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Abstract

Multiobjective portfolio optimization problem is the portfolio pro-
cess of the highest expected return among the various financial com-
modities of the capital market to meet the expected return objectives.
And one of the most important and common management issues lies
in determining the best portfolio out of a given set of investment pro-
posals. As we know, modern portfolio theory provides a well-developed
paradigm to form a portfolio with the highest expected return for a
given level of risk tolerance. However, for making the profit via the
limited available capital, allocating the money to construct a portfolio
is a challenge to be dealt with. In the capital market, there are thou-
sands of financial commodities. Depending on the characteristics of the
commodity, the risk and return of the investment are dissimilar. And
the risk and return should also be simultaneously considered in practice
of stock market. Hence, portfolio optimization is a complex multiobjec-
tive problem of multistage decision-based. In this paper, the multistage
decision-based genetic algorithm is proposed for the multiobjective port-
folio optimization problem. On the basis of the illustrative example, we
can show the effectiveness of the proposed algorithm is validated for
solving this problem.
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1 Introduction

The multiobjective portfolio optimization problems have received increased
interest from researchers with various backgrounds since early 1952. A mod-
ern portfolio theory provides a well-developed paradigm to form a portfolio
with the highest expected return for a given level of risk tolerance. Markowitz
(1952) [1], a creator of modern portfolio theory, originally formulated the fun-
damental theorem of mean-variance portfolio framework, which explains the
trade-off between mean and variance each representing expected returns and
risk of a portfolio, respectively. The mean-variance approach which proposed
by Markowitz (1987) was to deal with the portfolio selection problem [2]. A
decision-maker can determine the optimal investing ratio to each security based
on the sequent return rate. The formulation of the mean-variance method can

be described as follows:

i=1j=1

n n
s.t. Z,uixi > F, le =1, z;,>0andt=1,2,...,n,
i=1 i=1
where 0;; denotes the covariance between the return of the ith security and the

jth security, u; denotes the expected return rate of the ith security, £ denotes
the acceptable least rate of the expected return, z; denotes the investment
portion in the ith securities.

For a given specific return rate, one can derive the minimum investment
risk by minimizing the variance of a portfolio; or for a given risk level which
the investor can tolerate, one can derive the maximum returns by maximizing
the expected returns of a portfolio. The main input data of the Markowitz
mean-variance model are expected returns and variance of expected returns of
these securities [5]. Although Markowitz’s theory uses only mean and variance
to describe the characteristics of return, his theory about the structures of a
portfolio became a cornerstone of modern portfolio theory.

Due to the huge numbers of financial securities and the acceptable least
rate of the expected return is difficult to estimate, the mean-variance model
is not practical for applying. In the other hand, the investment activities are
restricted the limited available capital. Some investors can not construct a
profitable portfolio via a large amount of money. Hence, it is important to
build up an efficient method to select the securities for constructing the opti-
mal portfolio. As the result, we propose the multistage decision-based genetic
algorithm approach for dealing with the multiobjective portfolio optimization
problem. In our method, we tackle this problem through a two phase approach.
Firstly, we select the short list of the securities by the past performance eval-
uation. Then, genetic algorithm is applied to decide the investment weight of
the securities.
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In the past few years, there has been a boom in applying genetic algorithms
to solving the multiobjective optimization problem known as evolutionary mul-
tiobjective optimization or genetic multiobjective optimization. The basic fea-
ture of genetic algorithms is the multiple directional and global searches, in
which a population of potential solutions is maintained from generation to
generation. [3] The population-to-population approach is beneficial in the ex-
ploration of the securities optimal portfolio selecting solutions.

On the other hand, Genetic Algorithm (GA) and its application to vari-
ous disciplines including optimization problems [1]. GA is also applied to a
wide range of optimization, and can offer significant advantages in solution
methodology and optimization performance. An useful feature of GA is to
handle multiobjective function optimization [4].

The remainder of this paper is organized as follows. The solution approach
including the genetic algorithm and the operators are discussed in Section 2.
A numerical example is used to illustrate the proposed method and the results
are shown in Section 3. And the conclusions are presented in Section 4.

2 Proposed Solution Approach

As discussed in Section 1, we propose a two phase method for solving the
problem. Before introducing the approach, we have to discuss about the ob-
jectives of this problem. In this paper, we tackle the problem as a multiobjec-
tive optimization problem. The mathematical model, which is expanded form
Markowitz mean-variance approach, is shown as follow:

Notation:
Indices
1,7: index of security, 7,5 = 1,2,...,n.
Parameters
u;: the expected of security, 7,5 =1,2,...,n.
0;;: the covariance between the returns of security ¢ and security j,
,]=1,2,...,n.
Decision Variables
w;: investment weight of security 1.
Mathematical Model:

maXZ i W5 (2>

=1

min Z Z O WiWj (3)

i=1j=1
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n
s.t. Y wi=1w;>0andi=1,2,...,n.
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The objective function (2) is to maximizing the total expected return. And
the objective function (3) is to minimizing the total risk of the portfolio. In this
model, we would like to track these two objective functions at the same time.
And obtain a set of Pareto solutions after applying the multistage decision-
based genetic algorithm approach. For solving this model, we assume the
expected return p; is the past 12 months average return rate of security ¢+ and
the covariance o;; is the covariance between p; and p;.

2.1 Candidate Securities Selection

Due to the financial market liberalization, there are more and more securities
(or assets) in the capital market. In order to select the investment targets,
the investors prefer securities which with outstanding performance. In our ap-
proach, we calculate the past 3-month performance. Then, choose the highest
20% for the candidate securities. And reorder the securities for the highest
performance to the lowest. The 3-month performance of the security 7,77,
measures the relative change of the price of the security over the last three
months (in percent) and is therefore a measure for the short term expected
return. In particular,
oo

where p! is the price of security 7 in period T" and pl =3 is the price of security
7 in three months ago.

2.2 Genetic Algorithm Approach

Genetic Algorithm was developed initially by Holland (1975) form the 1960s.
The usual form of GA was described by Goldberg (1989). GA is stochastic
search technique based on the mechanism of natural selection and natural ge-
netics. The central theme of research on GA is to keep a balance between
exploitation and exploration in its search to the optimal solution for survival
in many different environments. Typically, Goldberg gave an interesting sur-
vey of some of the practical work carried out in this era and made clear of
the general structure of GA. Michalewicz (1996) did not restrict to the binary
string encoding in Holland’s GA and applied the GA to all possible encoding
strategies to solve the practical optimization problems. GA has been theo-
retically and empirically proved to provide a robust search in complex search
spaces. Many research papers and dissertations have established the validity
of GA approach in function optimization problems and application problems
[4].
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Genetic Algorithm, differing from conventional search techniques, starts
with an initial set of random solutions, population. Each individual in the
population is called a chromosome which representing a solution to the prob-
lem. The chromosomes evolve through successive iterations, called generations.
During each generation, the chromosomes are evaluated by taking some mea-
sures of fitness. To create the next generation with new chromosomes, called
offspring. The offspring are formed by merging two chromosomes from current
generation using the crossover operator and or modifying a chromosome using
the mutation operator. A new generation is selected according to the fitness
values of the parents and offspring, and then weeds out poor chromosomes so
as to keep the population size constant. The algorithms converge to the best
chromosome, which hopefully represents the optimum or suboptimal solution
to the problem [4].

2.2.1 Random Keys-base Encoding

The random keys-based encoding method is a direct approach, which encodes
some information for constructing a set of weights in a chromosome. As we
know, a gene in a chromosome is characterized by two factors: locus, (i.e.,
the position of the gene located within the structure of chromosome), and
allele, (i.e., the value the gene takes). In this encoding method, the position
of the gene is used to represent the ID number of the security and its value is
used to represent the weight for constructing a portfolio. As proposed random
keys-based encoding method, randomly generates the initial chromosome first.
This encoding method is easily verified that any permutation of the encoding
corresponds to the compositions of the portfolio, so that most existing genetic
operators can easily be applied to the encoding. The pseudocode for order-
based encoding as following.

More so than differs from other optimization techniques, GA provides a
framework of using only objective function information for analyzing many
problem types. Within this framework of optimization techniques can be em-
ployed to solve the non-smooth, non-continuous and non-differentiable func-
tions which are actually existed in a practical optimization problem. [4]

2.2.2 Weight Generating

In the encoding procedure, the value of the gene in the chromosome is gener-
ated randomly. When we are generating the weight vector, we have to rescale
n

the weight to satisfy Zwi = 1. As the result, we convert the weight into

i=1
(%)

w; =

=i
v
i=1
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procedure 2: Weight Generating
Input: chromosome v,
total number of securities N

output: weight vector W
begin

W~ g,

fori=1to N

\f“_

output weight set W,
end

Than an example of weight generating is shown in Fig. 1. We try to assign
the weight for each security. The determination of these weights indicates
the relative importance of the various objectives. The chromosome consists of
vector of weight.

Security [D : 1 2 3 4 5 6 7 8
Chromosome vi{iy: | 0.52 | 035 | 044 | 068 | 056 | 6.23 | 0.11 | 0.19
Weight generating: | 0.17 | 0.11 | 0.14 | 0.22 | 0.18 | 6.67 | 0.04 | 0.06

Figure 1: The example of weight generating

2.2.3 Crossover Operator

Crossover is the main genetic operator. It operates on two parents (chromo-
somes) at a time and generates offspring by combining both chromosomes’
features. In weight selection problem, crossover plays the role of exchang-
ing weights of the securities of two chosen parents in such a manner that the
offspring produced by the crossover represents. Several crossover operators
have been proposed for permutation representation, such as Partial-mapped
crossover (PMX), Order crossover (OX), Position-based crossover (PX), heuris-
tic crossover, and so on[3]. In this paper, we use a very simple crossover
method, which called one-cut point crossover.
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One-cut Point |

3 0: 4 5 5 7 3

Security 1D: 1 2 3
chromosome v|(/): |0.32 [ 055]10.24|0.18 [0.62|0.33|0.16 | 0.92
Security 1D: 1 2 3 4 5 5 7 3
offspring v,(): |0.321055|0.24|069|0.17|0.67 0.26]|0.53
One-cut Point | £|f ‘r»
Security 1D: 1 2 3 i 4 5 B 7 3
chromosome v-(7): |0.47 | 0.24 | 0.21 069|017 | 0.67] 0.26]0.53

Figure 2: The Example of One-cut Point Crossover

2.2.4 Mutation Operator

Mutation is a background operator which produces spontaneous random changes
in various chromosomes. A simple way to achieve mutation would be to alter
one or more genes. In GA, mutation serves the crucial role of either replacing
the genes lost from the population during the selection process, so they can
be tried in a new context or providing the genes that were not present in the
initial population. In this paper, it is relatively easy to produce some mutation
operators for permutation representation.

Several mutation operators have been proposed for permutation represen-
tation, such as Swap mutation, Inversion mutation, and Insertion mutation,
and so on (M. Gen and R. Cheng, 2000). In this case we use Insertion mutation
method, and an example as following Fig. 3.

step 1 : select a position w1 parent at random

parent: [0 .45{032[021]0 490 88]0 12]0.03]0 38]

step 2: mzert selected value wi randomly selected position of parent

offspring: [0.45]0 320 210 88[0.12[0.03]0.49]0 38]

Figure 3: The Example of Insertion mutation
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2.2.5 Evaluation

The evaluation function interprets the chromosome in terms of physical rep-
resentation and evaluates its fitness based on traits of being desired in the
solution. Evaluation function used for the GA is based on the total expected
return and the risk of the portfolio. For the portfolio selection problem, we
consider the total expected return and the risk. Therefore, the fitness function
that involves computational efficiency and accuracy (of the fitness measure-
ment) is defined as follows:

iWi
f(returen) ;'M

flrisk) iiaijwiwj

i=1j=1

eval(vy) =

where eval(vy,) represents the fitness value of the k-th chromosome.

2.2.6 Selection

Selection (reproduction) operator is intended to improve the average quality
of the population by giving the high-quality chromosomes a better chance to
get copied into the next generation. The principle behind genetic algorithms
is essentially Darwinian natural selection. The selection directs GA search
towards promising regions in the search space. We employ roulette wheel
selection as a selection mechanism in this study. In roulette wheel selection
mechanism, the individuals on each generation are selected for survival into
the next generation according to a probability value proportional to the ratio
of individual fitness over total population fitness; this means that on average
the next generation will receive copies of an individual in proportion to the
importance of its fitness value.

3 Numerical Example

The static stage of GA requires some parameters to attain a solution quality
and sustain controllable evaluation of the process.

Population size: popSize = 100;
Maximum generation: maxzGen = 1000;
Crossover probability: po = 0.70;
Mutation probability: py; = 0.50;

In this numerical example, 40 sample companies’ data, which are collected
form Taiwan’s stock market, are used to demonstrate the proposed method.
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Table 1: 3-months and 12-months return rates for 40 sample companies

ID | 7} ri2 [ID | 73 ri2 | ID |73 ri2 | ID |73 ri2 | ID | 73 2

1 (007 010]9 | 003 0.04]17 | 0.03 0.05 |25 |0.01 0.03|33 | 011 0.10
2 |014 012 |10 | 0.04 0.03 |18 | 0.05 0.06 |26 | 0.01 0.04 |34 | 0.05 0.07
3 |010 0.03 |11 |0.01 0.04 |19 | 006 0.10 |27 |0.21 0.22 |35 | 0.04 0.08
4 1031 023]12 019 02120013 017 |28 |0.12 0.14 | 36 | 0.04 0.02
5 1001 00013013 01421 | 011 0.11]29 |0.11 0.07 |37 | 0.02 0.01
6 | 005 0.01|140.09 01022 |0.08 0.10]30 |0.06 0.07 |38 |0.03 0.01
7 1001 0.05|15|0.06 00523013 0.18 |31 |0.07 0.08]|39 | 017 0.12
8§ 1012 01016 | 009 017 |24 |022 01932 | 003 0.01 |40 | 0.14 0.13

Next, we choose the candidate securities by the 3-months performance, and
reorder the security ID number as follow:

Table 2: Reordering data sets

Reordering ID | ID | r} i

1 04 1 0.31 0.23
2 24 10.22 0.19
3 27 10.21 0.22
4 12 1 0.19 0.21
5 39 1 0.17 0.12
6 21 1 0.15 0.11
7 02 1 0.14 0.12
8 40 1 0.14 0.13

From Table 3, the variance-covariance matrix, we can get the data about
the risk. Then, apply the proposed algorithm to construct the optimal port-
folio. The best solution of the test problem is shown as Table 4.

4 Conclusions

Mean-variance is widely used in the finance area to deal with the portfolio
selection problem. The purpose of the mean-variance approach is to determine
the period optimal investing rate to each security based on the sequent return
rate.

A genetic algorithm is designed to solve the corresponding optimization
problems because these nonconcave maximization problems are with a par-
ticular structure and cannot be efficiently solved by the existing traditional
optimization methods. In this paper, the multiobjective optimal portfolio se-
lection problem is considered. We construct a two phases approach, and apply
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Table 3: The covariance matrix
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Covariance matrix | 1 2 3 4 5 6 7 8
1 1.231 0.028 1.558 1.506 1.440 1.312 1.445 1.024
2 0.028 1.114 -0.074 -0.024 0.034 0.013 -0.005 -0.022
3 1.558 -0.074 2.081 1.847 1.525 1.143 1.096 1.002
4 1.506 -0.024 1.847 1.234 1.468 1.679 1.548 1.332
5 1.440 0.034 1.525 1468 1.113 1.022 1.008 1.321
6 1.312 0.013 1.143 1.679 1.022 1.020 1.431 1.030
7 1.445 -0.005 1.096 1.548 1.008 1.431 1.103 1.111
8 1.024 -0.022 1.002 1.332 1.321 1.030 1.111 1.301
Table 4: The optimal solution
The weight vector of optimal portfolio Total expected return rate | Risk
{0.34, 0.22, 0.13, 0.09, 0.10, 0.02, 0.04, 0.06} | 0.1943 0.898

it for the test problem. As the experiment result, the proposed method is valid
for the portfolio optimization problem.
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