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Abstract— Recently, sphere detection has emerged as a powerful
means of finding the maximum likelihood solution to the detection
problem for multiple-antenna (MIMO) systems. In this paper, we
analyze the performance and computational complexity of different
sphere detectors and compare it with that of already known MIMO
receiver techniques, in uncoded as well as coded transmission1. We
propose a number of techniques that allow for reducing the complexity
of sphere detection – some at the expense of bit error performance.
Our results confirm that for uncoded transmission and low target
BERs, sphere detectors outperform all other known receiver techniques
with only minor additional complexity. For coded transmission, the
complexity of sphere detection essentially scales with the number of
candidates, motivating for further research to find techniques that
provide good soft outputs with very low numbers of candidates.

I. I NTRODUCTION

The main challenge of receiver design for multiple antenna
(MIMO) systems lies in the non-orthogonality of the transmission
channel – the superposition of the signals from all transmit anten-
nas at the receiver side. Optimum maximum likelihood detection
(MLD) requires finding the signal point̂x of the transmitter vector
signal set that minimizes the Euclidean distance with respect to the
received signal vectory when transmitted over the channel, i.e.,
the closest lattice point in a transformed vector space:

x̂ ≡ arg min ||y −Hx||2 (1)

Unfortunately this problem is exponential in the number of possible
constellation points, making MLD unsuitable for practical purposes
when aiming at high spectral efficiencies.

A number of sub-optimum receivers of low to moderate com-
plexity have been devised, yet all suffer from rather limited
performance. The most commonly considered techniques are linear
receivers and Successive Interference Cancellation (SIC) [1]. It has
to be stressed that for both techniques, the overall performance
is limited by the quality of the strongest detected signal, hence
none of them achieves diversity in the number of receive antennas,
in contrast to MLD. The concept of sphere detection (SD) was
introduced in [2] and has been further discussed in various pub-
lications [3], [4], [5]. To avoid the exponential complexity of the
MLD problem, the search for the closest lattice point is restricted
to include only vector constellation points that fall within a certain
search sphere. This approach allows for finding the ML solution
with only polynomial complexity, for sufficiently high SNR [4].

In this paper, we analyze the performance and computational
complexity of different MIMO receiver algorithms, for coded
and uncoded transmission. We propose a number of complexity
reduction techniques for sphere decoding and show that complexity
becomes comparable to that of other MIMO receiver techniques
in the high SNR regime and can be significantly reduced in the
low SNR regime using layer ordering and MMSE filtering. Sphere
detection outperforms all other approaches in terms of bit error
performance.

The remainder of this document is structured as follows: Section
II introduces different sphere detector implementations, as well
as methods for reducing their complexity. Complexity evaluations
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are presented in Section III and bit error performances studied in
Section IV, before we draw conclusions in Section V.

II. SPHEREDETECTION

In its search for the ML solution, the sphere detector evaluates
all transmit vector signalsx fulfilling:

||y −Hx||2 < R2 (2)

whereR is the search radius of the sphere. Obviously, the selection
of R is a critical issue largely influencing the complexity of any
SD algorithm. ChoosingR too large leads to a sphere containing
a very high number of hypotheses (also referred to as candidates)
and hence to high detection complexity. ChoosingR too small will
result in an empty sphere and the search has to be restarted with an
increased radius [3] – eventually leading to similar problems. The
search for candidates fulfilling (2) is done by back-substitution al-
gorithms. Towards this aim, Cholesky [3] or QR [5] decompositions
of the channel matrixH may be equivalently used. Note, however,
that using a Cholesky decomposition may be advantageous in
systems with more transmit than receive antennas, since the size
of the upper triangular matrixR is limited by min{NRx, MTx},
which for NRx < MTx leads to an underdetermined problem for
the QR implementation of the SD.

In the following, we concentrate ourselves on the symmetric
case, i.e.,MTx = NRx and use a QR decomposition ofH, for
practicality of implementation. WithH = QR, whereR is upper
triangular andQ is unitary, (2) may be rewritten as follows:

||y −Hx||2 < R2

||QHy −Rx||2 < R2

||y′ −Rx||2 < R2. (3)

It is easily seen that (3) implies

MT x∑

i=l

∣∣∣∣y′i −
MT x∑
j=i

ri,jxj

∣∣∣∣
2

< R2, l = 1, . . . , MTx. (4)

The detection process starts with the last layerl = MTx, for which
(4) reduces to|y′MT x

−rMT x,MT xxMT x |2 < R2 and then works its
way up until the first layer is detected. This process is quite similar
to SIC techniques – the signals from previously detected layers
are subtracted from the received signal before detection within the
current layer is performed. However, in SD, detection at layeri
essentially takes on the form

|cc,i − xi|2 <
R2

c,i

r2
i,i

, (5)

whereci,c is the search center andRc,i theremaindersearch radius
for the currently considered (incomplete) candidatec. Both depend
on the estimates for previously detected layers and hence vary from
candidate to candidate. The above inequality implies that not only
a single, but several constellation points may be selected. The SD
receiver hence performs its search in a tree like structure, which
motivates the search for appropriate enumeration strategies in [5].

Since we eventually consider coded transmission where ex-
tracting good quality soft outputs requires finding a predefined
minimum number of candidatesNc,min [3], we take a different
approach towards this problem. Our interest lies in ensuring a



certain minimum number of entriesNc at the bottom of the search
tree. With the entries ofH and the noisen at the receiver being
random variables,Nc is obviously a random variable, too. If we
allow for all hypotheses fulfilling (3) to be tested, we get an upper
bound on the expected complexity. Remember that whenever an
empty sphere is declared, the search must be restarted with an
increased radius. Since the overall detection complexity is the sum
of all taken attempts to find the ML point, it is unfavorable to
choose a small initial search radius and then increasing it stepwise
until Nc,min candidates are found.

In the following we will describe some extensions and variants
of SD that may be used to reduce its computational complexity,
or at least trade bit error performance against implementation
complexity.

A. Initial Search Radius

For our symmetricM × M MIMO system the proposal for
R from [3] reduces toR2 = 2σ2KNRx. Since in our system
we normalize2σ2 = 1 and then scale the transmitter signal
constellation, this is further reduced toR2 = NRxK where the
critical point lies in the selection ofK. We found empirically that
it is beneficial to use a small initial search radius at low SNR that
is subsequently increased with rising SNR. In the course of our
evaluations using

K =
1

60
LRc

√
Eb

N0
, (6)

whereL is the number of bits per symbol andRc is the code rate,
proved to be a good choice that minimized detection complexity in
a wide SNR range. The middle factor ensures that the scaling of the
transmitter signal set is taken into account and the last term derives
from the notion that in the high SNR regime, finding too many
candidates becomes less probable and that the number of events
with an empty sphere should be minimized. We increased the radius
by a factor of 1.5 whenever an empty sphere was declared.

Fig. 1. Low complexity selection of candidates for sphere decoding: all
points that fall within the search square are tentatively used as candidates
(in this case, 4 points). This is easily done by checking only 4 bounds.
Of the 4 tentative candidates, all that are inside the square but outside
the circle (in this case, the upper left point) will be excluded from further
search when calculating the remainder search radius.

B. Layer ordering

Looking at the tree like structure of the SD process, the overall
detection complexity of a SD can be illustrated by the area “under”

this tree, i.e., the sum of the number of (incomplete) candidates
for each layer, going froml = MTx to 1. By using a sorted QR
decomposition (SQRD) [6], we ensure that more reliably received
layers are detected first, and hence the width of the search tree
is reduced for layersl = MTx, . . . , 2 (cf. [5]). Remember that
with R fixed, the width Nc of the tree at its bottom is the
same, irrespective of layer ordering. The width reduction becomes
evident by looking again at (4) – the radius of the search circle
in each detection step scales with1/ri,i. Sorting the layers such
that i < j ⇔ |ri,i| < |rj,j | ensures that this radius is as small as
possible for the first detected layers. As a result, the width of
the search tree increases only slowly before reaching finallyNc.
Thus, the area “under” the tree and hence detection complexity are
reduced.

C. MMSE Extension

One major problem of the QR implementation of the SD is that
for close-to-singular values ofri,i, the search circle becomes very
large in detection of a layer, leading to a high number of candidates.
This effect is obviously more critical in the low SNR regime, since
more constellation points fall in the increased circle. Following the
approach in [7] we extend the channel matrixH such that the
SQRD will take the noise variance at the receiver into account.
This reduces the number of close-to-singular diagonal entries inR
and thus detection complexity.

D. Detection

The search for constellation points as defined by (5) may be
performed based on finding intersections of circles (cf. [3]). While
being very efficient for M-PSK signal sets, this approach requires
calculations oftan−1(·) andcos−1(·), several times per detection
for M-QAM constellations that are usually employed for high
spectral efficiency transmission.

Finding the constellation points fulfilling (5) may in fact be
achieved in a very simple manner. We propose to approximate
the search circle by a square (cf. Figure 1). This approach allows
for finding candidates by using simple boundary controls: with
a = <{cc,i} andb = ={ci,c} we only need to find all constellation
pointsxi for which

|<{xi} − a| < Rc,i/ri,i, and

|={xi} − b| < Rc,i/ri,i. (7)

Since<{xi} and={xi} usually take on only very few discrete
values, this is easily done by checking these againsta±Rc,i/ri,i

and b ± Rc,i/ri,i, respectively. The list of tentative candidates
can then be constructed by combining all<{xi} and ={xi}
lying within these bounds (cf. Figure 1 – two possible values per
dimension result in 4 candidates).

Note that all points that lie inside the square but outside the
circle (and hence are not valid candidates) can be easily discarded
when calculating the remainder search radiusRc′,i+1(xi) for the
extended candidate. Namely,Rc′,i+1(xi) is defined by

R2
c′,i+1(xi) = R2

c,i − |cc,i − xi|2r2
i,i

= R2
c,i −

(
|<{xi} − a|2 + |={xi} − b|2

)
r2

i,i.

It is easily seen that for all points that lie inside the square but
outside the circle,R2

c′,i+1(xi) will be negative. The additional
complexity due to excess points is negligible, since the values for
|<{sk}−xc|2 and|={sk}−yc|2 have to be calculated anyway for
the valid points and can be used to identify the invalid one(s). At
the same time it is straightforward to see that the number of excess
points diminishes with decreasing search radii (hence, increasing
SNR). This notion is confirmed by the results in Figure 2 – the
additional overhead is negligible in the high SNR regime.
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Fig. 2. Average number of excess constellation points found per detection
step, for a4 × 4 MIMO system, as a function of SNR and constellation
size. In the high SNR regime, the number of additionally found points is
negligible. It is also visible that by the MMSE extension of SQRD and the
resulting reduction of the effective search radii in the different layers, this
number can be further reduced.

E. QRD-M and SQRD-M

Based on the “M-algorithm” [8], the concept of “QRD-M” was
discussed in [9]. The basic idea is similar to SQRD approaches for
MIMO detection. However, instead of selecting only the closest
constellation point in each dimension, a total ofM metrics is
considered in evaluation.

We propose a joint application of the two approaches from
[7] and [9] to create a SD-like detector and denote the result-
ing algorithm “SQRD-M”. The basic idea is to use a SD with
MMSE filtering and a SQRD, but to fix the number of evaluated
constellation points in each dimension to the closestM points.
The main advantage over conventional SD is thatNc = MMT x

is no longer a random variable, ensuring a fixed delay of the
detector. However, restricting the search in such a fashion will
lead to a performance deterioration with respect to MLD, since we
incorporate no flexibility in the search algorithm and might thus
exclude the part from the search tree in which the ML solution is
to be found.

III. C OMPLEXITY

We limit ourselves to the complexity required to find only the
ML solution. We also assume the channel to be static over a suffi-
ciently long period of time, such that the computational complexity
of any preprocessing steps (decomposition of the channel matrix,
layer ordering) is negligible. This approximation is motivated by
a further fact: since we use the SQRD equivalently for SIC and
SD, the preprocessing complexity of both receivers is obviously
equal. Furthermore, since a QR decomposition may also be used
to calculate an inverse matrix, the same holds for linear detection.
Knowing that the detection complexity of SD can be expected to be
higher than that of linear and SIC receivers, our comparison is in
fact the worst case scenario for SD – the higher the complexity of
the preprocessing steps in comparison to the actual detection, the
lower the relative complexity of SD versus linear and SIC receivers.
For purposes of exhibition, we assume in the following (complex)
multiply-add-compare (MAC) operations and slicing to be of equal
complexity.

A. Linear receiver

A linear receiver multiplies the received signal vector with
a weighting matrixG = H+ and feeds the output to a slicer.

The resulting detection complexity for a single transmitted vector
symbol is hence

OL = M2
Tx + MTx. (8)

B. Successive Interference Cancellation

We concentrate on SIC approaches based on a QR-decompostion
of H [6]. After multiplying the received signal withQH, the upper
triangular matrixR is used for successive detection and interfer-
ence cancellation. When detecting layeri, the signal estimates from
all precedingly detected layers are weighted and subtracted from
the received signal, the output weighted byri,i and fed to a slicer.
The overall detection complexity per vector symbol is hence

OSQRD = M2
Tx +

MT x∑
i=1

(
(i− 1) + 2

)
=

3

2
(M2

Tx + MTx) (9)

C. Sphere Detection

In each dimension, the detection problem comes down to finding
all candidateŝxi fulfilling (5) and updatingRc appropriately (cf.
[5]). The detection complexity for sphere decoding (calculating the
search center and radius, slicing operation, update of the remaining
search radius for each found candidate) can then be shown to be:

OSphere = M2 +

M∑
i=1

(
(i− 1)Ni−1 + 2 + Ni

)
(10)

whereNi is the number of candidate points found in dimension
i. Throughout our simulations, we generate statistics onNi which
enables us to deriveOSphere. The additional complexity of running
the SD multiple times before findingNc,min candidates is captured
in these statistics.

D. Simulation results

Figure 3 shows the computational complexity of detection for
different MIMO receivers relative to a linear detector, as a function
of the SNR, for uncoded 16-QAM and 64-QAM transmission
(Nc,min = 1 for SD).
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Fig. 3. Relative complexity of different MIMO receiver techniques, for
a 4x4 antenna system. The complexity of linear and SQRD receivers is
independent of constellation size and SNR. Complexity of sphere decoding
very quickly diminishes as the SNR increases and is comparable to that of
SQRD, in the high SNR regime.

We find that appropriate layer ordering (see results for unsorted
QR vs. SQRD) is able to significantly lower complexity for SD,
especially for higher order modulation. Even more pronounced
is the effect of using the MMSE extension to remove close-to-
singular values fromR – the exponential increase in complexity



for lower SNR regions is thus avoided and detection complexity
of SD limited to 6 times that of linear receivers, even under
worst case conditions (64-QAM, SNR 3dB). This stability is
especially important when considering an actual implementation
where the complexity of detection must always be upper bounded
in complexity.

When considering uncoded 16-QAM transmission, we see that
in the regime of interest (e.g. at BER10−3, SNR = 16 dB) the
complexity of SD is roughly double that of SQRD, while offering
SNR gains of roughly 7 dB over BLAST (cf. Figure 5). For 64-
QAM transmission, the gain is 9 dB (at 21dB, results for SQRD
not shown) with only 30% increase in complexity. Manipulating the
constant factor in (6) leads to better results in this SNR regime, at
the expense of reduced stability, i.e., higher complexity in the low
SNR regime. This motivates for further research on the selection
of an appropriate initial search radius.
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Fig. 4. Relative complexity of different SD and SD-like receiver
techniques, for a 4x4 antenna system. The complexity of SQRD-M is
independent of constellation size and SNR and slightly higher than for
SQRD due to the required radius updates. However, complexity of SD is
always inferior to SQRD-M,M = 2 for 16-QAM and for 64-QAM at least
in the regime of interest (SNR> 15 dB).

Figure 4 compares the relative computational complexity of
MMSE-SQRD based SD with that of SQRD-M, for 64-QAM.
While having a complexity independent of SNR and constellation
size, it is evident that SQRD-M approaches are not to be favored
when considering only uncoded transmission. Especially values
of M > 3 appear to be prohibitive in complexity. Note that the
complexity of SD for 16-QAM is always inferior to that of SQRD-
M with M = 2 while the former can be expected to have superior
performance (cf. Figure 6 for the 64-QAM case). The complexity
of SQRD-M,M = 1 is slightly higher than that of standard SQRD
due to calculation of the remainder search radius, which eventually
is used to calculate L-values at the output of the detector.

IV. PERFORMANCE

A. Uncoded Transmission

Figure 5 shows the bit error performance of different MIMO
receiver architecturs for uncoded transmission, for 16-QAM and
64-QAM. It is clearly visible that linear as well as SIC based re-
ceivers are limited to first order diversity and are hence significantly
outperformed by SD in the high SNR regime. Results for ZF as
well as MMSE based SD are given to illustrate the fact that for SD
the difference between the ZF and MMSE solution is to be found
in the complexity domain, instead of the bit error performance.
Both achieve a performance equaling that of MLD.

Gains from SD over BLAST at BER10−3 are 7 for 16-QAM
and 9 dB for 64-QAM (results not shown). These gains can be
expected to increase by 7.5 dB every time we decrease the target
BER by one order of magnitude, owed to the difference in the
diversity order.
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Fig. 5. Uncoded bit error performance of different receiver techniques for
a 4x4 MIMO system using 16-QAM and 64-QAM. Spectral efficiency is
16 and 24 bit/channel use, respectively. SD clearly outperforms all other
techniques in the moderate to high SNR regime and is the only technique
achieving diversity in the number of receive antennas.

Figure 6 compares the bit error performance of SQRD-M with
that of SD for uncoded 64-QAM transmission. As expected the
SQRD-M approach is limited to first order diversity and SQRD-
M, M = 1 is equivalent to standard SQRD SIC (cf. Figure 5). With
increasingM , performance improves slightly but still falls far short
of MLD performance. In the light of the detection complexity (cf.
Figure 4), SQRD-M is no alternative to reduced complexity sphere
detection.
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Fig. 6. Uncoded bit error performance of different sphere-like detectors
for a 4x4 MIMO system using 64-QAM. M-SQRD is clearly limited to
first order diversity and shows good performance only in the low-medium
SNR regime, even for high numbers ofM .

B. Coded Transmission

For coded transmission, we use the standard “off-the-shelf”
Turbo Code (code polynomsg = (7, 5)o for constituent encoders)



without puncturing, yielding a code rate ofRc = 1/3. The block
length is 9216 bits and we allow for 4 internal decoder iterations.

Figure 7 shows the bit error performance of SD as a function of
the number of minimum candidatesNc,min for coded 16-QAM and
64-QAM transmission. As expected, performance improves as we
increaseNc,min. Note that the actual number of candidates may be
significantly higher than the minimum number of candidates. This
is owed to the fact that we increase the search radius whenever we
find too few candidates – and then may find too many. We found
that for higherNc,min and our selected initial search radius and
radius increment,E{Nc} ≈ 3Nc,min in the regime of interest.

This also motivated for our selection ofNc,min – with E{Nc}
being in the order of3Nc,min, requiring a minimum of 8 and
32 candidates yields a detection complexity comparable to that of
SQRD-M, M = 2 andM = 3, respectively.
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Fig. 7. Bit error performance of SD forRc = 1/3 coded transmission in
a 4x4 MIMO system using 16-QAM and 64-QAM. Spectral efficiency is
5.3 and 8 bit/channel use, respectively. Performance increases with rising
number of required candidatesNc,min.

Figure 8 compares the error performance of SQRD-M with
that of SD for coded 64-QAM transmission. The performance for
SQRD-M, M = 1, and SD usingNc,min = 1 is comparable.
Remember that this implies that coded SQRD-SIC and SD with
only a single candidate have also comparable performance.

However, Figure 8 also reveals that the picture changes as soon
as higher number of candidates are required to improve the quality
of the output of the detector. Increasing the number of branchesM
in the SQRD-M technique overM = 2 does not yield any benefit,
while detection complexity is substantially increased. The loss with
respect to MMSE-SQRD based SD,Nc,min = 8 is roughly 2 dB.
This result indicates that SQRD-M is not a viable alternative to
SD, due to its lack of adaptivity.

V. RESULTS AND DISCUSSION

We evaluated the computational complexity required for de-
tection as well as the performance of different MIMO receiver
techniques for uncoded as well as Turbo coded transmission.
Our results show that for uncoded transmission and low target
BERs, sphere detectors have only minor additional complexity in
comparison to other known receiver algorithms, while significantly
outperforming them all in terms of bit error performance. We
also proposed a number of techniques to reduce the complexity
of sphere detection, most notably in the low SNR regime. This
allows for using SD under a wide range of environments.

For coded transmission, the complexity of sphere detection
grows linearly with the minimum number of candidates. So far,
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Fig. 8. Bit error performance of different SD forRc = 1/3 coded
transmission in a 4x4 MIMO system 64-QAM. M-SQRD loses roughly 2
dB with respect to conventional SD. Remarkably, increasingM does not
improve performance.

rather high numbers of candidates are required to achieve good
performance. This motivates for further research to find techniques
that provide good soft outputs requiring only a low number of
candidates.
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