Flexible Support for Multiple Access Control
Policies

SUSHIL JAJODIA
George Mason University
PIERANGELA SAMARATI
Universita di Milano
MARIA LUISA SAPINO
Universita di Torino

and

V. S. SUBRAHMANIAN
University of Maryland

Although several access control policies can be devised for controlling access to information, all
existing authorization models, and the corresponding enforcement mechanisms, are based on a
specific policy (usually the closed policy). As a consequence, although different policy choices are
possible in theory, in practice only a specific policy can actually be applied within a given system. In
this paper, we present a unified framework that can enforce multiple access control policies within

The work of S. Jajodia was partially supported by the Army Research Office under the contract
DAAG-55-98-1-0302; by a DARPA grant administered by a Air Force Research Laboratory, Rome
under the contract F30602-98-1-0055; and by the National Science Foundation (NSF) under grant
IRI-9622154.

The work of P. Samarati was partially supported by the European Community within the Fifth
(EC) Framework Programme under contract IST-1199-11791 — FASTER project.

The work of M. L. Sapino was partially supported by the Italian MURST within the project Intel-
ligent Agent — Interaction and Knowledge Acquisition.

The work of V. S. Subrahmanian was supported in part by the Army Research Office under grants
DAAG-55-98-1-0302, DAAH-04-95-10174, DAAH-04-96-10297, DAAG-55-97-10047, and DAAH-04-
96-1-0398; by the Army Research Laboratory under contract number DAAL-01-97-K0135; by
DARPA/Rome Lab contract F306029910552; and by an NSF Young Investigator award IRI-93-
57756.

Authors’ addresses: S. Jajodia, Center for Secure Information Systems, George Mason Univer-
sity, Fairfax, VA 22030-4444, e-mail: jajodia@gmu.edu; P. Samarati, Dipartimento di Technolo-
gie dell'Informazione, Universita di Milano, 26013 Crema, Italy, e-mail: samarati@dsi.unimi.it;
M. L. Sapino, Dipartmento di Informatica, Universita di Torino, 10149 Torino, Italy, e-mail:
mlsapino@di.unito.it;V.S. Subrahmanian, Department of Computer Science, University of Mary-
land, College Park, MD 20742, e-mail: vs@cs.umd . edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom
use is granted without fee provided that copies are not made or distributed for profit or direct
commercial advantage and that copies show this notice on the first page or initial screen of a
display along with the full citation. Copyrights for components of this work owned by others
than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to repub-
lish, to post on servers, to redistribute to lists, or to use any component of this work in other
works, requires prior specific permission and/or a fee. Permissions may be requested from Publi-
cations Dept, ACM Inc., 1515 Broadway, New York, NY 10036 USA, fax +1(212) 869-0481, or
permissions@acm.org.

© 2001 ACM 0362-5915/01/0600-0214 $5.00

ACM Transactions on Database Systems, Vol. 26, No. 2, June 2001, Pages 214-260.

Flexible Support for Multiple Access Control Policies . 215

a single system. The framework is based on a language through which users can specify security
policies to be enforced on specific accesses. The language allows the specification of both positive and
negative authorizations and incorporates notions of authorization derivation, conflict resolution,
and decision strategies. Different strategies may be applied to different users, groups, objects, or
roles, based on the needs of the security policy. The overall result is a flexible and powerful, yet
simple, framework that can easily capture many of the traditional access control policies as well as
protection requirements that exist in real-world applications, but are seldom supported by existing
systems. The major advantage of our approach is that it can be used to specify different access
control policies that can all coexist in the same system and be enforced by the same security server.

Categories and Subject Descriptors: H.2.7 [Database Management]: Database Administration—
security, integrity, and protection; K.6.5 [Management of Computing and Information
Systems]: Security and Protection

General Terms: Management, Security

Additional Key Words and Phrases: Access control policy, authorization, logic programming

1. INTRODUCTION

With the advent of the information superhighway, there is now an immense
amount of information available in a wide variety of information sources. A
database administrator (DBA) or system security officer (SSO) may be respon-
sible for providing secure, authorized access to a collection of distributed objects
that includes some files, some relations, some object bases, some images, etc.
The SSO requires an authorization model that can be used to restrict access to
different classes of data objects (files, relations, objects, images, etc.). Moreover,
the SSO may wish to use one access control policy to regulate access to the image
data, another to regulate access to the relational data, and yet a third policy to
regulate access to the object-oriented data. This situation requires databases,
operating systems, and file systems (and, in general, systems that create and
manipulate objects) that provide a way for the SSO to apply different access
control policies to different classes of data objects.

Several access control policies have been proposed in the literature to govern
access to information by users. Correspondingly, several authorization models
have been formalized and access control mechanisms enforcing them imple-
mented [Castano et al. 1995]. Each model, and its corresponding enforcement
mechanism, implements a single specified policy, which is in fact built into the
mechanism. As a consequence, although different policy choices are possible in
theory, each access control system is in practice bound to a specific policy. The
major drawback of this approach is that a single policy simply cannot capture
all the protection requirements that may arise over time. When a system im-
poses a specific policy on users, they have to work within the confines imposed
by the policy. When the protection requirements of an application are differ-
ent from the policy built into the system, in most cases, the only solution is to
implement the policy as part of the application code. This solution, however, is
dangerous from a security viewpoint since it makes the tasks of verification,
modification, and adequate enforcement of the policy difficult.

Limitations of existing access control systems, which are generally based
on the closed policy, have been pointed out by other researchers [Lunt 1989].

ACM Transactions on Database Systems, Vol. 26, No. 2, June 2001.

216 . S. Jajodia et al.

To overcome such limitations, more recent authorization models also permit
specification of negative authorizations stating accesses to be denied [Bertino
et al. 1993; 1999; Briiggemann 1992; Denning et al. 1987; Rabitti et al. 1991].
Possible conflicts arising from the presence of both negative and positive autho-
rizations are resolved through a specific policy built into the model. Examples
of conflict resolution policies that have been applied in different proposals are:
denials-take-precedence [Bertino et al. 1993], most-specific takes precedence
[Denning et al. 1987], most-specific together with the concept of strong and
weak authorizations [Bertino et al. 1999; Rabitti et al. 1991], explicit specifica-
tion of priorities [Shen and Dewan 1992], and explicit specification of the policy
to be applied [Jonscher and Dittrich 1996]. Although these authorization models
allow a flexible and easy specification of authorizations, they remain limited in
the access control policies they can express as they rely on the particular prop-
erties of the underlying data model (generally, relational or object-oriented data
model). As a result, these authorization models cannot be easily extended to
other data models. In particular, it is not clear how these models can be used
to restrict access in the current World Wide Web (WWW) environment where a
wide variety of information sources (files, relations, objects, images, etc.) exist.

In this paper, we define a Flexible Authorization Framework (FAF) that
allows the specification of accesses to be allowed or denied in an expressively
powerful, declarative, and flexible manner. The framework is based on a lan-
guage through which users can specify security policies to be enforced on specific
accesses. The language allows the specification of both positive and negative
authorizations and incorporates notions of authorization derivation, conflict
resolution, and decision strategies. Such strategies can exploit the hierarchical
structures in which system components (objects, users, groups, and roles) are
organized as well as any other relationship that the SSO may wish to exploit,
in a flexible way. The language permits the specification of general constraints
on authorizations as well as on the derivation and conflict resolution process.
The overall result is a flexible and powerful, yet simple, framework that allows
us to easily capture many traditional access control policies as well as many
protection requirements existing in real world applications that could not, or
could only partially be enforced by previous approaches. We impose restric-
tions on the logic rules considered by the framework that, while not limiting
expressiveness, ensure the implementability of our approach and therefore its
suitability to real world applications.

The rest of the paper is organized as follows. Section 2 introduces and for-
mally defines the basic components of our authorization framework and of the
data system to which protection must be ensured. Section 3 formally defines
the object and subject hierarchies within the data system and introduces the
concept of authorization specification. Sections 3.2 through 3.4 describe sev-
eral examples of propagation, conflict resolution, and decision policies found
in the literature. Section 4 presents the language on which our framework is
based and illustrates how it can capture the different policies discussed as well
as several protection requirements that may need to be enforced. Section 5
discusses implementation issues and presents a materialization technique
to compute and explicitly maintain all accesses to be allowed or denied, for

ACM Transactions on Database Systems, Vol. 26, No. 2, June 2001.

Flexible Support for Multiple Access Control Policies . 217

mail accts images

P NVANNEVAN

univ personal staff faculty gif ipg

NN AA N

jim ed val mom dad sis jim ed valagif b.gif cjpg d.jpg

Fig. 1. Organization of an example directory.

efficient access control enforcement. It also presents an approach for updating
the materialization upon changes to the specifications. Section 6 compares our
work with previous related work. Section 7 concludes the paper.

2. COMPONENTS OF A FLEXIBLE AUTHORIZATION FRAMEWORK (FAF)

In this section, we first provide an intuitive overview of the components of an
authorization framework (Section 2.1). Then, we provide a simple basic set of
definitions that allow us to model these components (Section 2.2) and show
how these definitions can capture the basic components as instances of these
general definitions.

2.1 An Intuitive Description of FAF Components

Any authorization framework must provide a means to express answers to the
following questions:

(1) To what data items is the framework mediating access and how are
these data items organized?

(2) For what kinds of accesses does the framework determine autho-
rization privileges?

(3) How are the users/user groups to which the framework considers
granting access organized?

(4) What types of roles may users adopt, and under what conditions
may they adopt these roles? Do access privileges change as users
adopt different roles?

(5) Who can administer (e.g., grant and revoke) accesses?

2.1.1 DataItems. Ingeneral, any authorization framework determines the
circumstances under which a user may attempt to execute an access operation
on a given data item. However, in most realistic systems, data items are orga-
nized hierarchically. For example, in a file system, the basic objects are files, but
these files are typically organized in a hierarchical directory structure. Simi-
larly, in an object oriented database, the objects being accessed are organized
into an object hierarchy. When specifying an authorization policy using a FAF,
we would like to specify policies that apply to arbitrary directories (e.g. “All
files contained in the payroll directory are accessible only to individuals in the
accounting department”) or to arbitrary classes of objects (e.g. “All MPEG files
are accessible only to vice-presidents or higher”). Figure 1 shows a simple
directory structure, while Figure 2 shows a simple object hierarchy. In both

ACM Transactions on Database Systems, Vol. 26, No. 2, June 2001.

218 . S. Jajodia et al.

text image other
ascii word html gif tiff video audio
fl 2 f3.doc f4.doc f5.htm fo6.gif £7.gif f8.tiff fo.tiff f10.mpg f1l.au

Fig. 2. Organization of an example OO hierarchy.

ubhc

Citizens CS Dept En g-Dept Non-citizens

Nl

Jim Mary Jeremy George Lucy Mike Sam

Fig. 3. An example user-group hierarchy.

cases, the reader will observe that the data items in question are partially
ordered.

2.1.2 Access Types. We assume that there exists some set of actions or
operations that the user tries to execute on different data objects. In the case of
file systems, these actions may include read, write, move, and copy operations.
In the case of object hierarchies, these operations may involve invocation of
different methods.

2.1.3 Users and User Groups. In general, when describing authorizations,
we assume that there is some set of users, as well as groups consisting of such
users. The word “user” always refers to a human being, while a group is a
nonempty set of users. In most applications, users and groups are organized
into a hierarchy—this hierarchy typically looks like a directed acyclic graph
such that the nodes of in-degree zero correspond to the users. Figure 3 shows a
simple hierarchy of users and groups.

2.1.4 Roles. Itisverycommon for users to assume roles. For example, Jane
might be a professor in the Computer Science Department. When the depart-
ment chair goes on leave, Jane may assume the role of department chair. In
such a situation, Jane is playing a role that may bestow upon her privileges
that she did not have before. These privileges apply only while Jane is playing
this role-when she stops playing the role, she no longer has the ability to ex-
ecute the privileges associated with the role. Roles too may be organized as a
hierarchy—for example, roles such as chair, dean, etc. all form a hierarchy as
shown in Figure 4.

2.1.5 Administration. Any FAF must include an administrative policy
that regulates who can grant authorizations and revoke them. In this paper, we
consider a centralized administration policy, where authorization administra-
tion is the task of a single administrator, whom we refer to as system security

officer (SSO).

ACM Transactions on Database Systems, Vol. 26, No. 2, June 2001.

Flexible Support for Multiple Access Control Policies . 219

Employee

Admcstaff Research-staff

Secretary Dean Chair Faculty Researcher

Fig. 4. An example role hierarchy.

2.2 Formal Definitions

In all cases thus far, we have noticed that data items, actions, users/groups, and
roles may be organized as hierarchies. In each of these cases, there are certain
primitive entities (e.g., files) and certain aggregate entities (e.g., directories)
that consist of sets of primitive entities.

2.2.1 Hierarchies. It will turn out that a single mathematical structure
called a hierarchy (to be defined below) is rich enough to capture the structure
of data items, users/groups, and roles.

Definition 2.1 (Hierarchy). A hierarchy is a triple (X, Y, <) where:

(1) X and Y are disjoint sets

(2) < is a partial order on (X U Y) such that each x € X is a minimal element
of (XU Y); an element x € X is said to be minimal iff there are no elements
below it in the hierarchy, that isiff Vy e XUY): y <x = y = x.

In this definition, X may be thought of as an abstraction of the primitive entities,
and Y is an abstraction of the set of aggregate entities. For example:

—We may capture data items and groups of data items via the triple OTH =
(Obj, T, <or) where Obj is a set of identifiers of objects in a database, T is a
set of types (or sets of objects), and <o is a partial ordering such that for all
x €Objand t € T, x <or 7 iffx is of type 7.

—Similarly, we may capture the idea of users and groups via a hierarchy
UGH = (U, G, <yg) where U is a set of user-ids, and G is a set of identifiers
corresponding to named collections of users. <y is a partial ordering such
that for all users u € U and all groups v € G, u <yg = iff user u is in group ~.

—In the same way, roles also may be captured as a hierarchy RH = (4, R, <gr)
where R is a set of roles and x <g y if x is a specialization of y. A role
is a specialization of another role if it refers to more specialized activities
(which generally implies carrying more privileges). For instance, Faculty and
Researcher can be both seen as a specialization of Research-staff. Note that
there is no such thing as a primitive role and that users (who are minimal
elements of the user-group hierarchy), do not appear in the role hierarchy.
The association between users and roles is accomplished through explicit ac-
tivation, regulated by authorizations (see Section 4).

Note the distinction we are making between users, groups, and roles. Users
are people connecting to the system; groups are named sets of users; and

ACM Transactions on Database Systems, Vol. 26, No. 2, June 2001.

220 . S. Jajodia et al.

roles are named collections of privileges needed to perform specific ac-
tivities in the system. There are several differences between groups and
roles:

—Groups define a grouping of people while roles define grouping of privileges.

—Roles can be activated and deactivated by users at their discretion
while group membership typically cannot be activated or deactivated by
the user [Jajodia et al. 1997a] (though a system manager may periodi-
cally modify group membership). For instance, consider UGH and RH in
Figures 3 and 4. Suppose Jeremy can assume any of the following roles:
Faculty, Research-Staff, and Employee. When Jeremy accesses the system,
he will always be considered to be a member of the following groups: Citizens,
CS-Faculty, and, indirectly, CS-Dept and Public. Hence, he will always enjoy
the privileges available to these groups, as well as be subject to the restrictions
imposed on him by virtue of his membership in these groups. Jeremy cannot
decide by himself that he does not want to belong to the group Citizens at a
specific time. On the other hand, Jeremy can activate/deactivate certain roles
at his will. In these cases, he will only have the privileges associated with a
given role when he is in that role—-as soon as he steps out of the role, he loses
the privileges associated with that role.

The dynamic aspect of roles has a double advantage. First, it allows the
limitation of the use of the privileges needed to execute the tasks associ-
ated with the role only within the specific task execution. Second, it allows
the enforcement of the least privilege principle according to which tasks are
granted only those privileges needed to complete their execution. It is im-
portant to note that groups and roles are two complementary, not exclu-
sive, concepts. Also, roles and groups are not necessarily disjoint concepts—for
instance, a group G_Faculty can be defined to which all users who are fac-
ulty members belong, and a role R_Faculty can be defined to which privi-
leges specifically related to the professor’s activity are granted. Use of priv-
ileges granted to the group and to the role will be regulated as described
above.

Definition 2.2 (Disjoint Hierarchies). Two hierarchies H; =(X1, Y1, <1)and
Hy = (Xg, Yo, <2) are disjoint iff (X; UY1) N (X2 U Yy) = 0.

Intuitively, two hierarchies are disjoint iff they share no common elements.
For example, the hierarchies of Figure 1 and 2 are not disjoint, because they
share the common element “gif”. In contrast, the hierarchies in Figures 3 and
4 are disjoint.

Notational Abuse. Throughout this paper, we will often think of a hierarchy
H=(X,Y, <) as the set X U Y, and talk of H’s members as the members of
XUY.

2.2.2 Data System, Formalized. In previous sections, we have informally
spoken about “the system” or a “data system.” In general, a data system consists
of users/groups, the data they are accessing, together with the roles they may
play, and the types of access modes they use. Building upon our individual

ACM Transactions on Database Systems, Vol. 26, No. 2, June 2001.

Flexible Support for Multiple Access Control Policies . 221

definitions of these basic concepts, we are now ready to formally define a data
system.

Definition 2.3 (Data System). A Data System DS is a 5-tuple (OTH, UGH,
RH, A, Rel) where:

(1) OTH = (Obj, T, <o7) is an object-type hierarchy;

(2) UGH = (U, G, <yg) is a user-group hierarchy;

(3) RH is a role hierarchy RH = (4, R, <r);

(4) Ais a set whose elements are called authorization modes or actions (we will
use the notation SA to denote the set {+a, —a |a € A});

(5) Relis a set whose elements are called relationships. Relationships can be
defined on the different elements of DS and may be unary, binary or n-ary
in nature.

Furthermore, OTH, UGH, and RH are disjoint.

Note that the above definition is very general. Most individual data sys-
tems we encounter are instantiations of this general definition, by assigning
appropriate entities to each of the five components listed above. Different as-
signments lead to different data system instances.

For example, we may consider ordinary file systems to be a data system in-
stance by taking OTH to be a directory hierarchy such as the one shown in
Figure 1, UGH to be a user-group hierarchy such as the one shown in Figure 3,
and RH to be the role hierarchy shown in Figure 4. Here, A could include actions
such as r, w, x (read, write, execute). Similarly, relationships may include en-
tites such as subordinate specifying a binary relationship between users, owner
specifying a binary relationship between users and objects, readers specifying
a binary relationship between users and files, showing that certain readers
have read certain files, etc. The reader will notice that relational databases
and object-oriented systems may be very easily extended to be instances of
data systems as well.

In addition, the notion of data system we have defined is hierarchical since it
assumes that a hierarchy is defined on objects and types, users and groups, and
roles, respectively. This is not a limitation: a data system with no object-type,
user-group, or role hierarchy can be captured as a hierarchical data system.
In particular, a data system with no object-type hierarchy is represented by a
data system with T = @ and where x <ot y iff x = y. A data system with no
user-group hierarchy is represented by a data system with G = ¢ and where
x <y ¥ iffx = y. A data system with no role hierarchy is represented by a data
system where x <g y iff x = y. Note also that a data system which does not
support the concept of roles can be represented by a data system where R = @.
Thus, hierarchical data systems are more general than data systems that lack
hierarchy. Given this, in the rest of this paper, we deal with object-type, user-
group, and role-hierarchical data systems.

At this stage, we have completed our definition of the entities that must be
taken into account when defining a flexible authorization framework. We are
now ready to describe our actual authorization model.

ACM Transactions on Database Systems, Vol. 26, No. 2, June 2001.

222 . S. Jajodia et al.

3. AUTHORIZATION SPECIFICATION AND POLICIES

Throughout this section, we will assume that we are referring to some arbitrary,
but fixed data system, DS = (OTH, UGH, RH, A, Rel).

3.1 Authorizations

In this section, we use the expression authorization subject to denote those en-
tities for which authorization privileges can be specified—authorization subjects
are therefore users, groups, and roles. Likewise, the expression authorization
object refers to entities on which authorizations can be specified—authorization
objects therefore include objects, types, and roles. Roles are included in au-
thorization objects as they can be activated/deactivated by authorization
subjects.

We use AO, AS, SA to denote set of authorization objects, authorization sub-
jects, and signed actions (see below), respectively. When it is clear from context,
we will often merely write “subject” and “object,” rather than “authorization
subject” and “authorization object.”

Definition 3.1 (Authorization Subject Hierarchy). Let DS=(OTH, UGH,
RH, A, Rel) be a data system. The authorization subject hierarchy associated
with DS is the hierarchy ASH = (U, GUR, <as), where <as is defined as follows:

x <as y iff {x,y} CUUG&x <yg y or
{x,y) SR&x <R y.

Using a graphical intuition, the graph of ASH is obtained by placing the graphs
of UGH and RH side by side. Similarly, we may define an authorization object
hierarchy as follows:

Definition 3.2 (Authorization Object Hierarchy). Let DS=(0OTH, UGH,
RH, A, Rel) be a data system. The authorization object hierarchy associated with
DS is the hierarchy AOH = (Obj, TU R, <a0), where <ao is defined as follows:

x <po y iff {x, y} CObjUT&x <or y or
{x,y} S R&y <px.

Intuitively, the authorization object hierarchy is obtained by placing the OTH
and the inverse of RH side by side. The reason why RH is inverted is to simplify
the authorization propagation rules for authorization objects. Intuitively, while
authorizations to execute an action on a type propagate down the object-type
hierarchy to its subtypes and objects, authorizations to execute an action on a
role propagate up the role hierarchy, to its more generic (less privileged) roles.
By inverting the role hierarchy in the definition of the authorization object
hierarchy, we do not need to worry about this different behavior and can simply
propagate authorizations down the authorization object hierarchy, regardless
of whether the authorization object is a type or a role.

We are now ready to specify authorizations. Intuitively, an authorization
specifies which authorization subjects can (or cannot) perform which actions
on which authorization objects.

ACM Transactions on Database Systems, Vol. 26, No. 2, June 2001.

Flexible Support for Multiple Access Control Policies . 223

Definition 3.3 (Authorization). An authorization is a triple of the form
(0,s,(sign)a) where o € AO, s € AS, a € A and “sign” is either “+” or “—”.

Informally, the triple (0, s,+a) states that authorization subject s can execute
action a on authorization object o. Similarly, the triple (o0,s,—a) states that
authorization subject s cannot execute action a on authorization object 0. A few
simple example authorizations are given below.

—(mail,faculty,+read).
This authorization states that the authorization subject faculty, shown in
Figure 4, can execute the action read on the authorization object mail, shown
in Figure 1.

—(personal,faculty,-read).
This authorization states that the authorization subject faculty, shown in
Figure 4, may not execute the action read on the authorization object personal,
shown in Figure 1.

The above two examples bring us to a significant point—one that will take up
much of the rest of this paper. How should authorizations be propagated through
the authorization subject and object hierarchies? For example, we see above that
we might wish to propagate the authorization (mail, faculty, +read) to the
sub-directory, univ, to obtain a derived authorization (univ, faculty, +read).
This allows the faculty to read files in the univ directory.

In the next section, we introduce several example propagation policies. In
Sections 3.3 and 3.4, we introduce several conflict resolution and decision
policies.

3.2 Example Propagation Policies

In this section, we formally define different propagation policies on a single
hierarchy. As usual, we assume the existence of an arbitrary, but fixed data
system DS = (OTH, UGH, RH, A, Rel). The general idea is as follows. Given a
hierarchy H, we would like to label each node in the hierarchy with pairs such
that the node label and the two other components of the pair jointly determine
a set of authorization triples (0, s, + a). Since we would like such labelings to
be possible on all the hierarchies we have described thus far in this paper, we
now introduce a generic notion of a hierarchy labeling.

Definition 3.4 (Hierarchy Labeling). Let AUTH be a set of authorizations
andH = (X, Y, <)be a hierarchy. Let XU Y C « for some o € {AO, AS, SA} and let
LABELS be the cartesian product of the sets in {AO, AS, SA} — {«}. A hierarchy
labeling of hierarchy H wrt AUTH is a partial mapping A0V™ : X U Y — 2LABELS
such that: Vx e X U Y : 1 € A" ™M(x) & (x,1) € AUTH.!

The above definition is very generic, and allows the system security officer to
first choose the hierarchy H = (X, Y, <) that he wants to work with. For exam-
ple, he may choose the authorization object hierarchy AOH described earlier.

IProvided that the order of the elements in the tuple is rearranged.

ACM Transactions on Database Systems, Vol. 26, No. 2, June 2001.

224 . S. Jajodia et al.

Gi(o, +a)
(0,—a) G2 3 4(0, —a)
Gs (0, —a)
u} U2

Fig. 5. An example of labeled authorization subject hierarchy.

Once H is selected, LABELS is the Cartesian product of the sets not involved in
hierarchy H. In our case, this set involves all pairs (s, +a) where s is a subject
and +a specifies authorization privileges for action a. As our hierarchy H in
this example consists of objects, we would like each object in the hierarchy to
have an associated set of pairs of the form {(s1, +a1), (s2, *as), ..., (Sm, anm)}
indicating that a subject s; is authorized (+a;) or denied (—a;) some
action a;.

In contrast, the following example shows a situation where the hier-
archy selected by the system security officer is the authorization subject
hierarchy.

Example 3.1. Figure 5 illustrates an example of a labeled authorization
subject hierarchy where, for the sake of simplicity, we have taken R = @. In
this case, we have AUTH = {(o, G1, +a), (0, Gg, —a), (0, G4, —a), (0, G¢, —a)}. For
example, the label associated with node G4 says that users in group G4 may
not execute action a on object o.

The reader should note that in the definition of A{}"™, it is usually the case
that the user does not specify AUTH explicitly. Rather, a graphical user interface
is used to pick a hierarchy, and then label it appropriately, causing AUTH to be
generated by the interface.

We are now ready to describe various different authorization propagation
policies that have been or can be used in a wide variety of real world situations.
The reason we need authorization propagation policies is because in most real
applications, the system security officer only specifies a partially labeled hier-
archy, rather than one that has labels for all the nodes. Propagating authoriza-
tions corresponds to extending a partially labeled hierarchy to a more complete
labeling (even though the resulting labeling may not be fully complete). A
propagation policy is a map = that, given a hierarchy H and an input set AUTH
of authorizations, returns as output a set AUTH' O AUTH of authorizations
(the new authorizations are “derived” ones). We report below some example
policies. Figure 6 reports the result of applying them to the labeled hierarchy in
Figure 5.

ACM Transactions on Database Systems, Vol. 26, No. 2, June 2001.

Flexible Support for Multiple Access Control Policies

G (o, +a)

(0, —a) 3
/6(‘% —a)
Uul U
)

2
(a) p = nop

Gi(o,+a)

(0,—a) G2 3(0, +a)

(0,~a) /je(o, —a)

(0, —a) u1

(c) p = mso

Gi(o, +a)

(0, +a)

(0 —a) 3(0, +a)

4(0,+a)

(0, —a) (0, +a)
o+a)F (0, —a)
el N
0,—a 0,+a

(b) p = noo

G0, +a)

(0,—a) G2 3(0, +a) 4(0,—a)
(0,-0) /6(0, -a)
Eo’ +a; w1 u2 (0, —a)
0,—a

(d) p=po

Fig. 6. Derivation of AUTH' = nﬁ (AUTH) for H and AUTH of Example 3.1.

No propagation (r;,")?
AUTH.
Vx e XUY:

(z,+a) € MM (0) & (2, +a) € AV™M(x)
(z,—a) e MM (x) & (z, —a) e AT (x)

225

Authorizations are not propagated, that is, AUTH' =

No overriding (7{1°°) All the authorizations of a node are propagated to its
subnodes, regardless of the presence of other contradicting authorizations.

Vx e XUY :

(z,+a) e V™M (x) © 3y 1 y e XUY,x < y, (2, +a) € AAVTH(y)
(z,—a)e kﬁUTH’(x) S dy:yeXUY,x <y,(z,—a)e AﬁUTH(y)
Most specific overrides (7/]*°) Authorizations of a node are propagated to
its subnodes if not overridden. The label attached to a node n overrides a
contradicting label of any of its supernodes for all the subnodes of n. For in-
stance, with reference to Figure 5, the negative authorization of G5 overrides
the authorization of G; for G2 and all its members. In particular, only the
authorization of G (and not the authorization of G;) will be propagated to

uq (see Figure 6).

2Note that this policy should not be used with the group hierarchy. Authorizations for groups
are meant to apply to the group members and have therefore meaning only if authorizations are

propagated.

ACM Transactions on Database Systems, Vol. 26, No. 2, June 2001.

226 . S. Jajodia et al.

Vx e XUY:

(z,+a) e MV ™M(x) & 3y, Aw: y,w e XUY,y #w,x < y,x <w < y,
(z,+a) € MV ™M(y), (z, —a) € A ™M(w)

(z,—a) e MV ™M(x) © Jy, Aw : y,w e XUY,y #w,x < y,x <w < v,
(z,—a)e AﬁUTH(y), (z,+a) e)LﬁUTH(w)

Path overrides (n,ﬂ’o) Authorizations of a node are propagated to its subnodes
if not overridden. The label attached to a node n overrides a contradicting la-
bel of a supernode n’ for all the subnodes of n only for the paths passing from
n [Bertino et al. 1999]. The overriding has no effect on other paths. In case
n is nonminimal, the authorization of n’ may still reach the subnodes of n
through other paths. For instance, with reference to Figure 5, the negative
authorization of G overrides the authorization of G for G5 and all its mem-
bers only for the membership paths passing from Gg. The authorizations of
G can possibly still be propagated to the subjects below it in the hierarchy
through other membership paths. In particular, the authorization specified
for G will be propagated to u; through the membership path from u; to G
passing from G3 (see Figure 6).

Vx e XUY :

(z,+a) e V™ (x) © 3y, p, Aw : y,w € XUY, y # w, pis a path between x
and y in H, w appears in p, (z, +a) € A" ™(y),
(z, —a) € M ™M(w)

(z,—a) e V™ (x) & 3y, p, Aw : y,w € XUY, y # w, p is a a path between
x and y in H, w appears in p, (z, —a) € A3"™(y),
(z,4a) € A" ™Mw)

It is important for the reader to note that in a data system DS, we have
three hierarchies. In addition, hybrid hierarchies such as AOH and ASH may
be obtained by merging the initial hierarchies present in DS. The authoriza-
tions specified by the system security officer induce a corresponding labeling of
each of these hierarchies. Furthermore, the system security officer may specify
different propagation policies for each of the hierarchies. For instance, autho-
rizations can be propagated according to the most specific overrides policy (725
along the subject hierarchy and not be propagated (rrg%) along the object hier-
archy. Note also that, within the same hierarchy, disjoint subhierarchies can be
identified to which different propagation policies can be applied. For instance,
within the subject hierarchy, roles can be subject to a propagation policy (e.g.,
mre) and groups be subject to another policy (7J5%). Such labelings may lead
to conflicts. This is the topic of the next section.

3.3 Example Conflict Resolution Policies

As described above, conflicts may arise in authorization specifications for a vari-
ety of reasons. In this section, we introduce various example conflict resolution
policies. A conflict resolution policy is represented as a mapping, ~, that takes
as input a set AUTH of authorizations and returns as output a set of autho-
rizations AUTH € AUTH. Examples of different conflict resolution policies are
given below.

ACM Transactions on Database Systems, Vol. 26, No. 2, June 2001.

Flexible Support for Multiple Access Control Policies . 227

No Conflicts (4"°) This policy assumes that no conflicts occur. The presence
of conflicts is considered an error.

Yo,s,a:

(0,5,+a) € AUTH & (0,s,+a) € AUTH A (0,s5,—a) ¢ AUTH
(0,5,—a) € AUTH & (0,s,—a) € AUTH A (0,s,+a) ¢ AUTH
(0,s,+a) e AUTH A (0,s,—a) € AUTH = error

Denials take precedence (v%") In this case, negative authorizations are
always adopted when a conflict occurs. In other words, the principle says that
if we have one reason to authorize an access, and another to deny it, then
we deny it. With respect to the authorizations in Figure 6(b,d), the negative
authorization will be considered to hold for user u;.

Yo,s,a:
(0,s,+a) e AUTH & (0,s,4+a) € AUTH A (0,s,—a) € AUTH
(0,s,—a) e AUTH < (0,s,—a) € AUTH

Permissions take precedence (v"*) In this case, positive authorizations
are always adopted when a conflict occurs. In other words, the principle says
that if we have one reason to authorize an access and another to deny it,
then we authorize it. With respect to the authorizations in Figure 6(b,d), the
positive authorization will be considered to hold for user u;.

Yo,s,a:
(0,s,+a) e AUTH < (o0,s,+a) € AUTH
(0,5,—a) € AUTH & (0,s,—a) € AUTH A (0,s,+a) ¢ AUTH

Nothing takes precedence (v"°) This principle says that we neither au-
thorize nor deny an access when there is a conflict. (Instead, we make a
decision by deferring to the decision policies that force a decision and that
are discussed later in Section 3.4). With respect to the authorizations in
Figure 6(b,d), no authorizations will be considered to hold for user u;.

Yo,s,a:
(0,5,+a) € AUTH & (0,s,+a) € AUTH A (0,s,—a) ¢ AUTH
(0,s,—a) e AUTH & (0,s5,—a) € AUTH A (0,s,+a) € AUTH

3.4 Example Decision Policies

Once we have propagated authorizations within a hierarchy and have resolved
conflicts, there exists the possibility that some accesses are neither authorized
nor denied. In such cases, a firm decision must be taken. Decision policies
force accesses to be either authorized or denied. Formally, a decision policy is a
function 6: AO x AS x A — {+, —}. 8(o,s,a) = + if s is to be allowed action a on
object 0. §(0,s,a) = — if s is to be denied action a on object 0. Two well-known
decision policies are described below.

Open §°°®"(0,s,a) =+ < (0,s,—a) € AUTH
8% (0,s,a) = — & (0,s,—a) € AUTH

ACM Transactions on Database Systems, Vol. 26, No. 2, June 2001.

228 . S. Jajodia et al.

authorization history
table : table

y

(0,8,+a) propagation ZSZS;?;:]SOL integrity granted/denied
s ; = -
policy olic constraints
policy

Fig. 7. Functional authorization architecture.

Closed 5§°°s¢d(p,s,a) = + < (0,s,+a) € AUTH
sclosed(p s, a) = — < (0,s,+a) ¢ AUTH

The open policy denies access if there exists a corresponding negative au-
thorization and allows it otherwise. In contrast, the closed policy allows an
access if there exists a corresponding positive authorization and denies it other-
wise. To illustrate, consider the sets of authorizations graphically illustrated in
Figure 6 and assume that the nothing takes precedence policy is applied for
conflict resolution. With the open policy, ©; would be allowed access a on o in
the case of Figure 6(a) and denied in Figure 6(b,c,d). With the closed policy, ©1
would be denied access in Figure 6(a,c) but allowed access in Figure 6(b,d).

Note that decision policies apply to the set of authorizations produced by
the propagation and conflict resolution policies and that they force a decision
on accesses for which there are no authorizations or there are unresolved con-
flicts. Note also that, with respect to unresolved conflicts, the open policy is
equivalent to a permissions take precedence resolution, while the closed policy
is equivalent to a denials take precedence resolution.

4. AUTHORIZATION FRAMEWORK AND SPECIFICATION LANGUAGE

4.1 Architecture of the Authorization Framework

The architecture of our authorization framework (shown in Figure 7) consists
of the following components (in addition to the data system being considered):

—A history table whose rows describe the accesses executed;

—An authorization table whose rows are authorizations composed of the triples
described above;

—A propagation policy that specifies how to obtain new derived authorizations
from the explicit authorization table described above;

—A conflict resolution and decision policy that: (i) specifies how to eliminate
conflicts that arise when two or more conflicting authorizations apply to a
given (object, subject, action) triple; and (ii) determines the system’s response
(either yes or no) to every possible access request. The policy forces a yes or
no decision in the presence of conflicts as well as in the absence of explicit
specifications for the access.

ACM Transactions on Database Systems, Vol. 26, No. 2, June 2001.

Flexible Support for Multiple Access Control Policies . 229

—A set of integrity constraints that may impose restrictions on the content and
output of the other components.?

Our architecture assumes that accesses are always made by a user, possibly
playing a role. Access control is enforced with respect to the user’s identity, if
no role is active, and with respect to the role if a role is active.* In other words,
when playing a role, the user loses his personal privileges and restrictions (that
may have been granted to him specifically or to groups to which he belongs),
assuming instead those of the role. From the point of view of the access control,
therefore, every request is seen as coming from either a user or a role. In the
following, we generically refer to the requester as subject. When a subject s
requests permission to execute action a on object o, we need to check if the
authorization (0, s, +a) can be derived using the authorization table, history
table, propagation policy, conflict resolution policy, and decision policy that are
in force. If so, and if no “dynamic” constraint is violated, the access is allowed.
If (0, s, —a) is derivable, then the access is denied. Clearly, we must design
our system in such a way that given any triple (o, s, a) exactly one of the
authorizations (o, s, +a), (o, s, —a) is derivable from the authorization table,
propagation policy and conflict resolution and decision policy in force.

In preceding sections, we have provided several examples of various propa-
gation strategies, conflict resolution strategies, and decision strategies that the
SSO might want to use. However, these represent only some of the possibili-
ties. In reality, these strategies may be highly application dependent. Thus, a
framework for authorization management must be flexible enough to allow the
system security officer to express what he needs for his application. In partic-
ular, we realize the functional architecture through the following approach:

—The authorization table is viewed as a database.

—Policies are expressed by a tightly restricted class of logic programs called
authorization specifications. These programs will be guaranteed to have the
nice properties we describe below.

—The semantics of authorization specifications is given through the well known
stable model semantics [Gelfond and Lifschitz 1988] and well-founded model
semantics [van Gelder 1989] of logic programs. In fact, as we will show, the
structure of authorization specifications guarantee that their stable model
semantics is equivalent to their well founded semantics, thus ensuring that
they have exactly one stable model (this follows from a result of Baral and
Subrahmanian [1992]).

—Accesses will be allowed or denied based on the truth value of an atom associ-
ated with that access in this unique stable model. This guarantees that for any
access, exactly one decision (allowed/denied) is provided by our architecture.

Accordingly, we present a logical language (in a fragment of Datalog with
negation), called authorization specification language (ASL), that the system

3We will elaborate more on this in Section 4.7.
4We assume each user can activate at most one role at a time.

ACM Transactions on Database Systems, Vol. 26, No. 2, June 2001.

230 . S. Jajodia et al.

security officer can use to encode his security needs. We further show how the
strategies we have described above can be expressed in this Datalog language.

4.2 The Authorization Specification Language

We assume that DS is an arbitrary, but fixed data system that the system se-
curity officer is specifying authorizations for. ASL is a logical language created
from the following alphabet:

(1) Constant Symbols: Every member of Obj U TU U UG UR U A U SA.
Recall that Obj is the set of objects, T the set of types, U the set of users, G
the set of groups, R the set of roles, and A and SA the set of unsigned and
signed actions respectively.

(2) Variable Symbols: There are seven sets V,, V;, V,, Vg, V., Vg, Vg, of vari-
able symbols ranging over the sets Obj, T, U, G, R, A, and SA, respectively.
In the remainder of the paper, the following terminology will be used. Vari-
ables in V, and members of Obj are object terms. Variables in V; and mem-
bers of T are type terms. Variables in V,, and members of U are user terms.
Variables in V; and members of G are group terms. Variables in V., mem-
bers of R, and constant symbol € are role terms. Variablesin V, and members
of A are action terms. Variables in V, and members of SA are signed action
terms. We collectively refer to object, type, and role terms as authorization
object terms and to user, group, and role terms as authorization subject
terms.

(8) Predicate Symbols: ASL contains the following predicate symbols:

(a) A ternary predicate symbol, cando. The first argument of cando is an
authorization object term, the second is an authorization subject term,
and the third is a signed action term. The predicate cando represents
authorizations explicitly inserted by the SSO. They represent the ac-
cesses that the SSO wishes to allow or deny (depending on the sign
associated with the action).

(b) A ternary predicate symbol, dercando, with the same arguments as
cando. The predicate dercando represents authorizations derived by
the system using logical rules of inference (modus ponens plus rules
for stratified negation [Apt et al. 1988]).

(¢) A 3-ary predicate symbol, do, with the same arguments as cando and
dercando. It definitely represents the accesses that must be granted or
denied. Intuitively, do enforces the conflict resolution and access deci-
sion policy.

(d) A 5-ary predicate symbol, done. The first argument is an object term,
the second argument is a user term, the third argument is a role term,
the fourth argument is an unsigned action term, and the fifth argument
is a natural number. Intuitively, done(o, u, r, a, t) is true if user u with
role r active has executed action a on object o at time t.

(e) Two 4-ary predicate symbols overao and overas. overao takes as argu-
ments two object terms, a subject term, and a signed action term. overas
takes as arguments a subject term, an object term, another subject term,

ACM Transactions on Database Systems, Vol. 26, No. 2, June 2001.

Flexible Support for Multiple Access Control Policies . 231

and a signed action term. They are needed in the definition of some of
the overriding policies.

(f) A propositional symbol error. If error can be derived through some
rule, then there is an error in the specification or use of authorizations
due to the satisfaction of the conditions stated in the body of the rule.
Intuitively, error signals the violation of the integrity constraints.

The following predicate symbols, which we call hie-predicates, can be used
in the specifications:

(a) A ternary predicate symbol in that takes as arguments two elements
of AO U AS and whose third argument is a ground term equal to either
AOH or ASH. It captures the ordering relationships in the AOH and in
the ASH hierarchies.

(b) A ternary predicate dirin that takes as arguments two elements such
that both belong to either AO or AS and whose third argument is a
ground term equal to either AOH or ASH. It captures the direct mem-
bership relationships in the AOH and in the ASH hierarchies.

In addition, a set of application-specific predicates, which we -call
rel-predicates, can be used in the specifications. These predicates capture
the possible different relationships, existing between the elements of the
data system, that may need to be taken into account by the access control
system (see Section 2.2.2). Examples of such predicates, which are applica-
tion specific and not fixed by the model, are:

(a) A binary predicate owner whose first argument is an object/type term
and second argument is an authorization subject term. It associates a
unique user or role (not group) with each object, called the owner of that
object.

(b) Unary predicates isuser, isgroup, isrole whose only argument is a
subject and which return true if the subject is a user, a group, or a role,
respectively. They can be used for the selective application (depending
on the kind of subjects) of propagation, conflict resolution, or decision

policies.
If p is one of the above predicate symbols with arity n, and ¢4, .. ., ¢, are terms
appropriate for p (as defined above), then p(¢y,...,%,) is an atom. We use the

word literal to denote an atom or its negation. For instance, if OT, ST and SAT
are an authorization object, authorization subject, and a signed action term, re-
spectively, then cando(OT, ST, SAT) and —cando(OT, ST, SAT) are examples of
literals. We use the expression over predicate to denote either overas or overao
indiscriminately. We use the term rel-literal when the predicate involved is a
rel-predicate. We use the term, hie-literal, when the predicate involved is a
hie-predicate.

Definition 4.1 (Satisfaction of in and dirin Formulas). Let H = (X,Y, <u)
be a hierarchy whose nodes (X U Y) are ordered by relationship <y.

(1) H satisfies in(x, y,H) forx, y e XU Y iffx <y y.

ACM Transactions on Database Systems, Vol. 26, No. 2, June 2001.

232 . S. Jajodia et al.

(2) H satisfies dirin(x, y,H) forx,y e XUY iffx <y y andVz e X U Y :x <y
2,2 < y,z2Fy=2z=x.

(8) If L is a nonground in or dirin, (i.e., if L contains one or more variables),
then
(a) H satisfies (Vx)L iff H satisfies every ground instance of L.
(b) H satisfies (3x)L iff H satisfies some ground instance of L.

(4) H satisfies a conjunction (respectively, disjunction) of in/dirin-literals iff
H satisfies each (respectively, some) literal in the conjunction (respectively,
disjunction).

As our language for authorization specifications is a logical language, the sys-
tem security officer may specify access authorizations through rules expressed
in this language. Below, we show how each aspect of the architecture of Figure 7
is encoded by a set of rules, each obeying a highly restricted syntactic form. By
keeping the syntactic form tightly restricted, we are able to guarantee efficient
complexity results.

4.3 History Table

The history table is recorded through a predicate called done having the argu-
ments

(Object, User, Role, Action, Time)

specifying that a given user playing a given role executed a given action on the
specified object at a stated point in time. The instances of the done-predicate
are represented as a relational table with the above schema.

Histories are useful in implementing those policies in which future accesses
of users are based on the accesses each user has exercised in the past (as in the
case of the Chinese Wall policy [Brewer and Nash 1989], which requires both
the done predicate and the error predicate to represent it).

Note that, even in case of actions executed through a role, the executing user
is recorded. Besides ensuring accountability, this allows the enforcement of
separation of duty constraints at the user-level even when users are operating
through roles, as will be discussed in Section 4.7.

4.4 Authorization Table

The authorization table is created by defining a view on top of done, hie-literals
and rel-literals.

Definition 4.2 (Authorization Rule). An authorization rule is a rule of the
form:

cando(o, s, (sign)a) < L1& --- & L,.

where o, s and a are elements of AO, AS and A respectively, n > 0, (sign) is
either + or —, and L1, ..., L, are done, hie-, or rel-literals.

Definition 4.3 (Authorization View). An authorization view is a finite set of
authorization rules.

ACM Transactions on Database Systems, Vol. 26, No. 2, June 2001.

Flexible Support for Multiple Access Control Policies . 233

Definition 4.4 (Authorization Table). Suppose V is an authorization view.
The authorization table based on V is the result of materializing V.

We are now ready to give a few examples of authorization views.
Example 4.1. Consider the following authorization rules:

cando(o, john, +read) <« in(o,Letters, AOH).
cando(filel, john, +read) <« .
cando(file2, Citizens, +read) <«
cando(cobol-manual, Research-Staff, +read) <« .
<«

cando(Faculty, CS-Faculty, activate)

The first rule states that john can read all objects of type Letters. The second
rule states that john can read filel. The third rule states that group Citizens
can read object file2. The fourth rule states that role Research-Staff can read
cobol-manual. Finally, the last rule states that group CS-Faculty can act in role
Faculty.

The reader may wonder: if an authorization has already been specified for a
group (e.g., Employees), why are statements involving in allowed in the bodies
of rules? The reason is that (as discussed in Section 3.2) there are many dif-
ferent approaches to propagating authorizations from a group to a subgroup,
to a sub-subgroup, and eventually to an individual. Modeling this propagation
process requires the ability to distinguish between the authorizations explic-
itly given to users and the authorizations they may hold as members of some
group. In general, specifying an authorization for a group is different from spec-
ifying an authorization for all members of the group. To illustrate, consider
the rule “cando(filel, s, +write) < in(s, Employees, ASH)”. This rule serves as
shorthand that specifies a cando fact for each member of the group. Consider
instead the rule “cando(filel, Employees, +write) <.”. This rule specifies that
the group Employees is authorized to write filel. Note that this rule makes
a general statement about the group as a whole, but not about specific mem-
bers of the group. Whether this authorization propagates to the members will
depend on the specific policy to be applied as well as on the other authorizations
specified. Section 4.5 describes how propagation policies are implemented.

Example 4.2. Consider the following rules:
cando(filel, s, +read) < in(s, Employees, ASH) &
—in(s, Soft-Developers, ASH).
cando(file2, s, +read) <« in(s,Employees, ASH) &
in(s, Non-citizens, ASH).
The first rule states that all subjects belonging to Employees but not to

Soft-Developers are authorized to read filel. The second rule states that
all subjects belonging to both Employees and Non-citizens can read file?2.

ACM Transactions on Database Systems, Vol. 26, No. 2, June 2001.

234 . S. Jajodia et al.

4.5 Propagation Policies

Authorization views explicitly specify what subjects can and cannot do. How-
ever, as described above, when a human user requests permission to execute
an action, if no authorization is explicitly specified for the user with respect
to the attempted access, there must be some way to propagate authorizations
“downward.” Different paths in the AOH and ASH hierarchies may propagate
different authorizations to the user (and how these are resolved will be dis-
cussed in Section 4.6). For now, we specify how authorizations are propagated
down specific paths.

Before introducing the rule enforcing propagation, we introduce a rule that
will be useful in the definition of many propagation policies, as we will see
shortly.

Definition 4.5 (Overriding Rule). An overriding rule is a rule of one of the
following two forms:

overas(s, 0, s/, (sign)a) < L& ---& L,,.
overao(o, 0, s, (sign)a) < L1& ---& L,.

where o and o are elements of AO, s and s’ are elements of AS, ais an element
of A, (sign) is either + or —, and L, ..., L, are either cando, done, hie-, or rel-
literals.

Propagation policies can then be defined by the system security officer
through derivation rules, defined as follows.

Definition 4.6 (Derivation Rule). A derivation rule is a rule of the form:
dercando(o, s, (sign)a) < L& ---& L,.

where o, s and a are elements of AO, AS and A respectively, (sign) is either
+ or —, and Lq,..., L, are either cando, over, dercando, done, hie-, or rel-
literals. All dercando-literals appearing in the body of a derivation rule must
be positive.

Definition 4.7 (Derivation View). A derivation view is a finite set of deriva-
tion rules.

Derivation rules may be used to express a wide variety of propagation poli-
cies, several of which are shown in Figure 8. These rules encode the policies
described earlier in Section 4, thus showing that the language of derivation
rules is rich enough to allow many different policies to be easily represented.
Though Figure 8 shows how some well-known propagation policies may be ex-
pressed within the syntax of derivation rules, these are only a small fraction of
the policies that can be expressed using derivation views. Another example of
how derivation rules may be used to implement application-specific propagation
policies is shown below.

Example 4.3. Consider the following derivation rules:
dercando(filel, s, —write) < dercando(file2, s, read).

ACM Transactions on Database Systems, Vol. 26, No. 2, June 2001.

Flexible Support for Multiple Access Control Policies . 235

dercando(o, 3, +a) ¢« cando(o,s,+a).
dercando(o, 8, —a) + cando(o, 3, —a).
dercando(o, s, +a) + cando(o,s’,+a)& in(s,s’, ASH).
dercando(o, s,—a) + cando(o,s’,—a)& in(s,s’, ASH).
dercando(o, 8,+a) + cando(o,s', +a)&
—overas(s,o,s',+a)& in(s,s’, ASH).
dercando(o, s, —a) + cando(o,s’, —a)&
—overas(s,o,s’, —a)& in(s, s, ASH).
overas(s,0,s’,+a) « cando(o,s”,—a)& in(s,s"”,ASH)&
in(s",s',ASH)& s" # ¢'.
overas(s,0,s', —a) + cando(o,s”,+a)& in(s,s"”,ASH)&
in(s"”,s',ASH)& s" # s'.
dercando(o, 3, +a) + cando(o, s, +a).
dercando(o, 8, —a) ¢« cando(o, s, —a).
dercando(o, 3, +a) + dercando(o,s’,+a)&
—cando(o, 3, —a) & dirin(s,s’).
dercando(o, 8, —a) ¢ dercando(o,s’,—a)&
~cando(o, 8, +a)& dirin(s, s).

No propagation

No overriding

Most specific overrides

Path overrides

Fig. 8. Rules enforcing different propagation policies on ASH.

dercando(o, s, —grade) <« done(o, s, r,write, t) & in(o, Exams, AOH).
dercando(filel, s, —read) < dercando(file2, s, read) & in(s, g, ASH) &
in(s’, g, ASH).

The first rule derives a denial for a subject to write filel if there exists an
authorization (explicit or derived) for the subject to read file2. The second rule
derives a denial for a user to grade an object of type Exams if the user has written
that object. The third rule derives a negative authorization for a user/group
s to read filel if there exist a user/group s’ and a group g such that s and s’
both belong to g and s’ is authorized to read file2.

In general, using derivation views, a system security officer can express very
general policies for propagation of authorizations down a hierarchy. However,
it is entirely possible that propagation of authorizations along a hierarchy still
leads to conflicts. For instance, given a derivation view, it is entirely possible
that the materialization of the view includes atoms of the form

dercando(o,s,+a), dercando(o,s,—a).

Intuitively, this situation reflects a conflict in the authorizations associated
with user s’s attempt to execute action a on object 0. Conflict resolution policies,
which will be studied next, are used to handle such conflicts.

4.6 Conflict Resolution and Decision Policies

As we have observed earlier, the fact that the system security officer has spec-
ified a history table (implicitly by logging transactions), an authorization view,
and a propagation view, still leaves open the possibility that a given attempted
access leads to contradictory authorizations derived from different paths in the
hierarchies being considered. The concept of a decision view below allows the
system security officer to specify how conflicts are to be resolved.

ACM Transactions on Database Systems, Vol. 26, No. 2, June 2001.

236 . S. Jajodia et al.

Definition 4.8 (Positive Decision Rule). A positive decision rule is a rule of
the form

do(o,s,+a) <~ L1& --- &L,

where o, s and a are elements of AO, AS, and A, respectively, and L, ..., L, are
cando, dercando, done, hie- or rel- literals and every variable that appears in
any of the L;’s also appears in the head of this rule.

It is important to note that positive decision rules allow negated literals to
appear in the body of the rule — however, since recursion is not allowed, negated
atoms of the form —do(- - -) cannot occur in rule bodies. Also, no negated action
of the form —a is allowed to appear in the head of a positive decision rule. A
decision view, defined below, allows this to happen in a very restricted fashion.

Definition 4.9 (Decision Views). A decision view is a finite set of positive
decision rules, together with the one additional rule:

do(0,s,—a) <« —do(o,s,+a).

Intuitively, the set of atoms of the form do(o, s, +a) obtained by materializing
a decision view specifies the set of all authorized accesses. The system secu-
rity officer can specify any set of positive decision rules that he wishes—the
system will not stop him (unless he violates a syntactic condition). However,
once he finishes specifying his positive decision rules, the system will automat-
ically add the one negative rule shown above. This special rule says that the
only authorizations granted are those that are explicitly derived after conflict
resolution. The additional rule therefore guarantees completeness of the speci-
fications. Its form also guarantees no conflict. In other words, for every possible
request (o0,s,+a) either do(o,s,+a) or do(o,s,—a) will hold, and the request
will therefore be granted or denied accordingly.

The following example shows one decision view that a system security officer
might specify.

Example 4.4. Consider the following rules:

do(filel, s, +a) <« dercando(filel, s, +a).
do(file2, s, +a) <« —dercando(file2, s, —a).
do(o, s, +read) < —dercando(o, s, +read) & —dercando(o, s, —read) &
in(o, Pblc-docs, AOH).

The first rule states that a subject (user or role) can exercise an access on object
filelifhe has a positive authorization for it (i.e., the closed policy is enforced on
filel). The second rule states that a subject can exercise an access on file2 if
he does not have a negative authorization for it (i.e., the open policy is enforced
on file2). The last rule states that if no authorization has been derived for a
subject on an object of type Pblc-docs, the subject can read the object.

The difference between decision rules, and cando and dercando rules is that
these latter rules specify authorizations (either explicitly or derived) provided

ACM Transactions on Database Systems, Vol. 26, No. 2, June 2001.

Flexible Support for Multiple Access Control Policies . 237

CONFLICT DECISION RULES

No conflict open error + dercando(o,s,+a)& dercando(o,s,—a).
do(0,8,+a) + -dercando(o,s,—a).

No conflict closed error + dercando(o,s,+a)& dercando(o,s,—a).
do(o,s,+a) ¢ dercando(o,s,+a)& —dercando(o, s, —a).

Denials take p. open do(o,8,+a) «+ -dercando(o,s,—a).

Denials take p. closed do(o0,s,+a) « dercando(o,s,+a)& —dercando(o, s, —a).

Permissions take p. open do(0,8,+a) « dercando(o,s,+a).
do(0,s,+a) ¢ =dercando(o,s,—a).

Permissions take p. closed do(o,s,+a) ¢ dercando(o,s,+a).

Nothing takes p. open do(0,s,+a) « -—dercando(o,s,—a).

Nothing takes p. closed do(0,s,+a) ¢+ dercando(o,s,+a)& —dercando(o,s, —a).

Additional closure rule do(0,8,—a) + =do(o,s,+a).

Fig. 9. Possible rules enforcing different conflict resolution and decision policies.

by the system security officer. In contrast, decision (do) rules specify how unre-
solved conflicts are to be resolved, and what the system must do in response to
a specific request. Figure 9 provides a list of policies for conflict resolution and
decision that can easily be expressed through the mechanism of decision rules.

4.7 Integrity Rules

Authorization, derivation, and decision rules defined in the preceding subsec-
tions are all we need to specify authorizations and access control decisions.
However, there is great potential for errors to arise in authorization specifica-
tions — such errors could be in hierarchies (e.g., John may be erroneously listed
as belonging to both group Citizens and group Non-citizens) or in the spec-
ification of cando (e.g., we may have a statement of the form cando(o,s,+a)
and cando(o,s,-a)). Even in their current form, authorization specifications
guarantee that such errors will not cause both do(o, s, +a) and do(o, s, —a) to
be derivable. However, to identify and eliminate such errors, we may extend
authorization specifications through an additional type of rule, called the in-
tegrity rule, by which the SSO can define constraints that must hold on the
authorization specifications or on the actual access execution. Integrity rules
are formally defined as follows:

Definition 4.10 (Integrity Rule). An integrity rule is a rule of the form
error < L& ... & L,.
where L1, ..., L, are cando,dercando,done,do,hie- or rel- literals.

An integrity rule derives an error every time the conditions in the right hand
side of the rule are satisfied. Integrity rules provide a powerful way to specify
restrictions on authorizations specification and derivation, on access control de-
cision, as well as on the actual execution of actions by subjects. Restrictions may
be general or specific to an application. General rules control inconsistencies
such as “not both a positive and a negative authorization should be specified or
derived for the same access” (in the case where the no conflict policy is enforced).
Application dependent rules control inconsistencies specified by an application,
such as “a subject cannot be authorized to read both fileA and fileB.” The fol-
lowing example illustrates some restrictions that can be easily captured via
error rules.

ACM Transactions on Database Systems, Vol. 26, No. 2, June 2001.

238 . S. Jajodia et al.

Example 4.5. Consider the following integrity rules:

error < in(s,Citizens, ASH) & in(s, Non-citizens, ASH).

error cando(o,s,+a) & cando(o, s, —a).

&
error < do(o, s, +write) & do(o, s, +evaluate) & in(o, Tech-reports, AOH).
<—

error done(o, u,r, submit, t) & done(o, u,r’, approve, t') &

done(o, u,r”, pay,t”) & in(o, Order, AOH).
error < done(o,u,r,read,t) & done(o,u,r’, read, t’) &

in(o, Budget-A, AOH) & in(0’, Budget-B, AOH).

The first rule states that a user/group cannot belong to both groups Citizens
and Non-Citizens. The rule avoids clearly inconsistent membership specifica-
tions. The second rule states that the SSO cannot specify both a positive and
a negative authorization for a given access (0, s, a). The third rule returns an
error if a subject is authorized (notice by the decision policy!) to both write and
evaluate an object of type Tech-reports (e.g., the author of a paper should not
referee that paper). The fourth rule states that a user cannot execute all three
operations, submit, approve, and pay on an object of type Order. Finally, the
last rule states that a user cannot read both an object of type Budget-A and an
object of type Budget-B.

The example shows how error rules can conveniently express many restric-
tions that may need to be enforced. The first rule is an example of a restriction
that can be specified on the hierarchy topology and, in particular, on the group
configuration. The second and third rules are examples of restrictions on the
authorization specification, and in particular on the authorizations explicitly
granted (second rule) and on those actually holding (third rule). Similar rules
can be specified on derived authorizations. Note that the third rule is an exam-
ple of the application of the static separation of duty principle, which supports
the need to restrict the privileges for which a given subject can hold autho-
rization. The latter two rules specify constraints on the actual execution of a
sequence of actions by the same user, regardless of whether the user can be
authorized for the action either personally, or as a member of a group, or be-
cause of the role he is playing. These rules are examples of dynamic separation
of duty, restricting the accesses that subjects can actually execute, rather than
those for which they can hold authorizations. Note the difference between static
separation of duties and dynamic separation of duties. When considering sep-
aration of duties, if, for instance, the same user cannot be authorized for two
accesses, the SSO may use his/her discretion to statically authorize one of the
two accesses. On the other hand, with the dynamic separation of duty approach,
the SSO can say that the system can authorize the user to make one access,
but not both: When the user exercises one of the accesses, the error rule will
automatically rule out the possibility for the user to exercise the other. For in-
stance, the dynamic separation of duty constraint expressed in the fourth rule
can be applied when several users (with interchanging tasks) can execute the
mentioned operations but at least two users must participate in the completion
of the ordering process. Notice also that the last rule enforces a particular type

ACM Transactions on Database Systems, Vol. 26, No. 2, June 2001.

Flexible Support for Multiple Access Control Policies . 239

of dynamic separation of duty, called the Chinese Wall Policy [Brewer and Nash
1989].

These are only some examples of rules that can be enforced; a variety
of others can be imagined. For instance, all rules given above constrain the
authorizations (or the accesses) of a user. Rules can also be specified to restrict
authorizations (or accesses) for different users, objects, and so on. For instance,
the third rule in the example could be modified to refer to two different subjects
(s and s’) in the same group (in(s, G, ASH) and in(s’, G, ASH)), thus forbidding
users to evaluate papers of authors that belong to the same group.

Integrity rules constrain the content of the tables used by the authorization
framework. Each operation on the system (including access requests) causes
changes in some table. Every time a table is updated, integrity rules are eval-
uated and, if the change implies an error, the corresponding operation should
be denied. With respect to access requests and the architecture in Figure 7, in-
tegrity rules are evaluated after the access decision is taken. They can block the
execution of the access even if the access is allowed by the specifications. This
treatment of error rules allows us to easily support possible dynamic constraints
on accesses without unnecessarily complicating the authorization derivation
and decision policies.

4.8 Authorization Specifications

An authorization specification AS consists of the following five components:

—A history table;

—An authorization view/table;

—hie-, rel-, and overriding predicates;
—A derivation view;

—A decision view;

—A set of integrity rules.

In our architecture, the system security security officer must create an au-
thorization specification AS. The following results tell us that the syntax of
authorization specifications is rich enough to satisfy a variety of important ex-
pressiveness criteria, yet it is sufficiently restricted to be polynomial time com-
putable. The reader is cautioned that proofs of the theorems presented below
assume a knowledge of standard results and terminology in logic programming.

THEOREM 1. Every authorization specification AS is a locally stratified (not
stratified) logic program. As a consequence:

(1) (The logic program version of) AS has a unique stable model;

(2) The stable model and well founded model semantics of (the logic program
version of) AS coincide;

(3) The unique stable model can be computed in quadratic time data complexity.

Proor. To see that AS is a locally stratified (not stratified) logic program,
we start by recapitulating the syntax of the components of AS (Table I).

ACM Transactions on Database Systems, Vol. 26, No. 2, June 2001.

240 . S. Jajodia et al.

Table I. Syntax of the components of AS

Predicate Rules defining predicate

hie-predicates | base relations.

rel-predicates | base relations.

done base relation.

cando body may contain done, hie- and rel-literals.

over body may contain cando, done, hie- and rel-literals.

dercando body may contain cando, over, dercando, done, hie-, and
rel- literals. Occurrences of dercando literals must be
positive.

do in the case when head is of the form do(_, _, +a) body
may contain cando, dercando, done, hie- and rel- literals.

do in the case when head is of the form do(o, s, —a)
body contains just one literal —do(o, s, +a).

error body may contain do, dercando, cando, done, hie-
and rel-literals.

It is easy to see that in general, authorization specifications are not strat-
ified [Apt et al. 1988], but are always locally stratified. A local stratifica-
tion may be obtained through the following level mapping [Apt et al. 1988;
Przymusinski 1988] ¢ that assigns: level 0 to all atoms involving hie-predicates,
rel-predicates, and done; level 1 to all atoms of the form cando(_, _,)); level
2 to all atoms of the form over(,, _, _, _); level 3 to all atoms of the form
dercando(_, _, _); level 4 to all atoms of the form do(_, _, +a); level 5 to all atoms
of the form do(_, _, —a); and level 6 to the atom error. £ is a witness to the lo-
cal stratifiability of AS. We have thus shown at this stage that AS is a locally
stratified logic program. Now,

(1) follows immediately from a result of Gelfond and Lifschitz [1988] showing
that all locally stratified logic programs have a unique stable model.

(2) follows immediately from a result of Baral and Subrahmanian [1992] show-
ing that for locally stratified logic programs, well-founded semantics coin-
cides with the unique stable model of the program.

(3) follows immediately from the result of Van Gelder et al. [1989] show-
ing that well-founded semantics can be computed in quadratic time (data
complexity). O

The following result tells us that authorization specifications are both de-
cisive (i.e. given any triple (o0, s, a), either do(o,s,+a) or do(o,s,—a) is true in
the unique stable model of AS) and conflict-free (i.e., there is no triple (o, s, a)
such that both do(0, s, +a) and do(0, s, —a) are true in the unique stable model
of AS).

THEOREM 2. Suppose AS is an authorization specification, and a user s at-
tempts to execute action a on an object o. Then: exactly one of the two atoms
do(o,s,+a), do(o,s,—a) is true in the unique stable model of AS.

Proor [Consistency]. Suppose the unique stable model M of AS contains
both do(o,s,—a) and do(o,s,+a) for some triple (0,s,a). As all stable models
of AS are supported models [Marek and Subrahmanian 1992], it follows from

ACM Transactions on Database Systems, Vol. 26, No. 2, June 2001.

Flexible Support for Multiple Access Control Policies . 241

the structure of AS that there exists a ground instance of a rule in AS having
the form

do(0,s,—a) « —do(o,s,+a)

whose body is true in M. This is impossible as do(o,s, + a) € M by our as-
sumption that M contains both do(o,s, — a) and do(o, s, + a), thus leading to
a contradiction.

[Decisiveness] Suppose M does not contain the ground atom do(o,s, + a).
Then, the Gelfond—Lifschitz transform® of AS contains the ground rule

do(o,s,—a) <« .

As M is stable, we know that M = Tgras.m) 1 w, where GL(AS, M) denotes
the Gelfond Lifschitz transform of AS with respect to M and T denotes the
standard immediate consequence operator [Lloyd 1987]. It is immediate that
do(o,s,—a) € Tgras,m) 1 w = M, showing that when M does not contain the
ground atom do(o,s,+a), it must contain do(0,s,—a). O

Before concluding this section, we provide a brief comparison with the work
of Woo and Lam [1993] who propose the use of default logic [Reiter 1980] to ex-
press authorization and control rules. Recall that in our case, an authorization
specification is a syntactically restricted logic program. Consider the follow-
ing translation 7 that converts an authorization specification P into a default
theory® 7(P) = (9, D) as follows, where:

D = bl,...,bn:—'cl,....,—-cm
a

a<bi& &b, &—c1& - -&—c,,

is a ground instance of a rule/fact in P }

The following result establishes the fact that all authorization specifications
may be equivalently expressed in default logic.

THEOREM 3. Suppose P is an authorization specification. Then:

(1) 7(P) has a unique extension, which we denote by Er(p).
(2) A ground atom A is true in the unique stable model of P iff A € Er(p).

5The Gelfond-Lifschitz transform of AS with respect to interpretation M, denoted as GL(AS, M),
is the set of rules obtained as follows: (1) Consider the ground version ASC of AS. (2) Remove
from ASY all the rules whose body contains a negative literal =L such that L € M. (3) Remove
from all the remaining rules all the negative literals. Given a ground program P, the standard
immediate consequence operator is a mapping from interpretations to interpretations defined as
Tpr(I)={A|(A«~ L& ... & Lp)e P,and I =L;,i=1,...,k}.

A default theory is a pair (D, W), where W is a set of first order formulas and D is a set of defaults
of the form A:Bl’c;"’B”, where A, B;, C are classical formulas, i = 1,...,n. A set of formulae E is
an extension of (D, W) iff E is a fixed point of the operator I', defined as follows: given a set S of
formulas, I'(S) is the smallest set such that i) W C I'(S), (ii) TA(I'(S)) = S (i.e., S is deductively
closed), and (iii) if 281252 pelongs to D, A € T(S), =B; ¢ S i = 1,...,n), then C € I'(S).

ACM Transactions on Database Systems, Vol. 26, No. 2, June 2001.

242 . S. Jajodia et al.

Proor. Marek and Subrahmanian [1992] show that M is a stable model of
P iff 7(P) has all consequence, Cn(M), as an extension. As P has only one
stable model, M, Cn(M) is an extension of 7(P) which satisfies condition (1).
Condition (2) follows immediately because the only ground atoms true in Cn(M)
are thosein M. O

The above theorem has the following impact. It shows that all authorization
specifications may be expressed as default logic theories. In contrast, all default
logic theories cannot be expressed as authorization specifications. To see why,
take the default logic theory A = (9, {bci}). It is easy to see that there is no logic
program P such that 7(P) = A. This is beneficial to us, because evaluating
authorization requests against an authorization problem will be shown to be
polynomial. In contrast, if one uses a general default logic solver, it will be
intractable at best, and in some cases, even undecidable [Gottlob 1992].

5. MATERIALIZING AND MAINTAINING DERIVATION AND DECISION VIEWS

The results of the preceding section guarantee that given any authorization
specification AS, we assess a request to execute a particular privilege on a data
object by checking if it is true in the unique stable model of AS. If so, the request
is authorized, otherwise, it is denied.

However, when implementing an algorithm to support this kind of evalua-
tion, we need to consider the following facts:

—The request should be either authorized or denied very fast.

—Changes to the specifications are far less frequent than access requests.”

Since access requests happen all the time, we would like a security architec-
ture to optimize processing of these requests. For this purpose, we propose a
materialized view architecture. At any given point ¢ in time, we materialize the
decision and derivation views. When a subject asks to execute an operation, we
merely check the decision view to see if he is authorized to do so. This test is very
simple indeed. If the request is authorized and the recording of the access in the
history table would not cause any error to be derived, the access is granted (it is
denied, leaving the history table invaried otherwise). Consequently the history
table is modified and the update propagated to the materialized decision view
and derivation view.

In this section, we first specify how to materialize the decision/derivation
views of AS, and then show how to propagate updates to the history table.

7One may object here that although this is true in general (where administrative operations are
inserting new rules or facts), it does not hold in our framework. The reason for this is that since
our AS keeps a history of the accesses and rules can put conditions on such a history, every access
resulting in the insertion of a new done predicate in AS results in fact in a change to the specification.
As per the discussion forthcoming in Section 5.1, most such changes will be ineffective: very few
rules will use done predicates (only those enforcing history-based controls); and after a done fact §
has been registered, insertion of subsequent done facts differing from § only for the time component
affects only those (history-based) rules with mathematical conditions on the time component.

ACM Transactions on Database Systems, Vol. 26, No. 2, June 2001.

Flexible Support for Multiple Access Control Policies . 243

Level | Stratum | Predicate Rules defining predicate
0 ASo hie-predicates | base relations.
rel-predicates | base relations.
done base relation.
1 AS; cando body may contain done, hie-
and rel-literals.
2 AS, dercando body may contain cando,dercando, done,

hie-, and rel- literals. Occurrences of
dercando literals must be positive.

3 AS3 do in the case when head is of the form
do(-, -, +a) body may contain cando,
dercando, done, hie- and rel- literals.

4 ASy do in the case when head is of the form
do(o, s, —a) body contains just one literal
—do(o0, s, +a).

5 ASs error body may contain do, cando,dercando,done,

hie-, and rel- literals.

Fig. 10. Authorization specification strata.

5.1 Materialization Structure

Recall that an authorization specification AS is a locally stratified logic pro-
gram, whose strata are defined as shown in Figure 10.® Even more, the pro-
gram is “almost stratified”. The only reason for nonstratification is the nega-
tive dependency between different instances of predicate do in the additional
completeness rule “do(o,s, — a) < —do(0,s, + a)” automatically added by the
system to guarantee completeness of the specifications (see Section 4.6). How-
ever, there is no need to materialize negative do facts; the truth value of any fact
do(o, s, —a)is exactly the truth value of the negative literal —do(o, s, +a), evalu-
ated against the model of the lower stratum. Consequently, the materialization
process ignores completeness rules, and operates on a stratified program.

To be able to incrementally update the computed materialized model upon
changes to the specifications, instead of simply materializing the model of AS,
we maintain a materialization structure that associates with each fact of the
model the indexes of the rules that directly support its truth.

Definition 5.1 (Materialization Structure). The Materialization Structure
for an authorization specification AS is a set of pairs (A4, S), where A is a ground
atom in the authorization specification language and S is a set of (indices of)
rules whose head unifies with A.

Given a rule r, we use head (r) and body (r) to denote the head and body,
respectively, of rule r.

Definition 5.2 (Correctness of Materialization Structures). Let AS be an
authorization specification and let MS be a materialization structure. We say
that MS correctly models AS iff for any pair (A, S) € MS, the following condi-
tions hold:

8For the sake of simplicity, we ignore over predicates, which are specific to the path overriding
policy only, to focus the attention on the most important and general predicates of the language.
This is not a limitation, since over predicates do not introduce negative recursion in the program,
thus they cannot cause nonstratification.

ACM Transactions on Database Systems, Vol. 26, No. 2, June 2001.

244 . S. Jajodia et al.

(1) A € M(AS), that is, A belongs to the model of the authorization specifica-
tion;
(2) for each A € M(AS), there is at least one pair (A, S) € MS;

(8) for all rules r such that 6 is the most general unifier of head(r) and A,r € S
iff body(r)0’s existential closure is true in M(AS).

According to the definitions above, the materialization structure that cor-
rectly models an authorization specification AS contains a pair for each atom
A that is true in the (unique stable model) of AS, where element S in the pair
contains all and only the indices of the rules that directly support the truth of
A. As an example, the pair (do(mail, alice, +read),{r;,r2}) in MS states that
do(mail, alice, +read) holds in the model of AS, and that its truth follows from
the satisfaction of the existential closure of the body of r; as well as from the
satisfaction of the existential closure of the body of ro. The set S associated with
the atom plays a role in the insertion/deletion of the atom in/from the material-
ization. Intuitively, an atom will be deleted from the materialization only when
its support becomes empty.

Changes to the materialization structure are realized through operators @
and ©. Operator @ enforces addition of a pair (A, S) to a materialization struc-
ture. Operator © enforces deletion of a pair (A, S) from a materialization struc-
ture. They are defined as follows:

_ JMS(AS) U{(A, S)} if A(A, S") € MS(AS)
MS(A8) & (4, 5) = {MS(AS)\{(A, SHU{(A,S’US)} if3(A,S’) e MS(AS)
MS(AS) if A(A, S") e MS(AS)
such that SN S’ £ @
MS(AS)\{(4, 8"} if 3(A, S") € MS(AS)
MSAS)B (A, S) = such that S’ € S

MS(AS)\{(A, SN} U{(A, S'\S)} if3(A,S) € MS(AS)
such that SN S’ #£4,
S ¢S

Given a materialization structure MS of an authorization specification AS,
the model M of AS is then the projection over the first element of the pairs,
written M = T1;(MS). In the following, we often refer to a materialization
structure simply as materialization. Also, we denote with MS; and M; the
materialization structure and the model, respectively, at stratum AS;.

5.2 Materialized Views

The computation of the unique stable model of an authorization specifi-
cation AS is an iterative process that at each step i computes the least
model of AS; U M(AS;_1), where M(AS;_1) is the least model of stratum

ACM Transactions on Database Systems, Vol. 26, No. 2, June 2001.

Flexible Support for Multiple Access Control Policies . 245

AS;_1. We now describe the different steps of this materialization computation
process.

Step (0): My, that is, the model of the lowest stratum, containing only
positive facts that are either hie- or rel- or done predicates is given by the
union of the extensions of these base relations. These facts are stored in the
materialization structure MSo = {(A,)} | Ais a hie- or a rel- or a done fact},
where the underscore in place of the supporting set indicates that A is a fact in
the program.

Step (1): The authorization view (cando rules) is only defined in terms of
level-0 predicates, there is no recursion in its definition. Hence, its materializa-
tion can be logically defined as follows:

MS1 = {as1} @ - & {asn},

where {asi, ..., as,} = {(cando(o, s, (sign)a), {r}) | there exist a rule r in AS and
a grounding substitution 6 such that head(r)0 = cando(o, s, (sign)a) and the
join of all relations in body(r)6 is not empty}.

Set {asi,...,as,} can be directly computed using the relational algebra, as
follows: Suppose body(r) = p1[xX1, y11& - - - & pm[Xm, Y] & =pmi1Xmi1, Ymi11&

- & Pk Zmiks Ymsr] where p;[%;, y;] represents an atom of the form p;(%)
where the components of #; are terms containing variables %; that are ground
instantiated by 6 and other variables, y; that are not. Then the conjunctive
query represented by body(r)d in the evaluation of MS; can be expressed as
the SQL query:

SELECT 7y1,..., Ymik
FROM P1,..-, Pm+
WHERE X; = 6(%1) AND --- AND %,z = 0(X,,,) AND
(join conditions defined by variables shared by atoms)

Step (2): Unlike the previous step, stratum ASs (i.e., the derivation view)
cannot be materialized by a simple relational algebra expression. The reason
for this is the possibility of (positive) recursion in the rules. We materialize ASq
using a differential fixpoint evaluation procedure defined as follows:

(a) Foreachruler in ASs, split the body of r into two sets. The first set, denoted
D,, contains all dercando literals. The second set, denoted N, contains all
the non-dercando literals. Evaluate the conjunctive query associated with
the non-dercando literals against I1;(MSy U MS1), the materialized model
of the first two strata. Store the result as a materialized view V,. Rewrite
r as the rule r,.,:

head(r) <« V,. & /\ A.
AeD,

(b) Let tr(ASs) be the set of all rules {ry, | r € ASs}. tr(ASs) and AS, are
logically equivalent (see Lemma 5.1). We then compute the materialization
with reference to tr(ASg) instead of AS,. This has the advantage that even
if recursive rules fire several times on different instances of the recursive
predicates, we do not need to reevaluate the nonrecursive part of the bodies.

ACM Transactions on Database Systems, Vol. 26, No. 2, June 2001.

246 . S. Jajodia et al.

(c) Let MS be any materialization structure. Define the program transforma-
tion g, as follows:

Pas,(MS) = {(dercando(o, s, (sign)a), {r}) | there exist a rule ry,

in tr(ASg)and a grounding substitution 6

such that head(r,.,)0 = dercando(o, s, {sign)a)

and V, U I11(MS) satisfies the existential closure of

body (e)0}
Notice that, in the program transformation (and hence in the material-
ization structure), we keep track of the rules in the original authorization
specification (), instead of their rewritten version (r,,). The reason for
this is that the equivalence between a rule and its rewritten version is not
guaranteed to hold in the presence of updates to lower strata. Thus, in prin-
ciple, we could have many rewritten versions of each given rule, one version
for each materialization of the conjunction of nonrecursive literals in the
body. Our materialization structure is intended to associate each derived
fact with the rules that support its truth, without discriminating between
possible different instantiations, due to different rewritings, of the rules.

The language is finite, the set of all materialization structures is a com-
plete lattice with respect to subset inclusion, and the operator ®4g, is mono-
tonic and continuous. Every monotonic operator has a least fixpoint, which
is also its least prefixpoint [Tarski 1955]. Thus, ®ag, has a least fixpoint
denoted Ifp(Pag, (MS)).
(d) Set MSy = @lfp(Pas, (D).

Notice that although MS, and MS; do not appear in the formula, they
do play a role in the materialization of ASy; they have been taken into
consideration during the materialization of the nonrecursive views V.

Step (3): The materialization process for stratum ASj (i.e., the decision
view) is analogous to the materialization process for AS; (step (1), above). The
only difference is that the evaluation of do-predicates performs the algebra
query on I[T;(MSg U MS1 U MSs).

Step (4): As already discussed, we ignore stratum AS, in the material-
ization. There is no need to materialize AS, since the truth value of any fact
do(o,s,—a) is exactly the truth value of the negative literal —do(o, s, +a) eval-
uated against the model M3.

Step (5): Integrity rules are completely defined in terms of literals of the
above strata. Actually, as we have already discussed, any literal do(o,s,—a) is
equivalent to the negative literal —do(o, s, +a), that can be evaluated against
the model M3. The materialization of stratum AS; is thus analogous to the
materialization process for AS;. Specifically, the materialization process first
rewrites the integrity rules, replacing any occurrence of do(o,s,—a) with the
negation of do(o,s,+a), and then performs the algebra query on I1;(MSy U
MSE1UMS9 U MS3).

Notice that the cardinality of MSj5 is at most one, since error is the unique
predicate symbol defined in this stratum, with 0-arity. The reason why we

ACM Transactions on Database Systems, Vol. 26, No. 2, June 2001.

Flexible Support for Multiple Access Control Policies . 247

choose to have it materialized is to have the list of integrity rules supporting
it, whenever error belongs to the model. This list identifies the set of integrity
rules that are violated by the current authorization specification.

LemMA 5.1. Let r be any rule in ASq and let rye,, be its rewritten version

head(r) < V, & [\ A,
AeD,

where V. is the materialized view that stores the result of the conjunctive query
associated with the non-dercando literals in the body of r, evaluated against the
materialization of the first two strata, and D, is the set of dercando literals in
the body of r. Then, rules r and ry¢, are logically equivalent.

Proor. Letr be a dercando rule in ASy. Let D, = dercando;(tuple;) & --- &
dercandoy(tuple;,) be the conjunction of the dercando literals in body(r), and
N, = L& --- & L, be the conjunction of non-dercando literals in body(r). For
any substitution 6, body(r)d is true in Ms iff N6 & D,0 is true in My. The
truth of N,0 in M, is exactly its truth in M, since the program is stratified,
and Ly, ..., L, are all defined in the lower strata AS; and AS;. We can thus
replace N,.0 with its materialization V,. calculated against model M;. Then, the
truth of the body of the original rule holds iff V. & D,0 is true in My, which
proves the equivalence. O

The following theorem states that the above procedure is sound and complete.

THEOREM 4. Let AS = U, . 4AS; be an authorization specification, and let
MS; be the materialization structure for stratum AS;. Then,

U MS; correctly models U AS;.

i=0,...,3 i=0,...,3

Proor. We prove that, U;—o __ ;(MS;) correctly models U;—o,_; (AS;), for any
j=0,...,3.

j=0) Trivial.
j=1) By construction, a pair (cando(tuple), {...,r,...}) belongs to MS; iff
(a) the rule r belongs to AS;,

(b) cando(tuple) = head(r)f, for some grounding substitution 6, and
(c) The join of all the relations in body(r)0, computed against My, is not empty.

These three conditions hold iff cando(tuple) belongs to M; and its truth is
supported by rule r. Hence, MS; correctly models AS;.

j=2) From Lemma 5.1, for every rule r and grounding substitution 0, r supports
the truth of head(r)6 in M, iffr,,, does. Thus, we can equivalently consider AS,,
or AS5™ = {rrew | 7 € ASg}.

We prove that a pair (dercando(tuple),{...,r,...}) belongs to MSy iff
dercando(tuple) belongs to Mg, and its truth is supported by rule r, that is,

ACM Transactions on Database Systems, Vol. 26, No. 2, June 2001.

248 . S. Jajodia et al.

dercando(tuple) = head(r)f, for some grounding substitution 6, and the exis-
tential closure of body(r)0 is satisfied in Ms. To do so, we show a correspondence
between the program transform Tsg,, whose least fixed point is the model Mo,
and the program transformation ®as,, whose least fixed point is the material-
ization structure MS,.

By construction, (dercando(tuple), {...,r,...}) belongs to MS, iff there ex-
ists an n such that (dercando(tuple),{...,r,...}) € CDZSZ\CDX;. Intuitively, n
is the step, in the computation of the materialization structure, that adds
(dercando(tuple), {r}) to the current partial materialization @Zg;.

We prove correctness by induction on .

Let MS; and ML2 be the partial materialization structure and the partial
model respectively, computed in steps 0- - -i.

—MSg = ¢, and /\/lg = M7, by definition. Thus, no dercando literals belong to
either of them, and the property holds trivially.

—Inductive hypothesis: (dercando(tuple), {...,r,...}) € ®yg iff
dercando({uple) € T{g and r supports the truth of dercando(fuple) in Tyg, .

Thesis: (dercando(tuple’), {...,r',...}) € <1>Z§; iff dercando(tuple’) e TK;;, and
r’ supports the truth of dercando(tuple’) in TXQ’;.

Let (dercando(tuple’), {...,r’,...}) € @Zgb@gsz.

By construction, it must be dercando(tuple’) = head (r')8, for some ground-

ing substitution 6 such that the existential closure of body(r’)0 is satisfied in

Vo U IT1(MS3). This holds iff the same existential closure is satisfied in M}

(inductive hypothesis), iff dercando(tuple’) € Tyg ! by definition of Tas,. Thus,

r’ supports the truth of dercando(tuple’) in Tﬁgzl.
Jj=3) The proof is similar to the case j=1. O

From Theorem 4 and Definition 5.2, we can derive the following corollaries.

CoroLLARY 5.1. Let AS be an authorization specification and let MS; be the
materialization structure for its ith stratum, AS;. Then,

U 1, (MS;)

is the unique stable model of ASy U AS; U ASy U AS;3.

CoROLLARY 5.2. Let AS be an authorization specification and let MS; be the
materialization structure for its ith stratum, AS;. Then,

(Uizo,..,3T11(MS;)) U {do(o,s,—a) | do(o,s,+a) ¢ [11(MS3)} U I11(MS5)

is the unique stable model of AS.
Proor. For the first four strata, the result is given by the above corollary. For
stratum AS,, the result comes immediately from the equivalence of do(o, s, —a)

and —do(o, s, +a). The proof for stratum AS; is similar to the case 1 of the proof
of the above Theorem 4. O

ACM Transactions on Database Systems, Vol. 26, No. 2, June 2001.

Flexible Support for Multiple Access Control Policies . 249

Before we conclude this section, let us briefly remark on the complexity of
steps (1)—(4) for materializing authorization specifications.

ProposiTiON 5.1 (COMPLEXITY OF MATERIALIZATION). Suppose AS is an autho-
rization specification whose base relations predicates (hie,rel,done) are all part
of the input. Our materialization procedure has polynomial data complexity.

Proor. Steps (0)—(3), and step (5), after the rewriting of integrity rules, ma-
terialize a stratified logic program [Apt et al. 1988] whose unique stable model
computation is well-known to have polynomial time data-complexity [Berman
et al. 1995]. The rewriting of the rules, in turn, is computed in polynomial time.
No operation is performed on AS4, thus step (4) does not have any impact on
the complexity of the process, and hence the result follows. O

ProposiTiON 5.2 (COMPLEXITY OF COMPUTING THE MODEL). Suppose AS is an
authorization specification whose base relations predicates (hie,rel,done) are
all part of the input. The computation of the stable model of AS has polynomial
data complexity.

Proor. The model of strata (0)—(3), and of stratum (5) is computed in polyno-
mial time, as stated by the above property. So we merely need to show that the
model of AS, can be computed in polynomial time. This is immediate because
for each atom do(o,s,—a), we evaluate do(o,s,+a) against those generated in
steps (0)—(3) and reverse the truth value. There are polynomially many ground
atoms of the form do(o,s,—a), and evaluating each of the queries do(o,s,+a)
against the view computed in steps (0)—(3) has polynomial data complexity, and
hence the result follows. O

5.3 Maintaining Materialized Views with Updates
to the Authorization Specification

This section discusses the problem of maintaining the materialization of autho-
rization specification upon changes. Changes can be introduced at any of AS’s
strata and can be due to changes in data system hierarchies, relationships, or
history table (ASy), as well as due to modifications in the authorization (AS,),
derivation (ASs), and decision (AS;3) views. From the stratification of the pro-
gram, we are guaranteed that changes to a stratum AS; cannot affect strata
below it. The materialization update process exploits this property by incre-
mentally determining the possible changes to the materialization of AS; and,
iteratively, their effects on the materialization of stratum i + 1.

We distinguish the following types of updates to the authorization specifica-
tion:

—New facts or new rules are inserted into the authorization specification.
—Facts or rules are deleted from the authorization specification.

We do not consider updates that modify already existing facts and rules.
This is not a restriction, since such modifications can be realized in terms of
deletions and insertions.

ACM Transactions on Database Systems, Vol. 26, No. 2, June 2001.

250 . S. Jajodia et al.

5.3.1 Handling the insertion of facts. When a new fact is introduced in
the authorization specification (stratum ASy), the materialization structure of
every stratum might need to be modified. In principle, the entire authorization
specification might change; in practice, it is often the case that the new fact does
not have any impact on the extension of any derived predicate. This happens,
for example, when the inserted atom is a history fact whose presence does not
fire any derivation rule in addition to those that were already fired before the
insertion.

Let us consider the insertion of a base fact § in a hie-, rel-, or done-relation.
The process proceeds stratum by stratum, from 0 to 3, computing the required
changes. It stops at the first stratum for which no change is recorded (if the
model at stratum i is not affected neither will the models of strata above 7).

Since amongst the possible consequences of an update there might be an
integrity violation, an integrity check is always executed before committing the
update. This integrity check is performed by evaluating whether error belongs
to the authorization model after the insertion.

The insertion of a fact is dealt with as follows. Let AS® denote the autho-
rization specification before the insertion, and MS?? its materialization. The
new materialization MS™ is defined as follows:

Step (0): MSF* = MSgld @ {5, I} If MSE™ = MSgld, then terminate the
materialization process.

Step (1): Let CANDO™ be the set of authorization rules in AS; whose body
contains at least one literal (either positive or negative) that may be unified
with the inserted fact, that is, CANDO™" = {cando(tuple) < L1& --- & L, such
that for some i = 1,...,n, literal L; unifies with §}.

Intuitively, CANDO" is the subset of AS; whose extension is potentially af-
fected by the insertion. We then compute the materialization of these rules
against the old (MSY?) and the new (MSE®”) materializations of the lower
stratum and compare them. The materializations are computed as described in
step (1) of Section 5.2.

Let A5, be the materialization of CANDO™" evaluated against MSG™.

Let A% be the materialization of CANDO" evaluated against MS,

Compute Af s = A% © A% , the set of pairs to be added to MS;.

Compute Ay, = A% © A%, the set of pairs to be removed from MS;.

Set MS = MSY4 © Ay, @ Alys,-

Let M7 = [T (MSE™ U MS}), and let M? = T (MSF? U MST).

If M7e® = M99 terminate the materialization process.

Step (2): Let Ap, = (M3 \ M34) U (M3 \ M7e%) be the set of atoms in
M1 whose extension has been changed as a consequence of the update.

Compute DERCANDO* as the set of rules in ASs; whose firing is potentially
affected by the insertion.’

9Note that in the definition of DERCANDD* we must take into account the presence of recursion. In
addition to the rules whose body contains a literal defined in the lower strata and whose truth could
have changed in the corresponding models, we must also consider those rules that possibly depend

ACM Transactions on Database Systems, Vol. 26, No. 2, June 2001.

Flexible Support for Multiple Access Control Policies . 251

DERCANDO* = {dercando(tuple) < L& --- & L, such that for some i =
1,...,n, literal L; unifies with an atom in Ay, or with the head of a rule in
DERCANDO*, or dercando(tuple) unifies with the head of a rule in DERCANDO*}.

Let A7%% and A% be the materializations of DERCANDO* with respect to M7
and M‘{ld, respectively. These materializations can be computed as described
in step (3) of Section 5.2.

Compute A}s = A% © A | the set of new derivations made possible by
the insertion of 8.

. Compute Ay, = A% O | the set of derivations blocked by the insertion
of §.

Set MS5™ = MSY? © Ays, ® Alys,-

Let M2 = T1(MSECUMSIUUMSE), and let MY¢ = TT;(MSFIUMSIY
MSG9).

If M3 = /\/lgld terminate, the materialization process.

Step (3): Derived predicates defined in stratum AS3; are nonrecursive.
Thus, we can follow the same technique discussed in step (1), referring to the
facts in the already computed sets M3 and Mgld, to evaluate the derivation
increments and decrements.

Step (4) (Integrity check): Let A, = (M2 \ MZ4) U (MZe\ Maew),

Let ERROR* be the set of error rules whose body contains a literal which unifies
with some atom in A 4, or with some do(o,s, — a) atom, such that do(o,s, +a)
belongs to A p,.

Rewrite the rules in ERROR*, replacing any do(o,s, —a) atom with —do(o,s, +
@), and evaluate them against MZ5°.

Some comments on the effectiveness of the method discussed above are in
order. First, we comment on the frequency of the updates. While updates to hie
and rel predicates are not likely to be frequent, updates to done may be very
frequent (as a matter of fact the main reason for materializing the model of the
specification is that access requests are far more frequent than administrative
requests). One may assert that, given that the history is recorded using the done
predicate, any access to the system on which the authorization specification is
defined may result in an insertion of a new done fact, implying a change to the
specification and, as a consequence, changes to the specifications may be far
greater in number than access requests.

A careful examination shows that insertion of done facts is a particular
change to an authorization specification that has limited effect on its unique
stable model. We can take this into account and treat insertion of new done
predicates with an “ad hoc” strategy that addresses the following two aspects:

—How does the granularity of the time component in done predicates relate to
the time granularity of the system that records history facts? If a number of

on the update through recursion. To perform this dependency check, we refer to the original rules
in AS,. Every time AS, is materialized, a new rewritten version of the potentially affected rules
is constructed, since the materialization of the conjunction of nonrecursive literals might change
(see Section 5.2).

ACM Transactions on Database Systems, Vol. 26, No. 2, June 2001.

252 . S. Jajodia et al.

actions whose system times are necessarily distinct, collapse into the same
done fact, then it may very well be the case that the update process stops at
step 0, since an already existing fact is inserted. This can dramatically reduce
the complexity of the method due to the insertion of history facts.

—How relevant is the time component in history facts? The time component is
relevant for history facts only in those cases in which they can be unified with
some literal done(_, _, _, _, ¢) in a derived rule whose body also contains a test on
the time term ¢. Indeed, time is not present as an argument of the derived pred-
icates, thus the only role it can play is to allow/block the firing of some deriva-
tion rule through the comparison of different time instants in a given rule.

We can then exploit this characteristic as follows. When a history fact is
introduced, we first check whether the time term can be relevant to the firing
of any derivation rule. If the answer is yes, then the described method is
followed to propagate the update to the upper strata. If the answer is not,
the change does not affect the views at the upper strata and therefore no
further propagation action needs to be taken. Since we expect that only a
small subset of the history-based rules will contain comparison of time terms,
this approach “effectively reduces” the complexity of the process.

—Of course, the suggested strategies can be combined, if the granularity of the
history facts is different from the granularity of the system.

In the same vein, some optimizations can be incorporated into the integrity
check phase. Though we have described integrity checking as though it is a
single step enforced at the completion of the materialization process, its evalu-
ation could easily be executed incrementally, terminating the process at the first
strata which generates an error. Intuitively, we could imagine error rules par-
tioned so that an integrity rule is associated with the highest strata of literals
in its body. After a stratum of the authorization base has been re-materialized,
the integrity rules associated with that stratum can be evaluated. It is easy to
see that while the evaluation of the integrity rules so partitioned is equivalent
to that performed in a single final step; the incremental approach, by evaluating
integrity rules as soon as possible in the materialization process, avoids unnec-
essary computation. Notice that the incremental approach is convenient if the
SSO is interested in avoiding inconsistent updates, and stopping the update
process as soon as an inconsistency arises. If the SSO wants to proceed until
the end, to know, for example, what are all the consistency rules that would be
violated by a given update, the two approaches are equivalent.

THEOREM 4 (CORRECTNESS OF THE UPDATE PROCEDURE). Let AS be an autho-
rization specification, MS°? be the materialization structure that correctly mod-
els AS, and § be a base fact to be inserted. The update procedure transforms
M8 into MS™ such that MS™Y correctly models AS U {8).

Proor. We prove the correctness of each stratum (i.e., each step) of the
algorithm.

Step (0): Correctness of MSG® holds trivially.

ACM Transactions on Database Systems, Vol. 26, No. 2, June 2001.

Flexible Support for Multiple Access Control Policies . 253

Step (1): We have to show that for every ground fact cando(tuple), it

holds that cando(tuple) ¢ M(AS U {68}) iff, for every rule r in AS; such that
cando(tuple) = head(r)0 and body(r)d is true in M(AS U {§}) for some substitu-
tion 0, there is a pair (cando(tuple), {...,r,...}) in MS™.

From the stratification of the program, (cando(tuple),{...,r,...}) € MS™

iff (cando(tuple), {...,r,...}) € MST*”. Then, we only consider strata AS, and
AS;.

Let r be any rule in AS; such that cando(tuple) = head(r)d, for some variable

substitution 6. body(r)0 is true in M(AS U {4}) iff it is true in M(AS, U {5}). We
distinguish two cases:

(a)

(b)

No literal in body(r)0 unifies with §.

Then, body(r)d is true in M(AS, U {8}) iff it is true in M(ASy) iff
(cando(tuple),{...,r,...}) € MS‘{ld, where the last step comes from the
hypothesis that MS?? correctly models AS. By construction, r ¢ CANDO™¥,
thus neither A% nor A‘}\I/‘ljsl contains (cando(tuple), {...,r,...}). Hence, from
the definition of operators @& and ©, we have (cando(tuple),{...,r,...}) €
MST = MST 0 Ays, ® Ay,

Some literal in body(r)0 unifies with §.

Three cases are possible, depending on whether the literals that unify with
S are all positive, all negative, or some are positive and some negative.

Case (1): Only positive literals in body(r)6 unify with §.

Assume body(r)f is not true in AS, (otherwise, correctness holds trivially).
Since, by hypothesis, MS%? is correct, then (cando(tuple),{...,r,...}) ¢
MSY. If body(r)d is true in M(AS, U {§}), it must be (cando
(tuple), {...,r,...}) € A% . By construction and by definition of & and
O, (cando(tuple), {...,r,...}) € Ajs and (cando(tuple),{...,r,...}) & Ajys,,
thus (cando(tuple), {...,r,...}) € MST™ = MST*O A} 5, ® A5, Ifbody(r)o
is not true in M(ASy U {§}), it was not true in M(ASy). From the cor-
rectness of MSy, (cando(tuple),{...,r,...}) & MS‘{ld. Moreover, it is not
added to the materialization structure by the update procedure. Thus,
(cando(tuple), {...,r,...}) ¢ MST®, which proves the correctness of the
procedure.

Case (2): Only negative literals in body(r)0 unify with 3.

The existential closure of body(r)d is not satisfied in M(ASy U {§}), thus
(cando(tuple), {...,r,...}) &€ MST®”. It can be the case, however, that there
exists (cando(tuple), S) € MST*, with r ¢ S. Hence, if the existential clo-
sure of body(r)0 was not satisfied in M(ASy), correctness holds trivially:
r does not appear in any set supporting (cando(tuple) in MS‘{ld, and it is
not introduced in MST®, since by construction (cando(tuple), {...,r,...}) &
Alys,- If the existential closure of body(r)6 was satisfied in M(ASy),
(cando(tuple),{...,r,...}) € Ay, and (cando(tuple),{...,r,...}) & Alys,.
Thus, from the definition of @ and &, (cando(tuple), {...,r,...}) & MST*;
which proves the correctness of the procedure.

ACM Transactions on Database Systems, Vol. 26, No. 2, June 2001.

254 . S. Jajodia et al.

Case (3): Both positive and negative literals in body(r)0 unify with §.
The existential closure of body(r)0 cannot be satisfied, thus the procedure
is trivially correct.

Step (2): The proof of correctness of step (2) is slightly different from that
of step (1), because of the possible positive recursion of dercando-rules.

The algorithm partitions ASy in two subsets of rules, DERCANDO* and (AS;\
DERCANDO*) such that M(AS,) = M(DERCANDO*) U M(AS,\ DERCANDO*).

This equality comes from the fact that, by definition of DERCANDO*, literals
defined in AS,\DERCANDO* do not unify with literals appearing in either the
head or the body of the rules in DERCANDO*. Thus, the two subsets are clearly
independent of each other.

By construction, rules in (AS9\DERCANDO*) do not depend, either directly
or indirectly, on §. Thus, from the correctness of MS°?, for any such rules
r and any ground instance dercando(tuple) of head(r) (via mgu 6), we have
(dercando(tuple), {...,r, ...}) € MS iff body(r)0 is true in MSYY, iff body(r)d
is true in MS5%. Thus, for these rules the algorithm is correct.

Now, consider any rule r in DERCANDO* and any ground fact dercando(tuple) =
head(r)6. By construction and from the definition of @ and ©, (dercando(tuple),
{...,r,...)) € MSH iff either (dercando(tuple),{...,r,...})) € MSY¢ and
(dercando(tuple), {...,r,...}) € Ayg,, or (dercando(tuple),{...,r,...}) ¢ MSgld
and (dercando(tuple),{...,r,...}) € Ajg,. In both cases, from Theorem 4,
(dercando(tuple), {...,r,...}) € MS3*™ iff body(r)d is true in M(ASz), which
proves the correctness of the procedure.

Step (3): Correctness of the third step can be shown using arguments sim-
ilar to those used to prove the correctness of step (1), by considering AS3 as
partitioned in two subsets, one containing the rules that possibly depend on
the update and the other containing the rules that do not.

Step (4) (Integrity Check): Correctness of the integrity check phase can
be shown using arguments similar to those used to prove the correctness of
step (1), by considering AS5 as partitioned in two subsets, one containing the
rules that possibly depend on the update and the other containing updates that
donot. O

ProposiTION 5.3 (COMPLEXITY OF THE UPDATE PROCEDURE). Suppose that AS is
an authorization specification whose base relations predicates (hie,rel,done)
are all part of the input, and that A is any atom being inserted. Our update
procedure has polynomial data complexity.

Proor. Step (0) is clearly executable in polynomial time. In step (1), find-
ing all atoms in rule bodies that unify with an inserted fact is polynomial
(it only involves a linear scan of the rules and unification is known to be
doable in polynomial time [Martelli and Montanari 1982]). Computing the
(new) materialization of these rules is also polynomial by our previous com-
plexity result on materialization of authorization rules. Step (2) is also poly-
nomial for the same reason. Step (3) is polynomial for the same reason step
(1) is polynomial. Integrity check is polynomial since the rewriting of rules

ACM Transactions on Database Systems, Vol. 26, No. 2, June 2001.

Flexible Support for Multiple Access Control Policies . 255

is polynomial and so is their evaluation, for the same reason step (1) is
polynomial. O

5.3.2 Handling the Insertion of Rules. The iterative process we have in-
troduced to handle the insertion of base facts in the materialized authorization
specification is in fact a general method that can be applied to handle the in-
sertion of rules as well as the deletion of both facts and rules.

5.3.2.1 INSERTION OF cando AND do RULES. When a rule is inserted in stratum
AS,, (respectively, stratum AS3), that is, in a stratum without recursion, the
process in Section 5.3.1 is applied, starting from step (1) (respectively, step (3)),
and letting CANDO™" (respectively, D0"%), that is, the sets of rules potentially
affected by the insertion, contain exactly the inserted rule. The algorithm checks
whether the new rule allows the derivation of new atoms. If the answer is
yes, the update to the considered stratum is propagated to the upper levels,
otherwise the algorithm stops (successfully).

5.3.2.2 INSERTION OF dercando RULES. If a rule is inserted in stratum
ASy, then the update process is started at step (2), letting DERCANDO* =
{dercando(tuple) < L1& --- & L, such that for somei =1, ..., n, literal L; uni-
fies with the head of the inserted rule or with the head of a rule in DERCANDO*}.
Intuitively, DERCANDO* contains all the rules that could fire because of the pres-
ence of the new rule introduced. Correctness of the approach comes from the
fact that recursion can only be positive, thus the immediate consequence opera-
tor ®ag, is monotonic. Hence, the authorizations that become true on the basis
of the new rule cannot block any previously firing rule in the same stratum.

It is easy to see that insertion of cando and dercando rules into an authoriza-
tion specification preserves the (polynomial) data complexity results we have
obtained earlier.

5.3.3 Handling Deletions. We distinguish deletion of base facts, deletion
of rules in strata that do not allow recursion, and deletion of rules in the poten-
tially recursive stratum.

5.3.3.1 DELETION OF BASE FACTS. To handle the deletion of a base fact § from
the authorization specification, we apply the update method starting from step
(0) and letting MS}™ = MSgld © {(8, _}. This step can obviously be executed
with polynomial data complexity.

5.3.3.2 DELETION OF cando AND do RULES. The deletion of a rule from AS; (or
AS:;) is taken care of with a method that is symmetric to the insertion: the set
CANDO™" (D0™*%, respectively) containing exactly the removed rule, is considered
as the set of rules potentially affected by the update, and its materialization
Ays, (Aps,> Tespectively) is computed. Ay s contains the derived atoms that
were supported by the removed rule. Note that there is no need to calculate A%
and A}, s,» since Aty s, will always be empty given that removing a rule from
AS; cannot cause new atoms to be added to M S;. Thus, MS! = MS?? 6 A}
is computed.

ACM Transactions on Database Systems, Vol. 26, No. 2, June 2001.

256 . S. Jajodia et al.

If TTi(MS]*) # 1'[1(/\/18?1‘1), then the control is passed to the next step. Note
that it is not necessary to look at M; (which also contains atoms in the models
of lower strata), since nothing has changed at levels below i. Note also that facts
that were supported by the deleted rule will still belong to the model if there
are other rules supporting them. A fact is removed from the materialization
structure (and hence from the model) only when its set of supporting rules
becomes empty.

Deletion of cando and do rules is a polynomial process because computing
the materializations A}, and A}, is polynomial (as materializing a rule
has polynomial data complexity by our previous results). Computing MS?*" =
MS?ld © A)ys, 1s clearly also polynomial (in fact quadratic in the sizes of the

relations involved). Checking if IT;(MS?) £ 1;(MS%) is also polynomial.

5.3.3.3 DELETION OF dercando RULES. The deletion of dercando rulesis based
on a technique similar to the approach adopted in the corresponding step of the
insertion algorithm. In this case, recursion is taken into account defining a set
DERCANDO* as follows (r € DERCANDO* is the rule to be deleted):

DERCANDO* = {r} U {dercando(tuple) < L& --- & L,, such that for some
i=1,...,n a literal L; unifies with the head of a rule in DERCANDO*, or
dercando(tuple) unifies with the head of a rule in DERCANDO*}.

DERCANDO* contains all the rules possibly connected to the deleted rule. For
any rule in DERCANDO*, its head unifies with the head of some rule whose firing
might depend on the head predicate of the deleted rule. The deletion does not
have any effects on the model of AS,\DERCANDO*.

Let NEWDERCANDO* = DERCANDO*\ {r}. The two sets DERCANDO* and NEWDERCANDO*
will now be materialized to find the impact that the rule r had on the old materi-
alization, MS;. The materialization of DERCANDO* includes all pairs (head(r)0, r)
for all 6 such that head(r)d € MS3?. Such pairs will not belong to the materi-
alization of NEWDERCANDO* (remember that r is not in NEWDERCANDO*). However,
note that it may not be enough to materialize DERCANDO* as it is, since the truth
value of body(r) in DERCANDO* may or not be true, something which will af-
fect the presence of head(r) in the materialization. We must therefore evaluate
DERCANDO* against the materializations of the lower strata MSy and MS1, with
the addition of {(head(r)0, r)}, to make sure that MSpercanne+ includes all atoms
that are produced as a result of the truth of head(r)o.

The materializations MGSpgrcanpgr (With the above adjustment) and
M Syeypercanpo+ 0f DERCANDO* and NEWDERCANDO*, respectively, are computed.
We compute the set R = MSpercannor © MSyewpercawpo 0f pairs that are in
MSDERCANDO* but not in M‘SNEWDERCANDD*, and ﬁnally, MS’ZLew = MSZ S R.

The complexity of computation DERCANDO* is obviously quadratic in the size of
our authorization specification. By our previous complexity result on material-
ization, we can see that the materializations M Spgrcanpgs and M Syewpercanpg Can
be computed with polynomial data complexity. Finally, computing MSpercanpos ©
M Syeupercanpo+ 18 also immediately seen to be polynomial.

Example 5.1. Assume the following five rules are given:
ri: dercando(tuplel) <« dercando (tuple2)

ACM Transactions on Database Systems, Vol. 26, No. 2, June 2001.

Flexible Support for Multiple Access Control Policies . 257

ry: dercando(tuplel) < non-recursive-body
r3: dercando(tuple3) <« dercando(tuplel)
ry: dercando(tuple4) <« dercando(tuple2)
r5: dercando (tuple2) < non-recursive-body

Assume that the existential closures of the bodies of nonrecursive rules are all
satisfied, and that tuplel, tuple2, tuple3 are ground, distinct tuples. Thus,

MSs = {(dercando(tuple2), {rs}), (dercando(tuplel), {r1, ra}),
(dercando(tupled), {r3}), (dercando(tupled), {rs})}

Suppose the SSO requests that rule r; be removed.

DERCANDO* = {ry, 79, 73}, and NEWDERCANDO* = {rg, 7).

M Spereanpos = {(dercando(tuplel), {r1,7r2}), (dercando(tuple3d), {rs})}
M Sygupereanpor = {(dercando(tuplel), {re}), (dercando(tupled), {rs})}
R = MSpercanno- © MSyupercanno = {(dercando(tuplel), {r}).

Thus, only (dercando(tuplel), {r1}) is removed from the materialization struc-
ture, which then becomes:

MSEF* = {(dercando(tuple2), {r5}), (dercando(tuplel), {ra}),
(dercando(tupled), {r3}), (dercando(tupled), {rs})}

6. RELATED WORK

Other researchers have investigated the problem of enforcing different access
control policies within a single data system. In this direction, the recent im-
plementations of the microkernel-based operating systems (e.g., Trusted Mach
[Branstad et al. 1989], Synergy [Saydjari et al. 1993], and Distributed Trusted
Operating System (DTOS) [Fine and Minear 1993]) cleanly separate the policy
enforcement from the policy decision. A policy-neutral security server that is
inside the microkernel is responsible for the enforcement of the policy decision;
the policy decision is left to a security server that is outside the microkernel.
Since the computation of access decisions based on a particular policy is sep-
arate from the enforcement mechanism, it is possible to implement different
policies on the microkernels by simply inserting the right security server. These
proposals, although moving in the direction of supporting multiple policies, still
require the system to maintain different security servers, and replace the one to
be applied as needed. Moreover, they cannot capture access control restrictions
different from those based on explicit authorizations or subject classifications.

Woo and Lam [1993] propose a logic language for the specification of autho-
rizations. Their proposal does not investigate specifically the type of predicates
and constraints (e.g., derivation, conflict resolution, etc.) usually found in access
control systems but, by using a very general language, which has almost the
same expressive power of first-order logic, gives the possibility of expressing
them. The drawback of such an approach is that the trade-off between expres-
siveness and efficiency seems to be strongly unbalanced. In particular, the lack
of any restrictions whatsoever on the language results in the specification of
models that may not even be decidable and therefore will not be implementable.

ACM Transactions on Database Systems, Vol. 26, No. 2, June 2001.

258 . S. Jajodia et al.

As a matter of fact, Woo and Lam’s approach is based on truth in extensions of
arbitrary default theories, which is known, even in the propositional case to be
NP-complete, and in the first-order case, is worse than undecidable, as shown by
Gottlob [1992]. By contrast, our approach identifies a polynomial time (in fact
quadratic time) data complexity fragment of default logic. Therefore, in effect,
our approach is effectively implementable, while the one in Woo and Lam [1993]
is not. As illustrated in the paper, our polynomial-time fragment is able to es-
tablish all the well-known database security policies that we have come across.
While this statement does not necessarily cover all possible security policies
that may be devised, it certainly covers the commonly used policies of today.

Another approach proposing a logic language for the specification of access
permissions and restrictions to be enforced is presented in Bertino et al. [1996].
The approach, however, is mainly devoted to the consideration of temporal con-
straints that may need to be enforced on the authorizations and time reasoning
and does not consider other policy issues. For instance, no relationships be-
tween the components of the data systems are considered and possible conflicts
are solved according to the basic denials-take-precedence policy.

A first proposal towards the specification of a more powerful and complete,
yet actually computable, language for the specification of authorizations was
made by us in Jajodia et al. [1997a; 1997b]. There, we presented some of the
concepts that are the basis of our current model. However, no formalization of
the data system that would allow precise definition of the model behavior was
presented. Also, implementation issues were not investigated.

Starting from the concepts presented in Jajodia et al. [1997a; 1997b], Bertino
et al. [1998] propose a formal language for the specification and enforcement
of authorizations. Although their proposal is based on a language more gen-
eral than ours, it cannot capture all the different policies and constraints ex-
pressible in our simpler and efficiently implementable framework. For instance,
the integrity (our error rule) or history constraints (our done rule) cannot be
expressed. This last aspect, in particular, makes it impossible for the model
in Bertino et al. [1998] to capture any form of dynamic constraints, such as
separation of duty or Chinese Wall policies. Moreover, in Bertino et al. [1998],
conflict resolution and decision policies cannot be expressed in the language
but are built into the model, thus going back to a more rigid framework that
does not easily accommodate different protection requirements but forces their
specification in terms of the policy enforced by the system. The generality of
the language also allows for specifications having more than a stable model,
whose meaning and acceptability in an access control framework (where ac-
cess to be allowed or not must be clearly determined and no ambiguity should
be present) is doubtful. Finally, the proposal in Bertino et al. [1998] also suf-
fers from the same drawback as Woo and Lam [1993]; while our approach is
effectively implementable, the one in Bertino et al. [1998] is not.

7. CONCLUSIONS

Over the years, researchers have proposed a vast variety of access control poli-
cies and models. However, most practical systems that have been deployed have

ACM Transactions on Database Systems, Vol. 26, No. 2, June 2001.

Flexible Support for Multiple Access Control Policies . 259

traditionally chosen to implement just one policy. As a consequence, applica-
tions constructed on top of such systems, as well as the users of such systems,
are forced to use this implemented policy. The aim of this paper is to move away
from this rigidity and, instead, to provide the application developer with a host
of policy options. To achieve the desired flexibility, we have proposed a flexible
authorization framework, based on a powerful yet simple language, through
which a system security officer may specify access control requirements through
explicit authorizations, together with derivation, conflict resolution and deci-
sion strategies. Different strategies may be applied to different users, groups,
objects, or roles, according to the needs of the security policy. The framework
also allows the enforcement of rich constraints that are generally required in
real world applications, but very seldom supported by the access control sys-
tems. The major advantage of our approach is that it can be used to specify
different access control policies that can all coexist in the same system and
that can be enforced by the same security server.

Our paper leaves room for further work. A first issue we plan to investigate
concerns administrative policies. In this paper, we have made the assumption
that all specifications are stated by the System Security Officer. The model can
be extended to include administrative policies that regulate insertions of the
different rules by the users. We also plan to investigate how well our model can
represent and enforce complex security policies of different organizations, such
as financial or health-care institutions.

ACKNOWLEDGMENTS

We are grateful to Asa Hagstrom, Duminda Wijesekera, Francesco Parisi-
Presicce, and the anonymous referees for their careful reading of the paper,
constructive criticisms, and useful suggestions, that led to many improvements
to the paper.

REFERENCES

Art, K., BLAIR, H., AND WALKER, A. 1988. Towards a theory of declarative knowledge. In Founda-
tions of Deductive Databases and Logic Programming, J. Minker, Ed., Morgan-Kaufmann, San
Mateo, Calif.

Barar, C. AND SUBRAHMANIAN, V. 1992, Stable and extension class theory for logic programs and
default theories. J. Automat. Reas. 8, 345—-366.

BerMmaN, K., ScHLIPF, J., AND Franco, J. 1995. Computing the well-founded semantics faster. In
Proceedings of the 3rd International Workshop on Logic Programming and Nonmonotonic Rea-
soning, A. N. W. Marek and M. Truszczynski, Eds., (Lexington, Ky., June). pp. 113-126.

BEeRTINO, E., BETTINI, C., FERRARI, E., AND SAMARATI, P. 1996. A temporal access control mechanism
for database systems. IEEE Trans. Knowl. Data Eng. 8, 1, 67-80.

BerTINO, E., Buccarurrl, F., FERRARI, E., AND RuLLo, P. 1998. An authorizations model and its
formal semantics. In Proceedings of the 4th European Symposium on Research in Computer
Security (ESORICS’98) (Louvaine-Le-Neuve, Belgium).

BEeRTINO, E., JAJODIA, S., AND SAMARATL, P. 1999. A flexible authorization mechanism for relational
data management systems. ACM Trans. Inf. Syst. 17, 2, 101-140.

Bertivo, E., SaMARATI, P., AND Jasopia, S. 1993. Authorizations in relational database manage-
ment systems. In Proceedings of the 1st ACM Conference on Computer and Communications
Security (Fairfax, VA. Nov. 3-5). ACM, New York, pp. 130-139.

ACM Transactions on Database Systems, Vol. 26, No. 2, June 2001.

260 . S. Jajodia et al.

Branstap, M., Tajarrr, H., MAYER, F., AND Datva, D. 1989. Access mediation in a message passing
kernel. In Proceedings of the IEEE Symposium on Security and Privacy (Oakland, Calif.). IEEE
Computer Society Press, Los Alamitos, Calif., pp. 66-72.

BrewkR, D. F. C. anD Nasa, M. J. 1989. The chinese wall security policy. In Proceedings of the
IEEE Symposium on Security and Privacy (Oakland, Calif.). IEEE Computer Society Press, Los
Alamitos, Calif., pp. 215-228.

BrilceEmany, H. H. 1992. Rights in an object-oriented environment. In Database Security, V:
Status and Prospects, North-Holland, Amsterdam, The Netherlands, pp. 99-115.

Castano, S., Fucint, M., MARTELLA, G., AND SAMARATI, P. 1995. Database Security. Addison-Wesley,
Reading, Mass.

DennNiNG, D. E., Lunt, T., ScHELL, R., HECKMAN, M., AND SHOCKLEY, S. 1987. Secure distributed
data view (Sea View) — the Sea View formal security policy model. Tech. rep. SRI International,
Menlo Park, Calif.

Fvg, T. AND MINEAR, S. E. 1993. Assuring distributed trusted mach. In Proceedings of the IEEE
Symposium on Security and Privacy (Oakland, Calif.). IEEE Computer Society Press, Los Alami-
tos, Calif., pp. 206—218.

GeLFOND, M. anD LirscHrrz, V. 1988. The stable model semantics for logic programming. In Pro-
ceedings of the 5th International Conference and Symposium on Logic Programming (Seattle,
Wash.). pp. 1070-1080.

GotTLOB, G. 1992. Complexity results for nonmonotonic logics. J. Logic Comput. 2, 3, 397-425.

Jajopia, S., SAMARATI, P., AND SUBRAHMANIAN, V. 1997a. A logical language for expressing autho-
rizations. In Proceedings of the IEEE Symposium on Security and Privacy (Oakland, Calif.). IEEE
Computer Society Press, Los Alamitos, Calif., pp. 94-107.

JAJODIA, S., SAMARATI, P., SUBRAHMANIAN, V., AND BERTINO, E. 1997b. A unified framework for en-
forcing multiple access control policies. In Proceedings of the 1997 ACM SIGMOD International
Conference on Management of Data (Tucson, AZ, May 13-15). ACM, New York, pp. 474-485.

JONSCHER, D., aND DirTrIcH, K. R. 1996. Argos — A configurable access control system for inter-
operable environments. In Database Security IX: Status and Prospects, S. A. D. D. L. Spooner
and J. E. Dobson, Eds., Chapman & Hall, London, England, pp. 43-60.

Lrovp, J. W. 1987. Foundations of Logic Programming. Springer-Verlag, New York.

Lunt, T. F. 1989. Access control policies for database systems. In Database Security II: Status
and Prospects, C. E. Landwehr, Ed., North-Holland, Amsterdam, The Netherlands, pp. 41-52.
Magrek, W. AND SUBRAHMANIAN, V. 1992, The relationship between stable, supported, default and

auto-epistemic semantics for general logic programs. Theoret. Comput. Sci. 103, 365-386.

MaRrTELLI, A. AND MONTANARI, U. 1982. An efficient unification algorithm. ACM Trans. Prog. Lang.
Syst. 4, 2, 258-282.

Przymusinskr, T. 1988. On the declarative semantics of deductive databases and logic programs.
In Foundations of Deductive Databases, J. Minker, Ed., Morgan-Kaufmann, San Mateo, Calif.,
pp. 193-216.

RasiTTr F., BERTINO, E., KiM, W., AND WOELK, D. 1991. A model of authorization for next-generation
database systems. ACM Trans. Data. Syst. 16, 1, 89—131.

REITER, R. 1980. A logic for default reasoning. Artif. Int. 13, 81-132.

SaypJari, O. S., TURNER, S. J., PEELE, D. E., FARRELL, J. F., Loscocco, P. A., Kurz, W., aND Bock, G. L.
1993. Synergy: A distributed, microkernel-based security architecture, version 1.0. Tech. rep.
National Security Agency, Ft. George G. Meade, Md.

SHEN, H. anp DEwaN, P. 1992. Access control for collaborative environments. In Proceedings of
the ACM Conference on Computer Supported Cooperative Work. ACM, New York, pp. 51-58.

Tarski, A. 1955. A lattice-theoretical fixpoint theorem and its applications. Pacific J. Math. 5,
285-309.

VAN GELDER, A. 1989. The alternating fixpoint of logic programs with negation. In Proceed-
ings of the 8th ACM SILACT-SICMOO-SILART Symposium on Principles of Database Systems
(Philadelphia, Pa., Mar. 29-31). ACM, New York, pp. 1-10.

Woo, T.Y. C. anD LaM, S. S. 1993. Authorizations in distributed systems: A new approach. Journal
of Computer Security 2, 2,3.

Received March 1999; revised October 2000; accepted November 2000

ACM Transactions on Database Systems, Vol. 26, No. 2, June 2001.

