆{1; : : : ; m} such
that x(j)k = x

′
k and estimate p(x

′
k ; e) as

p̂(x′k ; e) =
1
m

∑
j∈ J (x′k )

f(x(j))
p∗(x(j))

=
1
m

m∑
j=1

wj: (7)

Note that, in fact, what we are doing is to use an unbiased estimator, �x′k , of
p(x′k ; e), and each wj is a value for that estimator, which is de�ned as

�x′k =
f(X ∗)�k(X ∗

k ; x
′
k)

p∗(X ∗)
; (8)

with X ∗ a random variable with distribution p∗, but in this case the sampling distri-
bution, p∗, is constructed for estimating p(e) instead of p(x′k ; e). Therefore, we must
not expect the minimum variance to be equal to zero, even in the case of choosing
p∗ proportional to f. In fact, what we have when p∗ is proportional to f, is that
var(�x′k ) = p(x

′
k ; e)(p(e) − p(x′k ; e)), and therefore, taking into account Eq. (7) we

have var(p̂(x′k ; e)) = (1=m)p(x
′
k ; e)(p(e)− p(x′k ; e)).

However, sampling with a distribution proportional to f will not always be pos-
sible (this is equivalent to know the conditional probabilities p(xk |e) which are the
values we are estimating), and the best we will be able to do is to select p∗ close
to p(·|e).
Once p∗ is selected, we can estimate p(x′k ; e), for each value x

′
k of each variable

Xk; k ∈N − E, with the following algorithm:



A. Salmer�on et al. / Computational Statistics & Data Analysis 34 (2000) 387–413 393

Importance Sampling

1. For j := 1 to m (sample size)
(a) Generate a con�guration x(j) ∈UN using p∗.
(b) Calculate

wj :=
(
∏
i∈N pi(x

(j)
i |x(j)F(i))) · (

∏
l∈ E �l(x

(j)
l ; el))

p∗(x(j))
: (9)

2. For each x′k ∈Uk , k ∈N − E, estimate p(x′k ; e) using formula (7).
3. Normalize values p(x′k ; e) in order to obtain p(x

′
k |e).

It can be shown that using the same sample obtained to estimate p(e), for estimating
every p(x′k ; e), does not imply an important increment on the variances of the esti-
mators, even in the case in which p∗ is not proportional to f. This is demonstrated
in the following results.

Proposition 1. Let p̂(e) and p̂(x′k ; e); x
′
k ∈Uk be the sample mean estimators of

p(e) and p(x′k ; e); x
′
k ∈Uk respectively. Then; using the same sample of total size

m for computing both estimators; it holds that

∑
x′k ∈Uk

var(p̂(x′k ; e)) = var(p̂(e)) +
p2(e)−∑x′k ∈Uk p

2(x′k ; e)

m
: (10)

Proof. Let � and �x′k be unbiased estimators of p(e) and p(x
′
k ; e) as de�ned in Eqs.

(6) and (8), respectively. Let Uk = {x′k1 ; : : : ; x′kn} be the set of all possible values of
variable Xk . It is clear that � =

∑
x′k ∈Uk �x′k and �x′ki · �x′kj = 0 if x

′
ki 6= x′kj . In these

conditions,

E[�2] =E[(�x′k1 + · · ·+ �x′kn )
2]

=
∑
x′k ∈Uk

E[�2x′k ] + 2
∑

x′ki ;x
′
kj
∈Uk

x′ki 6=x
′
kj

E[�x′ki · �x′kj ] =
∑
x′k ∈Uk

E[�2x′k ]:

Thus,

var(�) = E[�2]− [E�]2 =

 ∑

x′k ∈Uk
E[�2x′k ]


− p2(e): (11)

Since E[�x′k ] = p(x
′
k ; e), then var(�x′k ) = E[�

2
x′k
]− p2(x′k ; e). Substituting in formula

(11),

var(�) =
∑
x′k ∈Uk

(var(�x′k ) + p
2(x′k ; e))− p2(e): (12)

Now, if we consider the sample mean estimators p̂(e) and p̂(x′k ; e), we have that
var(p̂(e))=var(�)=m and var(p̂(x′k ; e))=var(�x′k )=m. This, together with formula (12)
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implies that

∑
x′k ∈Uk

var(p̂(x′k ; e)) = var(p̂(e)) +
p2(e)−∑x′k ∈Uk p

2(x′k ; e)

m
:

So, according to this proposition, for every �¿ 0, if we select m such that 1=m¡�,
then we can assure that var(p̂(x′k ; e))¡var(p̂(e))+�. As a consequence, if we choose
a sample producing a small variance in the estimation of p(e), then the same sample
will produce small variances for the estimations of every p(x′k ; e); x

′
k ∈Uk .

In essence, we do not want to estimate p(x′k ; e) but the normalized value p(x
′
k |e)=

p(x′k ; e)=p(e). This is done by using p̂(x
′
k |e)= p̂(x′k ; e)=p̂(e). We do not know exact

results about the distribution or variance of this estimation. Geweke (1989) pro-
vides asymptotic results showing that in the limit it has a normal distribution with
a variance that in our case can be expressed as

�2 =
E[(�k(Xk ; x′k)− p(x′k |e))2 · �]

m
;

where Xk follows distribution p(·|e) and �k(Xk ; x′k) is equal to 1 if Xk = x′k and 0
otherwise.
When the weights are constant (p∗=p(:|e)) then this variance is exact and equal

to p(x′k |e)(1 − p(x′k |e))=m. This is a desirable variance, but problems occur when
we have a large variance in the weights: most of them are small and a few of them
very high. Geweke (1989) de�nes the relative e�ciency of an estimator (RNE) as
the ratio of p(x′k |e)(1−p(x′k |e))=m (the variance obtained when p∗=p(:|e)) and the
variance of our estimator. Low values of the RNE indicate a poor behaviour of our
sampling distribution.

3.1. Computing a sampling distribution

The performance of the simulation procedure described above depends on the
sampling distribution. Known importance sampling algorithms, as those developed by
Cano et al. (1996); Fung and Chang (1990); Shachter and Peot (1990) and Dagum
and Luby (1997) generate con�gurations simulating values for each non-observed
variable using its conditional distribution, and instantiating each observed variable in
XE to the evidence e. This may lead to bad situations. This happens when most of
the weights are low and a few of them are high. The following example illustrates
this situation.

Example 1. Assume a very simple Bayesian network with 2 variables X1 and X2.
X1 is the father of variable X2. Each variable Xi can take two values {xi0 ; xi1}. We
assume the following initial probabilities:

p1(x10) = 1− �1; p1(x11) = �1;

p2(x20 |x10) = 1− �2; p2(x21 |x10) = �2;
p2(x20 |x11) = 0; p2(x21 |x11) = 1;

where �0 and �1 are positive real numbers very close to zero.
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The evidence set is e = {X2 = x21}. Then, the joint probabilities of con�gurations
and evidence are

p(x10 ; x20 ; e) = 0; p(x10 ; x21 ; e) = (1− �1)�2;
p(x11 ; x20 ; e) = 0; p(x11 ; x21 ; e) = �1;

and the probability of the evidence is (1− �1)�2 + �1 = �1 + �2 − �1�2.
Classical likelihood weighting simulation, works in the following way:

• It obtains a value for X1 according to its ‘a priori’ distribution p1. That is, we
get x10 with probability 1− �1 and x11 with probability �1.

• The value of X2 is �xed to the observation X2 = x21 .
• Con�guration (x1i ; x21) is weighted according to importance sampling (formula
(9)), with the following values:

w(x10 ; x21) =
(1− �1)�2
(1− �1) = �2;

w(x11 ; x21) =
�1
�1
= 1:

Observe that the weights are quite di�erent: one of them is 1 and the other one
is very close to 0. Furthermore, in most of the cases (with probability 1 − �1) we
will obtain a con�guration with low weight and in some very few cases we will
obtain a con�guration of weight 1. This is an important problem in the estimation of
conditional probabilities. From an intuitive point of view, the situation is that most
of the con�gurations have very little importance in the estimation, and only few of
them have a real importance.
From a more formal point of view, when computing the conditional probabilities

for variable X1, the variance of the estimation of p(x11 ; e) for a sample of size
m is equal to var1 = �1(1 − �1)=m. This variance is much higher than when we
generate the sample with probability proportional to p(:|e). In that case, the variance
is: var2 = �1�2(1 − �1)=m. The relative numerical e�ciency (RNE) of this sampling
distribution (Geweke, 1989) is var2=var1 = �2, which is very close to 0, indicating a
very poor behaviour. 1

The situation is that when we start to simulate, the values obtained for variable X1
according to its ‘a priori’ distribution are quite incompatible with the observation on
X2. To solve this problem, Fung and Favero (1994) proposed the so called backward
simulation, in which we start to simulate in the observations and then going backward
to the root nodes. In this case, the procedure is:
• Fix the value of X2 to the observed value X2 = x21 .
• From X2 obtain a value for its parent X1 by using the conditional probability of
X2 given X1 and the observed value. This implies that the sampling probabilities
for X1 are p∗(x10) = �2=(1 + �2) and p

∗(x11) = 1=(1 + �2).
• The con�guration is weighted according to importance sampling: w(x10 ; x21) =
(1− �1)(1 + �2) and w(x11 ; x21) = �1(1 + �2).

1 Note that we have used joint probabilities instead of conditional ones to compute the RNE. It can be
checked that the result is the same.
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Again, we �nd the same situation: in most of the con�gurations (with probability
1=(1 + �2)) we obtain the value x11 for variable X1, but in that case the weight is
really small if �1 is very close to 0.
The problem now is that we start to simulate in the observations and they have a

high degree of inconsistency with the ‘a priori’ information about X1.
In the example above, there are two parts of the graph which are contradictory,

which motivates that simulation will not work �ne when it starts in one part of the
graph without taking into account the information contained in other parts of the
graph. The result would be the obtainment of very small weights with a very high
probability. The solution to this problem could be to calculate the probability p(:|e)
and then to simulate with this distribution. This is indeed feasible in the case of the
above very simple network involving only two variables, but in most of the cases
it will be infeasible. Then, what we can do is to try to get an estimation of it in
a reasonable time, so that when we simulate a value for a variable we use most of
the information in the graph that we can a�ord.
In this direction, the approximate pre-computation technique, introduced by

Hern�andez et al. (1996, 1998), consists of computing a sampling distribution gath-
ering as much information as possible from all the information available. An exact
sampling distribution (obtaining con�guration x with a probability equal to p(x|e))
can be calculated locally by means of a probabilistic propagation algorithm, more
precisely, we consider a variable elimination algorithm as in Zhang and Poole (1996).
In the following, we briey describe such procedure. More details can be found in
Hern�andez et al. (1998).
Assume that H is the set of all the potentials involved in the calculation of f,

i.e. H = {pi | i = 1; : : : ; n} ∪ {�j(·; ej) | j∈E}. An elimination order � is considered
and variables are deleted according to such order: X�(1); : : : ; X�(n).
The deletion of a variable X�(i) consists of combining all the functions in H which

are de�ned for that variable, marginalizing afterwards in order to remove X�(i) from
the set of variables for which the combination is de�ned. The potential obtained is
inserted in H . More precisely, the steps are as follows:
• Let H�(i) = {hj ∈H |�(i)∈ s(hj)}.
• Calculate h=∏hj ∈H�(i) hj and h

′ = h↓s(h)−�(i).
• Transform H into H − H�(i) ∪ {h′}.
Hern�andez et al. (1998) have shown that if h is the potential calculated when

deleting variable X�(i) and J = {�(i + 1); : : : ; �(n)} we have that, for every x∈UN ,
p(x�(i)|xJ ; e)˙ h(x�(i); xJ∩s(h)); (13)

where symbol ˙ means “proportional to”.
This provides a method to obtain a con�guration x with probability proportional to

p(x; e): we simulate values in the opposite deletion order: x�(n); x�(n−1); : : : ; x�(2); x�(1).
To get a value x�(i) we use a sampling distribution p∗

�(i)(·|xJ ) = p(x�(i)|xJ ; e), which
is calculated using expression (13).
This is the procedure to obtain an exact sampling distribution, i.e. p∗(x|e)=p(x|e).

In some cases, the computation of exact sampling functions h will not be possible.
The di�culty is in the combination by multiplication of all the potentials in H�(i).
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The resulting function h is de�ned for variables Xs(h), where s(h) =
⋃
hj ∈H�(i) s(hj),

and the number of values necessary to specify h is exponential in the number of
variables for which it is de�ned.
Hern�andez et al. (1998) propose to follow the same scheme as in exact

propagation, but when the computation of h′ is not feasible, they try to obtain
an approximation. The approximation consists in not multiplying all the functions
before marginalizing, but considering some partition of H and then applying the
combination-marginalization steps to all the elements of the partition. Several crite-
ria have been considered to determine the partition, but in general they are based
in not surpassing and upper limit for the size of a potential. A similar approximate
approach (the minibucket elimination) has been used in Dechter and Rish (1997) to
calculate the con�guration of maximum probability.
Previous algorithms are based on the representation of probabilistic potentials by

means of probability tables. In this paper we propose probability trees (Boutilier
et al., 1996) as a more convenient representation of potentials to obtain approxima-
tions. Probability trees take advantage of context-speci�c independence to produce
more e�cient representations of potentials. Cano and Moral (1997) have shown the
capabilities of probability trees to produce good approximations under limited re-
sources. In this paper, we propose a new approximate method for deleting variables.
This method is based on the use of probability trees instead of tables, and leads
to the de�nition of an e�cient algorithm for approximate probabilistic propagation.
Probability trees have more power to represent potentials in a compact form. So, in
this way we can obtain better approximations using the same resources (space and
time) and, as a �nal consequence, a higher relative e�ciency value.
One important aspect of the elimination procedure described here is the order in

which variables are removed. Depending on this order, potentials of di�erent sizes
may be obtained. This fact can be seen in the following example:

Example 2. Assume we have two potentials h1(X1; X4; X5) and h2(X1; X2; X3), and we
want to remove variables X1 and X2. If we remove �rst X1, we have to combine h1
and h2, since both contain variable X1, obtaining a potential de�ned for the �ve
variables X1; : : : ; X5. Then, we marginalize and obtain a new potential h′ de�ned for
X2; X3; X4 and X5. Now we proceed to remove X2. To this end, we just have to
marginalize h′ obtaining a new potential h′′ de�ned for X3; X4 and X5. Observe that
the biggest potential we have obtained is de�ned for �ve variables.
If instead we remove �rst X2, we just have to marginalize h2 obtaining a new

potential h′ de�ned for variables X1 and X3. Now, in order to delete X1, we com-
bine h1 and h′, obtaining a new potential h′′ de�ned for X1; X3; X4 and X5. Note
that, in this case, the biggest potential we have obtained is de�ned just for four
variables.

It is convenient to �nd an elimination order producing small potentials, since
in this way we will obtain approximate potentials closer to the exact ones in the
approximation procedure described above, thus reducing the variability in the estima-
tions.
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In Hern�andez et al. (1998), the variables are deleted from leaves to roots, which
implies that the simulation order is from roots to leaves, as it is in likelihood weight-
ing (Fung and Chang, 1990) and bounded variance (Dagum and Luby, 1997).
The problem of obtaining an optimal deletion sequence is the same as obtaining an

optimal triangulation of the moral graph associated with a Bayesian network. Good
heuristic algorithms for triangulating graphs have been developed by Cano and Moral
(1995) and Kj�rul� (1992).
The complexity of the resulting variable elimination algorithm will depend on

the size of intermediate potentials. Bad deletion sequences will give rise to big size
potentials and therefore to the need of important approximation steps with the conse-
quence of poor approximations of the sampling distribution p(·|e). A good deletion
sequence may give rise to small potentials allowing an exact calculation of the sam-
pling distribution p(·|e). Obtaining an optimal sequence is an NP-hard problem, but
there are good heuristics allowing to obtain good sequences in reasonable time.
In this work we have considered the following heuristic: �rst of all remove vari-

ables that are contained in the domain of only one potential. If there are not such
variables, then select one according to the minimum size heuristic (see Kj�rul�,
1992), that is, one variable such that the size of the combination of all the potentials
for which the variable is de�ned is the smallest.

4. Probability trees

A probability tree is a directed labeled tree, each of its inner nodes representing
a variable and each of its leaf nodes representing a probability value. Each inner
node will have as many outgoing arcs as possible values the variable it represents
has. Each leaf of the tree contains a real number. We de�ne the size of a tree as
the number of leaves it has.
A probability tree Tf on variables XI represents potential f :UI → R if for

each xI ∈UI the value f(xI) is the number stored in the leaf node that is obtained
starting in the root node and selecting for each inner node labeled with Xi the child
corresponding to coordinate xi. We will denote by Tf(xI) the value f(xI).
Each leaf of a tree T has associated a con�guration XJ = xJ where XJ are the

variables appearing in the path from the root node to the leaf, and xJ are the values
of these variables corresponding to this path.
Probability trees are appropriate tools for representing regularities in probability

potentials. Such regularities are characterized by the concept of context-speci�c in-
dependence (see Boutilier et al., 1996).

Example 3. Fig. 1 displays a network with variables X1; X2 and X3, each of them
taking two possible values, Xi = 1 or Xi = 2; i = 1; 2; 3. The table represents the
conditional distribution P(X1|X2; X3). It can be seen that X1 and X3 are independent
given context X2 = 2. This independence is reected in the tree in the �gure: it
contains the same information as the table, but using �ve values instead of eight.
The tree in Fig. 1 represents potential f(x1; x2; x3) = P(X1 = x1|X2 = x2; X3 = x3).



A. Salmer�on et al. / Computational Statistics & Data Analysis 34 (2000) 387–413 399

Fig. 1. Probability table and its corresponding tree.

For instance, value 0:2 corresponds to f(1; 1; 1) = P(X1 = 1|X2 = 1; X3 = 1), and 0:7
corresponds to f(1; 2; 1) and f(1; 2; 2).
Note that probability trees can be used to represent any potential, not only con-

ditional distributions. Hence, they can be used to represent potentials resulting in
intermediate steps in simulation algorithms, that may be unnormalized.
We have to �x the following aspects before using probability trees in our simula-

tion algorithm. First, the initial conditional distributions in the network may be given
as tables. Thus, we need a way of translating a probability table into a tree. Second,
we have to de�ne the product of potentials and the marginal of a potential within
the context of probability trees, because otherwise, each time an operation is going
to be carried out, we would have to move from one representation to another, which
is computationally ine�cient. Third, it may happen that the tree resulting from an
operation has a size bigger than the maximum allowed. Hence, we need a way of
pruning a tree until its size is below the threshold. We will approach these tasks
following the methodology developed by Cano and Moral (1997).

4.1. Constructing a probability tree

Let f be a potential over a set of variables XI . Constructing a tree T representing
potential f without any other additional restriction is a trivial task: the tree will
contain one branch for every con�guration of XI , and one leaf for every value
f(xI) with xI ∈UI . However, this procedure can lead to unnecessarily big trees. For
example, consider the trees in Fig. 2. Assume tree (a) is the result of the procedure
above. Changing the positions of variables X1 and X2 we obtain tree (b). Now, we
can realize that the value of X1 is irrelevant given the value of X2. Thus, we can
construct tree (c) which represents the same potential as (a) and (b) but with lower
size.
Two problems can be considered: how to represent a potential with a minimal tree?

or how to approximate a potential with a tree of smaller size? For the second question
we need a distance to measure the goodness of the approximation. These questions
are addressed by Cano and Moral (1997). The criterion they use is that the resulting
tree T must minimize the distance to potential f. If we denote by pT and pf the
probability distributions proportional to T and f respectively, the distance from a
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Fig. 2. Three trees containing the same information.

tree T to a potential f is measured by Kullback–Leibler’s divergence (Kullback
and Leibler, 1951):

D(f;T) =−
∑
xI ∈UI

pf(xI) log
pf(xI)
pT(xI)

: (14)

For the approximation, there are two subproblems, what is the structure (shape of
the tree and variables on inner nodes) of the representation? and which are the num-
bers on the tree leaves? The most di�cult problem is the �rst one. Given the struc-
ture, the numbers minimizing the distance can be easily calculated using the
following result (Cano and Moral, 1997): given a tree structure the optimal approxi-
mation of f can be obtained by putting in every leaf corresponding to con�guration
XJ = xJ the average of the values f(yI) with y∈UN and yJ = xJ .
The methodology proposed in Cano and Moral (1997) to build a minimal proba-

bility tree is based on methods for inducing classi�cation rules from examples. One
of these methods is Quinlan’s ID3 algorithm (Quinlan, 1986), that builds a decision
tree from a set of examples. A decision tree represents a sequential procedure for
deciding the class membership of a given instance of the attributes of the problem.
That is, the leaves of the decision tree give us the class for a given instance of the
attributes. ID3 builds a decision tree in a greedy way, by choosing a good test at-
tribute to re�ne the actual structure. To determine which attribute should be the test
attribute for a leaf node of the tree, the algorithm applies an information-theoretic
measure Gain(Ai) over all the possible attributes Ai. This information measure gives
an idea of the gain of information by partitioning a leaf node in the tree with an
attribute.
In the case of probability trees, Cano and Moral (1997) use the same algorithm, but

the information measure is di�erent, because each leaf in a decision tree represents
a class, while in a probability tree, each leaf represents a probability value. Then,
we need a measure particularly adapted to probabilities.
The process of constructing a tree can be seen as follows. Assume T is the tree

we are constructing. A construction step requires to decide which branch to expand
and which variable to place in the new node. This selection must be done in such a
way that the distance to the potential is minimized. If a leaf node in T corresponds
to a con�guration XJ = xJ , we denote by T(XJ = xJ ; Xk) the tree obtained from T
by expanding the leaf de�ned by XJ = x with variable Xk . At each moment, both
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the branch and the variable are selected in order to minimize the distance to f,
that is,

D(T(XJ = xJ ; Xk); f) = min{D(T(XJ ′ = xJ ′ ; Xk′); f)}; (15)

where XJ ′ = xJ ′ is a leaf of T and k ′ ∈ I − J ′. The following proposition shows a
way of computing that minimum.

Proposition 2 (Cano and Moral, 1997). The pair (XJ = xJ ; Xk) minimizing expres-
sion (15) is that one maximizing the measure of information

I(XJ = xJ ; Xk |f) = SXJ=xJ · (log|Uk | − log SXJ=xJ − E[Xk |XJ = xJ ]); (16)

where

SXJ=xJ =
∑
z∈UN
zJ=xJ

f(zI);

E[Xk |XJ = xJ ] =−
∑
yk ∈Uk

f↓k(yk |XJ = xJ ) logf↓k(yk |XJ = xJ );

f↓k(yk |XJ = xJ ) =
∑
z∈UN
zJ=xJ
zk=yk

f(zI):

The value of information I(XJ = xJ ; Xk |f) measures the distance from a tree T to
a potential f before and after expanding the branch XJ = xJ with variable Xk . The
proposition above means that we must select branches leading to con�gurations with
high probability, and variables with small entropy.
With this, a procedure to construct an exact tree is to select nodes maximizing

function I . The procedure would �nish when, for every branch XJ = xJ , the values
of f are uniform, that is, f(yI) = f(y′

I) for all yI ; y
′
I ∈UI such that yJ = y′

J = x.
That is, the idea is to include nodes until no new information is provided by adding
new nodes.
For constructing an approximate tree, Cano and Moral (1997) propose di�erent

alternatives. One of the alternatives consists of adding nodes until an exact repre-
sentation is obtained or a maximum number of nodes is reached.
The other alternative is to construct the entire tree and prune it afterwards. If

T is such tree, a pruning consists of selecting a node such that all its children
are leaves and replacing it and its children by one node containing the average of
the values of the leaf nodes being removed. We have two ways of performing a
pruning.
The �rst way of pruning is to remove nodes while the maximum size is exceeded.

The selection of a node will be determined by that pair (XJ = xJ ; Xk) minimizing the
measure I(XJ = xJ ; Xk |f), that is, the pair minimizing the increment of the distance
to potential f.
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The following algorithms performs this task:

APPROXIMATE(T; M )

1. While the size of T is greater than M ,
(a) Let N be the set of nodes in T such that all their children are leaves.
(b) For each node Xk ∈N,

• Let XJ = xJ be the con�guration leading to node Xk .
• Compute I(XJ = xJ ; Xk |f).

(c) Replace in T the node from N minimizing the information measure I(·|f)
by the average of the values of its children.

The other way of pruning is to remove nodes determined by pairs (XJ = xJ ; Xk) such
that

I(XJ = xJ ; Xk |f) ≤ �; (17)

where � is a threshold for the increment of the distance. The pruning would �nish
when there are no more pairs verifying condition (17). The way of selecting � is
as follows: given a parameter 0¡�¡ 0:5, we compute � as the entropy of the
distribution (0:5 − �; 0:5 + �), i.e., the distribution obtained by moving in a fraction
� from the uniform distribution for a binary variable. That is,

�=−((0:5− �) log(0:5− �) + (0:5 + �) log(0:5 + �)): (18)

The goal of this procedure is to detect leaves in the tree with very similar values
(i.e. close to an uniform distribution), since they can be replaced by the average
value without an important increment of the distance to the exact tree.
The details of this procedure are described in the following algorithm:

PRUNE(T; �)

1. Compute � as in formula (18).
2. Let N be the set of nodes in T such that all their children are leaves.
3. While N 6= ∅,
(a) Remove a node Xk from N.
(b) Let XJ = xJ be the con�guration leading to node Xk .
(c) If I(XJ = xJ ; Xk |f) ≤ �,

• Replace in T node Xk by the average of the values of its children.
• Let X ′

k be the parent of Xk in T.
• If all the children of X ′

k are leaves, insert X
′
k in N.

Note that we will always be able to obtain the exact trees representing the initial
conditional probability tables given in the network, since the trees are, at most, of
the same size as the corresponding tables.
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Fig. 3. The restriction operation.

4.2. Operations over probability trees

Propagation algorithms require three operations over potentials: restriction, com-
bination and marginalization. In this section we briey describe the algorithms pro-
posed in Kozlov and Koller (1997). Cano and Moral (1997) give more general
algorithms in which the structure of the operands is mixed trying to obtain an opti-
mal representation. Here the algorithms are simpler and will take one of the operands
as basis expanding it with the structure of the other tree.
The restriction operation is trivial. Given a tree T, a set of variables XJ , and

xJ ∈UJ , TR(XJ=xJ ) denotes the restriction of T to the values xJ of the variables
in XJ , that is, the tree obtained by substituting in T every node corresponding to
variables Xk; k ∈ J by the subtrees Tk children of Xk corresponding to Xk = xk . The
restriction operation is illustrated in Fig. 3.
The other two operations, combination and marginalization, are more complicated.

In the next, we give the detailed algorithms for performing those operations.
Given a tree T representing a potential f over a set of variables XI , we denote

by Vr(T) the set of variables corresponding to inner nodes in T. It holds that
Vr(T)⊆XI , but after a pruning is performed, it can happen that Vr(T) 6= XI . We
will denote by Vr∗(T) the set of variables for which the potential represented by
T is de�ned. In this case, even after any pruning, it holds that Vr∗(T) = XI .
The label of a node of a tree will be equal to the variable corresponding to the

node. If the node is a leaf, then the label will be equal to the probability value
attached to that leaf.
Given two trees T1 and T2 representing potentials f1 and f2 respectively, the

following algorithm computes a tree representing potentials f=f1 ·f2 (combination).

COMBINE(T1;T2)

1. Create a tree node Tr initially with no label.
2. Let L1 and L2 be the labels of the root nodes of T1 and T2 respectively.
3. If L1 and L2 are numbers, then make L1 · L2 be the label of Tr .
4. If L1 is a number but L2 is a variable, then
(a) Make L2 be the label of Tr .
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Fig. 4. Combination of two trees.

(b) For every tree T child of the root node of T2, make Th :=
COMBINE(T1;T) be a child of Tr.

5. If L1 is a variable, assume that Xk is that variable.
(a) Make Xk be the label of Tr.
(b) For each xk ∈Uk ,

• Make Th:=COMBINE(T
R(Xk=xk )
1 ;TR(Xk=xk )

2 ) be a child of Tr.
6. Return Tr.

We will denote the combination of trees by symbol ⊗. With this notation, the algo-
rithm above returns a tree Tr =T1 ⊗T2.
The combination process is illustrated in Fig. 4.
Given a tree T representing a potential f de�ned over a set of variables XI , the

following algorithm computes a tree representing potential f↓(I−{i}), with i∈ I . That
is, it removes variable Xi form T.

MARGINALIZE(T; Xi)

1. Let L be the label of the root node of T.
2. If L is a number, create a node Tr with label L · |Ui|.
3. Otherwise, let Xk be the variable corresponding to label L.
(a) If Xk = Xi, then

i. Let T1; : : : ;Ts be the children of the root node of T.
ii. Tr :=T1.
iii. For i := 2 to s, Tr :=ADD(Tr, Ti).
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Fig. 5. Addition of two trees.

(b) Otherwise,
i. Create a node Tr with label Xk .
ii. For each xk ∈Uk
A. Make Th :=MARGINALIZE(TR(Xk=xk ); Xi) be the next child of Tr.

4. Return Tr.

This algorithm uses procedure ADD(T1;T2), which computes the addition of T1

and T2. The procedure is as follows:

ADD(T1,T2)

1. Create a tree node Tr initially with no label.
2. Let L1 and L2 be the labels of the root nodes of T1 and T2 respectively.
3. If L1 and L2 are numbers, then make L1 + L2 be the label of Tr .
4. If L1 is a number but L2 is a variable, then
(a) Make L2 be the label of Tr .
(b) For every child T of the root node of T2, make Th :=ADD(T1, T) be

a child of Tr.
5. If L1 is a variable, assume that Xk is that variable.
(a) Make Xk be the label of Tr.
(b) For each xk ∈Uk ,

• Make Th :=ADD(T
R(Xk=xk )
1 ;TR(Xk=xk )

2 ) be a child of Tr .
6. Return Tr.

The addition of two trees is illustrated in Fig. 5, where symbol ⊕ represents the
addition operation.
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5. Importance sampling using probability trees

In this section we describe an importance sampling algorithm in which the po-
tentials are represented by probability trees and the approximation is performed by
pruning the tree.
Assume we are carrying out a deletion algorithm and potentials are represented

by probability trees. We consider a set of trees T (initially, those corresponding to
the conditional distributions in the network). Now, each time we delete a variable
Xi, we proceed as in the exact algorithm, multiplying all the trees in T de�ned for
Xi, and then marginalizing to remove this variable. After marginalization, two basic
approximations are carried out, based on algorithms APPROXIMATE and PRUNE
as described in Section 4.1.
The detailed algorithm for deleting a variable is as follows:

DELETE(T; Xi; �; S)

1. Let S(i) = {T∈T |Xi ∈Vr∗(T)} be the set of trees de�ned for variable Xi.
Remove S(i) from T .

2. Until there is only one tree in S(i),
(a) Take two trees T1;T2 from S(i).
(b) Compute T :=COMBINE(T1;T2).
(c) Replace in S(i), T1 and T2 by T.

3. Let T be the only tree in S(i).
4. Compute T′ :=MARGINALIZE(T; Xi).
5. PRUNE(T′; �).
6. APPROXIMATE(T′; M).
7. REDUCEVARIABLES(T′).
8. Add T′ to T .

All the elements in this algorithm have been previously speci�ed except
REDUCEVARIABLES(T′). This procedure takes the variables in Vr∗(T′) and,
for each one of them, checks whether this variable really appears in any branch
of the tree (i.e. it is contained in Vr(T′)). It can happen that after the approxi-
mation (pruning) some variable Xi does not appear in any of the tree labels (i.e.
Xi ∈Vr∗(T′) but Xi 6∈Vr(T′)). In that case, we check whether there is another tree
T which is de�ned for this variable. If the result is positive, we delete the variable
from the set Vr∗(T′). This does not change at all the factorization of the global
probability distribution as product of trees, because T′ does not give any informa-
tion about this variable, and simpli�es future calculations: T′ will not be combined
when deleting variable Xi. When the variable does not appear in other tree we keep
it to obtain a sampling distribution for this variable without modifying the algorithm
(it will be the uniform distribution). And, as this variable appears only in one po-
tential its deletion will be very simple and will not increase the complexity of the
algorithm.
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In the algorithm above, S is an array that, at each position i, contains the combi-
nation of the trees corresponding to those functions de�ned for variable Xi when it
was deleted. That tree will be used in the simulation step as the sampling distribution
for Xi.
A deletion procedure is the basis to determine a sampling distribution. If the dele-

tion of all the variables has been exact, then it can be shown (Hern�andez et al.,
1998) that if we simulate variables in an order opposite to the elimination sequence,
taking as sampling distribution the potential represented by the tree in S(i) restricted
to the values of the variables already simulated (notice that this is a potential de-
pending only on variable Xi) then we are obtaining con�gurations, x, with probability
equal to p(x|e). The weights are constant and equal to p(e). When the deletion has
been approximate then this procedure should produce a sampling distribution close
to p(x|e).
The deletion sequence we propose is especially appropriate for the case in which

few observations are given. In fact, it proceeds by deleting �rst those variables
that are not observed and such that none of their descendants is observed either.
Each time one of these variables is deleted, the conditional probability of this
variable given its parents is removed, adding only the trivial potential identically
equal to 1, which does not have any e�ect in posterior computations and can be
ignored. This is a consequence of the fact that if a leaf node, say X , is not ob-
served, then this variable only belongs to the potential representing the conditional
probability of this node given its parents. Adding on X , we will obtain the po-
tential identically equal to 1. After applying REDUCEVARIABLES the parent
variables can be removed from their de�nition set. Repeating this task, we can
delete all the variables that are not observed and without observed descendants.
The extreme case is when none of the variables is observed. Then, this process
will produce an exact sampling distribution p(·|e). When there are observations,
the deletion sequence will improve this procedure in a certain degree, depend-
ing on the number of observed variables and their position in the directed acyclic
graph.
In the following we give the details of the sampling algorithm. We start o� with

a network G with variables X1; : : : ; Xn, and a set of observations E. The algorithm
is organized into four phases: initialization, approximate pre-computation, simulation
and estimation.

Algorithm IS T

• Initialization phase
1. Let H = {pi | i = 1; : : : ; n} be the set of conditional distributions in G, and
T = {T1; : : : ;Tn} the set of trees representing functions in H .

2. Incorporate observations:
(a) Compute Ti :=TR(XE=eE)

i , i = 1; : : : ; n.
(b) For each observed variable, Xl, l∈E, do T :=T ∪{T�l(·;el)}, where T�l(·;el)

is a tree representing potential �l(·; el).
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• Collect phase (approximate pre-computation)
3. Select an order � of variables in G, as described in Section 3.1.
4. For i := 1 to n, DELETE(T; X�(i); �; S).

• Simulation phase
5. For j := 1 to m (sample size),
(a) wj := 1:0.
(b) For i := n to 1,

(i) Simulate a value for X�(i), x
( j)
i , using p∗

i as sampling distribution, where
p∗
i is the normalized potential corresponding to the tree Ti de�ned
over variable X�(i) and obtained as Ti =TR(X�(i)=x0), where T is the
tree stored in S(i), with �(i) = {�(i+1); : : : ; �(n)}, and x0 the current
con�guration of variables already simulated (X�(i)).

(ii) Compute wj :=wj=p∗
i (x

( j)
i ).

(c) Compute

wj :=wj

(
n∏
i=1

pi(x
(j)
i |x(j)F(i))

)
·
(∏
l∈ E

�l(x
(j)
l ; el)

)
:

• Estimation phase
6. For each x′k ∈Uk , k ∈N − E,
(a) Estimate p(x′k ; e) using formula (7).

7. Normalize values p(x′k ; e) to obtain p(x
′
k |e).

6. Experimental tests

Some experiments have been carried out to test the performance of the pro-
posed algorithm. The experiments consisted of several propagations over a large
network, comparing the performance of four algorithms: likelihood weighting (Fung
and Chang, 1990; Shachter and Peot, 1990), bounded variance algorithm (Dagum
and Luby, 1997), importance sampling using probability tables (referenced as IS)
as described in Hern�andez et al. (1998), and importance sampling using probability
trees (referenced as IS T).
The network used is a subset of a pedigree one (Jensen et al., 1995), composed

by 441 variables. Each node has two parents (but the roots) and a maximum of 43
children, and has three cases. The biggest initial conditional probability table has 27
values, since each variable has three possible values. We have considered two types
of inferences over this network: in one case we have not considered observations
and in the other we have considered 166 observations.
The reason to use this well-known kind of network in the experiments, is that

traditional simulation procedures fail to provide good estimations of the posterior
probabilities. Extreme cases are the likelihood weighting method and the bounded
variance method: these methods do not even get any result, since all the con�gura-
tions in the sample get a zero weight. This network has two features which make
traditional methods fall into troubles. In one hand, the presence of probabilities very
close to zero due to the evidence, and, on the other hand, the high connectivity of
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Table 1
Results of the experiment with observations

Maximum ALG. IS T ALG. IS

potential size Variance Time (s) Error Variance Time (s) Error

27 2.8002 114.84 0.3915 14.2454 520.50 0.8652
54 0.7265 121.00 0.3066 15.2317 525.38 0.7428
108 0.1058 135.32 0.2287 0.5693 610.50 0.2882
216 0.0036 136.91 0.2131 0.5699 612.52 0.2958

Table 2
Results of the experiment with no observations

Maximum ALG. IS T ALG. IS

potential size Variance Time (s) Error Variance Time (s) Error

27 0.0 204.47 0.3582 0.8562 923.46 0.4520
54 0.0 204.56 0.3572 0.8628 922.35 0.4511
108 0.0 205.84 0.3583 0.4182 967.70 0.4056
216 0.0 208.07 0.3586 0.4183 970.08 0.4057

the graph, which results in very large potentials when computing the sampling distri-
bution. Thus, we think this is a good example to check whether our new algorithms
work or not.
We have carried out 4 experiments for each case (with and without observations).

The di�erence among them is the maximum potential size: 27 in the �rst, 54 in the
second, 108 in the third and 216 in the fourth. The sample size was 5000 for all
the experiments, and in the case of IS T, we have considered a parameter �= 0:01.
Each trial has been repeated 100 times to average the results. In each trial, we have
calculated the computing time, error and variance of the weights.
For one variable Xl, the error is measured as follows (see Fertig and Mann, 1980):

G(Xl) =

√√√√ 1
|Ul|

∑
a∈Ul

(p̂(a|e)− p(a|e))2
p(a|e)(1− p(a|e)) ; (19)

where p(a|e) is the true posterior probability, p̂(a|e) is the estimated value and |Ul|
is the number of cases of variable Xl. For a set of variables XI , the error is:

G(XI) =
√∑

i∈ I
G(Xi)2: (20)

The experiments have been carried out in an Intel Pentium II 450 MHz computer,
with 384MB of RAM and operating system Linux 2.0.36. The results are displayed
in Tables 1 and 2. The programs are written in Java language. Both the programs
and the data set are available via ftp at
ftp://rojo.ualm.es/pub/Elvira/ImportanceSampling.
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With regard to the obtained results, the following can be said:
• Without observations our algorithm is really fast and optimal (the variance of the
weights is equal to 0). The pre-computation is very fast: the deletion procedure
will select variables from leaves backward (variables belonging to only one po-
tential). When deleting a variable, we sum in the conditional probability of this
variable and then we obtain a potential equal to 1 in every case. In this way
an exact sampling distribution is obtained in a very short time. The simulation
associated to this exact sampling distributions is equivalent to the one carried out
by the likelihood weighting and bounded variance algorithms, sharing all their
advantages for the case of no observations.
It is important to remark that in Jensen et al. (1995) the results of blocking Gibbs
sampling are reported for the case of no observations and this algorithm has a
clearly superior behaviour in this case.

• In both cases, tables are much slower than probability trees and the results are
worse. Specially in the case of no observations, the di�erences on time are very
signi�cative: tables do not have a procedure to approximate computations in such
a exible way as trees do.

• The IS T algorithm has a good behaviour even with very small trees (of size
27). In practice, we will usually a�ord bigger trees, but we wanted to test the
algorithm in really hard conditions.

7. Conclusions

In this paper we have proposed an approximate propagation method able to deal
with large networks. In such networks, it is shown that using probability trees instead
of tables provides bene�ts, since trees allow to represent more e�ciently the most
important regions of a probability distribution, what leads to an improvement of
importance sampling, as can be deduced from the experimental results.
There were methods able to deal with very large networks, like blocking Gibbs

sampling, due to Jensen et al. (1995). However, there are cases in which our
algorithm is superior to blocking Gibbs sampling, as in the experiment without obser-
vations. Situations in which blocking Gibbs behaves better than IS T algorithm can
exist, though we do not know them. But, in general, we think that it will be impos-
sible to have a single algorithm better than all the other in every situation. The im-
portance sampling based on approximate pre-computation provides a new paradigm
to solve large problems, enlarging the set of cases that can be approximated and
allowing future improvements. An example of a situation which can be solved with
this new algorithm arises in problems of Information Retrieval. Campos et al. (1998)
provide a model for retrieving information in which they learn a polytree with the
relationships between terms or keywords of a collection of documents. They used
it as a thesaurus, to expand queries adding new terms to them. Computation was
easy because of the polytree structure. Experiments showed that expanded queries
improved the recuperation of documents using standard procedures (Smart). In the
paper, they propose to expand the terms graph with the document variables, creating
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structures representing the relationships among them, in such a way that the com-
plete graph could be used as a document recuperation system, by calculating the
marginal probability of each document given the terms. The documents should be
added to the original network putting them as children of term variables. Our algo-
rithm is specially appropriate for this task: documents are not observed and do not
have observed descendents; then it is possible to delete these variables following the
deletion procedure as was explained earlier for a network without observations. All
the conditional probabilities are approximated by the constantly equal to 1 potential,
which can be deleted afterwards. When we �nish deleting document variables, we
have an hypertree in which an exact deletion can be carried out in linear time. This
fast procedure calculates exact sampling distributions and the quality of the sample
of our procedure will be optimal (all the weights are equal). This allows to solve
classical information retrieval problems with more than 10.000 variables. It is not at
all clear how blocking Gibbs sampling would handle this kind of problems.
An important point to remark is that some kind of pre-computation is always

necessary to solve large network problems by simulation, allowing to use as much as
possible information stored in other parts of the network when simulating a concrete
variable. If we only use local information, we are sure to obtain a poor behaviour
when conicting information is stored in di�erent parts of the graph. In the case
of Gibbs sampling algorithms, this is avoided by simulating values compatible with
previous instantiations of the variables in the graph. Our procedure presents a direct
way of doing it.
One important feature of trees is their exibility, what makes the algorithm pro-

posed susceptible of being improved, for instance, using entropy criteria to select
the trees that must be combined. The possibility of approximating uniform regions
in a distribution by an average value to free space for storing more of the most
informative values, allow many modi�cations to the algorithm that were not possible
before.
Other future alternative is to use di�erent samples to estimate each one of the

necessary joint probabilities p(x′k ; e) and p(e) as in Dagum and Luby (1997). If
we are interested in only a few conditional probabilities this may improve the �nal
results without an increasing of the computations, but experimental evaluations would
be necessary.
About the future directions of research we want to point out the possibility of

improving the initial approximations by several iterations of the approximate stage.
It has been shown in Kozlov and Koller (1997) that tree approximations can improve
if we take into account information about all the potentials each time we calculate
a tree approximation. This gives rise to an iterative propagation algorithm which
can be organized in a join tree and such that the approximations in one part of the
tree are improved by better approximations in another part. This methodology can
improve our initial approximations based only in a deletion procedure.
Another interesting possibility of this algorithm is the determination of bad approx-

imate steps. If when we simulate a variable the normalization factor of the combined
tree is 0, then the �nal weight is 0, and this con�guration is �nally discarded. The
only way in which this may happen is due to a previous approximate deletion of the
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variable. If this zero normalization value is repeated very often for a given variable,
then we can invest more e�ort (some additional computing time) in the approximate
deletion of this variable, trying to improve the quality of the approximation so that 0
weights are avoided in the future. The same procedure can be applied to very small
values.
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