
Chapter 12
TerraLib: An Open Source GIS Library
for Large-Scale Environmental
and Socio-Economic Applications

Gilberto Câmara, Lúbia Vinhas, Karine Reis Ferreira, Gilberto Ribeiro de Queiroz,
Ricardo Cartaxo Modesto de Souza, Antônio Miguel Vieira Monteiro, Marcelo
Tı́lio de Carvalho, Marco Antonio Casanova and Ubirajara Moura de Freitas

Abstract This chapter describes TerraLib, an open source GIS software library. The
design goal for TerraLib is to support large-scale applications using socio-economic
and environmental data. TerraLib supports coding of geographical applications us-
ing spatial databases, and stores data in different database management systems
including MySQL and PostgreSQL. Its vector data model is upwards compliant
with Open Geospatial Consortium (OGC) standards. It handles spatio-temporal data

Gilberto Câmara
National Institute for Space Research (INPE), Av dos Astronautas 1758, 12227-010, São José dos
Campos, Brazil, e-mail: gilberto@dpi.inpe.br

Lúbia Vinhas
National Institute for Space Research (INPE), Av dos Astronautas 1758, 12227-010, São José dos
Campos, Brazil, e-mail: lubia@dpi.inpe.br

Karine Reis Ferreira
National Institute for Space Research (INPE), Av dos Astronautas 1758, 12227-010, São José dos
Campos, Brazil, e-mail: karine@dpi.inpe.br

Gilberto Ribeiro de Queiroz
National Institute for Space Research (INPE), Av dos Astronautas 1758, 12227-010, São José dos
Campos, Brazil, e-mail: gribeiro@dpi.inpe.br

Ricardo Cartaxo Modesto de Souza
National Institute for Space Research (INPE), Av dos Astronautas 1758, 12227-010, São José dos
Campos, Brazil, e-mail: cartaxo@dpi.inpe.br

Antônio Miguel Vieira Monteiro
National Institute for Space Research (INPE), Av dos Astronautas 1758, 12227-010, São José dos
Campos, Brazil, e-mail: miguel@dpi.inpe.br

Marcelo Tı́lio de Carvalho
Catholic University of Rio de Janeiro (PUC-RIO), Rua Marquês de São Vicente, 22522. 453-900
Rio de Janeiro/RJ, Brazil, e-mail: tilio@tecgraf.puc-rio.br

Marco Antonio Casanova
Catholic University of Rio de Janeiro (PUC-RIO), Rua Marquês de São Vicente, 22522. 453-900
Rio de Janeiro/RJ, Brazil, e-mail: casanova@tecgraf.puc-rio.br

Ubirajara Moura de Freitas
Space Research and Applications Foundation (FUNCATE), Av. Dr. João Guilhermino, 429 – 18th
floor 12210-131 São José dos Campos, SP, Brazil, e-mail: bira@geo.funcate.org.br

G.B. Hall, M.G. Leahy (eds.), Open Source Approaches in Spatial Data Handling. 247
Advances in Geographic Information Science 2, c© Springer-Verlag Berlin Heidelberg 2008



248 G. Câmara et al.

with Open Geospatial Consortium (OGC) standards. It handles spatio-temporal data
types (events, moving objects, cell spaces, modifiable objects) and allows spatial,
temporal, and attribute queries on the database. TerraLib supports dynamic model-
ing in generalized cell spaces, has a direct runtime link with the R programming
language for statistical analysis, and handles large image data sets. The library is
developed in C++, and has programming interfaces in Java and Visual Basic. Us-
ing TerraLib, the Brazilian National Institute for Space Research (INPE) developed
the TerraView open source GIS, which provides functions for data conversion, dis-
play, exploratory spatial data analysis, and spatial and non-spatial queries. Another
noteworthy application is TerraAmazon, Brazil’s national database for monitoring
deforestation in the Amazon rainforest, which manages more than 2 million com-
plex polygons and 60 gigabytes of remote sensing images.

12.1 Introduction

Recent advances in spatial databases have changed both the nature and process
of geographic information system (GIS) software development. Spatially-enabled
database management systems (DBMS) such as PostgreSQL empower a transition
from monolithic GIS with hundreds of functions to a generation of spatial informa-
tion applications tailored to suit specific user needs. These capacities have been a
major boon for the free and open source geospatial (FOSS4G) community, many
members of which are using the new generation of databases to build unique and
innovative applications.

One of the expected impacts of open source software (OSS) is its benefits for
developing nations. As Weber (2004) points out, combining OSS with the techni-
cal workforce available in developing countries can enable technology transfer. He
states, “Of course information technology and open source in particular is not a sil-
ver bullet for long–standing development issues; nothing is. But the transformative
potential of computing does create new opportunities to make progress on develop-
ment problems that have been intransigent” (Weber 2004 p. 254).

Following from this point, GIS is a key technology for developing nations in
domains such as environmental protection, urban management, agricultural produc-
tion, deforestation mapping, public health assessment, crime-fighting, and socio-
economic measurements. However, the demands of these applications go well
beyond the current specifications of the Open Geospatial Consortium (OGC). Large-
scale environmental and socio-economic applications compel FOSS4G to include
significant spatial analysis capacities to meet the needs of end-users (Goodchild
2003). Hence, FOSS4G should incorporate research advances in areas such as
spatio-temporal data models (Erwig and Schneider 2002; Hornsby and Egenhofer
2000), geographical ontologies (Fonseca et al. 2002), spatial statistics and spatial
econometrics (Anselin 1999), cellular automata (Couclelis 1997), and environmen-
tal modeling (Burrough 1998). These topics have largely been outside the reach of
the GIS user community due to a general lack of widely available tools that support



12 GIS Library for Large-Scale Environmental and Socio-Economic Applications 249

them. Incorporation of some of these new techniques into GIS applications is nec-
essary for the user community to extract the full potential of spatial databases.

With this motivation, TerraLib was developed as an open source GIS software
library that extends object-relational DBMS technology to support spatio-temporal
models, spatial analysis, spatial data mining, and image databases. The design goal
for TerraLib is to support large-scale applications using cadastral, socio-economic
and environmental data. This goal was a mandate of the main organization that sup-
ports TerraLib, the Brazilian National Institute for Space Research (INPE). INPE is
Brazil’s primary institution for space science and technology. Its mission includes
building satellites, developing environmental applications, and producing weather
and climate forecasts. Since 1984, INPE has had a research and development di-
vision for GIS to support its actions in earth observation and to promote GIS and
remote sensing technology in Brazil. The two other main project partners are the
Computer Graphics Group (TecGraf) of the Catholic University of Rio de Janeiro
(PUC-RIO) and FUNCATE, a non-profit foundation that develops GIS applications
using OSS. All organizations involved in the TerraLib project share the same gen-
eral design goals. Thus, TerraLib is a project with long-term support and a stable
and secure working environment for its developers. This chapter describes the Ter-
raLib library, explains the main design decisions, and points out how the library
incorporates research results from GIScience in its development.

12.2 Challenges for Innovation in FOSS4G

The OGC specifications noted above provide a sound basis for developing FOSS4G
projects. However, many applications need tools which go beyond these specifica-
tions. Thus, one of the lines of growth in FOSS4G is to provide new tools for appli-
cation developers. However, there are pitfalls. Building innovation in open source
GIS is a threefold challenge. Given the design goals for the project discussed in
this chapter, the first step required selecting, from the large body of GIScience
literature, those advances that are relevant to the project’s objectives. These ad-
vances then need to be implemented in industrial-strength code. The final hurdle is
documenting these features and sharing them with the broader FOSS4G develop-
ment community.

A basic design objective for TerraLib was to support innovative applications to
help people and protect the environment. Thus, current GIS research was first eval-
uated, and ideas and proposals were selected that were relevant to the design goals.
This led to concentration in the following three areas:

(a) Spatial Statistics: since Anselin’s pioneering work on spatial analysis (Anselin
1989), promising advances have appeared in the field of spatial statistics and
spatial data mining (Anselin 1995; Fotheringham et al. 2002; Openshaw and
Alvanides 2001; Martin 2003). The main focus of these contributions is to
improve the ability to extract information for socio-economic data. This is rele-
vant to public policy applications of GIS.



250 G. Câmara et al.

(b) Spatio-temporal Models: there are two broad categories of spatio-temporal
objects. The first concerns moving objects. Moving objects relate to, for ex-
ample, information about spatial and temporal positions of planes, storms
or automobiles. The widespread relevance of location-based applications has
motivated developments in the field of moving object databases (Güting and
Schneider 2005). There is a large research area in algorithms and query meth-
ods for moving objects (Sistla et al. 1997). The second type concerns evolv-
ing objects that do not move, but whose geometry, topology and properties
change. They arise when changes that occur in, for example, cadastral GIS
or in land cover patterns are considered (Medak 2001). Evolving objects are
important for environmental models, which depict the temporal evolution of a
pattern in a landscape. Examples of environmental models include land change
models, epidemiological studies, population flows, and ecological mapping
(Burrough 1998; Veldkamp and Fresco 1996).

(c) Remote Sensing, Image Processing, and Image Databases: remote sensing
satellites are the most significant source of new data about our planet, and re-
mote sensing image databases are the fastest growing archives of spatial in-
formation. New high resolution optical sensors and polarimetric radars have
improved application areas such as environmental monitoring and urban man-
agement. There are important recent advances in object-oriented segmentation
and classification, and in remote sensing data mining (Blaschke and Hay 2001;
Navulur 2006; Aksoy et al. 2004). It is also important to include support for
raster data handling in open-source DBMS, following the research results of
Chang et al. (1988) and DeWitt et al. (1994).

To translate these ideas to industrial-strength code, the developers of TerraLib
first undertook various research projects and published the results from these
(Pedrosa et al. 2002; Almeida et al. 2003; Vinhas et al. 2003; Ferreira et al. 2005;
Silva et al. 2005; Assunção et al. 2006; Feitosa et al. 2007). These results enabled
the TerraLib development team to assess the potential benefits of each technique,
as well as the trade-offs needed to generate production code. Software engineering
tools for GIS were also examined during this process. One of the conclusions from
this was to confirm the usefulness of design patterns and generic programming as a
basis for achieving reuse in GIS software development (Câmara et al. 2001; Vinhas
et al. 2002).

The last and most difficult problem is sharing the resulting code with the
FOSS4G community. Many of the new tools and techniques might be unfamiliar
for FOSS4G developers and practitioners. Hence, there is a need to explain not only
the code, but also the ideas behind it. Experience has shown that face-to-face work-
shops and meetings are the best way to discuss new ideas and their implementation.
A second-best alternative is writing detailed documentation, which is not easy to
achieve in open source projects (see Chap. 2). Developers have to work hard to
share their results, and the TerraLib team is aware of this challenge.



12 GIS Library for Large-Scale Environmental and Socio-Economic Applications 251

12.3 The Design of TerraLib

This section discusses the requirements and design rationale for TerraLib. It presents
the alternatives considered at various points, and explains the final choices that were
made. The discussion explains how product requirements led to the software archi-
tecture, the conceptual model, and extensions to the basic OGC specifications.

12.3.1 Product Requirements

The main goal for TerraLib led to the following needs:

(a) Ease of customisation: developers should require little effort to use the library to
develop their applications. They should concentrate only on specific user needs,
and the library should provide powerful abstractions that cover the common
needs of a GIS application.

(b) Upward compatibility to the OGC simple feature data model: considering the
impact and popularity of the OGC specifications, a TerraLib spatial database
should be compatible with the OGC simple feature specification (SFS). This
was not an original project requirement. When the project started in 2002, the
developers initially underestimated the impact and extent of the OGC specifica-
tions. Hence, TerraLib’s code was redesigned (from Version 3.2 to Version 4.0)
to satisfy the need for conformance.

(c) Decoupling applications from the DBMS: the library should handle different
object-relational databases transparently.

(d) Support for large-scale applications: to be useful for environmental and socio-
economic applications, the library should provide efficient storage and retrieval
of hundreds of thousands of spatial objects.

(e) Extensibility: a GIS library should be extensible and accessible by other pro-
grammers. Introducing new algorithms and tools should not affect already-
existing code.

(f) Enabling spatio-temporal applications: emerging GIS applications need support
for different types of spatio-temporal data, including events, mobile objects, and
evolving regions.

(g) Remote sensing image processing and storage: the library should be able to
handle large image databases, and inclusion of image processing algorithms
should be easy.

(h) Spatial analysis: there should be support for spatial statistical methods to im-
prove the ability to extract information from socio-economic data.

(i) Environmental modelling: there should be support for environmental and urban
models, including dynamic models using cellular automata.

To respond to issues (a) and (b), TerraLib has a strong conceptual model, as ex-
plained in Sect. 12.3.2. Points (c), (d) and (e) led to a software architecture described
in Sect. 12.3.3. The last four issues are considered in Sects. 12.3.4–12.3.7.



252 G. Câmara et al.

12.3.2 Conceptual Model

This section describes TerraLib’s conceptual model that was designed to support
requirements (a) and (b) noted above. When designing TerraLib, the developers had
to make numerous choices which are typical of software library design in general
(Meyer 1990; Krueger 1992; Fowler et al. 1995). Apart from basic principles such
as applicability, efficiency, ease of use, and ease of maintenance, there are important
trade-offs. In this regard, consider two opposing visions:

• Vision 1: Libraries should take a minimalist approach. They should provide only
primitive building blocks and include generators that can combine these blocks to
yield complex custom applications. They should be split into independent mod-
ules, with as few dependencies as possible. The developer’s focus can be nar-
rowed to those modules that are of interest (Batory et al. 1993).

• Vision 2: Libraries should have strong ideas behind them. All the functionali-
ties and modules should work well together. The idea is to maximize reuse by
minimizing cognitive distance, which Krueger (1992, p. 136) defines as: “the
amount of intellectual effort expended by software developers to take a software
system from one stage to another”. In this vision, the intellectual effort that soft-
ware developers need to take a library and development of applications should
be minimal. Application programmers use higher-level abstractions to build ap-
plications, and do not need to understand the details of the library’s source code.

The choice between the two visions depends on a library’s initial design goals.
For libraries designed to be part of a larger software project, the first vision is the
usual choice. Examples include libraries such as the Standard Template Library
(STL) in C++ (Austern 1998), or the shapelib utility for GIS (Warmerdam 2007 –
see Chap. 5). At the other extreme, libraries are designed to be easily extendible
to build complete applications. One example includes libraries that use the model-
view-controller (MVC) pattern (Krasner and Pope 1988) such as Java Swing (Elliott
Eckstein et al. 2002). Libraries with strong concepts dictate how the user should de-
velop the application.

TerraLib follows the second vision, since it aims to make it easy for program-
mers to develop end-user applications. To do this, the library needs to consider
the semantic mismatch between relational databases and object-oriented applica-
tions. Relational databases store information in tuples, but GIS applications manip-
ulate objects. A typical GIS application consists of four steps: (a) query the spatial
database; (b) convert the query results (tuples) into objects; (c) manipulate these
objects to create new objects; (d) display the resulting objects.

Thus, applications need to distinguish between data sources (the spatial database)
and data targets (the set of objects that must be manipulated and displayed). To re-
duce the cognitive distance from OSS code to a deliverable application, the GIS de-
veloper needs a library that provides abstractions both for the data sources and for
the data targets. These abstractions should support the four basic GIS components
(query, conversion, manipulation, and display). Consequently, TerraLib supports the
following abstractions:



12 GIS Library for Large-Scale Environmental and Socio-Economic Applications 253

• Database: a repository of information that contains data and metadata.
• Layer: a container of spatial objects that share a common set of attributes. Exam-

ples of layers are thematic maps (soil or vegetation maps), cadastral maps (map
of land parcels in a city), or raster data such as satellite imagery. A layer knows
its cartographic projection. Layers are inserted in the database by importing data
from files or other databases, or by processing other layers. A layer stores the
temporal evolution of the objects it contains.

• Representation: the geometric parts of data contained in a layer. TerraLib sup-
ports different geometries, including two-dimensional (2D) vectors (points, lines
or areas), cell spaces, networks, triangulated irregular networks (TINs), and
multi-dimensional rasters. The same data can have different representations (for
example a city can be represented by the polygon that describes its political
boundaries or by a point that represents its geometric centre).

• Theme: a theme contains a subset of the objects of a layer, produced by a selec-
tion. The selection may use attribute, spatial, or temporal conditions. Each theme
has a set of presentation attributes for graphical display.

• View: this is a set of themes that are visualized or processed together. It defines a
particular user’s view of the database. A view has a unique cartographic projec-
tion, and the themes it contains are converted to this projection.

• Visual: this comprises a set of presentation attributes. Each theme has a unique
“visual”. A visual includes choroplethic filling and contour colours for polygons,
thickness and colours for lines, or symbols for points.

TerraLib distinguishes between data sources and data targets. The abstractions
of database, layer, and representation relate to the source domain and describe data
organization and hierarchy. The ideas of theme, view, and visual relate to the target
domain and describe data retrieval and presentation. A query in TerraLib retrieves
tuples from layers, converts these tuples into a set of objects, and groups objects of
the same type in themes. Thus, layer and theme are complementary abstractions.
Layers organize spatial data in the database. Themes organize objects for manip-
ulation and display. Similarly, databases and views are complementary concepts.
A database organizes layers of spatial data. A view organizes themes containing
spatial objects.

These concepts provide a set of higher-level abstractions on top of the OGC SFS,
which are not part of the current OGC model. Terralib stores these entities in a set
of metadata tables, built when creating a new database. These metadata tables are
kept updated as long as TerraLib manages the database. Should an OGC-compliant
application access a TerraLib database, it will only access the tables described in the
OGC model.

12.3.3 Software Architecture

This section discusses how TerraLib responds to requirements (c), (d) and (e) as
stated in Sect. 12.3.1 (DBMS-independence, efficiency, and extensibility). To address



254 G. Câmara et al.

these issues, it was decided to use the C++ programming language for develop-
ment. The developers had previous experience and had developed many algorithms
in C++ as part of SPRING, their earlier GIS project (Câmara et al. 1996). Ex-
isting DBMS such as PostgreSQL provide native interfaces in C++. Also, C++
helps with the use of generic programming (Alexandrescu 2001) and design pat-
terns (Gamma et al. 1995).

The developers chose an architectural design that has a kernel and a periphery.
Maintenance of the kernel is the responsibility of a core team composed of a few
senior programmers. Other contributors use the library’s core to add new algorithms
that test the library’s core for extensibility and robustness. This follows the approach
used for successful OSS products such as Linux, PostgreSQL, and Apache, which
all have a kernel whose maintenance is the responsibility of a small team. Contribu-
tions from the community occur at the external layers. As an example, out of more
than 400 developers, the top 15 programmers of the Apache Web server contribute
88% of added lines (Mockus et al. 2002). TerraLib’s architecture has four parts, as
shown in Fig. 12.1:

• Kernel: the core of TerraLib provides a set of spatio-temporal data types, code
for cartographic projections and topological spatial operators, an API for storage
and retrieval of spatio-temporal objects in databases, and classes for controlling
visualization of spatial data.

• Drivers: modules that specialize the kernel’s generic database application pro-
gramming interface (API) to allow access to DBMS such as PostgreSQL (with
or without the PostGIS spatial extension) or MySQL, and to external files in both

COM
Interface

Visualization
Control

OGC
ServicesC++ InterfaceJAVA

Interface

File and DBMS
Access

Spatio -temporal
Structures

External Files DBMS

I/O Drivers

Functions

Kernel

Fig. 12.1 TerraLib software architecture



12 GIS Library for Large-Scale Environmental and Socio-Economic Applications 255

open and proprietary formats. Basic maintenance and upgrade is the responsibil-
ity of the project core team.

• Functions: algorithms that use the kernel API. Typical functions include spatial
analysis, query, and simulation languages. The functions are designed to allow
external contributions.

• Interfaces: different interfaces to the TerraLib library that allow software devel-
opment in different environments (Java, COM) and the support for OGC services
such as Web Map Services (WMS), Web feature services (WFS) and Web cover-
age services (WCS).

The core of TerraLib’s kernel is its set of spatio-temporal data types and its meth-
ods for query processing. The OGC Simple Feature Geometry model is used for
storing basic vector geometries. Extra metadata tables support the abstractions de-
scribed in Sect. 12.3.2. For a full description of the metadata, see the library’s doc-
umentation (Vinhas et al. 2007). One key need is efficiency. The developers have
spent much effort on issues such as indexing techniques and computational geom-
etry algorithms (Queiroz 2003; Rodrigues et al. 2005; Rodrigues et al. 2006). With
this work, the library now supports large-scale geographical databases, as discussed
in Sect. 12.4.

The I/O drivers provide the interface between the kernel and the various DBMS
and file formats. The library handles different object-relational databases, using a
generic database API that handles the specific features of each DBMS. Using this
API, a TerraLib programmer can work at an abstract level. TerraLib hides the dif-
ferences between products such as PostgreSQL/PostGIS and MySQL from the pro-
grammer (Ferreira et al. 2002).

As noted earlier, the design of TerraLib functions aims for extensibility, as in-
troducing new algorithms and tools should not affect existing code. Adoption of
the principles of generic programming and design patterns helped achieve extensi-
bility in this regard (Câmara et al. 2001). Three design patterns were found to be
especially useful:

• Factory: this pattern provides an interface for creating an object, but lets sub-
classes decide which class to instantiate. In GIS, it is useful to include new
functions without changing existing code. For example, there are hundreds of
cartographic projections. When code for a new projection is inserted in TerraLib,
it tells the projection factory about its existence and the projection factory calls
this new code when it is needed.

• Strategy: provides an interface to a family of algorithms, and makes them inter-
changeable. In GIS, the strategy pattern is useful when there are different ways of
performing the same function. This occurs often in image processing. For exam-
ple, there are many different types of image filters. By using the strategy pattern,
a programmer can use the same code for different filters.

• Iterators: TerraLib uses iterators to decouple algorithms from data structures. For
example, to compute a histogram it is not essential to know if the data are a set
of points, a set of polygons, a grid, or an image. The algorithm only needs to
look into a list and get the values of the items that satisfy a certain property (for



256 G. Câmara et al.

example, those that are closer in space than a specified distance). In a similar way,
most spatial analysis algorithms can be independent of spatial data structures and
described only by their properties (Vinhas et al. 2002).

12.3.4 Raster Data Handling

As noted earlier, TerraLib handles raster data types as well as vector data. All raster
data types are handled in a unified way, using an interface with two main methods,
namely one to set the value of a point on a multidimensional raster and one to
recover its value. The library provides decoders for different raster data formats,
and iterators for accessing image data and developing image processing algorithms.
The decoders are responsible for handling the particularities of each data source.
The iterators are specialized pointers that traverse a raster in a predefined way (for
example, only inside a given polygon). They hide the internal details of the raster
data (Vinhas et al. 2003).

The library has drivers for storing raster data in different DBMS. TerraLib uses
indexing and compression to achieve good performance in a standard DBMS, even
for large satellite images. Indexing combines tiling and multi-resolution pyramids.
Multi-resolution pyramids store the raster data at various sizes and degrees of reso-
lution. Each resolution level is divided into tiles. A tile has a unique bounding box
and a unique spatial resolution level, which are used to index it. Figure 12.2 shows
a pictorial representation of the tiling and multi-resolution storage model.

Fig. 12.2 TerraLib raster data
indexing

Resolution level 1

Resolution level 2

Resolution level 3

Tiles



12 GIS Library for Large-Scale Environmental and Socio-Economic Applications 257

The multi-resolution pyramid approach is useful for display of large data sets,
avoiding unnecessary data access. TerraLib stores the whole pyramid. To compen-
sate for the extra storage needs, it applies lossless compression to the individual
tiles. When retrieving a section of the data, only the relevant tiles are accessed and
decompressed.

TerraLib provides a large set of image processing algorithms including fil-
ters, segmentation, classification, mixture models, and geometric transformations.
The image processing algorithms have a common interface for receiving as input
instances of the raster API and a set of parameters. Two particularly important algo-
rithms are the object-oriented segmentation and region classifier algorithms devel-
oped by INPE, originally as part of the SPRING software (Câmara et al. 1996).
These algorithms were extensively validated for extracting land use patterns in
tropical forests, and were favourably reviewed in a recent survey (Meinel and
Neubert 2004).

Creating new image processing algorithms is straightforward. The library has
a set of standard protocols that combine the Factory and Strategy design patterns.
First, a programmer develops a new algorithm (for example, a filter), then instructs
TerraLib to use the proposed strategy to filter the image. The programming man-
ual provides further details as to the subsequent steps that need to be followed to
integrate the new code (Vinhas et al. 2007).

12.3.5 Spatio-temporal Queries

There are numerous different ways to record spatio-temporal information in a
database. The main alternatives are to (a) provide snapshots of data, (b) store se-
quences that describe the temporal evolution of spatial objects, or (c) store both
objects and events that change them (Hornsby and Egenhofer 2000; Grenon and
Smith 2003; Galton 2004; Worboys 2005). TerraLib adopts a dual perspective,
namely archiving fields (stored in raster data) as snapshots and objects (stored in
vector data) as sequences. A spatio-temporal object in TerraLib is a sequence of
static objects with the same identifier. Each static object is valid for one interval.

Storage and retrieval of spatio-temporal objects in a DBMS needs more abstrac-
tions beyond those discussed in Sect. 12.3.2. TerraLib distinguishes four types of
data stored in layers, namely static (unchanging data), events (singular occurrences
such as crime events), moving objects (such as cars on highways) and evolving ob-
jects (such as cities, whose boundaries and attribute values change in time). All
spatio-temporal objects that share the same attributes are converted to tuples of a
layer (including timestamps) and stored together in a database. Metadata tables store
information about different types of layers and identify which attributes of a layer
store the timestamps associated to the temporal intervals. For example, consider an
urban cadastre where all land parcels in a city for all intervals are stored together in
a single layer. Grouping all objects together in this manner simplifies data handling.
Inside the database, TerraLib uses optimization techniques for dealing with large
data volumes.



258 G. Câmara et al.

As discussed in Sect. 12.3.2, a GIS application needs to transform database tuples
(data sources) into objects that can be manipulated and displayed (data targets). In
a purely static and non-temporal GIS, it is enough to use themes to group objects of
the same type resulting from queries. In this case, all objects contained in a theme
belong to the same interval.

When a theme of spatio-temporal data is retrieved from the database, it con-
tains all spatio-temporal objects for the whole period when data are available. How-
ever, not all objects exist in all instances. Consider the case of real estate in an
urban cadastre. Extracting data from the “parcels” layer will produce a theme com-
posed of all parcels that ever existed in the cadastre. An application may need
to use only those parcels that currently exist. In this case, a spatio-temporal se-
lection is required inside a theme. To do this, TerraLib uses an extra concept re-
ferred to as a spatio-temporal object (STObject). An STObject is an individual
entity that preserves its identity, but may change its location and the values of its
attributes.

TerraLib provides a query processor to extract STObjects from themes (Ferreira
et al. 2005, see Fig. 12.3). The query processor has a generic API for program-
mers, hiding data storage details. Algorithms can handle spatio-temporal data us-
ing only STObjects returned by the query processor. To perform a query, a pro-
grammer defines three different restrictions (spatial, temporal, and attribute). The
spatial restrictions use the OGC-specified topological predicates and the temporal
restrictions use Allen’s interval predicates: before, meets, overlaps, finished, dur-
ing, starts, and equals (Allen 1983). Using combinations of these restrictions, the
query processor is able to respond to questions such as: “For each month, which
changes occurred in the parcel?”, “Which crimes happened on Friday in the south
zone of Rio de Janeiro?” and “What was the path followed by this wolf in July
of 2007?”

Fig. 12.3 The spatio-
temporal data query processor
(Source: Ferreira et al. 2005,
p. 8)

Application

Query
Processor

Spatio -temporal
Database

Query
Parameters

STOject

SQL
Spatio -temporal

Data



12 GIS Library for Large-Scale Environmental and Socio-Economic Applications 259

12.3.6 Spatial Statistics in TerraLib

A GIS produces colour maps of variables such as individual counts quality of life in-
dexes, or company sales in a region. However, to explore the underlying information
present in the data, visualisation is not enough. To make effective use of environ-
mental and socioeconomic data, a GIS should provide statistical methods and mod-
els. Spatial statistical methods measure properties and relations and translate the ex-
isting patterns into objective measures. They include geostatistics (Goovaerts 1997),
global and local autocorrelation indexes (Anselin 1995), analysis of point patterns
(Diggle 2003), regionalization (Openshaw and Alvanides 2001; Martin 2003) and
spatial regression (Anselin 1988).

One approach to link spatial statistics to GIS is to use loose coupling mech-
anisms, where the GIS does data conversion and graphic display, and the spatial
models run separately. Examples of this approach are the links between SpaceS-
tat and ArcView (Anselin and Bao 1997) and between R and GRASS (Bivand and
Neteler 2000). A more recent trend is to integrate spatial statistics methods directly
into a GIS. An example of this is GeoDa (Anselin et al. 2006), where a graphical
user interface (GUI) is provided for exploratory spatial data analysis on points and
polygons.

TerraLib has a basic spatial statistical package, including local and global au-
tocorrelation indexes, non-parametric kernel estimators, and regionalization meth-
ods (Assunção et al. 2006). These functions can be used by GIS applications. One
such application is TerraView, described in the next section. Additionally, TerraLib
provides a direct link with the R programming language using the aRT package
(Andrade and Ribeiro 2005). R is an open source programming language for sta-
tistical computing and graphics and has become a de facto standard for developing
statistical software (Ihaka and Gentleman 1996).

R has contributors from all over the world, with continuous improvement that
incorporates cutting-edge statistical methods. Integration with R can keep a GIS
always updated with recent research on spatial statistics. Packages in R relevant to
GIS include geoR for geostatistics (Diggle and Ribeiro 2007), splancs for analysis of
point processes (Rowlingson and Diggle 1993), and sp that provides general support
for spatial analysis (Pebesma and Bivand 2005).

The aRT API performs spatial queries and operations in R. It encapsulates Ter-
raLib functions into R objects, and enables R users to read data from a TerraLib
database. This coupling satisfies three requirements:

(a) Statisticians can implement methods of data analysis using R and call TerraLib’s
facilities for data storage and computational geometry directly for R;

(b) TerraLib programmers can quickly develop interfaces for calling wrapped R
code, which consists of functions and a description of their arguments. They do
not need to know about R internals;

(c) Users of TerraLib-based applications can perform data analysis in R, without
knowing R syntax or even without noticing their analysis is executed by R.



260 G. Câmara et al.

An example of the R-TerraLib coupling is shown in Fig. 12.4. The data in this
case are a set of point samples stored in a TerraLib database. These data were in-
terpolated into a grid using the geoR package (Diggle and Ribeiro 2007) and the
result stored as a TerraLib layer and displayed using the TerraView Version 3.0 GIS
application.

Fig. 12.4 Plotting an R algorithm result in TerraView (Andrade and Ribeiro 2005)

12.3.7 Cell Spaces and Cellular Automata

A cell space is a spatial data type where each cell handles one or more types of
attribute. Cell spaces were part of early GIS implementations (Dutton 1978), and
later discarded by one-attribute raster data structures, mostly because of efficiency
issues. It is time to reconsider this decision and to reintroduce cell spaces as a basic
data type in a GIS. Cell-spaces have several advantages over raster-based layers as a
means of storing information about continuous spatial entities. Using one-attribute
raster data to store results for dynamical models requires storing information in
different files. This separation results in increased complexity in data management
and user interface design. A cell-space stores all attributes of a cell together, with
significant benefits for modelling in contrast to the more cumbersome single value
raster approach.



12 GIS Library for Large-Scale Environmental and Socio-Economic Applications 261

Cell-spaces have been used in the last two decades for simulation of urban and
environmental models as part of cellular automata (CA) models (Batty 2000). Most
CA models link to a GIS by loose coupling mechanisms, where the GIS performs
the data handling and graphic display, and the spatial models run outside the GIS
database. This requires extra work for data translation, and may introduce problems
of redundancy and consistency. Modeling tools also lack GIS spatial analytical ca-
pacities. To address these drawbacks, cell-space models need strong links to the GIS
architecture. Using strong coupling, modeling and GIS can be made more robust
through their linkage and co-evolution (Parks 1993).

TerraLib supports cell spaces as one of its native data types. It provides functions
for storage and retrieval of cell spaces in a DBMS and algorithms for creating cell
spaces from vector data. The use of cell spaces enabled development of the TerraME
language, which is an add-on to TerraLib that enables simulation in 2D cellular
spaces. It supports multi-scale spatial models, where each scale has a different extent
and resolution (Carneiro 2006).

Two important innovations in TerraME are its use of anisotropic spaces (Aguiar
et al. 2003) and hybrid automata models (Henzinger 1996). Anisotropic spaces
arise when modeling natural and human-related phenomena. For example, land
settlers in a new area do not occupy all places at the same time. They follow
roads and rivers, leading to an anisotropic pattern. However, most spatial statisti-
cal and dynamic modeling techniques fail to incorporate spatial anisotropy, leaving
out spatial relations that are variable over space. This leads to a serious chal-
lenge in producing models that approximate reality, since most real-life spaces are
anisotropic.

A hybrid automaton is an abstract model for a system whose behaviour has dis-
crete and continuous parts (Henzinger 1996). It extends the idea of finite automata
to allow continuous change to take place between transitions. Adopting hybrid au-
tomata in spatial dynamic models allows complex models which include critical
transitions. Inside each discrete state, the model variables can change. When a crit-
ical value occurs, the model moves from the current state to a new one, which is
governed by different equations. For example, consider a model for tropical veg-
etation that has a critical threshold caused by land use change. Under conditions
of small land change, the vegetation follows one growth model. When a critical
condition is reached, a different growth model must be used. The use of a hybrid
automaton allows modeling the tropical vegetation under two different conditions
(Carneiro 2006).

Among the typical applications of TerraME are land change and hydrological
models. Figure 12.5 shows an application of TerraME for land use change modeling
in the Brazilian Amazon. The scenario considers the possible impact of paving a
road between the cities of Porto Velho and Manaus. This road crosses areas of cur-
rently pristine tropical forest. The model results provide an estimate of how much
increase in deforestation could occur in the region from 1997 to 2020 (Aguiar 2006).
These models have proven to be useful for supporting public policies that protect the
environment and aim at establishing sustainable development practices.



262 G. Câmara et al.

Fig. 12.5 Spatial modeling of projected deforestation of a new road in Amazonia from 1997 to
2020 (Aguiar 2006)

12.4 Development of GIS Applications using TerraLib

This section provides an outline on how to develop a GIS application using Ter-
raLib and describes selected GIS applications that use TerraLib. The general prin-
ciples of GIS application development are described followed by a description of
TerraView, a FOSS4G GIS for spatial data analysis, and TerraAmazon, Brazil’s na-
tional database for monitoring deforestation.

12.4.1 Building an Application Using TerraLib

TerraLib provides C++ classes that support the higher-level abstractions described
in Sect. 12.3, such as Database, Layer, View, and Theme. When a programmer builds
an application using TerraLib, he/she should use these classes. This section provides
a brief guide to the steps involved in GIS application development. TerraLib classes
are denoted using monospaced font (e.g., Database is the TerraLib class for
a spatial database). For more detail, see TerraLib’s programming tutorial (Vinhas
et al. 2007).



12 GIS Library for Large-Scale Environmental and Socio-Economic Applications 263

Consider first the case of a GIS application using static data, which has four
steps: (a) querying the spatial database; (b) converting the query results (tuples) into
objects; (c) manipulating these objects to create new objects; and (d) displaying the
resulting objects. To perform these steps in TerraLib, a programmer should include
code that does the following:

1. Choose the DBMS that will support the application.
2. Create a TerraLib Database.
3. Connect to the Database.
4. Import data to create a new Layer from standard spatial data formats.
5. Create a view to store a user’s view of the database using View.
6. Create a Theme and insert it to the user’s View.
7. Define the contents of the Theme, by pointing to the data source (a Layer) and

defining attribute and spatial restrictions over that Layer.
8. Load the contents of the Theme.
9. Define the display parameters of the Theme using a Visual.

10. Display the Theme using a GUI toolkit.

A second situation arises when the GIS application uses spatio-temporal data. In
this case, following step 8 above, the developer should include code for the follow-
ing operations:

9a. Create a Querier (query processor).
10a. Define the spatial, attribute and temporal restrictions to apply the query using

the Querier.
11a. Apply the query and get an STObjectSet (set of spatio-temporal objects).
12a. Manipulate and display the STObjectSet.

These steps show that Terralib abstractions encapsulate a general view of how
a GIS works. The abstractions of database, layer, theme, and view are especially
important, as they provide a link between what is stored in a database and what
is selected and manipulated by a user. Thus, a database organizes spatial data in
layers and a user manipulates themes according to his/her view of the database.
Layers store different types of spatio-temporal data, and thus provide the containers
needed by the database.

Although these concepts are not part of the current OGC specifications, they arise
from decades of experience. Most commercial and FOSS4G applications use them
implicitly or directly. Building a user interface on top of these abstractions is simple.
A GUI creates events that match to actions that call TerraLib functions. If the user
knows the TerraLib ideas, each of these actions will consist of small pieces of code,
based on standard examples.

12.4.2 Examples of Open Source Applications

TerraView is a FOSS4G GIS for spatial data analysis, which provides the ba-
sic functions of data conversion, display, exploratory spatial data analysis, spatial



264 G. Câmara et al.

Fig. 12.6 User interface for the TerraView product

statistical modeling, and spatial and non-spatial queries. The project is a general-
purpose GIS for TerraLib databases. Many Brazilian public institutions use Ter-
raView for public policy making, including studies in spatial epidemiology and
crime analysis. Figure 12.6 shows TerraView’s user interface.

TerraView is licensed using the GNU General Public License (GPL), and is
available at http://www.dpi.inpe.br/terraview/. Its user interface uses the QT cross-
platform framework (Blanchette and Summerfield 2006). Programmers can extend
its functionalities in two ways. By adapting the menus, they can include new func-
tions or change the behaviour of existing ones. Additionally, TerraView supports
plug-ins, which are independent applications that can access a TerraLib database.
Using TerraLib, plug-ins have access both to the database and to the display con-
trols (i.e., the lists of views, themes, and the canvas).

A second noteworthy application is TerraAmazon, Brazil’s national database for
monitoring deforestation in Amazonia, developed by INPE and its partner, the Foun-
dation for Space Science, Technology and Applications (FUNCATE) (http://www.
dpi.inpe.br/terraamazon/). The DBMS is PostgreSQL version 8.2, hosted on a server
running the Linux operating system. The application manages all data workflow
by gathering about 600 satellite images and pre-processing, segmenting, and clas-
sifying these images for further human interpretation in a concurrent multi-user
environment (see Fig. 12.7). The database stores about 2 million complex poly-
gons and grows yearly with 60 gigabytes of full resolution satellite images using



12 GIS Library for Large-Scale Environmental and Socio-Economic Applications 265

Fig. 12.7 User interface for TerraAmazon

the TerraLib pyramidal resolution schema. A Web site allows seamless display and
analysis of full resolution data using TerraLib’s PHP extension and TerraLib’s OGC
WMS server.

12.5 Licensing and Maintenance Policy

One of the important decisions on the TerraLib project was to decide on its license
and long-term maintenance policy. The decision considered the nature of the GIS
market and the strategy for open source technologies to reach a critical mass of
users. The GIS software market is an oligopoly where ESRI, Bentley, and Inter-
graph have a market share greater than 50% (Daratech 2006). This leads to a “ven-
dor lock-in” effect (Arthur 1994). The “lock-in” effect occurs when a customer is
dependent on a vendor for products and services, and cannot move to another ven-
dor without large switching costs. There are many causes for vendor dependence
and reluctance to use FOSS4G. First, commercial GIS products use proprietary data
formats, making users apprehensive to the costs of data conversion. Second, each
GIS adopts a different data model and user interface, which requires training for
effective use. Finally, users worry about long-term maintenance of their archives
and applications, as the sustainability of FOSS4G projects is often unknown. This
results in a conservative policy for most GIS adopters.

Service providers based on OSS face a tough challenge. Convincing a user to
change from a commercial to an OS product requires a substantial effort. Users
will consider carefully the risks involved in choosing an OS solution, compared



266 G. Câmara et al.

to well-publicized commercial products. Software cost is only part of the prob-
lem. Users worry about long-term assurance to protect their investments in data
capture and in specialized applications. To convince prospective customers, service
providers using a FOSS4G approach need to build custom applications fast and reli-
ably, and this is a task that needs investment. Most service providers consider these
applications as IP that needs protection. Thus, they are unwilling to invest in OSS
that has binding licenses, such as the GNU GPL.

When deciding on the TerraLib license, the developers considered there should
be a strong incentive for commercial companies to use the library to reduce the
“vendor lock-in” effects of the GIS market in Brazil. Thus, it was decided to release
TerraLib according to the GNU Lesser General Public License (LGPL). The LGPL
allows private companies to build proprietary applications on top of TerraLib, and
market them as proprietary software, while the TerraLib software itself remains pub-
licly licensed. A second consideration involves development and maintenance of the
TerraLib kernel. The Brazilian government has guaranteed its long-term support for
the core team of developers. INPE provides capacity building for developers, and
supports service companies that use the software.

At the time of writing, there are approximately 10 Brazilian service providers
using TerraLib for building commercial applications. Each company has a market
focus that includes utilities, the oil industry, agriculture, urban cadastre, and the
military. There is evidence that this strategy is paying off. Companies offering GIS
services based on TerraLib form 10% of the service provider market in Brazil. This
impact on the commercial market is an indicator of a decrease in the “vendor lock-
in” effect. The library’s licensing and maintenance policy are arguably an essential
part of this result.

An example of a proprietary application that uses TerraLib is InfoPAE, devel-
oped by the Computer Graphics Group (TecGraf) of the Catholic University in Rio
de Janeiro (PUC-RIO) in partnership with Petrobras (Petróleo Brasileiro S.A.), a
Brazilian oil company. The application was designed for emergency response within
the oil industry. InfoPAE works with local emergency action plans (LEAPs) that
handle significant events. A LEAP is an organized collection of actions, similar to a
workflow, coupled with information stored in geographical as well as conventional
databases. LEAP frameworks are useful to design large emergency plans. InfoPAE
is being used in more than 100 installations of Petrobras in Brazil.

12.6 Conclusion

The design and implementation of TerraLib serve as an example of the challenges
involved in building a FOSS4G library that allows innovative applications and sup-
ports large-scale applications. One of main lessons learned is that the current set of
OGC specifications is not enough to support these goals. Thus, TerraLib has intro-
duced extra abstractions to reduce the cognitive distance between GIS developers
and the outcomes of their work. These extra abstractions come at a price. When a
FOSS4G developer adheres strictly to the OGC specifications, his/her code runs in



12 GIS Library for Large-Scale Environmental and Socio-Economic Applications 267

all OGC-compliant libraries. However, adopting TerraLib reduces GIS application
development effort, while increasing the cost of using abstractions not supported
by other products. OGC-compliant applications will be able to access the part of a
TerraLib database that contains OGC’s simple features. However, the extra relations
used by TerraLib to handle abstractions such as theme and view, and data structures
such as cell spaces are invisible to these applications.

Several choices had to be made when introducing solutions for spatio-temporal
queries, cell spaces, and raster data handling. Only further experience will show
if these were the correct decisions. Another difficult issue concerns the software
architecture and design for extensibility. The extensive use of design patterns in
TerraLib suits experienced programmers who are comfortable with ideas such as
“factory” and “strategy”. Novice developers need at least six months training in
C++ before they can become skilful in these concepts.

To conclude, developing TerraLib has shown how difficult it is to design a GIS
library that combines simplicity and expressiveness. The developers opted for ex-
pressiveness at the expense of simplicity in this case. This choice may limit the rate
of adoption of TerraLib by the FOSS4G community. Nevertheless, it is the develop-
ers’ hope the library’s assets may be attractive to other developers that want to build
large-scale GIS applications.

Acknowledgments TerraLib’s core team, apart from the authors, includes Laercio Namikawa and
Emiliano Castejon at INPE. TerraView was designed and implemented by Juan Pinto de Garrido
and Lauro Hara. Additional contributors to TerraLib include Tiago Carneiro, designer of TerraME,
Pedro Andrade, who developed aRT, Ana Paula Aguiar, who wrote code for cell spaces, and Fe-
lipe Castro da Silva and Thales Korting, who developed image processing functions. The technical
support of Julio D’Alge for cartographical projections and Leila Fonseca for image processing has
been important. We also have important contributions from Paula Frederick, Marcelo Metello, Nat-
acha Barroso, and Leone Pereira Masieiro at PUC-Rio, and Rui Mauricio Gregório and Vanildes
Ribeiro at FUNCATE. The TerraLib project is partially financed by CNPq grant no. 552040/02-
9. Gilberto Câmara’s research is also financed by CNPq grant no. 300557/96-5. The project has
also received financial support from FAPESP (Fundação de Amparo à Pesquisa no Estado de São
Paulo).

TerraLib code relies on a number of OSS packages. INPE and TerraLib development team
thanks the OS community for their efforts. These libraries are: (a) the zlib library to compress
data when storing raster data in a TerraLib database; (b) the independent JPEG Group’s library for
JPEG image compression; (c) libgeotiff to decode/encode raster data in TIFF/GEOTIFF format;
(d) shapelib to decode/encode vector data in shapefile format.

As of late-2007, TerraLib consists of 280,000 lines of C++ code and 170,000 lines of third-
party open source utilities. The development started in 2001, with an effort of 60 man-years spent
so far in TerraLib and TerraView. The library and associated applications may be obtained from
the website http://www.terralib.org.

References

Aguiar A, Câmara G, Cartaxo R (2003) Modeling spatial relations by generalized proximity matri-
ces. V Brazilian Symposium in Geoinformatics – GeoInfo 2003, Campos do Jordão, SP, Brazil

Aguiar APD (2006) Modeling Land Use Change in the Brazilian Amazon: Exploring Intra-
Regional Heterogeneity. PhD Thesis, Remote Sensing Program. Sao Jose dos Campos, INPE



268 G. Câmara et al.

Aksoy S, Koperski K, Tusk C, Marchisio G (2004) Interactive training of advanced classifiers
for mining remote sensing image archives. ACM International Conference on Knowledge
Discovery and Data Mining, Seattle, WA, ACM

Alexandrescu A (2001) Modern C++ design: Generic programming and design patterns applied.
Addison-Wesley, Reading

Allen JF (1983) Maintaining knowledge about temporal intervals. Commun ACM 26:832–843
Almeida CM, Batty M, Monteiro AMV, Câmara G, Soares-Filho BS, Cerqueira GC, Pennachin CL

(2003) Stochastic cellular automata modeling of urban land use dynamics: empirical develop-
ment and estimation. Comput Environ Urban Syst 27:481–509

Anselin L (1988) Spatial econometrics: methods and models. Kluwer, Dordrecht
Anselin L (1989) What’s special about spatial data: Alternative perspectives on spatial data analy-

sis. Santa Barbara, CA, NCGIA Report 89-4
Anselin L (1995) Local indicators of spatial association – LISA. Geogr Anal 27:91–115
Anselin L, Bao S (1997) Exploratory spatial data analysis linking Spacestat and ArcView. In

M Fischer and A Getis (eds.) Recent Developments in Spatial Analysis, Springer Verlag,
Berlin.

Anselin L (1999) Interactive techniques and exploratory spatial data analysis. In: Longley P,
Goodchild M, Maguire D, Rhind D (eds) Geographical Information Systems: principles, tech-
niques, management and applications. Geoinformation International, Cambridge

Anselin L, Syabri I, Kho Y (2006) GeoDa: An introduction to spatial data analysis. Geogr Anal
38:5–22

Andrade PR, Ribeiro PJ (2005) A process and environment for embedding the R Software into
TerraLib. VII Brazilian Symposium on Geoinformatics (GeoInfo 2005), Campos do Jordao,
Brazil, INPE/SBC

Arthur B (1994) Increasing returns and path dependence in the economy. The University of Michi-
gan Press, Ann Arbor, MI

Assunção R, Neves M, Camara G, Freitas CDC (2006) Efficient regionalisation techniques
for socio-economic geographical units using minimum spanning trees. Int J Geogr Inf Sci
20:797–812

Austern M (1998) Generic programming and the STL: Using and extending the C++ standard
template library. Addison-Wesley, Reading, MA

Batory D, Singhal V, Sirkin M, Thomas J (1993) Scalable software libraries. SIGSOFT Softw. Eng.
Notes 18:191–199

Batty M (2000) GeoComputation using cellular automata. In: Openshaw S, Abrahart RJ (eds)
GeoComputation, Taylor & Francis, London, 95–126

Blanchette J, Summerfield M (2006) C++ GUI programming with Qt 4. Prentice Hall,
Indianapolis, Indiana

Blaschke T, Hay G (2001) Object-oriented image analysis and scale-space: theory and methods for
modeling and evaluating multiscale landscape structure. Int Arch Photogramm Remote Sens
34:22–29

Bivand R, Neteler M (2000) Open source geocomputation: using the R data analysis language
integrated with GRASS GIS and PostgreSQL data base systems. 5th International Conference
on GeoComputation, Greenwich, UK

Burrough P (1998) Dynamic modelling and geocomputation. In: Longley P, Brooks S, McDon-
nell R, Macmillan B (eds) Geocomputation: A Primer. John Wiley, New York

Câmara G, Souza R, Freitas U, Garrido J (1996) SPRING: Integrating remote sensing and GIS
with object-oriented data modelling. Comput Graph 15:13–22

Câmara G, Souza RCM, Pedrosa BM, Vinhas L, Monteiro AMV, Paiva JAC, Carvalho MT, Raoult
B (2001) Design patterns in GIS development: the TerraLib experience. III Simpósio Brasileiro
de GeoInformatica, Rio de Janeiro, RJ

Carneiro T (2006) Nested-CA: a foundation for multiscale modeling of land use and land change.
Computer Science Department. Sao Jose dos Campos, INPE. Doctorate Thesis in Computer
Science



12 GIS Library for Large-Scale Environmental and Socio-Economic Applications 269

Chang SK, Yan CW, Dimitroff D, Arndt T (1988) An intelligent image database system. IEEE
Trans Software Eng 14:681–688

Couclelis H (1997) From cellular automata to urban models: New principles for model develop-
ment and implementation. Environ Plann B 24:165–174

Daratech (2006) GIS markets and opportunities 2006 survey. Cambridge, MA, Daratech Inc
DeWitt D, Kabra N, Luo J, Patel J, Yu J-B (1994) Client-server paradise. VLDB Conference,

Santiago, Chile
Diggle P (2003) Statistical analysis of spatial point patterns. 2nd edn Edward Arnold, London
Diggle P, Ribeiro PJ (2007) Model-based geostatistics. Springer, Heidelberg
Dutton G (ed) (1978) First international advanced study symposium on topological data structures

for geographic information systems. Addison-Wesley, Reading, MA
Elliott J, Eckstein R, Loy M, Wood D, Cole B (2002) Java swing. O’Reilly Press, Sebastopol, CA
Erwig M, Schneider M (2002) Spatio-temporal predicates. IEEE Trans Knowl Data Eng

14:881–901
Feitosa F, Camara G, Monteiro AM, Koschitzki T, Silva MS (2007) Global and local spatial indices

of urban segregation. Int J Geogr Inf Sci 21:299–323
Ferreira KR, Queiroz G, Paiva JA, Souza RC, Câmara G (2002) A software architecture for build-

ing spatial databases with object-relational DBMS. XVII Brazilian Symposium on Databases,
Gramado, RS

Ferreira KR, Vinhas L, Queiroz GR, Câmara G, Souza RCM (2005) The architecture of a flexible
querier for spatio-temporal databases. VII Brazilian Symposium in Geoinformatics, Campos
do Jordao, Brazil

Fonseca F, Egenhofer M, Agouris P, Camara G (2002) Using ontologies for integrated geographic
information systems. Trans GIS 6:231–257

Fotheringham AS, Brunsdon C, Charlton M (2002) Geographically weighted regression: The anal-
ysis of spatially varying relationships. Wiley, Chichester

Fowler GS, Korn DG, Vo K-P (1995) Principles for writing reusable libraries. Proceedings of the
1995 Symposium on Software reusability. Seattle, Washington, United States, ACM Press

Galton A (2004) Fields and objects in space, time, and space-time. Spat Cogn Comput 4:39–68
Gamma E, Helm R, Johnson R, Vlissides J (1995) Design patterns: Elements of reusable object-

oriented software. Addison-Wesley, Reading, MA
Goodchild ME (2003) Geographic information science and systems for environmental manage-

ment. Ann Rev Environ Resour 28:493–519
Goovaerts P (1997) Geostatistics for natural resources evaluation. Oxford Univ Press, New York
Grenon P, Smith B (2003) SNAP and SPAN: Towards dynamic spatial ontology. Spat Cogn Comput

4:69–104
Güting RH, Schneider M (2005) Moving objects databases. Morgan Kaufmann, New York
Henzinger TA (1996) The theory of hybrid automata. Proceedings of the 11th Symposium on Logic

in Computer Science (LICS’96), IEEE
Hornsby K, Egenhofer M (2000) Identity-based change: A foundation for spatio-temporal knowl-

edge representation. Int J Geogr Inf Sci 14:207–224
Ihaka R, Gentleman R (1996) R: A language for data analysis and graphics. J Comput Graph Stat

5:299–314
Krasner GE, Pope ST (1988) A cookbook for using the model-view controller user interface

paradigm in Smalltalk-80. J Object-Oriented Program 1:26–49
Krueger CW (1992) Software reuse. ACM Comput Surv 24:131–183
Martin D (2003) Extending the automated zoning procedure to reconcile incompatible zoning sys-

tems. Int J Geogr Inf Sci 17:181–196
Medak D (2001) Lifestyles. In: Frank AU, Raper J, Cheylan J-P (eds) Life and Motion of Socio-

Economic Units. ESF Series. Taylor & Francis, London
Meinel G, Neubert M (2004) A comparison of segmentation programs for high resolution remote

sensing data. Int Arch Photogramm Remote Sens XXXV:1097–1105
Meyer B (1990) Lessons from the design of the Eiffel libraries. Commun ACM 33:68–88



270 G. Câmara et al.

Mockus A, Fielding R, Herbsleb J (2002) Two case studies of open source software development:
Apache and Mozilla. ACM Transactions on Software Engineering and Methodology 11

Navulur K (2006) Multispectral image analysis using the object-oriented paradigm. CRC Press,
Boca Raton, CA

Openshaw S, Alvanides S (2001) Designing zoning systems for representation of socio-economic
data. In: Frank A, Raper J, Cheylan J (eds) Time and Motion of Socio-Economic Units, Taylor
and Francis, London

Parks BO (1993) The need for integration. In: Goodchild MJ, Parks BO, Steyaert LT (eds) Envi-
ronmental modelling with GIS. OUP, Oxford, 31–34

Pebesma E, Bivand R (2005) Classes and methods for spatial data in R. R News 5:9–13
Pedrosa B, Câmara G, Fonseca F, Souza RCM (2002) TerraML – A cell-based modeling language

for an open-source GIS library. II International Conference on Geographical Information Sci-
ence (GIScience 2002), Boulder, CO, 2002

Queiroz GR (2003) Algoritmos Geométricos para Bancos de Dados Geográficos: Da Teoria à
Prática na TerraLib (Geometric Algorithms for Spatial Databases: From Theory to Practice in
TerraLib). Computer Science. São José dos Campos, INPE. MsC

Rodrigues VL, Andrade MVA, Queiroz GR, Magalhães M (2006) An efficient map overlay algo-
rithm for TerraLib. VIII Brazilian Symposium on GeoInformatics, GeoInfo2006, Campos do
Jordão, SP, Brazil, INPE

Rodrigues VL, Cavalier AP, Andrade MVA, Queiroz GR (2005) Exact algorithms for map manip-
ulation in TerraLib. VII Brazilian Symposium on GeoInformatics, GeoInfo2005, Campos do
Jordão, SP, Brazil, INPE

Rowlingson B, Diggle P (1993) Splancs: spatial point pattern analysis code in S-Plus. Comput
Geosci 19:627–655

Silva MPS, Camara G, Souza RCM, Valeriano D, Escada MIS (2005) Mining patterns of change
in remote sensing image databases. The Fifth IEEE International Conference on Data Mining,
New Orleans, Louisiana, USA

Sistla AP, Wolfson O, Chamberlain S, Dao S (1997) Modeling and querying moving objects. Pro-
ceedings of the Thirteenth International Conference on Data Engineering 422–432

Veldkamp A, Fresco L (1996) CLUE: A conceptual model to study the conversion of land use and
its effects. Ecol Model 85:253–270

Vinhas L, Ferreira KR, Ribeiro G (2007) TerraLib programming tutorial. São José dos Campos,
Brasil, INPE (avaliable on http://www.terralib.org)

Vinhas L, Queiroz GR, Ferreira K, Câmara G, Paiva JA (2002) Generic programming applied to
GIS algorithms. IV Brazilian Symposium on Geoinformatics, Caxambu, Brazil

Vinhas L, Souza RCM, Câmara G (2003) Image data handling in spatial databases. V Brazilian
Symposium on Geoinformatics, Campos do Jordão, Brazil

Warmerdam F (2007) Shapefile C Library V1.2, http://shapelib.maptools.org/Last accessed July
28th, 2008

Weber S (2004) The success of open source. Harvard University Press, Cambridge, 75
Worboys M (2005) Event-oriented approaches to geographic phenomena. Int J of Geogr Inf Syst

19:1–28


	978-3-540-74830-4_Book_PrintPDF 257
	978-3-540-74830-4_Book_PrintPDF 258
	978-3-540-74830-4_Book_PrintPDF 259
	978-3-540-74830-4_Book_PrintPDF 260
	978-3-540-74830-4_Book_PrintPDF 261
	978-3-540-74830-4_Book_PrintPDF 262
	978-3-540-74830-4_Book_PrintPDF 263
	978-3-540-74830-4_Book_PrintPDF 264
	978-3-540-74830-4_Book_PrintPDF 265
	978-3-540-74830-4_Book_PrintPDF 266
	978-3-540-74830-4_Book_PrintPDF 267
	978-3-540-74830-4_Book_PrintPDF 268
	978-3-540-74830-4_Book_PrintPDF 269
	978-3-540-74830-4_Book_PrintPDF 270
	978-3-540-74830-4_Book_PrintPDF 271
	978-3-540-74830-4_Book_PrintPDF 272
	978-3-540-74830-4_Book_PrintPDF 273
	978-3-540-74830-4_Book_PrintPDF 274
	978-3-540-74830-4_Book_PrintPDF 275
	978-3-540-74830-4_Book_PrintPDF 276
	978-3-540-74830-4_Book_PrintPDF 277
	978-3-540-74830-4_Book_PrintPDF 278
	978-3-540-74830-4_Book_PrintPDF 279
	978-3-540-74830-4_Book_PrintPDF 280



