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Abstract-The Maximum Residual Energy Path (MREP) routing 
has been shown an effective routing scheme for energy 
conservation in a battery wireless network. Past studies on MREP 
are based on the assumption that the transmitting node consumes 
power, but the receiving node does not. This assumption is false if 
acknowledgement is required, or if the ad hoc network has 
deployed the energy-conservation mode (sleeping mode). When 
backward energy consumption is present in transmission (i.e. the 
receiving end consumes energy), finding an MRE path that has 
enough energy for finishing the transmission has become 
NP-hard. We show in this paper a Dijkstra-like heuristic 
algorithm for finding the optimal MRE path. The new algorithm 
guarantees that once a path is found, it will have enough energy 
to finish the transmission task, while the original MREP 
algorithm, ignoring the backward energy costs, cannot guarantee 
that. We also show another routing technique that can extend the 
system life. The technique works for both MREP-based routing 
schemes.  

 

I. INTRODUCTION 
Recent advances in wireless technologies, such as Bluetooth 

[1], have made it easy and practical to construct an ad hoc 
network [11] for novel applications – a surveillance network, a 
wireless tag network in a grocery store, and a sensor network 
[2] to monitor environment dangerous conditions are just a few 
examples. 

In such a network, battery power is a vital resource for each 
wireless device (except for the wired gateway computers), and 
energy conservation is a critical issue. Routing plays an 
important role in energy conservation. This issue has been 
studied extensively in the past. A central part of any routing 
study is the definition of the path metric. Some metrics 
combines both delay and power consumption, whereas others 
focus on maximizing the system life and ignore the delay. 

When delay is less a concern than system life, the Maximum 
Residual Energy Path (MREP) routing has been shown an 
effective scheme for energy conservation [3,4]. In MREP 
routing, the best path is one that has the maximum residual 
energy left after sending the message. Past MREP routing is 
based on the assumption that only the transmitting node 
consumes energy, but the receiving node does not. This 

assumption is not true if acknowledgements are required, or if 
the receiving node needs to be waken up from its energy 
conservation mode (sleeping mode). In either case, the process 
of receiving a packet requires the receiving node send some 
thing back to the sending node and that will consume energy at 
the receiving side.  

When backward energy consumption is present in 
transmission (i.e. the receiving end consumes energy), finding 
an MRE path that has enough energy for finishing the 
transmission of a packet has become NP-hard [10]. We show in 
this paper a Dijkstra-like heuristic algorithm for finding the 
optimal MRE path. Compared with the old MREP algorithm 
that ignores the backward energy consumption, the new 
algorithm can guarantee that once a path is found, it will have 
enough energy to finish the transmission task. The original 
MREP algorithm, however, cannot guarantee that. In addition, 
we show another technique that can extend the system life for 
MREP-based routing scheme. This method works for both the 
original MREP and the new modified MREP. 

The rest of the paper is organized as follows. Section II gives 
the definition of the problem. Section III shows the original 
MREP algorithm and the new heuristic MREP algorithm is 
introduced. Simulations and results are presented in Section IV. 
Finally, some concluding remarks are made in Section V.  

II. DEFINITIONS 
The routing problem can be modeled as a directed graph G = 

(V, L), where V is a set of vertices (wireless nodes) and L is a 
set of directed connections (u, v) from a vertex u to another 
vertex v. Initially, each vertex u has a battery charged with 
energy Eu ≥ 0. This energy will be consumed by transmitting 
messages. E(u) is the current battery energy available at node u 
before routing a message. 

With each edge e=(u, v), we associated two costs, the 
sending cost se(or su,v) for sending a message along e, and the 
acknowledgement cost re (or ru,v) for receiving a message. 
Sending a message along e will reduce E(u), the energy of u, by 
se, and it will reduce E(v) by re. Of course, sending a message is 
only possible if none of the residual energies becomes negative.  
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Fig. 1. A routing network. Nodes are labeled by their battery energy. Outgoing 
edges are labeled by the sending cost along the edge, and incoming edges are 

labeled by the acknowledgement cost. 
 

Normally, se and re will depend on the distance between the 
vertices and on the size of the messages, but that is not the 
focus of our discussion. 

When sending a message from a vertex s to another vertex t 
in G, the message can be routed along one of various paths. Of 
interest are paths that leave a high energy level in all the nodes, 
i.e. situations in which routing a message would use up all the 
energy of one single node should be avoided. If this is not done, 
trouble might arise when the next message is routed. Further, 
the network could even become disconnected. 

Formally, if a message is routed along a path P=(v1, v2,…, 
vk-1, vk) in G, where v1,…, vk are vertices and (v1, v2),…, (vk-1, vk) 
are the edges, then each node on P loses a certain amount of 
energy due to the sending cost and the acknowledgement cost. 
Let uR  denote the residual energy of u after routing a 
message. If P is simple then 
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If P is not simple, then it may contain some vertex several 
times; in this case, all the sending and acknowledgement costs 
for that vertex have to be added up. We now define the 
Minimum Residual Energy (MRE) of P, denoted by D(P), to be 

}{min)(
,...,1 ivki

RPD
=

=         (2) 

Note that all residual energy values must be non-negative. If 
they are not, the message cannot be sent. A path P with D(P)≥0 
is called a legal path. For example, in Fig. 1, consider the path 
P=(s, w, u, x, t). The residual energy left in s is Rs = E(s) – ss,w = 
6 – 2 = 4. Similarly, it can be seen that Rw = 3, Ru = 5, R x= 1, 
and Rt = 5. The path therefore has MRE D(P)=1. The 
non-simple path P’=(s, u, v, u, t) leaves Rs = 6 – 2 = 4 in s, Ru = 
8 – 1 – 1 – 1 – 5 = 0 in u, Rv = 8 – 1 – 5 = 2 in v, and Rt = 6 – 1 
= 5 in t. Thus, D(P’)=0. 

 
A path is optimal if it has a maximum MRE among all paths 

that route a message from a given start vertex to a given end 
vertex. Routing along a non-simple path is obviously never a  

Maximum Residual Energy Path (MREP) Problem 
Input: 
A directed graph G = (V, L) with vertex energies Eu, 
sending costs su,v, and acknowledgement costs ru,v. Also, 
two vertices s (source) and t (destination). 
 
Output: 
An s – t path in G that maximizes D(P) among all s – t 
paths P in G. 

Fig. 2. The Maximum Residual Energy Path problem 
 
good idea, so optimal paths are always simple. Obviously, the 
problem that needs to be solved is listed in Fig. 2. 

III. MODIFIED MREP ALGORITHM 

A. MREP without Backward Energy Consideration 
Let G = (V, L) be a directed graph such that associated with 

each edge Lvu ∈),( . There is a bandwidth b(u, v) ≥0. Now let 
P=v1, v2,…, vk-1, vk be a path in G. The bottleneck cost B(P) of 
the path is defined to be 

),(min)( 1,...,1 +=
= iiki

vvbPB      (3) 

Intuitively, B(P) is the maximum amount of available 
bandwidth to send the message from v1 to vk along path P. 

Given Vts ∈, , the max-bottleneck problem, sometimes 
known as the max-bandwidth problem, is to find a path from s 
to t that maximizes B(P). This problem has been extensively 
studied and it is well known that such a path can be found using 
a simple modification of Dijkstra’s shortest path algorithm [9], 
which builds a tree rooted at s in which the unique path from s 
to t is a max-bottleneck path between s and t. We listed the 
modified Dijkstra-like algorithm in Fig. 3. It builds a tree T 
rooted at s in which s the parent of node w is stored in P[w]. 
The optimal path connecting s and t can be read off backwards 
by starting at t and looking at t, P[t], P[P[t]], etc. until s is 
reached. The standard implementation of this algorithm runs in  

Modified Dijkstra’s algorithm for finding 
max-bottleneck paths 

Input: Source s and destination t. 
Output: A max-bottleneck spanning tree rooted at s 
containing a path to t. 
 
1. for every node Gv ∈ do 
 {P[v] = 0; C[v] = –∞} 
2. C[s] = +∞; F = φ . 
3. for every neighbor w of s do 
 {P[w] = s; C[w] = b(s, w); add w to F} 
4 repeat 
 remove the node with maximum C[u] from F; 
 for every neighbor w of u do 
  if C[w]= –∞ 
   {P[w] = u; C[w] = min(C[u], b(u, w)); add w to F} 
   else if { Fw∈ and C[w]<min(C[u], b(u, w))} 
     {P[w] = u; C[w] = min(C[u], b(u, w))} 
until C[t] ≠–∞ and Ft ∉ . 
Fig. 3. The Modified Dijkstra’s algorithm (based on [10]). C[w] will be the 
cost of an optimal (max) bottleneck path between s and w. The algorithm 

builds a tree (stored using the predecessor P[w] links) such that the unique 
path in the tree from s to w is an optimal s – w path. 
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Fig. 4. An example graph with bandwidth costs on edges. There are many 

max-bottleneck s – T paths all having cost 3. One such path is s, u, t, T. Note 
that in this path the bottleneck is edge (u, t). 

 
O(|L|log|V|) time; with more sophisticated data structure this 
can be reduced to O(|L|+|V|log|V|) time [10,11]. 

We now discuss how to find optimal Maximum Residual 
Energy paths from s to t when ri,j = 0, i.e. there is no 
acknowledgement costs for messages. The algorithm is actually 
a very simple transformation of the problem that takes the 
energy costs from the vertices and puts them on the edges and 
then runs the max-bottleneck algorithm. The reason that we 
describe it in detail is as an introduction to the more 
complicated transformation needed in the following parts when 
ri,j ≠0. 

Rewriting the problem for the ri,j = 0 case, we want to find s – 
t paths P: s = v1, v2,…, vk-1, vk = t that maximizes 

( )( )
1,1

)(min),(min)(
+

−=
<≤ ii vvikik svEvEPD     (4) 

We can now see how to transform the MREP problem into a 
bottleneck one. The idea is to introduce a new graph G’=(V’, 
L’) which is exactly G with one new vertex T and one new link 
(t, T) added. The b() for G’ is defined by setting b(t, T)=E(T) 
and for all other edges Lvu ′∈),( setting 

vusuEvub ,)(),( −=       (5) 
As an example, if G is the graph in Fig.1 but without 

acknowledgement cost on each incoming edge, then the 
transformed new graph G’ is depicted in Fig. 4. We first note 
that there is a one-to-one correlation between s – t paths in G 
and s – T paths in G’. If P: s = v1, v2,…, vk-1, vk = t, the 
associated path in G’ will be P’: s = v1, v2,…, vk-1, vk = t, T. 
Since (t, T) is the only link entering T, this correlation is 
reversible, i.e., if P’: s = v1, v2,…, vk-1, vk = t, T is an s – T path 
in G’ then this is associated with the s – t path P: s = v1, v2,…, 
vk-1, vk = t in G. For example, the path P: s, u, t in Fig. 1 
corresponds to P’: s, u, t, T in Fig. 1. 

The reason why this correlation is important is that if P: s = 
v1, v2,…, vk-1, vk = t is a simple path in G then 

( )( ) )'()(min),(min)(
1,1

PBsvEvEPD
ii vvikik =−=
+<≤

 (6) 

Example: Refer again to Fig. 1 and Fig. 4, P: s, u, t has 
D(P)=3 and the associated P’: s, u, t, T also has B(P’)=3. 

Recall that algorithm in Fig. 3 finds the max-bottleneck path 
in G’. Furthermore, the paths that it finds are simple since once 
a node u appears on a path, it is removed from F and never 
appears again. Thus, the algorithm in Fig. 3 finds the maximum 
bottleneck s – T simple path in G’ which corresponds to the  

1. Transform G = (V, E) into G’ = (V’, E’) by adding 
vertex T and edge (t, T). 

2. Use the modified Dijkstra’s algorithm from Fig. 2 to 
find P’, a max-bottleneck s – T path in G’. 

3. If P’ is not a simple path, chop off cycles to make it a 
simple s – T path. 

4. If P’: s = v1, v2,…, vk-1, vk=t, T let P be s = v1, v2,…, vk-1, 
vk=t 

5. Return P. 

Fig. 5. Algorithm for finding MRE s – t path when ri,j=0 for any i, j. 
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Fig. 6. A spanning tree output by the modified Dijkstra’s algorithm from the 

graph in fig. 3. Note that every path in the tree from s to a node is a 
max-bottleneck path to that node.  

 
MRE s – t simple path in G. If this is found, then an algorithm 
for finding MRE paths given in Fig. 5 can be determined. 

As an example, starting with G as given in Fig. 1 (again, no 
acknowledgement costs on incoming edges), the graph G’ 
given in Fig. 4 is built. Running the modified Dijkstra 
algorithm gives the spanning tree in Fig. 6, from which it can 
be seen that the max-bottleneck s – T path is P’: s, u, t, T with 
B(P’)=3. An MRE s – t path is therefore P: s, u, t with D(P)=3. 
 

B. Modified MREP Algorithm (M-MREP) 
In this section, we show how to find the optimal s – t MRE 

path when the reverse energy cost ri,j ≠0.  
First, we need to point out that a Dijkstra-like algorithm does 

not seem to be able to find the optimal path in such a case. The 
major reason why Dijkstra’s algorithm works in general, both 
for the shortest path and the max-bottleneck problem, is 
because those problems possess the ‘sub-solution optimality 
property’. More specifically, that means if P: s = v1, v2,…, vk-1, 
vk = t is an optimal s – t path, P’’: s = v1, v2,…, vk-1 is an optimal 
s – vk-1 path. This property allows the Dijkstra’s algorithm to 
find optimal paths correctly and quickly by building a spanning 
tree rooted at s in which every path from s to a node u is an 
optimal s – u path. 

However, in this problem with reverse energy cost, the 
‘sub-solution optimality property’ does not always hold. In Fig. 
7, an example is given. The unique s – t MRE path is s, v, w, t, 
which has MRE 1. But s, v, w is not an s – w optimal MRE 
path. Instead, it should be s, u, w, with MRE 2. Therefore, when 
finding an optimal s – t path, it is not enough to just know all of 
the optimal s – w paths for Ltw ∈),( . For all Ltw ∈),( ,  
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Fig. 7. An example for ri,j ≠0, in which the MRE optimal paths do not possess 

the “sub-solution optimality property”. 
 

we must know the optimal s – w path whose final edge 
is ),( wu , where Lwu ∈),( . This observation will be the basis of 
our heuristic. 

Our heuristic is to construct an augmented graph whose 
vertices V’ are essentially the edges L of the original graph G. 
Given G = (V, L), a new graph G’ = (V’, L’) is created. The 
vertices of G’ are the edges of G plus two new edges (S, s) and 
(t, T), i.e., 

)}},(),,{(}),(:),{(' TtsSLvuvuV ∪∈=  (7) 
The edges in L’ are defined by 

}),(),,(:)),(),,{((' LwvvuwvvuL ∈=   (8) 
Note that there is a one-to-one correlation between the (S, s) 

– (t, T) paths (S, s = v1), (v1, v2), (v2, v3), …, (vk-1, vk), (vk=t, T) in 
G’ and the s – t paths s = v1, v2, …, vk-1, vk = t in G. We now 
define the bandwidth b() on the edges in G’ as follows: 
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For path P in G, let P’ denote the corresponding path in G’. 
Recall that for path P: s = v1, v2,…, vk-1, vk = t in G, 
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The important observation is that, if P is a simple path in G 
then, by definition of the bottleneck cost in G’ 

)()'( PDPB =      (11) 
For example, the graph G’ in Fig. 8 corresponds to the graph 

in Fig. 1. The simple s – t path P: s, u, t with D(P) = 2 
corresponds to the (S, s) – (t, T) path P’: (S, s), (s, u), (u, t), (t, 
T) which has the bottleneck cost B(P’)=2. 

Unfortunately, unlike in the previous case, finding a (S, s) – 
(t, T) max-bottleneck path in G’ does not always yields an 
optimal MRE path in G, since the optimal max-bottleneck path 
found might not be a simple path, i.e., it might include loops. 
The worse thing is that, even if the cycles are peeled away in 
the path to make it simple, the remaining path still might not be 
an optimal MRE path. 

In order to avoid the loops from occurring in the routing 
process, we added some additional information, called the 
associated set. An associated set is basically the set of all the 
nodes in the original graph G along the path to a certain node in 
the transformed graph G’. For every step in the Dijkstra-like 
algorithm, before a node is inserted into the fringe set, its  
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Fig. 8. The transformed graph G’ corresponding to the graph G in fig. 1. 

Modified MREP algorithm 
(for finding MRE paths when ri,j≠0) 

Input: A graph G’, Source (S, s) and destination (t, T). 
Output: An MREP spanning tree rooted at (S, s) containing 
a path to (t, T). 
 
1. for every node (u, v)∈G’ do 

{P[u, v] = 0; C[u, v] = –∞} 
2. C[S, s] = +∞; F = φ ; A[S, s]={s} 
3. for every neighbor (s, w) of (S, s) do 
{P[s, w] = (S, s); C[s, w] = b((S, s),(s, w)); add (s, w) to F} 
4. select the node with maximum C[u, v] from F; 
  remove it from F and add it to the spanning tree 
 set A[u, v]= A[P[u, v]]∩{v} 

5. for every neighbor (v, w) of (u, v)do 
  if ( 0)( ,, ≥−− vuwv rsvE and ],[ vuAw∉ ) 

{if (C[v, w]= –∞) 
 {P[v, w] = (u, v); C[v, w] = min(C[u, v], b((u, v),(v, 
w))); add (v, w) to F} 
 else if { Fwv ∈),( and C[v, w]<min(C[u, v], b((u, v), 
(v, w))) 
 {P[v, w] = (u, v); C[v, w] = min(C[u, v], b((u, v), (v, 
w)))} 

} 
6. if (F becomes empty) return failure 
7. repeat step 4~6 until C[t, T] ≠–∞ and FTt ∉],[ . 

Fig. 9. The Modified MREP (M-MREP) algorithm 
 

associated set needs to be checked. We call the algorithm based 
on the heuristic the Modified MREP (M-MREP) routing 
algorithm. The pseudo code for the M-MREP is given in Fig. 9. 

In Fig. 9, the associated set is denoted as A[ ]. Note in step 5, 
before a node is added to the fringe set, we have to make sure 
that its estimated residual energy after sending the message 
must not be negative. This is done to guarantee that the selected 
node has sufficient energy reservation to finish the current 
transmission task. Meanwhile, the associated set of the node is 
also checked. Simulation showed that this associated set 
checking procedure effectively avoids loops. Thus, we solved 
the non-simple path problem in M-MREP algorithm. Again, we 
attained the one-one correspondences just as the original MREP 
algorithm. 

IV. PERFORMANCE EVALUATION 
In this section, random graphs are presented in order to 

evaluate the performances of the proposed algorithm. We 



generated 50 nodes randomly distributed in a square of size x 
by x. We tried 35 m (dense graph) and 50 m (sparse graph) for 
the value of x. Assume that the transmission range of each node 
is 10 m. The energy expenditure for sending one bit is assumed 
to be given by: 

mdbitnJde 10            ),/(1.0 2 ≤×=   (12) 
where d is the distance in terms of meters. For the initial node 
energy, a value around 0.5 J (i.e. 500,000,000 nJ) looks more 
practical, but simulations showed that less initial energy does 
not affect the performance comparison. So we used lower levels 
for the initial energy. We assume that the packet size is fixed to 
600 bits and the acknowledgement packet length is defined to 
be 120 bits. Each arrival corresponded to multiple fixed-size 
packets. Traffic was uniformly distributed between all source – 
destination pairs. All the results were based on ten randomly 
generated sample graphs. 

A. Performance Measurement 
In the following, three routing algorithms are compared: the 

Minimum Transmission Energy (MTE) routing algorithm that 
intends to minimize the total amount of energy for sending a 
packet, plus the two MREP algorithms (original MREP and 
M-MREP). The performance measure is the system life, defined 
as the time until the first node in the network runs out of 
energy. Since we did simulation in an event-driven fashion, we 
use the number of packets routed to denote the system life. 
Hence, the inter-arrival times of randomly generated traffic 
could be any distribution. Note that the exact number is not 
important. It is the difference between the results that indicate 
the performance of each routing algorithm. 

Recall that finding the best MREP with backward energy is 
proven NP-hard. Therefore, for M-MREP, the system is dead 
when the algorithm cannot find a legal path. For the original 
MREP, the path can be found quickly. But it does not guarantee 
the complete transmission of a packet because it does not 
consider the backward energy cost. So the system is dead when 
we find transmitting a packet leads to the total drainage of a 
battery. 

B. Results and Comparison 
Because the performance depends on the network topology, 

we simulated two types of topologies: dense and sparse 
topologies. In the sparse network situation, as depicted in Fig. 
10, we set the initial energy to 5,000,000 nJ. We can see that 
although MTE performs the worst, the difference is not very 
large. The “remaining energy level” is the average energy level 
of all the nodes, portrayed as percentages, after the system dies. 
Note that all the remaining energy levels are above 60%. Such 
high remaining energy levels mean that many other nodes still 
have energy even when one node has already used up all its 
battery energy. Unfortunately, this is typical of sparse networks 
because there are fewer choices when selecting paths for 
packets. 

In dense topologies, we set the initial energy to 1,000,000 nJ. 
As shown in Fig. 11, MTE now performs far worse than MREP 
and MREP, while M-MREP performs a little bit better then its  

  

Fig. 10. Performance evaluation for sparse network 

 

Fig. 11. Performance for different ACK length 
 

original counterpart MREP, but the improvement is marginal. 
However, if we increase the ACK packet length from 120 bits 
to 240 bits, M-MREP shows greater improvement. 

MREP does not take account of the reverse energy cost, i.e., 
the energy to send an acknowledgement packet, but M-MREP 
does. If the reverse cost grows bigger, ignoring it will cause 
larger error. So we see the improvement of M-MREP is greater 
when acknowledgement packet is longer. But meanwhile, the 
system life will be reduced. Since the nodes have to spend more 
energy sending acknowledgement packets. 

Fig. 12 shows the comparison between packet-by-packet 
routing and batch job routing (bulky arrival). The number of 
packets in each batch job is randomly generated using a 
geometric distribution. In our simulation, we used two different 
values for the mean value of the geometric distribution: 6 and 
12. All the packets belong to one batch job were routed along 
the same path. It can be seen that all the algorithms perform less 
well as the number of packets in each batch increases. This is 
because a longer batch job means that the traffic is more 
difficult to distribute evenly throughout the whole network. 
This reduces the system life. The effect is more obvious for 
M-MREP. It seems that our heuristic algorithm is somewhat 
weak for the batch job routing. 

We also found a problem with MREP: it does not consider 
total energy consumption at all. Consequently, sometimes the 



 
Fig. 12. Performance for packet-by-packet routing and batch job routing 

 

Fig. 13. 2-path M-MREP 
 

MREP routing algorithm tends to find very long paths that, 
although better in terms of residual energy, are very wasteful in 
terms of energy consumptions. We developed the 2-path 
M-MREP. The essential idea is to find two paths (the best and 
the second best) in each path computation. We then compare 
the total energy consumed by the two paths. If the best MRE 
path consumes more energy than the second path by a fixed 
amount (set at 7% in our simulations), then the second best path 
is chosen. Simulation showed that this method can improve the 
system life (Fig. 13). This method works for the original 
MREP, too. We also tried 3-path algorithm, but its 
improvement over the 2-path algorithm is marginal. 

V. CONCLUSION 
In this paper, we introduced the idea of finding an Maximum 

Residual Energy Path (MREP) in ad hoc networks. Routing in 
such kind of network is quite different from the one in Internet. 
Here, battery energy at network nodes is a very limited resource 
and need to be utilized efficiently. So to extend system life is 
our objective when doing routing. The MREP algorithm works 
pretty well, but it doesn’t consider the reverse energy cost. It 
has been proved that finding MRE path when considering 
reverse energy is NP-complete. 

We showed a heuristic algorithm – Modified Maximum 
Residual Energy Path (M-MREP) algorithm, which guarantees 

that when a path is found, it will have enough energy to 
transmit the packet, while the original MREP cannot guarantee 
that. We also presented a routing technique that can improve all 
MREP-related routing schemes. These techniques will be useful 
for energy-conservation routing in ad hoc networks.  
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