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ABSTRACT

The development of tools for the processing of color images is often complicated by nonstandardness – the
notion that different image regions corresponding to the same tissue will occupy different ranges in the color
spectrum. In digital pathology (DP), these issues are often caused by variations in slide thickness, staining,
scanning parameters, and illumination. Nonstandardness can be addressed via standardization, a pre-processing
step that aims to improve color constancy by realigning color distributions of images to match that of a pre-
defined template image. Unlike color normalization methods, which aim to scale (usually linearly or assuming
that the transfer function of the system is known) the intensity of individual images, standardization is employed
to align distributions in broad tissue classes (e.g. epithelium, stroma) across different DP images irrespective
of institution, protocol, or scanner. Intensity standardization has previously been used for addressing the issue
of intensity drift in MRI images, where similar tissue regions have different image intensities across scanners
and patients. However, this approach is a global standardization (GS) method that aligns histograms of entire
images at once. By contrast, histopathological imagery is complicated by the (a) additional information present
in color images and (b) heterogeneity of tissue composition. In this paper, we present a novel color Expectation
Maximization (EM) based standardization (EMS) scheme to decompose histological images into independent
tissue classes (e.g. nuclei, epithelium, stroma, lumen) via the EM algorithm and align the color distributions
for each class independently. Experiments are performed on prostate and oropharyngeal histopathology tissues
from 19 and 26 patients, respectively. Evaluation methods include (a) a segmentation-based assessment of color
consistency in which normalized median intensity (NMI) is calculated from segmented regions across a dataset
and (b) a quantitative measure of histogram alignment via mean landmark distance. EMS produces lower NMI
standard deviations (i.e. greater consistency) of 0.0054 and 0.0034 for prostate and oropharyngeal cohorts,
respectively, than unstandardized (0.034 and 0.026) and GS (0.031 and 0.017) approaches. Similarly, we see
decreased mean landmark distance for EMS (2.25 and 4.20) compared to both unstandardized (54.8 and 27.3)
and GS (27.1 and 8.8) images. These results suggest that the separation of broad tissue classes in EMS is vital
to the standardization of DP imagery and subsequent development of computerized image analysis tools.

1. INTRODUCTION

The increasing popularity of digital pathology (DP) in recent years has been closely coupled with the deployment
of whole-slide scanners in both clinical and research settings. The rapid growth of these scanners has resulted
in (1) the development of computerized image analysis tools, including algorithms for object detection and
segmentation,1 and (2) the advent of virtual microscopy for simplifying visual analysis and telepathology for
remote diagnosis.2 Such tasks, however, are complicated by color nonstandardness – the phenomenon that
causes similar objects to exhibit different color properties across images. Nonstandardness in medical imaging
has previously been explored in the context of intensity drift in MR imaging and its relationship to the bias
field artifact.3 By contrast, differences in color distributions across DP images are more complex, resulting from
variations in tissue thickness, staining, and illumination4 (Figure 1).

Previous work in maintaining color constancy in DP images has traditionally employed normalization and
calibration techniques. Normalization, the process by which color distributions of images are adjusted to fit a
predetermined range, is performed independently for each image. Other approaches to normalization include
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analysis in alternate color spaces (e.g. hue-saturation-intensity) that are more invariant to the effects of color
nonstandardness.5 However, it is difficult to account for the non-linear intensity variations arising from the many
sources of color nonstandardness. Color calibration refers to the modification of acquisition or visualization
settings based on prior knowledge of imaging parameters. For instance, Yagi et al.4 performed calibration of
computer monitors for optimal viewing of DP; yet calibration is unfeasible for the analysis of retrospective studies
on existing data cohorts. Note that the larger body of work aimed at correcting variations in illumination for
images formed by reflective light (e.g. digital photography) is inappropriate for DP images that are formed by
light absorption.6,7

Unlike normalization and calibration, color standardization aims to improve color constancy across a pop-
ulation of histology images by realigning color distributions to match a pre-defined template image. Previous
applications of standardization in medical imaging include correcting intensity drift in MRI images.8,9 Nyul et
al.8 developed a piecewise intensity standardization method that employed linear interpolation to align distribu-
tions between histogram landmarks at evenly spaced percentiles. Madabhushi et al.9 further extended the model
by implicitly incorporating basic spatial information via the generalized scale model; yet, their approach was
limited to a connected component labeling that (1) has no particular correspondence between DP images and (2)
cannot be used for tissue classes (e.g. nuclei) spread across many regions. In addition, intensity standardization
has been limited to global approaches that employ a single histogram characterizes an entire image.8,9 This type
of global standardization (GS) is unable to account for the heterogeneity of DP images, which contain broad,
independent tissue classes (e.g. stroma, epithelium, nuclei, lumen) in varying proportions, leading to skewed
color distributions and errors in the standardization process.

Previous work in the intensity standardization of MRI images has yielded a number of methods for evaluating
the quality of the standardization result.3,8, 10 Nyul et al.8 described the calculation of normalized mean intensity
for distinct regions in brain MRI (e.g. white matter, gray matter) and demonstrated the importance of reporting
the corresponding coefficient of variation across an entire dataset. The calculation of normalized mean intensity
was more closely attached to the standardization result by Madabhushi et al.,10 who employed a single predefined
threshold to segment all images in the dataset. Since the threshold was selected for optimal segmentation
of the template image, increased consistency in the segmentation result could be directly attributed to the
standardization process. More recently, Palumbo et al.3 directly evaluated alignment between two histograms
via a “difference-of-modes” measure. While this approach does quantify histogram alignment, it operates under
the assumptions that both histograms (1) are modeled by the same underlying distribution and (2) contain a
single dominant mode.

The rest of the paper is organized as follows. Section 2 details the novel contributions of this work and the
methods used to develop EMS are described in Section 3. Section 4 outlines the experiments used to evaluate
EMS against both global standardization and unstandardized images. Both quantitative and qualitative results
are presented in Section 5 followed by concluding remarks in Section 6.

2. BRIEF OVERVIEW AND NOVEL CONTRIBUTIONS

In this paper, Expectation Maximization (EM) based segmentation-driven standardization (EMS) is employed to
improve color constancy across multiple prostate and oropharyngeal histopathology images. In order to mitigate
the challenges associated with tissue heterogeneity, each image is first partitioned into broad tissue classes
(e.g. nuclei, epithelium, stroma, lumen) using the EM algorithm11 – an unsupervised clustering algorithm that
separates image pixels into a pre-determined number of Gaussian components (Figure 2). Corresponding tissue
classes across different images are automatically matched by minimizing pairwise distances in the RGB color
space between all classes. Histograms are constructed using pixels from each tissue class of a test image and
aligned to the corresponding tissue class in the template image (Algorithm 1). For comparison, evaluation is
also performed on globally standardized (GS) images, in which color distributions are aligned for entire images
without isolating tissue classes.

Novel contributions of EMS are that it

� Aligns color distributions of broad tissue classes (e.g. nuclei, stroma) that are first partitioned via EM; by
contrast, previous global methods perform standardization using a histogram of the entire image.
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Figure 1. H & E stained histopathology images of (a)-(c) oropharyngeal and (e)-(g) prostate cancers demonstrate color
nonstandardness across tissue specimens resulting from variations in slide preparation (e.g. tissue thickness and staining).
These variations are reflected by (d), (h) corresponding histograms of the green color channel, in which each image
occupies different ranges of the color spectrum.

� Can be used retrospectively since it is independent of scanners, staining protocols, and institutions.

3. METHODS

For all methods, an image scene Ca = (C, f) is a 2D set of pixels c ∈ C and f is the associated function that assigns
RGB values. In addition, the function g is used to assign intensity values (from the hue-saturation-intensity color
space) for evaluation purposes.

3.1 EM-based Partitioning of Broad Tissue Classes

The EM framework is employed to first partition each image into broad tissue classes. First, the pixels in each
image scene Ca are modeled as a Gaussian mixture of κ components, where K ∈ {1, 2, . . . , κ}. We optimize the
model parameter set γi = {µi
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Figure 2. EM-based standardization (EMS) first decomposes the test and template images into a pre-determined number
of components via the Expectation Maximization algorithm. The distribution for each component in the test image
is aligned independently to the corresponding component in the template image. The standardized components are
subsequently recombined to create a standardized test image.

where N(f(c)|µK , σK) represents the value of Gaussian component K at RGB value f(c). The Maximization
step uses pi to calculate γi+1 = {µi+1
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K ,pi+1

K }.11
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The EM algorithm converges when ∥(Li+1 −Li)/Li∥ < ϵ, where Li is the log likelihood of the Gaussian mixture
model with parameters γi and ϵ = 10−5 determined empirically. The appropriate class K∗ = argmaxK p(K|f(c))
is found for each pixel c ∈ C by identifying the maximum posterior probability over all K ∈ {1, 2, . . . , κ}. Hence,
we are able to define a subset of pixels DK ⊂ C corresponding to tissue class K from image scene Ca.

3.2 Determining Correspondence of Tissue Classes from Different Images

Since the EM algorithm performs tissue partitioning in an unsupervised manner, correspondence between tissue
classes is not guaranteed across different images. For instance, the background (i.e. white) regions may coincide
with the first EM component in one image and the final component in a second image. In this paper, the
identification of a corresponding tissue class between two images is performed automatically. Let mean RGB
values µK,a and µK,b be defined for tissue class K in image scenes Ca and Cb, respectively. The first pair of
matching tissue classes is identified by minimizing the pairwise Euclidean distances between mean RGB values



such that
argmin

i,j∈{1,2,...,κ}
∥µi,a − µj,b∥.

The matching tissue classes are set aside and this process is subsequently repeated κ times until all tissue classes
have been matched.

3.3 EM-based Segmentation-Driven Color Standardization (EMS) for Digital Pathology
Images

We first describe the generalized scheme for color standardization using landmark-based piecewise linear inter-
polation8 followed by an explanation of the EMS approach, which aligns color distributions of the broad tissue
classes identified by the EM algorithm in Section 3.1.

3.3.1 Generalized Color Standardization

Let Da ⊂ Ca and Db ⊂ Cb correspond to sub-scenes in test image Ca and template image Cb. For a single color
channel (i.e. red, green, or blue), landmarks {rmin, r10, r20, . . . , r90, rmax} and {smin, s10, s20, . . . , s90, smax} are
defined at the minimum and maximum, as well as evenly-spaced percentiles {10, 20, . . . , 90}, of all pixel values in
Da and Db, respectively. Pixel values from the test image in the range [rmin, r10] are interpolated to match the
corresponding landmarks [smin, s10] in the template image. After repeating this process for all sets of adjacent
landmarks in all color channels, the standardized pixels are recombined to construct a standardized test scene
D̂a.

Algorithm 1 GeneralizedStandardization()

Input: Template image Db. Test image Da to be standardized.
Output: Standardized image D̂a.

1: for RGB channels i ∈ {R,G,B} in Da and Db do
2: Define {rmin, r10, r20, . . . , r90, rmax} as landmarks in Da.
3: Define {smin, s10, s20, . . . , s90, smax} as landmarks in Db.
4: Interpolate pixel values from range [rmin, r10] to range [smin, s10]. Repeat for all sets of adjacent landmarks.
5: end for
6: Recombine standardized RGB channels to construct standardized image D̂a.

3.3.2 Class-Specific Color Standardization of Broad Tissue Classes

Algorithm 2 shows how EMS extends the generalized standardization approach by incorporating prior domain
knowledge of tissue composition in DP (Algorithm 2). First, the EM algorithm is applied to partition each
image into κ tissue classes (Section 3.1) and corresponding tissue classes between test and template images are
automatically matched (Section 3.2). For each tissue class, pixels from the test and template images are stan-
dardized using the piecewise linear interpolation method presented in Algorithm 1. Subsequently, standardized
pixels from all tissue classes are recombined to create a standardized test image.

4. EXPERIMENTAL DESIGN

4.1 Data Cohort

The EM-based color standardization scheme is evaluated on digitized hematoxylin & eosin stained histopathology
images from independent prostate (N=19) and oropharyngeal (N=26) cohorts, in which each image was taken
from a different patient (Table 1). All images were digitized via a whole slide scanner at a spatial resolution
of 1 µm/pixel and cropped to be 500 × 500 pixels in size. Both cohorts were empirically determined to have
κ = 4 broad tissue classes corresponding to nuclei, epithelium, stroma, and background (i.e. white space).
In addition, one image from each cohort is designated as a template image to which all other (test) images are
aligned (Figure 3). It is important to note that a single “ideal” template image does not exist for all applications;
instead, the template is selected based on its performance in terms of the desired task (e.g. nuclear segmentation).



Algorithm 2 EMbasedStandardization()

Input: Template image Cb. Test image Ca to be standardized. Number of EM components κ.
Output: Standardized image C′

a.

1: Apply EM algorithm to partition pixels from both Ca and Cb into κ tissue classes.
2: Pair matching tissue classes between Ca and Cb.
3: for K ∈ {1, 2, . . . , κ} do
4: Define sub-scenes DK

a ⊂ Ca and DK
b ⊂ Cb corresponding to EM component K.

5: Perform GeneralizedStandardization() usingDK
a andDK

b as test and template images, respectively (Alg. 1).
6: end for
7: Create standardized image C′

a = {CK
a : ∀K ∈ {1, 2, . . . , κ}} by recombining standardized sub-scenes from all

κ components of the test image.

Cohort # images Staining Resolution Size
Prostate 19

hematoxylin & eosin 1µm/pixel 500× 500 pixels
Oropharyngeal 26
Table 1. A description of the prostate and oropharyngeal data cohorts used in this paper.

4.2 Comparative Strategy: Global Standardization

In addition to the comparison against unstandardized images, the ability of EMS to align color distributions is
evaluated against global standardization (GS). GS is a straightforward approach to color standardization that
does not account for the heterogeneous tissue structure in DP images. Instead of partitioning each image into
multiple tissue classes, a single histogram is constructed from all pixels in a test image and aligned to the entire
histogram from the template image. Specifically, the GS approach can be considered a modified application of
GeneralizedStandardization() from Algorithm 1 using entire image scenes Ca and Cb used as the test and template
images, respectively.

4.3 Performance Evaluation Measures

4.3.1 Qualitative Segmentation Consistency Across Images

A qualitative evaluation of color standardization in DP images is performed by observing the consistency of
tissue segmentation across several images in a cohort.9 For image Ca, we segment pixels corresponding to nuclei
D = {c : c ∈ C, g(c) ∈ [0, ψ]}, where ψ is a threshold in the intensity channel g from the hue-saturation-intensity
(HSI) color space. Given intensities that occupy the range g(c) ∈ [0, 255], thresholds of ψ = 115 for the prostate
cohort and ψ = 145 for the oropharyngeal cohort were selected empirically for their ability to provide a basic
nuclear segmentation in their respective template images (Figure 3). Visually, images from a standardized cohort
should yield a more consistent segmentation of nuclei (in comparison to the template image) than the original
set of unstandardized images.

4.3.2 Quantitative Evaluation via Normalized Median Intensity

The segmentation results from Section 4.3.1 can also be evaluated quantitatively via normalized median intensity
(NMI), which is employed to characterize color constancy from a segmented region across all images in a dataset.
Using the segmented nuclear region D ∈ C for an image Ca, NMI is defined as

median

(
g(D)

max g(D)

)
,

where g(D) is the set of intensities for all pixels isolated by the thresholding process. Intensity values across all
images in a cohort are considered to be more consistent as (1) the standard deviation and (2) the coefficient of
variation (i.e. standard deviation divided by mean) of NMI decreases.
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Figure 3. The template images selected for (a) prostate and (b) oropharyngeal cohorts are shown along with segmented
nuclei (green outline). (c), (d) Corresponding green color channel distributions are shown along with a dotted green line
denoting the location of the empirically-selected threshold used to segment the nuclei.

4.3.3 Quantitative Evaluation via Histogram Landmark Distance

Another measure of improved standardization is the distance between corresponding histogram landmarks (i.e.
percentiles {10, 20, . . . , 90}) in the template and test images (Figure 4), whereby histograms are considered to
have improved alignment as the mean landmark distance decreases. Using the notation defined in Algorithm 1,
the mean histogram landmark distance between a test image Ca and template image Cb can be defined as
ϕ(a, b) = 1

9

∑
j∈{10,...,90} ∥rj − sj∥, where rj and sj are corresponding landmarks in Ca and Cb, respectively. For

a set of H histograms, pairwise landmark distance Φ = {ϕ(a, b) : ∀a, b ∈ {1, . . . , H}, a ̸= b} is calculated between
all histograms and mean distance is reported for the cohort.

5. RESULTS AND DISCUSSION

5.1 Qualitative Evaluation of Consistency in Nuclear Segmentation

Qualitative evaluation is performed by visualizing the effect of standardization on segmentation of nuclei in the
test images (Figure 5). The inconsistent segmentation results between the template images (Figures 3(a), (b))
and unstandardized test images (Figures 5(a), (d)) clearly demonstrates the inherent color nonstandardness that
affects DP images. A more consistent segmentation of nuclear regions is visible after GS (Figures 5(b), (e)) and
is further improved by the application of EMS (Figures 5(c)-(f)). The improvement seen by employing EMS
suggests that separation of tissue classes may be vital to the development of algorithms for the segmentation of
primitives (e.g. nuclei).
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Figure 4. Histograms representing a single EM component are shown for template (black) and test (red) images both
(a) before standardization and (b) after EMS has been applied. The insets illustrate the evenly-spaced percentiles
{10, 20, . . . , 90} used as landmarks for histogram alignment during the standardization process.

5.2 Quantitative Evaluation of Segmentation Consistency via NMI

The qualitative results presented in Figure 5 are also evaluated quantitatively by calculating the normalized
median intensity (NMI) of the segmented regions.8 In terms of NMI, EMS produces improved color constancy
compared to the original images, with considerably lower NMI standard deviation (SD) of 0.0054 vs. 0.0338 and
NMI coefficient of variation (CV) of 0.0062 vs. 0.0393 in the prostate cohort (Table 2). In addition, EMS yields
more consistent results than GS, demonstrating an order of magnitude improvement in SD and CV of 0.0305
and 0.0354, respectively. All corresponding results for the oropharyngeal cohort show similar improvement after
standardization.

Prostate Oropharyngeal
SD CV SD CV

Original 0.0338 0.0393 0.0261 0.0302
GS 0.0305 0.0354 0.0166 0.0193
EMS 0.0054 0.0062 0.0034 0.0039

Table 2. Standard deviation (SD) and coefficient of variation (CV) of normalized median intensity (NMI) is calculated
across all images in the prostate and oropharyngeal cohorts.

5.3 Quantitative Evaluation of Histogram Landmark Alignment

The performance of EMS is further supported by histograms of the green color channel (from the RGB color space)
for both prostate and oropharyngeal cohorts (Figure 6 and 7). Examining the prostate cohort, it is visually clear
that unstandardized images have highly misaligned color distributions for both the global histogram (Figure 6(a))
and for the EM component corresponding to nuclei (Figures 6(d)). While both GS and EMS yield improved
alignment over unstandardized images, a closer examination of the GS distributions suggests that higher pixel
values (denoted by the black dashed rectangle in Figure 6(b)) frequently suffer from poor alignment. This is
because GS is unable to account for the large variations in the amount of white space (e.g. luminal areas,
adipose tissue, slide background) across histopathology images. By contrast, EMS does not suffer from this issue
(Figures 6(c)) since it partitions the white regions in each image and aligns their distributions independently.
The histograms in Figure 7 suggest that similar results and trends hold true for the oropharyngeal cohort.

The improved alignment of EMS distributions over both unstandardized and GS distributions is confirmed
quantitatively by calculating the histogram landmark distance for individual EM components (Figures 6(d)-
(f)). Using the EM component corresponding to nuclei in the prostate histopathology images, EMS yields a
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Figure 5. H & E stained test images for (a)-(c) prostate and (d)-(f) oropharyngeal cancers are shown. Segmented nuclei
(green outline) are shown for images that are (a), (d) unstandardized (b), (e) globally standardized (GS), and (c), (f)
standardized via EMS.

Cohort Unstandardized vs. GS Unstandardized vs. EMS GS vs. EMS
Prostate < 0.0001 < 0.0001 < 0.0001

Oropharyngeal 0.0645 < 0.0001 < 0.0001
Table 3. P-values from application of the Wilcoxon rank-sum test to pairwise histogram landmark distances between all
images in the prostate and orophryngeal cohorts. All reported p-values have undergone Bonferroni correction for multiple
comparisons.13

significantly lower mean landmark distance of 2.25, compared to 54.8 and 27.1 for unstandardized and GS dis-
tributions, respectively (Figures 6(d)-(f)). The significance of this comparison is verified by application of the
non-parametric Wilcoxon rank-sum test12 in conjunction with a null hypothesis that pairwise histogram land-
mark distances between unstandarized images are not different from the distances calculated from standardized
images (Table 3). Similarly, oropharyngeal images (Figures 7(d)-(f)) demonstrate significantly lower distances
for EMS (4.2) compared to unstandardized (27.3) and GS (8.8) distributions, suggesting that EMS is able to
more accurately account for the different proportions of tissue types (e.g. nuclei, epithelium, stroma, lumen)
present in histopathology imagery.
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Figure 6. Distributions of the green color channels are shown for all images in the prostate cohort. Results are shown for
(a), (d) unstandardized, (b), (e) GS, and (c), (f) EMS images. Alignment is shown for histograms representing (a)-(c)
entire images and (d)-(f) an individual EM component (i.e. tissue class) along with the mean pairwise landmark distance
over all images. In each figure, the histogram of the template image is represented by a thick black line and misalignment
associated with GS is highlighted by a black box with dashed line.

6. CONCLUDING REMARKS

Digital pathology (DP) is a rapidly growing field involving the conversion of histopathology specimens into
high-resolution digital images that are amenable to computer-aided analysis. The development of computerized
algorithms, however, is greatly affected by color nonstandardness, where similar objects (e.g. nuclei) will have
different color properties across images. Color nonstandardness occurs for several reasons related to both slide
preparation (e.g. variations in slice thickness, staining protocol) and digitization (e.g. variations in illumination
across slide scanning systems). Previous work in maintaining color constancy has traditionally focused on (1)
calibration of slide scanning equipment or computer monitors and (2) natural images formed by reflective light,
neither of which are approporiate for standardization of DP images. Related work in intensity standardization
for MRI images yielded globally optimal solutions; yet, the heterogeneity of DP tissue classes (e.g. epithelium,
stroma) requires a more flexible, localized approach to standardization. These issues were addressed for MRI
images, in part, by a generalized scale approach that assumed correspondence between the largest connected
component in the target and template images. However, this assumption is invalid for DP images and would
lead to inconsistent partitioning of DP images. The EMS approach presented in this paper extends beyond
the generalized scale approach by performing a fully localized, independent standardization of different tissue
classes. We achieve this by (1) partitioning each image into broad tissue classes using the EM algorithm, (2)
employing a piecewise linear transformation to align corresponding tissue classes to a template image, and
(3) recombining the standardized pixels from each tissue class to create a standardized image. In this paper,
EMS has been shown to yield improved color constancy over both non-standardized images and GS in terms of
several evaluation approaches, including qualitative segmentation results, NMI of segmented regions, and mean
histogram landmark alignment. Future work will entail evaluation on larger cohorts and other tissues as well as
incorporating spatial information to improve separation of tissue classes.
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Figure 7. Distributions of the green color channels are shown for all images in the oropharyngeal cohort. Results are
shown for (a), (d) unstandardized, (b), (e) GS, and (c), (f) EMS images. Alignment is shown for histograms representing
(a)-(c) entire images and (d)-(f) an individual EM component (i.e. tissue class) along with the mean pairwise landmark
distance over all images. In each figure, the histogram of the template image is represented by a thick black line and
misalignment associated with GS is highlighted by a black box with dashed line.
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