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Abstract

Hydroinformatics procends into that which M.B. Abbolt has characterised as (he “post-symbuolic
era alang two ditferent paths. Along the ome path, it elahorates tonls and cven more general
wotking environments for engineers, environtmentalists and other professionals that make little
or no use of symbols m any conventional sense, bat which instead work almast eotircly with
signs. Along the ather path, as illustrated in this present work, hydroinformatics increasingly uses
non-symbalic, and indeed strictly sub-symbolic, methods in order to construct these tooks and
more gencral working environments, Of course, m this latter case, the constmetor of these
instruments must still make recourse 1o symbolic representations, bul, as explained here, these
are employed cssentiably as ads to the thinking processes of the consttwctor, and are oot cartied
over of ingorporated in any way intg the operations of the eonstructions themselves. 1 is this
second path of sub-symbolic constructions that forms the subject of the present work.

The first chapter of this work is given over to an inlroduction Lo the sub-symbolic paradigm m
gereral and within the paricular context of hyvdroinformatics. The three main caorent divisions
within the sub-symbolic paradigm are these of antificial neural networks [ANNS), evolutionary
alporithims and celiular automata, A& detailed deseription of artificial neural networks and, in
particular, leed-forward, mult-layer perceptrons, which constitute the sub-synbolic tool used
throughout this work, is given in Chapter 2. A brief descripltion of the other two sub-symbaolic
methodologies 1s given in Chapter 3,

In Chapter 4, ANMNz are used to model] the rainfall-runoff process using artificially-peneraled
data, labaratory-experimental data and real, measured—catchment data to an exceptionally high
degree of accuracy. The problem of extrapolation iz described and u possible solulion 15 posad
for this problern. In Chapter 5, ANNs are applied to the problem of finding an accurate and stable
solution of the pure advection equation. The resulling ANNs provide resulls thal are al least as
god as those obtained by more traditicnal numernical methods. Finally, in Chapler 6, Alhs are
applied ta the more peneral problem of data mining as exemplificd by ranfall-manoff modelling,
salt intrugion and sediment transportation. I is shown that the ANN outperforms more
traditional, esseatially manual, methods of data nuning, and alse provides sipnificantly mote
accurale results than those obtamed by another sub-symbohe paradigm, namely that of gevetic

PTOETATITNE.
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1 Tatroduction

[.1 From Computational Hydranlics to Hydroinformatics

Already i the 19005, Abbol ez, 1969 introduced the term ‘computer hydraalics’ 1o indicats
that the traditional Gelds of hvdraulics and hydrauiic enpioeering wouid have to be reformulated
10 suit the possibililies and requireiments of the discrete, sequential and recursive processes of
digital computation. Frony rather disparate beginnings, computational fndraulics has established
ilself as an independent ficld of scicnce in which the claims of hydraulic realism and data
availability arc balanged against the requirements and limitations of numernical stability and
accuracy, and algonthmic simplicity {Abbott and Minns, 1997}, In fact, the objective of 1he
enginect in this area is W0 seleet a set of measurements and computations, ool of the set of all
posgible measuremenis and sl] possible compurations, that together wall describe a process with
he tost relevances, rehabality, and economy of means. The refevance, reliability and economy
of the resulting model can, in turn, be related to the cost and the commercial value of 1he
modelling service that il provides. 101s possible to define the wifiry of 2 model according to the
armneunt af mformation - which is propartional, fellawing Szilard (1929}, Shannon and Weaver
(149449} and Brillauin {1938), 1o the amaunt of uncertainty that ts presence resalves - and the
dupres Lo which it makes this mformation availlable (ree Abbotl, 197 In classical Bemoullian
tertrs we ean relale any merement momformation level, 44, to 118 associated inccement m Lhe
utility of the model-processed infarmation, A5, by

vy - ‘?

or

irn - Corstert »® 1nf~£}
!
where £, is a reference informalion state. We soc then thal any study ained atb increasing the
wiility of mathemarical modellmg is intinsically lmked 1o the amount and accessibility of the
information, or resolutton of uncerlainty, that of makes svailable,

The reliance of computational hydraulics upon (he digital computet bas meant that this feld of
sludy has also been significantly influenced by the recent rapid technological advances in
corputer sciences, and in imformation wehnodogy in general. Sinular develupments can be
wlentfied 1o the fields of data acquisiton, iransmission, storage and retrieval. The computatiomzl
goginesr 15 oow 0ot only concerned with the selection and developtnent of approptiate modelling
toals but ne must also deal with far greater quantitics of information than ever before, This
wfonmation must be made accesnible to the modelling system, and then both raw and model-
processed data musl he made available (o the clent i a form thatl 13 understandable and
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arecssihic, and often to 2 much wider audienee than the client himsclf The demands of this
tnformetion age have led to a prolferaton of electronic data-bandling packages i the form of
database management systems (DBMS), geograplucal infurmation systems {GIS), supervisory
conten] and data acquisition systems (SCATIAY, and many others.

The slrengthening dominance of electromes amony all enabling teehnologies is assoriated with
an increasing and bv now almoest toial dominance of diglial representation. We speak of an
electronic encapsulation of information nd knawledge (Abbott, 1993). The act of éncapsulating
infonation and knowledge changes the very nature of the information and knowledge involved,
as will be cxplained in the next seclivn. Suffice Lo say thal clectronie encapsulation must alse
change the way it which an sngineer accesses and uses the avatlable information and Imowiedge.
A will be explained laier, there 15 a shift in paradigm away frot a model-bosed approach to a
tore date-bazed approach.

This change of paradigm creates a new space in hydraulic engineering practice between the
traditjonal model-based planning, desipn and decision-making methedolegies of consulling
engineets and the mfomuaiion collection and knewledpe cxtraction techniques of hyvdraolics
research. 1l is within this spuce that we see the emergence of hvifrafnformeatics Abbott (1994)
speaks of a Capermican revofutton mowhich the engineer 15 no lonper asked to navigate his way
i the world simply by building models of the world, but must increasingly leamn to navigate
through a world of models. The enginger now becotnes less a personal carmer of all manner of
detaled khowledee and mnformation and more one whe i adept at organising and inkegrating
clectromically-cncapsulaled knowledee and information,

Hydroinformatics may be deseribed as the field of study that 1z concertied wath the low of
information related ta the flow of waler - and all thal it transports {(Abbott, 1991). The
hydroinformaties paradigm has emerged inmuitively from the well-estabplished field of
compulational bydraulics through the opportunitics and obligations of modemn imformation
rechnology (1T, The results from standard, computer-based modelling sy stems merely form a
‘camier’ or platform Tor the study of other aspects ol the most immediate interest. The
information necessary to describe and assess the state of any given body of water must also
include a plethara of social, legal and cnvironmental factors. The eventual physical, social and
eoviretimental mpacts resuling from any action upen the water body can thereby be determined
betore the excoution of the project. An impertant lvature of 4 hydreanlumatics system is thalt it
allows the use of numerical simulations that arc subject to constraints cxpressed in natural
language (such as applicable legislation, contracts, agreements, etc.). Finally, this assessment
process 15 enhanced by encapsilating expert knowledge and expericnce, merging this with
measured dala, and making this information available to hydro-scientists and engimeers, such as
in the Jorm of computer-based, enviroiumental impact assessment and decision support systems.

The very development of hydroinfarmatics and the corresponding value that ifs iolegrating
fupchion adds (o cach of Us components suparately, leads in s lurn to an acceclerated
development of measuring cquipment, 1o much more sephisticatcd SCADA systems, (0 new
modelling capabilities, {0 new means to relate measurements aod models through data
assimuilation, automatic consttutive cquation generation, automatic calibration procedures and
olher such applications of inverse and adjoint methods, to new data hase fechnologies, to new
user intetfaces and indeed to any number of ather such developments,
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Despite the new ground that has alréady been broken by hydroinformatics, these systems are far
from fulfilling their potential. Hydroinformatics rescarch does not remain limited to the fields
of hydravlics and hydrology alone, but has recourse 1o the latest [T developmeius in the fields
obartificial intelligence {including machine leaming, evolutionary algonithms and artificial ncoral
networks), artificial tife, ecllular er finite-statc automala and other, previcusly unrelated sciences
and technologics.

Through studying aod expluting eclements of these, at first sight unrelated, sciences,
hydrginformatics 15 producing oew and imovative solutions to hydraulie and hydrological
problems, as represenied by real-time contrel and diagnosis, real-lime forecasting, calibration of
munencal madels, data analysis and parameter estimatiot. (ree Verwey of af, 1994, LAHR 1994,
Bahovié, 1966). Minns and Babovie {19963 discuss this shifl in peradigm as related Lo the feld
of hydrological modelling. In particular. these new approaches may he nsed to penerate important
components of physically-based, distnbuted hydrolowical tnodelling syslems by irducing models
or sub-madels of individual physical processes based only upon measured data. These
(subimodels may then replace whole systemns of comiplex, non-linear, differentia] equations that
would otherwisze require great skills from the modeller to calibrate, and powerful compuling
devices 1o solve. In the separate, bul not wtally unrelated, held of ecolegical madelling, Babovid
and Barcita {1996} have investgated the apphcation of these new medelling paradigms to
madelling the higher trophic levels ol aguahe ecosvsremns. They deseribe an individual-based
madelling system in which the imdividual arganesm forms the logical base unit fior the modelling
of ecological phenomena. [n artificial inrefligence terminology we talk of imtelfligen: ageets. Thus
hydroinformatics-type approach then inteprates all of the individual sub-systems, or agents, and
allows them to interact with their environment and neighhouring agents according to properties
and characteristics that may vary between individuals. The overall papulation dynarmics then
enrerge Trom the multiude of tocal interaciions between the individuals,

1.2 Symbols, Signs and Models

[n order to sppreciate more fully the power of the new modelling paradigms, it is necessary [0
introduce a fundamental notion thal expresses the csscotial difference between these new
approaches and the mwore (raditional modelling approaches Thus 15 the notion of the
differentiation betwoen symbols and signs and thus between symbol manipulation and sign
mampulaton. Symbols aee an artefact of owr belefs sbout the natural world. These symbols are
lokens thal stamd ia the place of the objects that they represent. A collection of tokens ol this
kind, however, does not constitute a owdel. It is anly when we interpret a collection of tokens,
thereby piving them “meanmng’ oF sermantc cobtend, so that euch of the lokens m this collection
poinfs towares a celan natural phenomenon in the capacity of a sign, that we amive at the level
of u model. According to Heidegger { 192741962, pp. 77,79, 80)

{...} We come acruss ‘equipment” in signs. The word “sign” designates many kinds of
thimes: not only may 1t sland for different Ammds of signs, bul Being-a-sign-for can itseif be
lormaliscd as a weiversad kind of reladior, so that the sign-siructure itself provides an
ontelogical ¢lus for “characterising” any enlity whatsoever,
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Bul signs 10 the first instance, are themselves ilems of equipment whose specific
character as equipment consisks in showing [2eigen] ur imdreating |anzeigen).

Signs (...} et what is ready-1o-hand be encounlered; more preciscly, they lel some context
ol 1 bevome accessible in such a way that our concernful dealings take on an orientation
and hold it secure. & sipn is not 3 Thing which stands to another Thing in (he relationship
of imdicating, 1t 15 rather an iem of eyuipment whick explicitly ralses o totality of
BHISHERT LMD OUF CIroRmspaction ia fhat together with ff the worlidly churacter of the
ready-to-fand ammownces tisedf ..} Signs always indicate primanily ‘whetein™ one lives,
where onc's concern [Basorgen] dwells, what zort of involvement [ Hewandtnis | there iz
with semuthing,

The sct of tokens that we rocognise as Lhe Navier Stokes equations {or deseribing the motion of
an incompressible fluid then constitute 3 model because each constituent equatun vonstilutes *a
colleetion of signs that serves as a sign' that poants o a beliel that i so sirongly experdenced that
we ascribe to it the status of & law of nature’ (see furcher Abbotl, 1992}, There can only be a
fimite number of signs o tus world created by the modeller and the potential infinily of details
in the physical-world that cannet be deseribed within this limited sigh vocabulary are ofien
pathiered together in the form of assumptions and simplifications that have o be applied in arder
(o read a mealing intd the sequence of tokens that is the differential equation. If the modeller
accepts the Knutations imposed upon the mode] by the assumptions and simplifications, then he
ot she accepts 1hat this sign vocabulary, or language, is the best available deseription of the
physical processes being considerad. Lo the ttaditional model-based paradign, we input data,
which itself is a collection of signs, into the model, that is formalised cnlirely in signs, and obtain
outpt i the form of a ¢ollection of signs; which in this casc serve as a sign W2 show or indicate
the state of the system being modelled,

Of course we most camunanly treat equations such as those of Wavier Stokcs as sequences of
symbels thal we can maupulaie according to quite other laws than the laws of nature. In such
cascs wo are nol in the least interested in the ‘physical meanings’ ol our manipulations: our
symbols have for all parposes replaced our world of nature. Natnral syslems, however, rarcly
conlorn cndicely to dhe assurnptions mnpoesed by the limited symbol vocabulary that we apply o
the model. Subsequently, this symbolic language is commoenly very resiniclive for research intg
novel and innovaive approaches o modelling, The mherent limmitations of the traditionul
modelling approach and its associated langoape are exemplified in the Phiforophicad
frvestigations of Wittgenstein (Par 1, §§ 2-3);

Let us imagine g lanpuage .. (that is] ... meant to serve for communication hetweaen a
builder A and an asseslant B A is buildibg with bulding-stones: there are blocks, pllars,
slabrs and beams, B has to pass the stones, and that in the order in which A needs them, For
this purposc they use a language consisting of the words 'block’, "pillar’, 'slab’ and "beam’.
A calls them out; - B hrngs the stonc which he has fearnt Lo bring at such-and-such a call. -
Conceive this a5 3 complete primitive langnage.

iCn the other hand, | Augustine, we might say, does desenbe a system of commumicabion,
anky not evenahing that we call langueage is this sysicm. Apd one bas to say this in nany
cases whera the question arises [5 this an approvriate description or not™ The answer is:
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"Yes, il is appropriate, fur onlv for thrs aarvowly circumscrihed region, ant for the whole
of what you were clafaing fo desoribe,” (emphasis added)

tn this simple example, (he weriverse of discorrse constats only of the words "hock’, “pillar’,
"slab” and "boarn’. It would ke impossible for the characters in this “language gamc' cver to talk
abogt “doens”, "windows' or ‘reofs” - 19 alone an entire house! Similarly, the hydraulic modeller
is restricted in lis or her description of an hydraclic systern by the hmiled lanpuage of
computational hydrautics. The description of this system can only be as detailed as the mode] that
15 Lo be wsed 1o simulate the physical and bydraulic processes, which o lum is resmicted o the
mumhber of signs cognizadde in the uiverse of discourse of the modeller, In the languape game
that 15 50 circurnscribed, po amount of extea easured data will ever change the basic structure
of the underlving differenual cquations of the moded, bul may enly be uscd to adjust certain
calibratton parameters in order ta bring the results of mode] sinwlations closer o the observed
and measured phenomena. Since fooctional similarity wo Ihe nataral sysfem is supposed to he
comprebended by the equations themselves, it s the calibration parameters thul musl ten capture
the correspondener between the moded and the real world. These paramelers serve in effect as
ervgr campensation devices that artificially adjust the moede] resufls to compensale for the
fundamental discrepaneies thal cxist between the real world and s differcritial equation
represeniation that underlics the maodel.

Clalibration parametars are, however, asually not at all well-defined in nature. Cine may even ask
“Whal ix the phvsical meantng of these paratneters - how well are they prounded, and indeed are
they grounded ar all™'. We may indeed be able o read a certain "phvsical mesning” into our
calibration parameters, but they do not cxist-as-such in our sater world of nature and are thus
‘dizconnecied’ in a fundamental way fTom the world which they are supposed to model. The rules
that povern the way thal the differennal squations and the calibration parameters interact
canstitute ong pan of the grammnar of the language of the bydraulics modeller. The traditional
approach o madelling 15 one of simply mampulating and adjusting these colleclions of tokens
{whether s1gns or symbals) in onder 1o arrive at the best possible correspondence hetween model
output and measurcd data. MWowadays wr even recopnise the process of symbal mantpulanon in
the man ¥ commercial packages that claum 1o do just that (e, Mathemarica, Madab, eic.). Rarely
151t possible for the modeller to creare and incorporate new symbols and their wssocialed signs
ity 1his language of discourse. The symbolic approach suffers from a rather thoroustly
inlractuble problem of “symbol grounding” (Harmad, 19400,

Cine of the greatest streogths of the new hydromformatics approaches, which will be described
in mote detail later oo, 15 thewr ability widentify relationships and to indece models hazed upon
measured dala without requiring a detailed preconcerved koowledpe of physical system
characienstics a priarf. (ne of the reasons lor this is that many of these approaches maniputate
the data at the level of the computer representalion of the numbers. That is, the data are
represented inour digilal computers as fris and the operations upon this data then take place
upor these individoa! hits. The modeller in this case has no dircet infloence upon the bits that
cotrvey the baswe knowledpe. After translating the underlying data that characterises our nararal
world into bit strigs, the oowpmal svmbols are then further melevant for the subsequent
manipulations ol the bits, The algorithm operates at the level of the bits, which now operate as
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signs and no longer as symbals, and this way of wotkimg is refetred o as a sub-syarbolic
appraceh.

The cempuler is cotirely free in ils manipolation of the it stings; cutling them and rejoining
them again at different places, flipping bits either randomly ot i1 a controlled way. During this
process the overall performanee of the system can be observed and evaluated. This ohservation
involves translatiog the bit-information back inte data thal then acls once more as a colleetion
of signs that can be inlerpreted by the modeller, This resuliing colleciion of signs is itself not
necessarn |y 2 smgle fign as it may nol only contain parameters that describe some physical
phenomenaon, but also signs expressed in natural language in the form of warnings ot advice. The
bhest solulion of a problem 15 found when the interpeeted output from the compulter best malches
some desired goals. The caploration of the scarch space to ind the hest solution takes place at
the level of the bits within (he compater - the sub-symbolic level - and |, as such, 15 unrestictad
try the limitations of the one or the other language of ow symbolic world. The most impartant
influence of the modeller in this process s then the tmnslation of interpretation of the resulls
being produccd by the computer. These tesulls should samchow ‘make sense’ to the modeller,

In his treatment of connectionist networks in cognitive modelling and artificial intelligence,
Smolensky (1988, pp. 3,47 also highlights the fundamental differences between the syinhalic and
sub-symbulic paradigms, Fle explans how fnguege provides the dominant theoretical mode|
n cognitive sclence, 70 that formal cognitive modcls take their structure from the syntax of
formal languages and their content from the scmantics of natural langoage. In this way, cognilive
descriptions of cotitics are constructed from symbols both in the semantic sense of refernmg to
external ohyects and in tlke symaciical sense of being operated wpan by symbol manipulation. The
hurnan brain is taken w be a machine for formal symbol manipulauon. Several taditonal
arlificial intelligence approaches w cmulate this operation ol the brain belong very obyiously o
the symhbolic paradigm {see gizo binns and Babovic, | %946}

As pointed out already by Abbott {1991} however, such a *formalist® view of the working of
lanpuaye has never been aceepted at the ligher levels of expression, where the sormding of Lhe
language and the associaled coming-to-presence of its cssenttal meaning have always heen
emphasized. Langpape, in this sense, can ooly be grounded in human experienee penerally: ita
working is cxistential.

In appearance, at least, the sub-svimbolic paradigm incorporates cognilive deseriptions
constroered from entines that are merely conséitmemis of the symbols vsed i the symbolic
paradigm. Smolensky (1988, p.3} refers o these consliluenls as “sub-symbols’. An entivy
represenied by symbols in the symbolic paradigm can be represented by 2 moch larger number
of sub-svmbels in the sub-symbolic paradigm. Operations in the symbelic paradigm usually
consisl af single discrete operslions whereas in the sub-symbulic paradigm the tesult 15 obtained
after a nwch larger number of *fine-grained', numenical operatinns.

Within the above defimtions i 15 then easy 19 see how the sub-symbaolic methodologies have
stimulaled the shifl {rom the eacher commputational hydraulics paradigm, i which the model
determines the way 1n which the data expresses itself, to the hydroinfommatics paradigm, in which
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the Jats is enabled (o express ils own choice of model. This cnabling process describes another
lype of process that we may call meramodelling.

Within the computational hydraulics paradigm the data 15 2 colfection of tdicative signs that
serves omly to reflie or oriertitie move precisely an alreadv-explicated expressive sign. Within
the hydronnlvmnatics paradigen, #he duta sevves fo dofine iso the expressive sipn iself - \hat
which we usually identify as the nexus of ‘the model' and which we commenly represent for our
own purposcs as 4 siring of symbaols, such as a sel of equations. The role af the madellar 12 no
langer thatl of choosing an appropriate model and subseyuently fitting measured data ta this
medel through the adjustment of calibration parameters. Rather, the modeller is dealing with the
generation ot evelution of a model in the form of an information and knowledge encapsulator
that transforms the input data to some output segnal through the mtermediation of another kind
of encapsulated knowlaedge. To put thiz tn another way, we are now concemed to construct
systems Lhat themselves produce models: we are in cffect aiming to construct ‘metamodels®. The
mudeller must then select and prepare the appropriate data for input to the ‘metamode]l” and also
provide an intetpratation of the output from the ‘metamodel’, wherchy it hecomes a2 model 'for

1

us .

The selechion of appropiate input data, the logical interpretation of Ihe nuatput and the methods
lor encapsulzting the required kinds of knowledge mio a sub-symbelic deviee may vary
depending upon the cholce af sub-syinbolic paradigm. The applicability of some of these
arti ficialintel Hgence-based techniques, like evolutionary alporithrms and adificial newral
nebworks, together with their relative advantages and disadvantages in bydroimfonmatics will be
discussed in more detail in chapter 2. The artifisial neural network paradigm appears o be one
of the meos! versatile and powerful of these sub-symbolic paradigms and it is in fact this paricolar
paradipm thal will be studied in greater detail throughout the rest of this work.

1.3 Llectronic Knowledge Encapsulation

As menboned earlier, in bydroinformatics we are generally dealing with various forms of
knowledpe and electronic knowledge cncapsulators. For exarnple, one form of knowledge is that
of aur beliefs concerning the physics, the chenvistry, the biology, the economics and other forms
ol natwsal-scienti e and sovial-econemic knowledgs that are encapsutated it numencal models,
Similarly, knowledge expressed as facts and rules goverming these facls are commeonly
encapsulated through the yse of knnwlcdgc-hasud-s}rstcm shells. The rapge and versatility of
knowledpe crcapsulators that were already in general use 1o the hydromfoomatics community in
the early 199Fs were described i some detail in a special edicion ol the Jeurnal of Hydrawlic
Research (IAHE, 1594}, It was clear already then that slthough the process ol eocapsuolation of
know|edye i traditional applications may be quite ohvious o the practitioner who hus just
progranened the solution algonithm for a set of differgntial equations, or just entered a passage
of texl into 4 dala field i a <atabase, this process may be by no micans so obviows when dealing
with sub-syimbalic devices. Can the infirmation stored and manipulated within the sub-syinbolic
device be seen as knowledge™ Tn order 10 answer this guestion we first consider the following
definition (arth, 193241975, po 188)
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By the knowledge of an object by men we understand confirtation of their acquaimiance
with its reality in rcspect of its ex:stence and s nature. Bul confimation of their
aciualniance means that the reality of (he ubject concemed, its exislence and nature, being
true in themselves, now become in somic way, and with some degree of clarity and
distinctoess, trug for men too, Their acqualntance with i, instead of being & conlingent and
outward deterrmnation of therr own existence, now becomes a necessary and inward
determination. Knowing, they are affected by the object known, They no longer exisl
without it, bul with it In so far as they think of 11, with the same confidence with which
they dare to think in general they muost think of it as a e reality, as tre in s exislence
and nature. Whatever clsc and however clsc they may think of it, they must begin by
thinking of the trulh of its teality, Face to face with this truth (hey can no longer withdraw
into themsclves in ander to affom, question or deny it thence, [ts truth has come home o
thetrn, has become their own, And in the process they themselves have become the truth's,
This event, this conhmmation, 1 contrast 0 mere cogmeance, we call knowledye,
Cupmezance bevomes Knowbedee wherinan becoimes a responsible witness to s content.

We are confronted here also with the temporal natuee of knowledge. In the modem-scicntific
scnse, whal we call knowledge, in so far as i relers to events al all, relers w pust evenls {Park,
1978). In this dala-based paradigm our original data sets have temporality, however, the
encapsulated knowledge has, in principle, no temporality; it is faternalised in the memory of the
eompulcr and 15 henee “ouf af tine’, 11 follows that the mencal state thar we call perception has
temiporality and that the state that occurs between perceplion and knowledge, thal ol cogadtion,
represents the transinon from the one state, of existing in time, to the other staic, of cxjsting out
of ime. Denbrigh [ 1978) suggests that, in this way, memooy in humans and hiegher animals may
perthaps not significantly differ from computer memory. In the bislegical bram there are
indications that shorl-term memones depend on short-term electrical excitations within the brain
whilst long-termn memiorics depend oo changes in e molecular structure of (the newtons, similar
to the kind ol tmpdnnog that ceeurs in the memoty bank of a compuler.

Knowledge pives any collection of information its “meaning’ or semantic content. A traditional
cognitive model may formalise demain knowledye i oa ingnshe structure such as “enetgy is
conserved”. An electronic knowledge encapsulator, on the other hand, fakes our knowledge of
our own material world and converts this knowledge 1o information in a truly sub-symbolic form,
for examplc as a sting ot binary digits stored on the computer’s hard disk dive, This information
rreay then be processed back mio a form that has meaning to the user and hence it provides the
user with further knowledpe. Whereas in $1.1 we speke of the wtilily of 2 modcl only in terms
of the amoum and accessibility of informalion, we see here that there is a link herween the
accosstbilily of information and the knowledge that this infonmation can provide us with, 1n fact,
Abbott and Minns [ 1997, see afse Abbott, 1993) in their description of the process:

Enowledpe — Information  + Knowledge (1.3.1)

intcgduce the notion of the fecial vadwe of the mcaning content of the knowledwe,
Forknowledges), this being the valuc that socicly as a whole percoives this knowledge 1o be
worth in matenal terms. They describe the inherent asymmetry in the process {1.3.1) in that the
meaning conlent of the knewledge entermg the left-nand-sde of {1.3 1) is of & very difterent
nature than the meaning contenl of the knew|edge cmerging on the night-hand side. For example,
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the knowledge that 15 used in the construction of a model is of quite a dilferent nature to the
kngwledsze that the user of the model acquires through the uze of the maodel. Tt is the associated
imerease in the social value, expressed as:

AF, = Fr~ knowledges] - Fusknowiedge —+} (1.3.2)
that justifies the use of electramic knowledge encapsulators,

Smolensky (1288, p.4}refers o science as a “cultural activity” and gives three extremely valuable

properties of formalised ewlturel inowledpe, namely:

- prblic aecess: it ts of imited social value to have knowledge (hat resides purely in one
individual,

- reffatuling iLis of questiooable social valus o have knowledge Formulated in such a way
that di Fferent users draw dilferemt conclosions from it,

- Jormality and universaline: for cultural propagation ol knowledge 11 15 helplul if novices
with lictle or no cxperience with a task can be given & means for performing thal task, and
thereby a mcans for acquinng cxporience

Thus, at a culwral Jevet, the goal of any knoewledge encapsulator is Lo express knowledge ina
form that can be accessed and used velighly by differcne people, even incxpenicneed people. In
the past, Linguistic feamulations of knowledge have usually proven to be the most suitable for this

putpose,

Wilh an electronic knowledge encapsuiator, the user only interacts externally with the
encapsulating device in the asts of supplying the colleclion of signs represented by
‘knowledze ¢, and subsequently interpreting the colloction of signs tepresented by
* o« knowledge’. The Fact that knowledpe and signs arg therchy s0 incxtricably related iz rather
eloguently described by Foucanlt (195641970, p. 59k

{...) From the seventeenth century onward, the wheole domain of the sign is divided
between e certam and the probable; that is to say, there can ne lenger be an unknown
gigm, a mutc mark. This is not becguse men are i possession of all the possible signs, but
bocause there can be oo sign until here exists a tnewr possitality of substitution between
two dxown clements. The sige does not wait i silence for the caming of a man capable of
recognising it it can be constiluted only by an act of knowing,

{..) From now on, {..}, 1l iz wilhin knowledge rself that the sign s to perform its
signifying function; it is from knowiedge that 1t will hormow its certainty or probability,

Furthermore we can ideqtify two levels of knowledge in the encapsulation process. As Abhott
(1993) states, this process of electronic encapsulation leads necessanly o a restrucluring of the
knowledge itself, and the form ol our knowledge plays an importank rale in the choice of
knowledge encapsulator. For a description of these forms we shall rearn 1o Foucaul
(19667197, p.72):

Whatl makes the iotahty of the Classical spisreme possible is primarily the relation o a
knowledge of order. When dealing with the erdenng of simple natures, one has recourse
to a mathesis, of which the universal method is alpebra. When dealing with the order of
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complex natures {reprosentations in weneral, as they are given in experience), one has Lo
conslitute A raxiromiy. and to do that ong has to establish a system of signs. These signs
are 16 the order of composile natures whal algebra is 1o the order of simple natures, But in
50 far as empincal representalions must be analysable into sitmple natures, it is clear that
the racinemia relates wholly to the mathesis; on the other hand, since the perception of
procds 15 only one particular case of representation in genetal, one can equally well say that
mathesis is only one particular case of raxtromee. Similatly the signs established by
thought itsclf constitute, as o wers, an algebra of complex representations; and algebra,
inversely, is 4 method of providing simple natures with signs and of operating upon thase
SIETS.

These various forms of knowledge and their relationships to each other through signs is shown
in Fig. 1.1.

Simple natures «— Complex representations

| |

hMathesis fawinomic
Algebiq - Signs

(Syribcls)

fiag 44 Geweral soiener of rrder (pdopial from Foucaete, TRGSTENL BT

Abber {1993 uses the simplest cxample of the soluton of a set of differential equations using
a numerical scheme to lusoate the mathesis of computational hydraulics. A sl of eyuations hus
s own motfhests that allows us to regognise this sot of statements as 2 model of seme hyvdraulic
phenomensi. in as much as it 15 a collection of signs that serve as a sign. The solution scheme
has again its own markesis that allows us to translale the set of syuation stalements, wotlen in
a standard language of the continuum, into a set of statements in whal i, in effect, a first-order
lunguage, which is "understandable’ to our programmable machine.

On the other hand, if we consider an example from ecolegical modelling, encapsulation of
koowledge at the level of the mathesdis in this case would only provide us with the simplest
paradigin 1 modelling population dynamics, such as the prev-prodator equations of Lotka-
Yolterra (see Maynard-Smith, 1973}

dMidr = e - DN - alP
dride — -oF 1 gNEF (1.3.3)

in which cach and every organism i the prey population, N, and in the predator population, £,
is considered only in relation Lo the total quantity of s functional type, The effect of the
predators upen the prey population 15 only measurcd by the “functional response’ tern, NP
Labovié and Baretta {1998) argac that the multiphoty of details i a complex ceological system
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can however best be modelled by an mlividoal-based approach amil the individuals within each
functional type appear to be mosl convenicntly represented by mtelligent agents. The faxinomiz
of the intelligenr agent approach encapsulates all of the knowledge about the Sekaviowr of the
endividuals. This knowledge is composed of both deciarative Cknowing-thac'] and procedural
(" knowing-low' types of knowladpge which each individual is presumed (o possess (Minos and
Babovic, 1991 3. This may not ouly include physics-based cquations of mass and energy balanees,
bul also mtelligeoce and bivlugical aspects of compelition, coopergion, breeding and such
prnciples as “the survival of the fittest”.

Finally, we cun scc lhat marhesis relers only 1o rules for even “laws') poverning the Aows of
informalion, usually expressed in the form of symbols. Once more, Foucault {13665 1970, p. 74)
points out that | it 1He strict sense, maikesis 15 2 science of equalities. and therefore of attbulons
and yodgerments: it is the science of etk Taxinomia . on Wbe other hand, is the science of
classifications and orderings, dealing essenttally with identities and differences; it s the
knowledge ol beings. We might also express this by saying that whereas ravincmia betokens the
laws of nature, marheriz hetokans ‘the laws of the laws of mature’.

As will be desenibed in more detail in Chapter 2, a sub-symbolic deviee, like an artibBicial neoral
nelwark, can encapsulate koowledpe al the leve] of (he rasinomia by establishing a relation
between some input, that may be a callection of anv signs represented by “knowiedge +°, and
some autput, that is another collection of signs represented by * + knowledge'. This relation is
established dunng a learnmy phase 10 the device, which has the aiim of reducing the visible
differences berween the oulput from the device and some desired of sopected results, whicluis
yet anather collecion of signs that are usually determined hy measurements o from our own
detailed knowledge of the sysiem being deseribed. The mathematical expression of the visible
difference hetween these collections of signs may be in the form of a simple least-squares ermar
between sets of real numbers, or way include svstem state descripiions expressed in natural
language. The power of the sub-symbolic spproach 15 described mest clearly by Smalensky {in
Fumclhart & af, 1986, Yol. |, p. 261

Nowhete 15 the contrast between the symbolic and subsytnbolic apptoaches to copnilion
more dramalic than in learming. Learning a new concept in the symbolic approach entails
creating, something bke a new schema, Because schemata are such large and complex
knowledgze struetures, develaping automabic procedures lor pencrating then: in eriginal and
flexible ways is calremely difficult

It the subsytnbolic account. by contrast, a new schema comes into heing gradually, as the
strengths of atonis slowly shifts in response to environmental chservation, and new groups
of coherent atoms slowly gan impertan! influence in the processing. Duting learning, there
need never be any decision that “now is the ime o creale and store & new schema™. {r
rather, 1F s0ch 2 decision ig made, it is by the madeller ohyerving the evolvimg cognitive
systenl and nat by the system itself

Babovic { 19%5) suggests that the prometion of emergent cotnputation as a paradigniatic approach
1 medelling advocates an alternative and mare natural way of thinking, He desconbes a number
of sub-symbolic paradigms that are based upon the concepts of Txanvinian evoluian; the so-
called evifutionary afgorithms. Computational systems of entitics or agents that are allowed o
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interact and genetically evelve form imphicit global pattems al the macroscopic level, Thus
solutions emerge whose signs point 1o other obiects i the natural world thal could not have been
indicated by the collection of symbols contained in a preconceived model.

Finally, some sub-symbolic devices, like genelic programming, may sven be used to encapsulate
koowledpe m the sense of markesis by producing whal appear to be physically realistic
mathematical fomlae of a physical phenomenon (see Babovic and Abbott, 1997 The relative
advantages and disadvantapes of this approach as eompared to anifieial newral necaorks will be
discussed later, in Chapler 6.

1.4 Thesis Outline

Thiz work is composed of seven chapters. & short overview of the matenal to be presented in the
fallowing chaplers is given here.

Chapicr 2 describes the history and developments of compitations invelving artifisial neurons
ur perceptrons. A simple example (s used to demonstrate the leaming ability and the linear
classification properties of a single perceptron. Alter a shonl discussion of the universal
computation abilities of the pereeptron ag well as some of its shortcomings, (hers follows a rather
detailed description of the multi-layer perceptron and the generalised delta rule most commonly
used to train malti-layer neural networks. This chapter concludes with a brief descriphion of some
other comumoen artificial neural networks,

Due to the imponance of the sub-symbolic paradigm to the whole problem of knowledpe
encapsulation and machine leamyng, Chapter 3 provides a peneral description of some other sub-
symmbolic techniques that are also enjoying some success in cerlain hydroinformatics applications.
In particular, the performance of one of these paradigms, that ol genclic programming, is
compared to the performance of artificial neural netwarks in Chapter 6.

Chapter 4 descnbes the results of the application of attificial neural nersorks tw the modelling
of the ramball-ranolf pracess. Both real and experimental data are used o demansizate the ability
of the AWNN to learn a usable relationship berween the rainfall and the runeff, based only upon
measured rainfall depths and discharges from 'he catchment, The problem of the extrapolation
of results using an ANN is addressed and a possible solution to this problem for these types of
hydrological applications is presented.

Chapter 5 is concemed with the problems where the exact mathemalical formulation of the
relationship is already well known, ¢.g- in the form of a differential equation, but whers accuratle
soluttons of the mathematical formulaven are difftcult to achieve. The scalar wawve equation 1s
used as an example of this grpe of problem. Bath linear and non-linear ANNs are applied to {ind
solunians ro the pure advection prablem.

Chapter & descrihes the application of AWNNs to the most peneral problem ol data mining. TN
these problems, a relationship is being sought amengst vast quantitics of raw dala for which the
exnstence of some deterministic relationship between centain variables has not yet been accurately
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established. The results of the ANMNs arc ¢omparcd wilh those abtained by applying genctic
programming Lo the same raw dala. All of these tesubls are fthen cotnpared to thase obtained Fom
miote traditional, manual nethods.

Chapter 7 sumumarises the conclugions drawn (fom this pregent work and highlights the strengths
and weaknesses of artificial neural networks when applied to hydroinfarmatics probleins. It
further identifies some related application areas which should be mvestigated further in the
future.

The appendix provides a general descnpuon of the problems of overfiting and generalisation as
they may be encountered with any artificial neural network and describes a procedurs thatl can
help avoid these problems.






2 Artificial Neural Networks

2.1 General

The sub-symbolic paradigms that appear to offer the preatest potential in hydroinformatics are
those of arlificial neural networks, evolutionary algorthms and cellular autamata. This chapter
includes a detailed deseription of the range and applicatens oF artificial nearab networks, which
15 the paradigm that forms the central theme of this study, The subsequent chapler contains a
shart overview of Ihe methodalogies uof some evolutionary zlgonthms and cellular antomata
approaches in order to allow comparisons of the relative advantapes and disadvantages of (hose
mtthodolopies as comparcd with those of arlificial ncural networks.

2.2 Biplpgical Inspiration of the Artificial Néuwron

The abiliry of the hrain 1o perform difficult operations and to recognize complex patterqis, evan
il these patlerns arc distorted by ‘noisc’, has {ommed the subject matter ol the discipline of
cognitive psychology that has in tuen sieongly inlMuenced the study of artifictal intelligence
(AL The particular abilily of the bran 1o leatn lrom expenence without a predelined knowledge
of underlying physical relationships makes it an exceptionally flexible and powerful calculating
devics thar Al researchers have lomp mied to mimic.

Al the same tirme, other rescarchers have heen develed to reproduecing, or modelling, physical
phenomena by making use of glecirunic computativnal machines lo salve ever-incrcasingly
complex continuumn {ordinary and partial differential, and integral) equations and related
cmpintcal relationghips. These ressarchers are supported by arapid imcrease in the computational
capacity of modem computers and an emerging recogmtion of the advantages of massively
paralle] computation {paralle] distributed progessing) that allosss the required calculations to
proceed with over-increaging speed. However, although the design and copstaction of the
hardwarc {or parallel computation is relatively straightiorward, the software curently available
for creating algorithms bo utilise this paralle] atrchuleeture for solving partial dificrential and other
such equations efficiently is still quite limited.

These two proups of rescarchers, pursuing whal appear to be quite different goals, have found
a common ground in the field of artificial neural nemworks. ANNs are nol an exact compulational
tepresentation of the human brain but are merely inspired by our (limited) tnderstanding of the
operations that take place within the brain. The human brain consists of approximately 10 to 100
hillion (10 brain cells or reurons. Each of these nourons is connocted to approximately 10,000
other neuroms, The time taken by o single biclogical ncuron Lo respond to a given stimulus is
about 1 millisecond. 1f we consider that a compleote tagk cap he solved by the brain in about 9.3
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seconds then, by taking into account some delays caused by the travel time of information
between the ncurons, we sée (hal the brain performs about 100 processing steps during the
execution of the lask. Now, the time for a single switching operation in & digial compuler is of
the order of magnitude of | nanosecond (10 53, which is aboul | million linies Faster than the
response time af a biolagical neuron. The von Neuman architecture of our modern computers
restnets us 1o a sequental exceution of switching operations ot calculatons. The brain, on the
other band, cornpensates for the relatively slow switching speed by making use ol a massively
parallel eonfiguration. The inspicabon for artificsl oewral nelworks (hen fies in the desire o
emulatc the functionality of the human brain on a conventional compuler in which the lack of
parallieltse is compensated by the sheer speed of computation.

One of the earliest breakthroughs in teural computation was inspired by the rather misguided
apprehension that it should be possible (o0 cmuolate the cognitive funcuonality of the bram simply
by reproducing the physical mechanizms of brain activity. Al the simplest level, it is possible to
schematise a mological newron as shown m Fig. 2.1,

Pz 2 F Schemesizarior of o Miofogical newron

The rrain celt body of a bislogical neuron is called the soma. Attached to the soma is a tree-like
nerwork of nerve fibres cailed dfendrires, The dendnites carry signals ¢ the soma in the form of
electrical pulses that have originated from other neurons. The soma proccsses the incoming
informatien and may produce an cutput signal inthe axes in the form of anpther elecirical pulse
ar action potential. The axon ramiflies inlo vanous branches that make swrapses onto the
dendriles and somas of other neurons. The axen is a sort of non-linear threshald device that is
“fired’ when the potential within the soma rises above a certain threshold level. Chemicals called
peurorranamigers arc eleasod from the synapse when the potential of the synapse has been
sufficiently raived by the action potential in the axon. The elfect of the neurotransmitters on the
reeeiving dendnite or soma is 1o raise (2xciie) or lower (inhibit) the electrical potential inside the
body of the receiving celi. For a more compiete description on how biological newrons actually
perform computations refercnce is made to the work of Hopfield (19%94).
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An extramely over- simplified desceiption of the operation af bialsgical neurons forms 1he basis
of the model neurun proposed by MeCulloch and Pitls (1943), The MeCullech- Pitts ncuron,
schematized in Fig. 2.2, consists of a simplc summation device attached to a binary threshold
unit,
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Fegr. 2.2 Schemasic diagram of the MoCiallach-Pitts model rearon

The mode] neuran computes the weighted sum of incoming stpnals x, and produces an output of
one or xero depending upon whether this swhn is above or below a given threshold value, & This
can be expressed mathematically as:

o, - H[IEwl.xl - Hr) (2.2.1)

where A £} is the Heaviside step function.

n k=0

HEE) - {1 crherwise (2.2.2}

The weight w, represents the excitory or inhibitory effect of the synapse anached to connection
i McCulloch and Pitts {1943} showed how a synchronous assemmbly of these model neurons
could compute any logical fienction for a suitable sclection of the weights w,. This demaonstrated
the ability of these devices to compute numencally also. In fact, systems of model neurons
provide a complele compuilational model capable, in principle, of performing the same
computalions that can be performed by any digital compuler.

The ahility of these artificial neurons to compute, however, is only a first step towards emulating
the functicnaliry of the human brain, One of the mosl fundamental properties of the hiuman brain
15 its ability to fearr from examples. For the simple moade] nearon this means that we tequire a
mechanism for choosing the connection weights so thal we can caleufale something useful. In
praciice we “leach” the systern w0 perfomm & desired computauon by iterative adjusiments of the
w,. To continue the biclogieal analogy, we note that learming in the homan brain oflen involves
reinforcing behaviour that we wish (o see repeated and discouraging incorrect or *bad’ behaviour,
Hehb [ 1949] theorised that leaming oceurmed in brains through the moedification of synapses, and
that repeated firings across a synapse increase 165 sensitivity and hence the future likelihood of
its firlng. A particalar positive stimulus then causes a strong association between a centain group
of cells. For a network of model neurens. Hebb praposed thal a reasonable and biologically
plausible mechanistn would be to strengthen Lhe connections between elemants of the nebwark
omly when bath the presynaptic and postsynaptic units were active simultansously.
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Rumelhart er af (1986, Vol L, p. 36] give the following rule for adjusting connection strengths:

Adjust the sirength of the connection between ) units A and £ in proportion 1o the
praduct of their simulfunmous gotivation.

This natural extension of Hebb's original formulation allows both positive and nepative
acljvalion values resulting in positive (excitory) or nepative (inhibitory)] changes to the
connection strengths. This rule is called the Hebd rufe and this learning paradigm is referred to
as Hebbian leavming,

2.3  Perceptrons and Linear Classiliers

Model neurons, connected up in a simple fashion were given the name “perceptrons’ by
Rozcnblatt in 1962, Minsky and Papert (196971988) provided a rather thorough mathematical
treatment of percoptrons and their ability to deare 10 distinguish between classes of patterns.
Following these earlier works, we define a perceptron as a device that is capable of computing
any predicate YeX) of a given patiern & The pattern X is described by the sct of features @(X)
und we define the predicate:

WX = | ifand only if Twgp, = 8 (2.3.1)

where w, ig a 2ct of numbers or weighis and B is some fireshold vadue. Defined in this way, Pyx)
ig said lo be & fineer threshold funciion and is skeiched io Fig. 2.3,
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Fig 2.3 Lineur threshold functior for the predicate yix)

That is, given a set of ¢, this can be assigned to one af Ao possible classes, defined by the (wo
possible states of the predicate o, by simply setting the cocfficicnts w, and the threshold value
B 1o suitable values, Minsky and Papent (19691988, pp. 164-1700 present a procedure for
adjusting thesc values in a so-called feqrning precess untl the correct values are obiained, In this
procedurs, we represent the set of features ¢, of any given pattem X in vector notation as @, The
sel of weights v can then be represented in veclor notation as W. We now replace Zwap, by the
gealar product W - D TF we assume that our input patterns come from a space that has two
classes, F* and F | we can definc a predicale:
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W =1 ifand only if W- & >0 {2.3.2)

which corresponds o X« F . The predicate (2.3.2) implicitly identifies the second class of
patten, F, inthat W - & < 0 corresponds 10 X e Fo

Ifwe select a sct of weights W for our percepiron and then present it with a patterm X it will
calculate the sum W - &, [ this sum iz posive and X < F7 then the answer is correct. However,
il we now Lake a different partem X' < F* and caleulaie a surn that is negative, then this answer
iz wrong and the weights in the percepiron should be adjusted so that the resulting sum becontes
positive, That is, the values of the weight coefliciens should he increased. The question then
arizes of determining by how much the weight values should in zll events be increased. Clearly,
if any of the 4. is zero then these values and their corresponding weight coctticients cannot be
blamed for the incormect 1olal of the summation. Comespondingly, there is no reason to make any
changes i the values of these particular weights. The most elegant way of increasing only those
voeflicients that comespond to noo-zere values of @, is simply w add the vector @ o the vector
W. in a similar way, if the sum W - @ had been positive for a pattem X ¢ F° then (he
corcsponding adjustroent 1o the weights would simply invelve subtracting the vectar @ from the
vector W, Tlus procedure is summarnsed in Fig, 2.4,

HTRET: choose any value for W

TEAT: choose an X
iFAX = F and W- O =0} gnto esr
XeF and W-d = Qgoro a0
ifXe T and W - & < 0 gato 1R
HXeF and W-& 2 I goto =03 TRACT

ADD: replace W with W + &
pola sy

SURTRACT replace Wwath' W D
goto TEST,

Fig 2.4 Afearithe for tho claszifioaftar of reo fmearle-seonrcble elaueey
A vanation on the above procedure was proposcd by Widrow and Hoff (19600 based upon the
prnciples of gradtent descent m which the changes to the weights should be proportional ta the

gradient of the error funetion at that locawon. If we define an error or cost function for 2 given
pattern A ={x,, x,, ... X, h as:

Efﬂ%-imql 233)

where 4, is the desired output for pattern A de. &, =0ifA e FLord, - TiFLe F .
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Then we can calculate the gradient of the ermror funclion us;

7
s g - Swax (2.3.4)
W 1

o’

Mare that during the learning process the cutput is oot passed through the step function, although
actoal classification is effected by using the step function to prodwce &y, This is of course
equivalent to saying that £ wx, = 1 is sufficient o classify A = F', and T wx, = (1 is sufficient to
classify & ¢ F . Adjusting the weights by an amount proportional to (2.3.4) then gives:

&
Aw, , = ﬂ—aw“ = M4, Y wxlr, nbx (2.3.5)
!

r

where 1 is a multiplication factor berween O and | that has e effect of slowing down the change
in the weights. thus forcing the nebwork to take smaller sleps towards the selution. Eq. (2.3.3]
15 referred ta as the Widrow-Hoff defta rule.

The basic algonthm in Fig. 2.4 is 50 simple und clearly defined that Rosenblatt (1962) proved
the existence of a perceperon comvergence theorem that defines conditions under which this
proccdure is guaranteed to {1od g cummect set of values, The percepiron convergence theoreim
stales that whatever choice 1s made i sTakT and whatever cheice function is used in TEST, the
vertor W will be changed only a finike nwober of times. In other words, iFthe scts F* and F- oare
linearly separable then the above propram will find a solution vector W for which the predicate
(2.3.2% will separate them. The mathematical proof of this is given in Minsky and Papen
(1963 1 Y8R, pp. 168-170, see afso Reale and Jackson, 1990, pp. 53-537),

A simple example will suffice to demonstrate the convergence of the above procedure to a
desired solution. {onsider the four patterns divided into two classes as given in Table 2.1, Each
of the patterns can be identificd by the propertics (g, ,p,}, and have been assipned either to class
E' or F°. The patternis are also shawn on Fig. 2.3, where ihe pattorns i Class F* are indicated by
a "+ symbol and the paticrns i class F-oare indicated by o *C' symbal

Table 2 T Exemple patterns und aisocifod olisger

Pattermn . g, Class
1 2
2 3 & F

3 F

3 d 1 E*
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A weight vector, Wy, is also drawn on the same flgure (dashed line). Generally speaking, the
vectar space of the weight vector, W = (w,, w,) wiould niot be the same veclor space as that of the
pattern vectors, © = (4, @,). Fven though the scalar product W - & implies that W is a linear
opéerator o the pallerns themselbves, it in fact operates on spaces of Munclional operutors on the
patterns, For convenicooe of demonstration we have used the same vector space for both the
patterns and rhe weights.

¥,

“linaat declasn Boundary

& closs F-
+ closs Fs
]DB .
L4
| wedght vachor

Fug 2§ Progresmo i the wenght veotor and ity associgsed (mear geciston bopndory dusing fre olassificesion of
fer elaxsey (see Tahle 2.2

Fig. 2.5 shows the progression of the weight vector, W, and ils associated lingar decision
haundary, DB, during the classificalion process, starting from the itial ‘gucss’ of W, (dashed
ling) and ending up with the solwtion W, (thick solid ling), The caleulations for each step of the
dbove procedure are given in Table 2.2,

Tulble } 2 Calculations accampanying the clussification exarmple in Fig. 2 1

weralion  weiphtvector, W panern vector, & class Wb action

0 W, —(2-h $, =21 Fo2xz Ixd=] w=w-d

i W, 4] o - (360 F Oxd - dag - 24 nw change w YW

2 W, = (-4 th, - (4.0 E- Oxd - dal - -2 W-wW.d

K] W, =(d,-1) P, =154 B x4 - Sxd =8 no change o W

E| W,o=(4,-4 &, -2 F 4x2 - 3x2 -] no change to W

3 W, =(4,.3) = (3.0) F ax1  Jxh=-G no change to W

f W, —(4,-3) =, Fo o dxd - Ix1 =13 no maoTe chanpes o W
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From Fip. 2.5, we see that the decision boundary is a straight line drawn perpendicular to the
weighl vector. This orientation of the decision boundary 15 obvious when we consider the
cxpansion of the scalar product:

W D= Wl Dlcosy (2.3.6)

where v is the angle botween the veetor W and the veotor @. | 18 elear 10 see that the scalar
product {2.3.68) will indeed he positive for all values of ¥ hetween +30 and - 90 deprees. This
then implies 2 straight decision-boundary {ine where all patterns located 'above' this line will
result in 2 positve value of {2.3.6) and hence belang to class FY, and all pattems locared 'below®
this line will result in 2 negative value of (2.3.6) and hence belong to class F o

Linegar classifiers like the ane just described can be used to scparate more than fwva classes by
arranging many decision boundarics and performing several 1ests to salisfy the conditions for
each class (xee 13eale and Jackson, 1990, p. 31} For example, in a problem consisting of classes
A, B or C it would be possible to esiablish a decision boundary that would separate A from BC;
and then. if the answer were not A, 10 establish a decizion boundary to separate B from C.
Similarly, for difficull class-houndary conditions, the decision surlface can be split up m a
piecewise fashion as shown in Fig. 2.4,

L]
a @ e Al
o o o P chasz sigr =f deczian lina
\ a o 0+ S - | B L
+ “+ F-
\ f -+ +ve
+ N + +
+ +4 t F +a v
ff +% 4+ + & clossF- - . o
A+ F h + class F.
+ .'-}n:'e
o
Lo
A

Fig. 2.6 Fiecewere tinear clasaification for o pon-linearly separafle pasern Sodapied thom Becle and faokson, |99,
p 3t

[n summary, therefore, we see that Rosenblatt’s claim that a perceptron would leam anything thar
it was passible W program it to do refers only to the problent of classification of inputs that ate
linearly separable. This limmtation was récogrised by Minsky and Papedt {19649/ 1988) in which
they quite extensively ‘proved’ the inabilily of a perceptron of finite order to recognise
conneetodness in any given figure. This was most clearly staled by the authors (idid., p. 1131

It iz out conviction that the deterioration of the perceptron’s ability to recopnise patterns
embedded in other contexts is a senious deterrent to using it inreal, practical situations. OfF
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course this deficiency can be mitigated by embeddimg the percepiron in a more serial
process - ong in which the fgune of interest is isolated and separated from its context in an
earlicr phase. But this presuppeses cnough recognition ability, in the “pre-processing’
phase, to discerty and remove the most commaonly encountersd contexiual disturbances, and
this may be much harder than the ‘processing” phase.

Funhermore, the perceptron 15 quite incapable of ¢lassifving patlems in many situslions where
the pattemns are lncardy inseparable. The simplest example of the exclusive-or { XQR) logic
function shows that for the case with just two inputs and one outpul, the XOR function table, as
givenin Fig, 2.7, produces a pattern space of 2ercs and ones in which it is impossible to draw a
smgle siraight e 1o separale the two classes.

s R gt fakile

1+ o Ly X xR <k

o G 1 o

1 [¥ 1 +

o o1 1 .

1 1 1] o

! — -
0 s . .
0 i u

Fig 2.7 The linearfy inseparafle AOR prohivm in pattern space

Minsky ang Papert recognised that some of the above mepuoned limitations conld be
circumvented by adding another layer of logic bo the machine to permit *and-mp" twoe pereeptrons
together. However, they expressed serious doubls about the possibility af discovering a universal
theoren, simikar to the perceptron convergenee thegrem for ingdividua) perceptrons, that could
he generally applied to these multi-layered machines. [n panicular (Whed . pp. 231-232)

The problem of extension is not merely wechnical. I is alse strategic. The percepiron has
shown jiself worthy of study despite (and even becanse o1} its severe limilations, 1 has
many fealures to altract atleolion: its lnearity; 165 intguing learning theorem; its clear
paradigmatic simplicity as a kind of parallel computation. There is o reason to supposs
that any of these vinues carmy over 1o the many-layered version. Mevertheless, we consider
it Io be an imporant rescarch problerm to elueidate {or cejeet) our intuitve judgement that
the extansian is sterile. Perbaps some powerlul convergence theotem will be discovered,
or some profoand reason for the failure to produce an imleresting “leaming thearom® for the
multi-layered maching will he found.

2.4 Mulu-layer Metworks

The publication of Minsky and Fapert’s rather damning book in 1969 scomed o hring
developments i this ficld to a halt, Very little progress was made in addressing Minsky and
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Papert’s criticistns until 1986 when Rumclbart, MeClelland and the FDF Rescarch Group
reignited imerest m multi-layer perceptrans by publishing details of a successful learming
algorithm for automatically adjusting the weights m all layors of the netwark.

The following simple exarmple shows hew a multi-layered pereepiron system can in facl represent
the XOR problem. lollowing the technique described in Fig. 2.6 we see that it s passible to
construcl a perceptron that can detect only the input pattern (0,1] and a different perceptron to
detect only the mpul patiem (1, (0. This is schetnatised in Fig. 2.8

1t c 1t u 1+ o
i
L"i._ ..... + b oa —_ + - o + ..
il 1 ] n 1 ] ] 1 n
[ash Y 113

Fig Z & Combining pareepirons tr solve the L0 probiem

Lsing the predicate {2.3.13 we arrive at two individaal percepteons for each clasaification task
as shown o Fig, 2.9 (o) and (b) respectively. The thresbold value B of the siep function in each
vase 15 shown inside the circle representing the summariot and threshold device and the weights
of the conoections are shown alongsde the connections. We see that pereepiron A of Fig. 2 Ra
only produces an outpwd of | for the input pattern (4,1 and that the percepiron B of Fig. 2.8b only
produccs an output of 1 for the mput pattern (1.0},

(£ H e bt ) Frucnpran B
5, 5
1.0 o
o v o v
oD In
X a,
Ingadd DMGIG G DA oS INEAd s O-1pul parems
1,00 &} [A)] 1]
[ I 127 i
1.0 1 RAN| 1
R

ERT| a AT

Lul il

Fag 2.2 f0) Perceptron 4 ro deteer orle espar patiorn (101) wnd 18] perespiror B to deteer only inpue patrern §, 0

We now take the outputs of percepirons A and B Lo be the inputs to a new perceptron C ag showt
in Fig. 2.10.
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L CEpiror 1
s Irgt Lot ng Cutpot pamems
o014 Lo (LA I
T . . 1.0 I
-._E'f’ . [0 a
+ 1.0

Fig 2,10 Perpeptron ) eyt taker ity Iapial oaly fram perccpirons A and B

Combinations of the cutput sighals from A and B now provide only three (bul unique) input
patterns to perceptron (. These three palterns and thelr cotrespondence (o the original input
patterns are given in Table 2.3, The resulling weights and threshold value far this new perceptron
are also shown in Fig. 210

Tahiv 1.3 Correspondance of iwput paieras o porceptron O with the origiral petterns of the YOR problem

Inpul patterns w peceeptron & Original inpul pattermns

{0.1) (1.0}
R 0.1}
0.0 [0,0p and {1.11

This enlite network is schematised in Fig. 2,11, This network is referred to as a mefti-fayer
perceptvan (MLPY We aflen call this anefact an artificial nesrad neework (ANN) Lo stress that
it is by na means the same as its Miodogicul inspiration. The MLP consists of an extra layer of
units between the input and the aurput layer. These units are not connected direetly to the autside
world as are the units in e 1oput and outpul layers. For this reason, these unils are referred to
as hidden wnits and the entire laver as a Ardden luver.

. N :
- W . .. I:!.. . |’_‘|5
1.0 o
MRS
1.0
- ; ¢
S M L ge

Fig 200 4 mulei-layer percemron smetwark for she XOF profdem

The units in the hidden layer play an Lnportant tele in the iarernad represearation ol the inpul
patterns. IF there were no hidden laver, the network would only be able to map similar iput
patterns (o similar output patterns o which the simtlanty of the patlerns is determined only by
their overlap. Whenaver the representation provided by the oulside world s such that Lhe
similanity structure of the input and cutput patterns are very different, a neowork without intemal
represetitations will be unable to perform the peeessary mappings. In the above example, we see
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thal the hidden layer of the XOR network in Fig. 2.11 provides a generalisution of the four input
patterns mibo three internal represeniutions as shown o Table 2.3, The network is able to
generalise the tnpul signal tn which bath bitg are *on’, ie. {1,1), and the input signal in which
both bits are “off 7, ie. (0,0 mio a siogle mteroal representation of (0,0 cven though the original
inpul paticrns appeat to have the least degree of overlap.

The ability of arlificial neural oetworks to generalise is ooe of he main reasons for their
widespread popularity. Mot only can they generalise pattern features on discrete patiern =sels, such
as in the XOR problem, buot if the input and outpui data have some deterministic relationship then
the ANM can olten induce this relationship and interpolate on the input and output dats in a
sensible way., The major problem then remams of cstablishing a method for selecting and
adjusting the weights of the ANN connections. The welghts and the threshold values in the ANN
shown in Fig 2.1 ¢ have all been fixed manually. It is in fact impassible for this particular network
to Jeizrn the XOR relalionship on s own, Since Hlebhian learhing comesponds 1o strengthening
the connections batweon active input and ouput undls, 1t s impossible o strengithen the cormect
parts af the petwork since the actual inputs are eftectively masked-off from the output units by
the intermediate layer.

Furthermare, the lincar threshald function that 18 used here (Fig. 2.3) gives us no information
aheout the magnitude of the weighled sum of inputs, Lwy, that lumns the output gither “on', ie.
Ty = 8, or 'off | ie Ew g = 8 Weights thal enly just tum the neuron on or off should be
adjusted at a differént rale than weights thar cause a significant overshoot or undershoat of the
threshold value. Uoe way around this problem is o nteoduce a different threshald function that
has similar propertics to the linear threshald function in the extremuties bol gives us morg
infortnation abowl the proximity of the value of the weighted sum to the threshold value. The
st cominonly zed functinn for this parpose is the sigmald or logistic fiactton:

yp= (2.4.1)

which is graphed in lag, 2,12,
v

us:

a
q L iz,

f".!g 213 The JJ‘#MU:I}I itr J'ugrs{u" I.I'zﬂ?.'u'nlje’.u':’!'furh’.‘.ff:.l.r!

Motle that the eflect of the theeshold value U mm (2.4.1) is 1o offiet the centre of the signoad
function fram zero. The same cifeet could alse be ublained by introducing an extea mput i the
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perceptron, say § = (), for which g, — - | and w;, — ). The equacion describing the sigmoid function
can then be simply writlcn as:

¥ o — [2.4.2)

where the lower limit of the summation 15 now ¢ — [} mstead of 5 — 1.

2.4.1 {reneralised della rube

Rumelhart &t oof {1986) published a new leaming rule that could also adjust the weights in all of
the intermediate layers of & uny general mulli-layer perceptron. This is 2 generalisation of the
Widrow-Hoff defta rule (2.3.5) and 15 subsequently referred to as the pereralised delta rude. In
this case, the MLE musr utilise & nonlinear activation funetion ke (2.4.2% and the notwork must
be arranged in layers where the units in each layer receive input only fhom wnils in the previous
layer and the oulput from each wnit pows only o units in the following layer. There iz no
interconnection of units wilhin onc laver and no dircet conngetions of Units across intermediale
laycrs. A schematisation of this general ML and its nomenclature are given m Fig. 2.13.

Mgt Lot hiclclers liryen gt loyer

E8 - .

i=1 T T

. W 4 B

", R R - x\. ’ :.‘\ i =1

=2 S j=1 - g,
x, - _: — \.\J. I " k=g

=3 e 2 " R
X, . _ - “ i . k=23

=L

i=d J= Y _ d-l
%, . + k=4

I=h

Irout glgral. 1 Oufet gonel, o vk gignel, v j ouput signal, S

Frg 210 A general multi-laper perceptron (MLE) wred for the derivaiion of the generalived dojin mule

Mate that the input layer in Fig. 2.13 does not perform any operatiens upon the input sipnal but
simply sends the x to the units in the hidden Layer. The outpat from a unit, £ it the hdden layer
for a given training pattemn, L is given by
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y;.-"- - HE l|wl,_,l Ir,.i.} {243}
b
where the aclivalion funclion £is of the form (2.4.2),

The output from a undt, £ in e output laysr is then:

dyy = S w, ¥ ) (2.4 4)
]

Rumclhart ef af {1986, pp. 3123 of req.) intreduce the general cxpression:

@ 5 = fined ;) {2.4.5)
whero
ety = YW e, (2.4.6)

Simtlarly for the oulput layer:

iy T flmen L} (24T
wherg:
LA b W 2 ' (2.4.8}

!

The errar function is now defined as:

£, - %E(dt_}. - "a_ﬂl {24.9)
x

We then wnite

GE,  dE;  dael (2.4.10)
e LTS i cw. . o
a5 r. L]

From (2.4.8) we can write;
.- a
wnel s _ 4 w oo . -8 {(2.4.11)
dw , w0t R

Tf we define:
A %E, (2.4.12)
£ J‘"Er,-,l o

and then substitote (2.4 11) and (2.4 12) into {2.4.10), we get:
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dw,

- -8, 0., (2.4.13)

4

By applying the principles of yradient descent, we must then change our weights in proportion
to the amount given by (2.4.13}, i.c.:

(&.w,lf}l =n38,0, (2.4.14)
which 15 very similar to the Widrow-Hofl delta rule (2.3.5).

To caleulate §, ; for cach unit we write (2.4.12) as:

s - 9E, o JE, I'_:JDLJ' (2.4.15)
o nat ) tnel . o
13 Tk r.a
From {2.4.5} we have:
o2, . :
e f'[ﬂE‘, 21 (24.15)
ﬁ’ne.l‘hi !

and hen we can wnte:

&, ) K, anerill
da dmer fdo
A k E2 R
oE

L Ly
= W.oo

y Cmer, o %

3
o,

- EE: ..\

.::'i‘rrer.rleL

‘; By W {2.4.17)

Thus, substituling {2.4.T6) and (2.4 17} iplo (2.4.] 5}, we get:
By = Slmed 0 3.8, W, (2.4.18)
E

Similarly, for the output units:
s L

LA " -
ﬁ'ne.r*_l day f}”e'n_i

2, ;

(2.4.10}

where 1t follows (roem our definition of £, (2,49} that:
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= Tl T e (2.4.20}

5o that {2.4.15) becomes:

8,0 = -, - ogy) Flnen, ) (2.4.21)
and
':‘:"'“‘;.th R I AP (2.4.22)

The application of the gencralised delta rule thus involves twe phases. Dunng the first phase, the
input, x,, is presented o the nerwork and propagated forwards through the network to the ouwtpit
layer. Here the desired output, o, ,, and the computed output, @, 5, arc comipared o cach other and
the error signal &, , 15 computed from (2.4.21) and the correspanding wetglh 2djusiments from
(2.4.22). In (he scoond phase, Wis error sigial is propagated backwards theough the network (o
each intermediate layer, This method of propagating the error signal backwards through the
nctwork leads to the genoralised delta nule being ollen rofemed W as ervor back-propugation. Al
cach intermediate layer the errer signal &, is computed from (2.4.18) and the associated weight
adjustments from (2.4.14}. This process 15 repeated for every [ayer until the input layer is
reached.

The next mputfoutput tuple is then applisd and the connection weights readjusted to minimise
this oew error, This procedurs s repeated wntil all waining data sets have been applied. The
whole process is then repeated again, starting from the first data set once more and continuing
anti] the total crror for all data sels 1s sulficiently small and subsequent adjustments to the
weipghts are inconsequential. The ANN is now said to have fearned a relationship between the
input and oulpul raiming data sets, The cxact form of this reiationship cannol be cxtracted from
the ANN bat rather is encapsulated in the storcd serics of weights and conncclions helwoen
nodes. The absolote values of the individual weighls canmit normally b inkcrpreted to bave any
deeper physical meaning.

Although the error back-propagation method does nat guarantee convergence to an aptimal
zolution since local minima may cxist, it appeats i practice that o leads 1o solutions o almaosl
every case (Rumelhart ef af, 1994). [n fact, standard multi-layer, feed-forwand networks, with
only one hidden layer huve been found capable of approximating army measwahle fanction to any
desited depree of acouracy {Homik e e, 1989, Errors in representation would appear Lo arise
only from having msufiicient hidden anits or the relationships themselves being insufficiently
deterministic, MLPs are indeed wriversal approximators.

Izt the above detvations the detivative of the activation function £ (sef) plavs an impartant rale.
For the peneralised della rule to succeed, we need an activation function for which the derivative
cxists. It ts obvious that the discontinuous, linear threshold Rmction used garlier (Fig. 2.3) cannot
be used here as its derivative is infinite at the threshald value and zero elsewhere. The sigmoid
function, on the other hand, 15 exitemely well suited to this method due to s very simple
denvative. Substituting (2.4.2) inta (2.34.3) gives:
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1
e, = FAner ,y s —— {2.4.23)

il
1T+

50 that the derivative can be derived as:

AeT
@ El

Fimet [} —————
n'E,l. |Il]_ ‘e """J.i}lz

1 | - ]
|+ e ™ 1 v e ™t

= f (merf, ) [I }"l,’ng:hl}]
which can be wrinen as:
£t ) =6, (1 - e ) (2.4.24)

The dertvative 15 therefore a simplg function of the outputs.

bany compuler packages are now available thal implement the generalised delia nule Lo traim
MLPs, In some cases, olher activabon functions as well as the sigimoid funcoon have been
implemented which may alfect the performance of the MLP or its rate of leaming. These other
getivation functions may include, for example:

- lingar [unction, Fimet)— net (2,425}
- hyperbalie tangent function; Ftnet y=tmh { net) (2.4.28)

Fimally. the rale of leaming may also be improved by maodibring the pencralised delta rule 1o
include a momertum term. In this case the expression for updating the weiphts becomes:

ﬁw:.j{"} - '5;_:'_ LA ﬂwl.}[n-l} (2427

where Aw(r} refers to the changes w be made 1o the weights for the current fteration, » and
Aw{n-1) refers to the weight change in the previous iteration, The momentum temmn, &, detetninegs
the effect of past weight changes on the ewrent dircetion of movement i the weight space. The
intraduction of such a momentam Lerm s of great assistance in speeding up convergence along
shallow pradients hy allowing the approach to the solution Lo ‘pick-up speed” in the downhill
direction, Furthermore, it is useful in weight spaces contaming long tavines thal arc characteriscl
by both sharp curvatures acrogs the ravipe and 2 gently stoping floar. The shatp curvaturs tends
to cause oscillations across the ravine, To prevent this iV is necessary to take very small siops, but
this slows down Lhe progress considerably along the ravine. The momenturn tetm allows the net
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1o filter oul the bigh curvature and thus it allews the elfective change o weighis to be se much
larger..

Multilayer perceptrons that are trained using error back-propagation appear at the momenti 1o be
the most common artificial neural network used in epgineering practice. For this reason, the
present work restricts itself primarily 1o te use of &M LPs. The computer software used for almost
all of ihe simulations presented in this study were perfonmed using the WinNN softwarc
developed by Dir, Y. Danen.

23  Bome Other Common Tvpes of Artificial Neural Network

Although the standard ML is the most popular bype of artificial neural network, it is perhaps
uzeful here o mention some ather common loms of ANN for purposes of comparison.

2.5.1 Radial basis function networks

Radial basis function {RBF) nerworks provide a number of techmigues that essentially preprocess
the data and ransform it into 3 higher dimensional space in which the classes are linearly
separable, Whereas the standard MLP buitds its classifications on the basis of hperplanes
defined by the weighted sums I | w_ x, that are arguments te non-lincar functions, the RBF

Wt

approach uses Avper-elfipses tn partition the pattern space (Beale and Jacksen, 1990, p. 94 &
£eq).

In an RBF network (e hidden layer units (Fig. 2,133 do not contain sipmoid functions, but are
replaced by responsce functions dependent upen the posilions of the data relative o some centre
poirt, 1.€.:

dIx - wll) {251

where | ...| denoles sorme dislance measure of x from & centre poitl w, The distance measure is
moel olten chosen to be Euclidean, so (hat:

B = ix - wl Z{r w (2.37)

and the most commeonly used response funclion is a Ganssian function, e

by -y e ™ (2.5.3)

where A is s0me constant.
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Thus, unit f gives a maximum respense to input vectors near w,, Each bidden unit therefore
accupies a region in the inpul space centred upon w, that Hertz er af (1991) refer to as s
receptive field. The idea is then to pave the input space with these receptive fields. Il an input
vecter x ligs in the middie of the receptive field for unit/ then only unit 7 will be activated. If the
input veclor lics between wo receptive ficid centres, then the nerwork will make 1 smooth
intcrpolation hetween the two units.

The owtput from the RBF network is a lincar combination of the basis function (2,5.3). 'This
approach is guaranteed to produce 2 function that fits all data points as long as there is a basis
function for cach input to be classificd. Having one hidden unit for each input, however, means
that noisy or anomalous data puints will ulse be classiticd, which will give problems of
reneralisation lor new 'unseen’ data points. The generalisation properties of the REF nerwork
can be impreved by reducing the number ai hidden units. The selection of the coefficients for the
lingar combination of basis (unetion owlputs i then simply a problern of linear optimisation,
which is puaranieed 1o find a globally oplimal selution. The problem of training an RBF network
then is that of selecting sufficient hidden units to get an acceptable it to the data This is
naormally done using a trial and error procedure,

Some practical results of REF networks applied to the problem of rainfall-tanoff modelling are
given in Mason ef of {1996} and a comparison of RBF networks with MLPs is given in Dibike
{19971 These results demonstrated that the lraining time of RBF networks was usually
significantly less than for equivalent MLP networks. Furthermore, the RBF networks provided
a superior performance over MT.Ps when dealing with only small numbers of input data scts.
Howcver, the generalisation properties of the RBF networks deteriorated significant]ly as the
nunber of inpul dala sets increased and were subsequently out-performed by the MLE networks
in this case.

2.5.2 Hopficld networtks

Hopfleld {1982, see also Herlz ef af, 1991, pp. 11-41) presented an automssociative network
consisting of perceptrons that are very similar to those used in the standard MLP. The problem
of associative memory (s fo store a ser of # patterns ¢, in such a way that when prezented with a
ngw pattern z, the nerwork respands by producing whichever one of the stored patterns most
closely resembles z . Some practical applications of associative memaory are in the recognition
and roconstruction of images, or in the retrieval of bibliographic information from partial
rofercnces.

The Hopfield net is a fully-connected network in which all of the units are connected to all other
units, as schematised in Fig. 2.14. The weight distribution is also symmetric, such that the weight
of the connection from node J to node § iz the same as ihe weight of the connection from node §
1o node £, f.e. w,  w,. Bach unit in the flopfield net acls in a similar way o the single Fayer
perceptron, in that it has as its input the weighted sum E w,, x, and it produces an output by
passing this weighted sum through a linear threshold function, as shown earlier in Fig. 2.3,



KL Araificiad Newral Nerwarks ay Subrpmpmlie Process Degcriplors
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Frg 204 The Floglield netawork

The Hopfield network has no specific inpat or outpul units. The inpat to the network congists of
a vector of binary (0,1} or bipolar { 1,+1) values that arc applied lo all of the units
simultaneously. The network is then Ich alone as it cycles through a succession of slates until il
converges on a stable salutron. The auipol of the network ts taken to be the valties of each of the
units when the nerwork has reached a stahle, steady state.

Travning of the network imvolves setting the weights of the connections based npon a set of £
training paltcms using the simple muie:

1= 1 &
[N = — I r
YN g o

where Vis the number of units in the network. 1t can be shewm (Hertz ef ef, 1991, pp. 35 ef sai)
that a Hopfield net can accurately store and recall a maximwm of ©.1 388 patlerns,

A similar network to the Hopfield nct is the so-called Boftzmann machine, which has a similar
strucurc and leaming algonthm w the Hopfisld net but is coupled with a probabilistic updats
rule. The Boltzmann machine uses simulated annealimg in arder to help it to converge to global
mtmima {5ee alse Beale ard Jackson, 1990, pp. 133-163),

2.5.3 Kohonen noiwarks

Cme of the mnst impoctant features of the artificial newral networks mentioned so far is that the
leamning algorithms are hased on Hebbian learming. That is, training takes place by intreducing
some input data at one end of the nerwork and the “desired” output data is presented at the other
cod. The AN is ‘told” that a relationship cxists bebween this impul and output data and 1hat it
should find this representaiion. This procoss known as supenvised fearrimg.

An allernacive to the Hebbian, supervised leaming paradigm is an unsupervised leaming
paradigm based on comperitive learming (Rumelhart ef af, 1936, ¥Yol. 1, pp. 151 ef seq). The
hasic components of 2 competilive leaming scherne are:

- start with a set of units that ane (he same excepl for some randomly distributed parameter
which makes each of them respond slightly differently to a set of input patterns;

- litnit the *strength’ of each wnit,

- allow (he units lo compete in some way {or the right to respond to 8 given subset of inputs.
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The net resalt of applying this leaming paradipm is that individual units leam to specialise on
gets of similar patterns and thus hecome featire deteciors ot padtcrn classiffers. Similar inputs
should be classificd as beimg in (he same calegory and so should 'fire” the same cutput unit,

Keohonen's seff~orgonising map 15 a netwotk that uses unsupervised learning to model foarures
found in the training data. The K.ohonen net consists of a single layer of neurons. Each newron
in this layer is comtected to all inpat units, As inihe MIP, the input tnits themselves perform
na computations but simple distribulc the input signal to the layer of newrons. Fig. 2.15 shows
a two-dimensiona] Kohonen nutwork, allhough it s alse possible to ammange the neurens in a
single row and thas form a one-dimensional network.

xl xz X
Frg. 215 A Keharen feature puop fodapiod from Beale and Jackses, [0 p T

The learning process orgamises the neurens on the prid mte local neighbouchoods thal act as
feature classifiers oo the input data. There is no “desired” outpuat data to tell the network which
pallemns should be assignod 1o which classifications. The training procedurc involves firstly
initialising the weights of the connections between the inputl units and the neurons in the upper
laver, Each input pattern 1, 5 then introduced o the astwork and the network musl "decides’
which neuron is associated with this particular pattern. The nguron to be fired i3 uswally
determined by calculating some simileriny scosere 0, for each neuron, &, and assigning the
“winner” 1o be the newron with the largest value of £ A very commonly wsed similarity measure
is the sealar product of the weighs veclor of he noeron with the inpat veetor, e

ﬂl’..'l E wt.a Il.."'.

The similanty of the winning neuron to the inpul is then incrcaszed hy increazing the
corresponding weight connections to this neuron.

The locution of the winmumg nouron in the one- ot two-dimensional arrangement of output
ncurons may alse convey some information about the imput pattern. Similar input patterns should
fire neurons that are nearby in the output space. This suggests the construction of a topology
preserving map from the space of possible inputs to the line o plane of output units. This
eopographie ferdvre map 15 essentially 2 mapping thal preserves neghbourhood relations.
Meighhourhood relations are maintained in the Kohonen net by updating the weights not only (o
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the winning ncuron but alse o the neurons in itg immedizic neighbourhood, The number of
immediate neighbowrs 1o be upduted depends wpon 2 neiphbourhood function that decreases in
size as the training Lime pragresses, thus localising the area of maxdmum activity.

After training the petwork, the ¥ohonen map niust be interpreted to determine which
classification has actually taken place. This analysis often takes fhe form of a visual inspection
of the cutput from the petwork and the weecht cormechons. Shawkat Al {1997} descbes some
common techniques that inclode:

- errdput aelivine map, the ontpul from a single input vector is plotted oo a one- or 1wo-
dimensional map showing the actual value of the simtlanty measure al cach unil.

- vecior paiiticon of clugter map: the positons of the winming neuron for each inpot vector
are displaved on the cutpul map. Separale clusters are formed by the ensemble of winning
units.

- connl map; this map is formed by sitnply coumting the number of hits for cach output
newron for the entire mpul dala set.

- fopological feature may, when a stable weight configuration has been achieved after
training. Kahonen nelworks et as an associalive memory device of (e inpul space._ Lf the
inpul space t5 kvg- of three-dimensional il iz possible to study the topolopgical structure of
the input space by plotting the weight vectors graphically,

Shawkat Al (1997) demonstrated the ability of Kohoneo nets to wentify *meaningful” clusters
within very large data seis. The number of clusters identilied 15 sipnificantly less than the tolal
numhber of data aets. This data redoetion propery of the Kehonen net means that il becomes
possible to teprasent high-order, multi-dimensional data by cerain lower-dimensional fealures,
This property of Kohonen nets meang that it may be possible to use these nets to 'pre-process’
large quantines of taw data into smaller data sets containing only *significant features’. This
redoced dala set could then be wsed te train a teaditional, feed-forward, molti-layer neoral
network in order ta discowver the relationship hemween these significant features, This could
sigificantly reduce the training time of the ANN comparad to the situation in which all of the
unprocessed, raw dila were used.
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31 Introduction

The power of the sub-symboelic paradigm does ot restncl iself to the swedy of artificial newral
nctworks. Abhott and Minns (1997, pp. 459.463) highlight the advantages of a sub-symbalic
approach to modelling in their discussion of the computational hydraulics of torbulence. A
subject ltke computational hydraulies quiekly ties tselfup mn knots of formidable complexity -
and the fact that we tie these knots in the first place s a direct consequence of our use of specific
lunguages. Each such lanpuage works with scls of tokens that are almost exclusively sets of
symbols with definite phivsical representations. At some lavel, our problems of complexily then
become prounded in our use of definite physical symbo! sustems of a certain and, in practice, cver
more exfended complexity. Such systems have been studied very extensively over the millennia.
but in recent tmnes they have attracted a special attention in computer seienec, and then especially
in those branches that pass under the rubres of anttlicial intelligence and computer seience {e.g.
Mewall, [GED).

A careful study of such systems, even when these are peneralised ta the greatest extent possible,
points up certain limitations that are inherent in their use, The basic conclusion is that the use of
physical symbol systems, although essential to human existence itself, necessanly mtroduces
constraints, and that in many circumstances these constlraints are unacceptabie (Abbott, 1991, pp.
94-1043). There 15 thus 2 majar incentive to 'cscape’ from symhbolic paradigms as far ag possible,
and instead 1o resort as far as possible to sub-symbolic paradipmes. Lo these paradigms the tokens
are signs and not symbals, so that they no longer, 'stand in front of * the indicated object bul
instcad “poinl kowards” thal ohbjecl. We oursclves sct up rules about how these sipns are o
interact, but we do not curselves tealise the interaction itself - any more than we can foresee the
results of this mleracnon. En effeet, we deliberately relinguish our semantic preconceptions
concaming the tokens. There is then of course an apparent contradiction, in that we still wite
codes using symbals even as we claim that these codes themselves “operate at the sab-symbolic
lowel”.

The three main divisions withm the sub-symbolic paradigm arc these of artificial neural
networks, evelunonary algonthms and cellular mnomata. For the sake of comparison with the
neutal networks descrabed 1o the previous chapret, a briel desetiption of the latler two arcas is
given lelow.
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32 DByvolutionary Algorithms

Minns and Babovic {1996) provide a succinct comparison bemween artificial neural networks and
gvolubonary alporithms when applied o problems of hydrological modelling. Evolutionary
algorithms [EAs} are computer-based stmuldtion engines that mimic inoa grossly simplified way
the vvolutionary processes occurring m nature. The fundamenta] ides behund EAs is indeed thar
of plagiansing (hose paricular processes postulated by Darwin {1859) in his seminal work on
the theory of evolution of species. Drarwinian theory depicls the adaptation of species (o its
environment as one of sratural selecrfon. Percerved in this way, all specics currently inhabiting
our planet (and for thal matter, all species that have cver lived on this planet) are actually the
result of 1hus process of adaptation,

The EA approach to prablemn solving is one in which solutions to the problem are evolved rather
than the problems being selved dicectly. The family of evolutionary algorithms may be
characterised by four main sireams: Evolution Sirmegics (Schwefel, [981), Evolutionary
Prograrumung (Fogel e7 af, 1966), Genene Algoribms {Holland, 1975} and Genetic Programming
fKoza, 1992),

Although dilferem and applied for quite differsnt purposes, all £As share a common concepiual
base. In principle, un inihal population of individoals is created in a computer and allowed to
evolve using the principles of frhericence {30 that offspring resemble parents}, wertabidity (the
process of of [spring creation is nol perfect - some mutations oceur) and sefection (more fii, or
“petter’, individuals are allowed to reproduce more ofien and less Tt individuals less often so that
the “pencalogical” trecs of the latter wall “die out® with ume).

Fig. 1.1 depicts the mam processes thal muke up an evolutionary algorithm. From an mitial,
typically randomly generated, population of individuals the fittest entiges are selected w be
altered by genete operators exemplified by crossever (corresponding to sexual tepraduction) and
mntatiod. Selection (& perfonned on the hasis of a certain fitness critenion in which the frter
mdividuals are selected more often. Crosgaver cornbines two genolypes by exchanging sub-
sirings around a randomly sclected poinl. Mutation simply flips a randomby selecied bit.
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Similar to the processes of nature. one should distinguish between the cvolving enlity’s genone
and its phenonpe. The genotype is essentially a eode 1o be execuled (such as a code in the DVA
strartd in hrmans), and the phenotvpe represents the resull of the exscution of this code (such as
a living person). The information eachange berween evelving entitics [parents) occurs at the lovel
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af the genotlypes; however, it 15 the phenotypes in which we ane really intergsted. The phenotype
i5 in effect an interpretation of a genolype in & problem domain. Ths integpeetation can take the
form of any feasible mapping, One of the main advantages of EAs 15 therr datnaio independence.
EAs can evolve almost anything. given an appropriate representation of the evolving structures,
Far example, for optimisalion and constraint satisfaction pumposes, genotypes are typically
mmterpreted as independent variables of a function to be optimiscd. Several applications of genetic
algorithms (G As) that make use of this kind of mapping and with speciiic emphasis on water
resources are described by Babowic (1993

In so-called fearning classiffer systems (LCS), as inttoduced by Holland {1986), phenotypes take
the appearance of rules m evolving knowledge-bases, LUSs are actually buill on the top af
ordunary GAs, and contimuously augment the knowledge-base with new and belter-performing
rules, thus avaiding a rigid and siatic tree structure. LS s thus open avenues towards autgimatie
midel enhuncement throush the process of machine leaming {see Wilson, 1994}

In genetic programnmeng ((P), the evolutionary {orce s diteoted towards the creation of models
thal Like a symhbolic form. In this evolutionary paradigm, cvolving cntities are presented with a
collection of data, and the evolulionary process is expected to result in a closed-form symbolic
cxpression that describes the data. In principle, GP cvolves woe structures representing symbalic
expressions in Reverse Pelish Motation. The nedes in this ree struclure are uscr-defined. This
rneans that they can bo algcbrae operators, such us sim, log. +, - clc., or can lake a form of i~
then-else rules, making use of logical operators such as OR, AN, olo. (see Walker et of, 1993,
and Babovié and Abbow, 1997).

1t is extremely difficolt Af not impossible, to describe the full potenial of EAs and their
applicalions i such a hmited space. Here, however, two essential properties ol EAs should be
highlighted:

- Cvolutionary Alpenthms are sub-symbohc models of compulation. As was suggested
befure, the exchange of informanon between cvolving entilics ocours at 1he kevel of the
genotypes. The phenotypes represent or contain (be mevaing encuded in the genotypes.
Thiz meaning (er semantic intorpretation) is acquired through both a mappimg fmction
(lTom genotype to phonotype} and an interaction of the phenotype with its enviromment,
This applics for the entirc EA famiby. GF inils most rudimentary foem can be understoad
as & method for evolwing trees which acquite meaning only when they are confronted with
the problem domain,

- The most imporant phenomenon i eelation to EA performance is that it attains its
Enowledge abow s environment through intcractiun with this coviconment. The
koowledge aboul a problem that is being selved docs nut cxist explicitly wilhin the RA-
buscd problem-solver hefore the problem-solving (te. cvolutionary) process is initiated.
This knowledge 15 acquired through the process of surveval of the fitlest. The consequence
of this is that the process of solving problcms actually transforms W ane of adequately
describing the problem and then letting the solution to tbe problem evolye iselr,
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33  Cellu)ar Autotnata and Lattice Gas Dynamics

Abbotr and Minns (1997, pp, 460 0 seg) discuss the applications af cellular automata (CAy to
the problem of tuthulence modelling, The stwly ol hyrodynamics wsing cellular aulomata
involves the stody of fluid flow at 4 ‘molecular” level. The Auid is supposed 1o consist of rogular
particles which move alony hnes defined by a regular gnd or “latuey” (see Boon and Nowllez,
19877, At cach time step, vach of the particles usually moves along one link of the lattice. Each
grid poitit contains one valug out of a finite set of discrete values. The value in cach gridpoint can
be updated at each ime step by following & simple, logical {but numerically expressible) nule
depending npon the cwgrent value of the site itself and the valuc of neighbouring sites. Every site
of the grid is cffectively updated simultaneonsly, Collisions between pariicles are desenbed by
simple rules that are related o the basic rules of Newtonian (and indeed, stnctly speaking, pre-
Newtonian) physics and the conscovation of mass. Cellular autornata exhibit complex. randor
behaviour ol individual sites but produce simooth, macroscopic-average behaviour which may
closely resemble the deseriptions of continucus systems as described by partial dilTerential
equalions {Wolfram, 1986).

Through the choice of a suitable latiice and suitable rules, the averaging ol the particle motions
can provide a description of a flud weth properties identical to those of a Nuoid desenbed by the
Mavier-Stokes equations (Wilson, 1988). In most current applications e rules are miven by the
buman agent, but as o much current research in artificial intelligeoce 15 directed o generatimg,
or “inducimg’ rules from gbservalions using maching-leaming techniques, it is 10 be expected that
rule induction will proceed also o this case from on-line data srceams (see | adreade, Donald,
1994),

Frisch er af {1986} demonstrated that ooly a lattice of equivalent triangles possesses the
nocessary symmetrics in order to reproduce hydrodynarme behavioer comectly in bwo
dimensions, This produces an hexagonal grid as shown in Fig. 2.2,
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Possible callisions rules of the Fosch model are presented in Fig. 3.3
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The propertics of the Fuid are calculated by averaging the motions of the parlicles over large

areas or volumes of the sitnulation e obtain the average morenla of the flow for that part of the
fluid, as shown in Fig. 3.4,
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Fip. 1.4 Spariol averaping of o g-parlicies

Celiular aulomata models bave some conventional advantages over standard computational-
bydraulic codes; firstly, stability is not a problem for codes using lattice gas methods; secondly,
boundary conditions are easy 1o rnplement; and, lasily, lathice gas operations dre bit-onentated
rather than floating-point-number-gricntated and are therelore more suilable for compulation on
digital machines.

In anpther applicatiom area of cellular sutomala, the cells in the lallice are stalionary and each cell
can he in ong ot a finue nomber of sutes - a so-cabled finite state attomaten (see Wuoensche ang
Lesser, 19921 Transitons froim one cell’s state 1o another are determined through the application
of some lecal tules. Thus, the current state of a cell depends soleby upon the state of the ¢ell at
the previous lime step and 1he states of the cells in the immediate neighbowrbood (eg adjacent
cells) also al the previous time step. As inany dynamical sysicm, the system's variables change
as a function of thetr current values. In a similar way to the lattice gas approach, the entire lattice
of cells is effectively updated simultangously.

The pattern ol values across the whole aoray s the CA plobad srede at a given tune. The CA
evolves through o succession of global states, constimuling a rrafeciony, by the iteraton of the
global updating procedure, which provides a trumsivion fction. Te can be shown that, provided
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the CA from als imibad global stale 15 wucuely determined. When the transition function is
restricled o g focal reighbourhood (i4, the neiphbounng colis are all local to the targel cell} we
refer to a focal trarsiticon funcricdn and the CA is said to have a Jocel arehiecters.

Yon Meumann {1944 first propased the uze of CA to mods] self-reproduction nsing a local, tvo-
dimensional archilecture consisting of 29 ccll values. Since then, the trond has been 1o investigate
the most simple possitie architectures that are still capable of peoducing an overall complex
behaviour. Perbaps the hast known example is Conway’s ‘game of life', that is simply a local,
two-dimensiond CA with a 9wt neghbaurhood consisting af the tanget oell and the eight
adjacent cells in a sguare grid. The values in each cell are simply binary.

The principal current advantage of C A and lattice gascs 15, however, their adaptability 1o machine
lcarmog. (dn the other hand, the immense efivi now being put into the vadous branches of
cvalulionary aleonthms would seem to dmpdy that cellular-aatomatic methods will be overtaken
o1 the machine leaming side by these more complex und polentially ‘ncher’ methodologics,

Gales and Martinez (1940) point out thatl cellular automala constitute 4 particular class of
awtometa relwork. Al automala nevwork is defined simply as a graph, gither finite or infinte,
where cach sile or veriex lakes stutes inoa finite set and the srate of a site changes according to
a transition rule which onoly takes inte account the atalc of the neighbours in the praph. They then
explain that the MeCulloch-Pitts nouron, depicted im Fig. 2.2, can also be considered 1o be &
special class of aulomata nctwork - thal we generaliv tefer 1o as neural netwotks. 1o this model,
the graph is usua]ly non-onentated and fmite. The state sel may bt binary, §0,1}, vt bipolar, -1,
+11}, and the tranzition rule is the threshold funciion defined by (2,21}, which depends only on
the neighhours and is weighted by real oumbers, that 1s:

£
Flxex, ox) H ¥ we - ﬂl] (3.3.13-(2.2.1)
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where A . b ois the Heaviswle step function, delined by (2.2.2), for binary states, or the sign
funcuon for bipolar stales.



4 Rainfall-runoff Modelling

4.1 Introdoction

Many of the expedments described in this chapter are taken from previeusly published papers
ol Hall and Minns (1993}, Mitins (1996) and Minns and Hall (1996, 1997

Ever since the advent of whal Linsley (1967) once relermed 1o as the computer age in hydrology,
cpnziderahle ume and effort has heen expended vpon the problems of modelling the relationship
botween rainfall and streamflow. The variety of such models is legion, aod the labels by which
they are classiled - lumped or distribated; conceptual or physically-based; single-cvent or
continuous simulation; and so on - continue 1o proliferate. The directions in which modelling
activity has been ditected in recent years has been prompted largely by the rapid developments
in powerfia| personal computers and woerkstations. The case with which such machines cap cope
wilh large sets of ordinary and partial differential equations has stimulaled intorest in modelling
both temporal and spatial vanations in the physical processes, by which pricesses oeowming in
the atenosphere, and which subsequently provide rainfalls, are transformed inte all manner of
procerses ocewring in the land phase of the hyvdrelogical cycle, such as niver Nows. However,
the full implementation of such models requires the use of large amounts of data that are
neccssary both 1o calibrale and o verify the model, and extensive parameter scis that must ke
manipulated for these purposes.

Perhaps the most widely-known of the modem generabion of physically-based, distnbuted
catchunent modelling systems (5 the Sveteme Fhdredogiyue Burppeen (SHE), the onginal
structure of which was described by Abbold e af { [986). Dotails of & case study in which SHE
was applicd to a fiver basin of some 4955 km? in India have recently been provided by Refsgaard
et af {1992). Thasc authors provided 4 frank discussion of the substantial data requiremenis and
supplementary fieldwark required o implemnent this model, and acknowledged that their use of
2 km o< 2 ke gnd squares sithl did not provide & fully physically-based and fullv-distributed
description of the basin, even though it was ennrely sufficient for the practical application
yuestion. There remaimed a certain degree of empincism in the roprescotation of particular
hydrological processes, even in these systams, so that process sdendification and the associated
determination of parameter values by direct measuramment contimud w necessitate the use of
exlensive calibration procedurcs.

From this it can be concluded that for many problems of raintall-runotf modelling involving, foe
example, record extension or forecasting, without any significant changes in land use or other
such factors and over a certain range and disunbution of aniecedent soil conditions, simpler
madels would in mest siluations be cqually accurate and much cheaper to apply. To be faie to the
uistnbuled, physically-bascd models, howeover, il should be pointed out that 1hese are directed
mastly to quike other processes than simple rainfall-runoff, and indeed ftom the point of vicw of
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practical applications, problems of waste disposal, ecpsion, changes i vegelation and 50 on, are
much more important than rainfall-nunoft alone. Bven so, and as will be explained subsequertly,
ANWNsz in themselves may still be usciful m sueh conneclions also.

In contrast, systems invesligations, which Amorocho and Harl {1964} reparded as boing
concerncd with (he dircet solution of techrnological problems subyect only to the constraints
imposed by the gvailable data, and so not subject to ‘physical’ considerations, has recently
undergone something of a renaigsance, largely through the adaptation of arifictal intelligence
technigues, such as artificial nearal networks (ANMs) and genetic algorithms, The particular
advantage of the AWM is that, even 1f the 'exact’ relationship between sets ol input and outpul
dala is unknown - but is still acknowledged 1o exist - the nelwork can be trained to lcarn that
relationship, requiring no o priori knowledge of the catchment characieristics.

4.2 A Simple Labaratory Catchment

For the imtial phase of experimenis, data were required lrom a simple hydrological system,
preferably having volume continuity between rainfall and runoff, 1.2 minimum losses between
the rainfall and the runcft, so that the problem concerming antecedent conditions dogs not anise.
Hall and Minns {1393} descnibe the results of their cxpenments using data from a simple
laboratory calchment. The labomtlory catchment had an impervious surface, and sample data wers
obtained from & number of different studies in the abulations of urban catchment data provided
by Maksimovic and Radojkavic (1986). The laner include some of the expeniments from a joim
project bebween the US Seil Conservation Service and the US Public Highways Administration,
subsequently reported by [zzard and Augustine (19473) and [zzard {1 2463,

Four events relating to a surface of ¢lashed slate roofing paper, 183 m wide by 14.63 m in length
and sloping at (.005, were sclectod for study. The miofalls consisted of pulses of constant
intensity, incloding changes ftom “high” to “low” lotensity (event 1277 and *low” to “high’ (evenl
128), and double bursts of *high® inkenaily rainfall with an intervening period of no rain. with the
bursts of ‘long’ {event 129) and *short' {event 1307 duration. Since the recession data for event
12% wasg incomplete, this stonm was reserved for verificalion, and evenrs 127, 128 and 130 were
uscd for training. As prescoted by Maksimovic and Radojkovic (1986}, the data were recornded
at & vanety of time intervals from 5 seconds upwards, and so Knear interpolation was employed
tw produce rainfall and {low ordinates al eegular time intervals, The ariginal study of Hall and
Minns (1993} uscd data with time intervals of both 5 seconds and 10 seconds for differcnt
experiments. The use ol 5 second data did not appear Lo provide sigmificantly better results than
the LG sccond data so it bas been decided o reproduce these expeniments here using only the 10
socond dala. This cditing produccd 912 sets of data (o1 traming and 108 scls of data for
verification.

Aulthough only representative of the most simple hydrological systems, such laboratory
calchments display certam hydrodynamic featares, of which the most ohvious is the anomalous,
s0 called, pip, i.e. the sudden risc and fall of flow above the equiliboum discharge that occurs
when rainfall ceases. As explained by Yu and BMeNown (1964), thesc pips result fTom the exira
surface roughness generated by the beating of taindrops into the thin sheet Now across the surface
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af 1he laboratory calchmenl. When Lhe rainfall lenminates, the depth of flow momentarily excocds
that which can be supported by the nagosity of the surface withowt rain, and the cxtra depth is
climinated quickly in the form of a sudden rize and fall in flow, which appears on the discharge
bydrograph as the ‘pip”. Although of Title significance hydrologically, these pips form an
obvious feature of the pattern of catchment response on which the neural netwaork is o be trained.

When applying a neural netwotk to the rasnfallimanoff problem, the stimulus s obviously che
rainfall and the response is the sireamflow at the basin owtlet. Since the flow at any instant is
effectively composed of contributions from different sub-areas whose time of travel to the outlet
covers a range of values, bath the concurrent and antecedent rainfalls can be considered as
stimuli. The inidal network configuration therefore consisted of M mput nodes with the ramfall
grdinates for tine 1 apd the (M - 1) previous time intervals, and one outpuat node with the Now
at time b In all cases, only ooc bidden layer of nodes was incorporated inte the network, the
number of nodes in tbe hidden layer being chosen arbilrarly (o give abeul 50 per cent of the
number of nodes inthe input laver For convenience of physical interpretation. the number M wall
be termed the windaw fergeh.

Training of the neural network was contined wmil the global errer of the network, as based upon
the sums ol squares of the differences berwesn observed and compnted values, was brought down
13 an acceptable lovel. In the majorily of runs this meant that the trining was continucd until the
number of data sets presented to the network had exceeded 10 Since the global error as
implemented in the software package employed was dependent upon the number of nodes in the
nebwork, a more general fithing ertenon was scught. As the review by Diskin and Simon (1977
has shown. a variety of such indices have been applied in hydrological madelling, but perhaps
the form that has been used most widely s the coofficient of efficierey defined as one minus the
guoticnt of the mean sgquarc errot and the vadanee of (he observed (lows, L

o

—'I 2 e, 4t
m - -1

where 4§, are the model estimates of the flow ordinates, g, /= 1.2......4, and g, isthe mean
of the g, As will be explained later however, (see also Hall, 1997} there are still some objections
trr using this measure in the present case.

The first questian bo be answered when applyving the ANN was the cffect of changing the window
length. Runs were therefore performed with windows ranging from 5 10 50 Hime intecvals in
length. The resulls ohtained are typified by those presented tn Fig. 4.1 (a), {b) and {c¢} which. for
the verification eventl 129, compare the reproduction with 10-, 25- and S0-interval windows
respoctively.
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With the 10-interval-or-less windows, the hydrograph shape is reproduced guite poorly, The
gquare shape of the oulput hyvdrographs seems to represent only Lhe shape of Lhe rainfall bursts
and there is a very poor representation of the rising limbs and the recession limbs, The
eruilibriwm dircharges are also underestimated. The 25-interval window provides a hydrograph
which follows the ficst burst guute closely bul is less specessful with the second. Indeed, the
socond half of the event displays a significant disturbance on the nising limb, which has been
introduced sgme 25 vme intervals afler the cessation of the first rainfall burst

When the window lengih 15 increased w 50 intervals several developments can be ubserved
Firstly, the number ol connections in the ANN increases exponentially, which increases the
lraining Hine considerably, The fraining in this case is further frusirated by (he presence of local
frmma. Seeotdly, 1 the aumber of ludden nodes i e nerwork is decreased significantly to
improve the training performance (e.2. 13 hidden nodes were used for the resalts in Fig. 4.1},
Lhen the verification results demonstrate 3 serious degradaton in the performance of the AN,
The ANN can no longer ‘peneralise’ the relationship between rainfall and nunoff. Thers is simply
foo mmch data being presented at the inpuf layer and - to maintain the hiological analogy - the
ANN gets ‘confused’. The coefficients of elficieney For the raiming and venfication of the
various ANNE rmentioned above are miven in Table 4.1

Tahla & § Couffirtants of officivry for ANN prodely thawn i Fig. d ]

No. of rainfall inpuls ITilining Segue e verification sequences
{events 127, 1258 & 130} {event 124

10 pb window LLR N IR

25 pi window [h#Y 1426

50 pe windoe (kP8 0729

The window lengih can obviowsly be too long as well as oo short. The 25-point window appears
to give the best resulls in hoth training and verification, U is ussentizl to slress here the
importance of the verification data sequence in selecting the most appropnate ANN
configuration. The performance of the ANN on its own Iraining data sequence, which are
expressed as coefficients of efficiency in Table 4.1, do not reflect the inherent shortcotmings of
the trained ANN a5 evidently as do the verification results. An ANN will quile often demmonstrale
an putstanding ability to learn relationships from any training data sequence 1o a very high degree
ofaccuracy (&g coefficient of efficiency abowve 0.9, even if these relationships ace in fact ton-
determuinistic or even nonsensical. The learned relationships must fivsl be validated through the
application of the verification data sequence to the traingd netwodk, hafore anything at all can be
saifl ahout the generalisation properties of the trained ANN to new or “unseen’ data.

In the above example, 25 points of 10-second data represent a time mierval that broadly
chcompasses the range of centroid-to-centroid lag times of the training events, a resull that has
some infuitive appeal. However, the network having this input fails (o reproduce the observed
anamalous pips, and intreduces some significant neise in the second half of the verification
gvent. Since increasing the window length will not ¢liminate the latter feature, some additional
infrmation must be provided o the netwark in order to allow the observed and spurious features
ta be distinguished.
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The problem of the spunous nowse on the second rising limb of the verification event 15, i1 fact,
cagsed by contradiclory information being presented 1o the network under ‘no-rainfail’
conditions. Refore the stomm beging, all of the antecedent rainfall inputs within the window are
zere and the flow outpul is also wero, One window length after the end ol thes ranfall storm, the
rainfali input again consists of zeras but the flows are in recession and cutputs are most definitely
non-zero. The nelwerk has no information to discriminate between these two ‘no-rainfall’
conditons and once more becomes ‘confused’. This extra information could be provided, for
example, by a hinary variable {e_g. unity for post stomm, cero for pre-storm conditions}. However,
the antecedent flows themsclves provide an indication 45 to whether rain has occurred or nol. In
addition, such flows add the further infoomation that the longer the inferval of zere input, the
mare the output decrcases. This approach of including an cutput vanable i the input constilules
a [orm of recwrrent hack-propagation (see, for example, Henz et af, 1991, pp. 163 ef seq).

The inclusion of the flow al time (¢ - ) as an input to determine the Mow at limse © may appoar
to mtreduce an elemenl of Aoed reuting inte the modal, but that is nol the parpose of the ANN.
Unlike the conventional rainfall-runc{t medel, the network secks 1o leam partems and not to
replicate in detail the physical processes involved in ransforming oput inte outpat. The leaming
process does not depend wpon any assumptions relating 1o the form of the impul-output transfer
funciion, the number of (active) parameters or their possible physical imnterpretation. In the terms
of the discussion by Amorecho and Hart {1964}, the ANN could perhaps be regarded as the
witimate black-hax model,

This inttodustien of recurrent back propagation is justified as shown in Fig. 4.2, which depicts
the results of 2 network that reccives 25 ranfalls and 4 antecedent {lows as inpul.
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Fip. 4.2 indicates that the spurious noise has been almost been entircly climnunated from the
second half of the verification cvent and that the cquilibriumn discharees of both rainfall polses
are successfully caplured by adding the antecedent {1ows, The coelficients of elliciency for the
training and vertGication daka sefs are now (L9938 and 0,985 respectively, Perhaps even more
satisfying is the appearance of the two anomaleus pips in the nerwork output, although their
timing and magnitude are somewhal lacking io agreement with the observed pips.

The results of the above experiments clearly show the effec) ol the cholce of input data upon the
ability afthe ANN to predict discharges, These tests have considersd until now sither just rainfall
or a cambination of rainfall and discharge in the input array. As a logical extension to these tesis,
one final experirment was carred out that did not make use of any rainfafl data, bul used only
amtecedent fow values as input to the ANN,

Fig. 4.3 depicts the resulis of & oetwork (hat wses only the 5 antecedent flow values to calculate

the current low value. The coeflicients of cfficiency for (he runing and venfication of this ANN
model are 0993 and 0967 respectively.
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Fig. 4 3 Perfarmonce of mewrdd aetwork on verficdilon ovent for fabordfary calcAment usty ¥ amecedemt fow
wrdimies ouly o3 input

Although the nsiog limb of e verification event 15 nol réproduced very accurately and the
equilibrium Aows are slightly underestimated, this AWN model provides enly slightly poorer
performance than the 25 rainfall and 4 Tow model used sarlicr. The overshool at the top of each
rising limtb is caused by the fact that the network has no ather information available thal vells it
ar which leve] the nising limh should stop until the aclual measurements indicate that this is so,
That is, at the top of the rising linth, the nutput from the ANN wishes In continue rising in
magnitude hased only upon the pattern of the preceding fAows. It s not until several tme steps
have passed for which the measured values are all constant, that the ANN ‘recopgnises’ that the
equilibrium level has been reached. Similarly, the phase crror thal Geeurs 1o the timing of the
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anomalous ‘pips’ 15 caused by the fact that the ANN has no knowledse abowt the cessation of the
rainfall until one or (wo nme stens aller the actual measured values start to decrcase,

The results of this experiment indicate that the ANN is also a very powerful device that could
also be used fur lime-series extrapolation. Perhaps one of the most well known devices for
sequential data assimiiation and imc.sencs extrapoiation 1s the Kalman Filter (falman, i964).
This approach is a statistically optimal method for the sequential assimilation of dala inbo Linear
models, The Kalman lier provides qao estimale of the stale of the sysiemn al fhe current Uime step
braged on all measurements of the system available up to and including the current time in very
tnuch the same way as the above ANN model (see, for an application in hydmodynamic
modellmg, Caftizares e af, 1996).

4.3 A Small Sewered Calchment

The results with the laboratory catchoent data were sufficicntly cncouraping to initiate a
subsequent phase of testing with Neld as opposced to laboratory data In order to minimise the
passible effects of seasonal vanations in lesscs, these further Lests were carmicd cul on records
from an urban catchment area. The Cantley Estatc in Doncaster was gauged for a 3-yvear period
i the late 193505 as part of a research programme carmied out by the then Road Research
Laboratory (see Watkins, 1962). The catchment, which has a gross area of 5.14 ha, is scrved by
a separate surfaee water drainage sysfem baving an outfall 610 mm io diameter. The details of
16 storm evenls were kindly supplied by the Instilute of Hydrofogy, Wallingford. 12 of these
evenls were randomly sciected for training and the rernaininye 4 reserved for verification, With
data at one-minute inlcrvals, there were therefore 85 data sets for wainmg and 270 lot
veriheation. The results of the best-perfonning nerwork conliguration are presented in Fig. 4.4,
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Several differert metwork configurations were rained and ested before amiving al the resulis
given m Fig, 4.4 As with the laboratory catchment data, a series of runs was camied oul
exploring the elfeat of changing the wngth of the ramflall window, and (then adding antecedenl
flows t the input. Similar tesults wers obtained as with the laboratory catchment. Bainfall-only
input praduced a very noisy cntput as befhre, with peak Mlows signiflcantly ynderestiniated on
some evenls and overestimated on others. In addition, the lower limbs of the recessions were ton
slecp. The addition of 3 antecedent Nows removed st of these undesirable features, although
the highest peak flow rate was botl wndercstimated 10 magnitude and Fate 1o timimg.,

Having demonstrated that a neural network with a suitable cheice of (nputs is capable of
reproducing, with some Adeliy, the responsss to storm events apon which i has not been trained,
the question arises a5 1o whether the approach offers any advaniages nver a conventonal black-
b rainfall-runefi model. The 4 verfication events from the Cantley Estare have therefore been
maodelled separately by means of a well-established, conceptual hvdrolagical modelling package.
RORE (Mein e of, 1974),

The basic element of the RORB mode! is a single, concepuaal, non-linear reservoir for which
the relationship between storage, 8, and discharge, @, is given by:

5K E Q" 4.3.1)

where X, is 4 storage constant applicable ta all sub areas within the catchment and & is a
telative delay timne applicahle te individual channel reaches within the netweork estimated from
the expression:

E -F = 4.3.2)

where L, 1s the length of the reach represented by the storage element, £, is the average [low
distance of sub-catctunent inflows withu the channel network, and Fis a factor depending upom
the rype of charnel teach, ie. naloral, lined or unlined,

Far this experiment, the power of the non-linear reservoir, s, was sel 1o the default value of 08,
and the mitiad luss and storage constant mamipulated untl the peak flow rale and total mnoff
wvalume were sausfactorily reproduccd. In the case of the event of 3 July, 1957, which was
douhble-peaked, the ranfall was separaled inta two burses, thereby inroducing the ratio betwoen
the runoff volumes caused by each burst as a third calibralion parameter. Since the RORE mode!]
was talibrated for each event individually but the neural network operated on all 4 events with
the same ser of weiphts determined Erom the training, this comparison is inherently unfavourable
to the ANN model.

The plots af the sinpgle-peaked storm F 26 August, 1956 and the double-peaked event of 3 Tuly,
1957 are displaved in Figs 4.5 and 4.6 respectively.
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The resulis are compared in Table 4.2 in terms of their cocfficients of cfficicney. The coefficicnts
of efficiency of the two models on these four cvents are gencrally comparable in mapmitode. In
the casc of the event of 3 July 1957 {that with & pronounced Jdouble peak), the perfurmance of
the newral nelwork model is obviously supenior,

Todfe ¢.2 Comporigen febaerk fit provided b fatr storm evenes by an AN medel and the RORE conceptued model
in Ierms of eoefiicients of efffcrency

{toefficients of elticiency

Btonin af RORE AN
23 Aupust 1956 {1474 0.381
o aupgust 956 LR 0.982
3 July 1857 L Hk4 (074
2] July 1957 1954 0wl

Some important factors should be considersd when evaluating these results, Fitstly, the
calibration parameters far the RORE model included an initial loss mae, while application of the
newral netwoerk did ser mvolve any consideration of loss separation. Moreowver, the ncural
netwiork has no calibration paramcters as such, but only the setl of weights which it learns irself,
It thus involves no operator intervention and no a preori knowledge of the catehment, Although
the traming of the newral network requires a substantial imvestment o compuler tme, the
procedure is far more straightiorward than s the calibration of even a simple conceptual model.
which must be undertaken o0 an cvent-by-cvenl basis,

The results obtained are sufficient to demonstrate thal, for situations involving rainfall-runclt
madelling in which there are no extrangous influences such as land-wse changes, a neural
nerwark has the potential 1o perform in a comparable fashien, 1f nol better than, a conceptual
hydrological model.

4.4  Linear and NMon-linear {atchments

The next important consideration is the applicability of ANNs to more complex real world'
catchiments. Although the standard solution algorithm far ANNg will achieve convergence for
almost any proflem, il would appear that the most simple ANN architectures have merg
difficulty in learning more non-linear relaticnships. This sectien therefore desenbes a senes of
numerical cxperiments hat were undertaken by Minns and Hall (1986 with the spegific purpasc
of cvaluating the performance of ANNS on rainfall and runeff data from theoretical catchments
cxbibiting a ranpe of behaviour patrerns varying from the linear to the highly {in hydrological
lerms) aoo-lmear, Owitg to (he virual impossibility of collecting hydrometric data from
catchrments that could be classified o priord as either lincar or non-linear, bul werc othereise
identieal in carchment characteristics and input rainfall palterns, the conceplual hydroloyical
modelling package RORB {Eq. 4.3.1}1 was employed to generate sireamflow respanses ffom a
synthelic time series of storm cvenis for representalive (linear and nan-lingar) catchments.
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In this manner, the ANN could be tesicd sulely on ils performance in learning the {linear or non-
linear) relatinnship between rainfall and munoff, all other factors being regarded as equal. The
precise form af the mode] used o gencrale the runoffs from the rainfalls is of little importance
as the ANN is not being applied to ideniily this model bul principally to produce responses
tvmcal of those encountered in bydrelogical practice.

g 4,1 Generation of ramnfall data

Far the purposes of the numerical experiments, sequences of storm events of varyving duration,
total depth and profile. occuming at ioregular intervals, were required that could be routed through
simple conceplual hydrological models with differens degrees of non-linsarity in order to produce
the corresponding streamflow outpues. For simplicity, these rainfalls were treated as areal
averages. Since several storm sequences were required, they were produced using Monte Carlo
methods based on the fllowing assumplions:

L. storm durations were normally-distribated, with a mean of 20 h and a standard deviation

of & Iy

storm rainfall depihs were lognomally-distributed, with a mean of 25 mm and a standard

deviation of 2 mm. (These statistics imply that the distribontion of depths had a coefficient

of varialion of 0,785 and a skewness coelficient af 254,

3, the shapes of the zix storm profiles could be described by simple polynomial funclions,
broadly based on those of the UK Flood Studies Report (Natural Environment Research
Couneil, 1973, and inchiding early-peaked and late-peaked as well as symmetrical events
{with a comstant inlensity profile also included as an extreme case); and

4. ihe inter-event times were taken as double the previous storm duration minus one hour.

ta

Initially, three scquences of 14 storm events with hourly data were generated, the profile shapes
being selected by sampling from a ciistribution untfanm over the range ane ba six. The first was
4 traming seguence with a wtal duration of 764 h. Five of the six profiles were represented, with
durations having an average of 19.2 h and a standard deviation of 6.95 h. The average deplh was
316, with a standard deviation of 1.9 mm. This sequence is referred to as RAINI in Table
4.3, The other two sequences were emploved for verification purposes. The first of these
verification data scts was gencrated in such a2 way that the maximum values all fefl within the
tange defined by the training seguence. This sequence was used for verification of the ANN
uniler ‘normal” rzinfall conditions. However, if an ANN wete to be applied to a real catchment,
ever il the training data included all the available measurements, there remains always a small
but nen-negligible probability that an extremc event heyond (he range af recorded exprerience
might occut i the frwre. & second verification sequence was \hercfore generated that contained
tainfall maxima outside the vange of those upon which the training data had been based. This
sequence was used for verification of tbe ANN under ‘extremye’ rainfall conditions.
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Table 4.3 Some properioey of the gesergicd reeafal] doer seguonces

Rainfall da1a  Used for: Tolal duration  Average depih Stiewdard haximum
Sequerlie ol sequence of stoLmms deviation olensity
[h} [mm) froum) [mrmrh)
KAINI training T LYW [ 5.2
RAINZ normal venficanon T4 MH 21 il
PAINS exieme venfication T4 243 i3 134

The two verification sequences each had a otal duration of 794 h and al] profiles were
repregsented. [n the first data set, individoal events had an average duration of 198 b and a
standard deviaticn of 4.9 b, and a mean depth of 24 6 mm with a standard devialion of 2.1 mm.
This zequence is referred to azs RATN? in Table 4.3 The zecond verfication sequence was
constructed by employing the same secd as that employed for the first, but assuming that the
storm depths wera lognormally-distribnted with a mean of 25 mm and a standard dewiation of 3
i, which implied a coefficient of variation of 1,53 and a skewnass coefficient of 3.2, The
actual mean and standard deviation of storm depths produced was 143 mm and 3.3 mm
respectively. This sequence 15 referred w0 as RATNI m Tabie 4.3

4.4.2 Generation of the runoff hydrographs

According to Laurenson and Mein {1 YBS}, the exponent used in the RORB model (4.3, 1) is rarcly
less than (1.6 or greater than 1.0 when modelling catchmunt tunoll response to rainfall, and a trial
value af 3.8 15 recommended on beginning a modelling exercise, A briel review ol the available
literature shows thal the values adopted ot eaponents bas ranged from 067 (Wartt and Kidd,
1975} to OB (Selvalingham er of, 1987}, with a preduntinance of values between 1.7 and 0.8
{Laurenson, 1964, Askew, 1970; Mein et af, 1974, Hong and Maohd Nor, 1988), Three models
of theoretica] catchments wers thercfore adopted to cover lhe entire range of possible physical
catchment behaviour:

(i) m — 0.8 to represent (he typical non-linear relationships encountered in praclice, and
rcforred to here as a regufer catchment,

fii}y = 1.0 1o represent an extreme e catchment; and

(i1} m = 0.5 1o represent an extremely Aoh-linear catchment.,

Ir order to run the RORB software, a bypothetical catchment arga and main ¢channel length had
to be assumed in order to establish the value of £ The chosen values of these chargoieristics
were consistent with thase of a rural drainage area of about 30 km® in southerm England.
Although these considerations ace not particular]y relevant to the learming of patlerns, the size
of the catchment broadly determines how many antecedent rainfall depths are required in
developing the ANN and therciors influences (the overall siee of the network. For simplicity, no
losses were separatect and ihe catchnent was considered to have no impervious srea. The &,
value was se ta 201 The tirme series of flows so obiained reflected very well the range in response
charactenistics ropresented by the three theoretical catchment medels, with the extremely non-
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linear catchment model showing rapid rses and recessions in contrast 1o the slow nses and
suslained recessians of the linear catchment mode], For the purpases of illustration, the rainfall
hyetopraphs and flow hydrographs peneraled by the regular calchment model are presented in

Fig. 4.7.
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Fig 4.7 Rawniall onil xuniif data fer the rogelor thoaretrcal calohment model

For cach catchment model, three data sels were generated corresponding 1o the theee rainfall data
sequences i Takle 4.3. The maximum flow rales generated by cach calchment model are
summanized in Table 4.4

Tty o & Moaemum flow rptes geaerated By cach eatchimens model for the roinfall daes sequences of Tobic 4 3

[tata sel

Trainime
Manral verification

Ixfreme verificalion

Rainfall data
segllence

Fadr ]
RAINE
EAINY

Muximum Mlow rates (m'i)

Repular catchiment

B i, 1‘ B
1T

795

Lingar calelmiant

2710
A70d

Sgat

Bon-ligear calchrment
4514
§d.446)

1 140

The rainfall-runaff data sels generated by RAINI are referred 1o as the fraining data scis, while
RATNZ was used 1o prodace the warmad verrficatton dala sets, and RATMNS was used to produce
the extreme verification dala sets,
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4 4.7 Standardisation of the data

As expluined carlicr (it §2.4), prier to presenting the dara to the ANN for training, a
slandardisation must be applied in order to restrict the output data range to the imterval of zero-te-
one, corresponding 19 the limits of the sigmoid function {2.4.2} i the output nodes of the
network. The significance of this standardisaten should not be underestimated. IT different
standardisation facters were lo be applicd to the training and verification sequences, then e
setual numbers remesented by uniry in the output node of the ANN wonld be difterent. That is,
the user of the ANN would be assigning a different ‘mearung " to the outpue than the one that was
adopted by the ANN dunng the training process.

In practice, a trained ANN can only be used in the tecall mode with data that is, in some way, of
the same or similar iype tu the data that il has *sesn’ before. An ANM generally performs very
poorly when used For extrapolation. For examiple, if the maxinmum flow that the AWM has leamed
to predict is 50 m¥/s {eotresponding to, say, an output of 1.0 from the sigmoid function) it is
impossible for the ANN aver to predict a flow value excesdiog S0 m'fs {i.e. the sigmotd fanclion
cannot ever exceed 1.00.

The choice of the range for standardisabion may therefore influence significantly the performance
of the ANM. Standardisation er rescaling of the input data 13 not abzolutely neceszary for the
standard MLP nevaorks used here. The actual values of the imput data caly affect the magnitude
and distribulion of the weights connecting the input layer to the hidden layer. Inpul data with very
large valoes will generally have very small weights asgocigted with them and vice versa This can
sipgnificantly affcct the speed and efficiency of the leamning algornithm.

Furthermore, different ranges of values for dilferent input variables may affect ihe sensitivity of
the trained ANN to variations in one input value compared to another. For exarnple, 1l an input
dala sirearn contains a larpe number of values (hal are very small in maygmilude as well as several
values that are very larpe, then a linear standardisation of this data will divide all of the values
by & wverv large pumber corresponding to the maximuni value. This may then result in
standardised values of the smaller data points that are all very close lo zero, Subsequently, the
vetworlk will not be sensitive to this iopul ar cutput. In ths case a standardisation of the data
using a logarithmic scale may be necessary,

In fagr, the documentation of the Wit software used in these experiments ponts out that the
weighted-sum input to a sigmoid function should be between -2 and +2, atherwiss the input will
‘saturatc’ the newron and cawse it to owtput 0 or 1 all the time. In these expeniments, the input
rainfall and flow data were therefore rescaled between Gand 3.

The output data, on the other hand, must always be standardiscd between 0 and 1, comesponding
to the output range of the sigmoeid. The sigmoid fonction is asymptotic to O and to | so that, in
Fact, 1t can never reach these values exactly. For this reason it is olten desirable to standardise (he
output values of the nebwork to the range 0.1 o 0.9, or even 0.2 1o 0.8 {Tang & Fishwick, 1993,

Smith & Eli, 1995},

For the cxperiments describud here, (he ouipue dara for both the training and venfication data sets
wire standardised between .1 and .9, comesponding to zers and the maximum flow rate in the
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training data set respectively, This meant that the maximwm flow rakes in the normal veofication
data sets (see Table 4.4) all fiell within the: samne standandisation range as their 2ssociated raining
data sers except for the extremaly non-linear catchment. In this Latler case, the maximum Aoy
rare in the verfcation data sel was, io fac, shghily larger than the maximom flow rate in the
raining data sct, resulting in a maxinwum standardised value i the verification data set ol 1085,
which, of course, exceeds the upper Limit of the sigmeid function of 1.4, Since this error ondy
imvolved one or two of the 794 datx points in the verification data set, it was not considered to
be a significant problem here.

4.4.4 Training and venfication experiments under ‘nermal’ conditons

Far all three conceptual modeks, experimients were carrtad out with a 3-layer ANN (i one
hidden layer). Based on the resulis oblained by binns and Hall (1996} as well as some extra
BXferiments, a network configuration was finally chosen that invelved the use of the concarrent
and 14 amecedent rainfall depths and three antecedent [ow ordinates, 12 hidden nodes were
eventually chosan for the hidden layer. The ouwipul consisted of (he single, concurrent flow valug.

In order lo provide a visual impression of the degree of it obtained during training and
vetrication, twa consacutive events fkam the training and normal verifiealion sequences, which
include the largest of the 14 generaled storms i each case, have been selected for illustration,
Figs 4.8 and 4.9 show the performance of the 3 layer ANN for the (a) moderalely non-linear, or
repular; (B) limear; and {e) exttemely non-linear catchment madels for the training and normal
verification data sequences respectively. In all of the training cases, the hydmograph from the
smaller event s well simulated, but the 3-laver ANSN marginally vnderestimates the six or seven
peak ordinates from the larger event. [n the verification sequences, thete 15 a simular
underestimation of the peak ordinates in each case. In addition, a slight detenioration in the
perfortnatce of the 3-layer AWN can be observed for the extremnely lincar and extremely non-
hinear catcheoeots. This slight deterioration ts confirmed in Takle 4.5, which summatises the
results from both trainmg and venlymg the 3-layer ANN on the dala from cach of the three
models.

Tudler 4 5 Coefficiemis of gficaemey for ool &-lepver AN frired (o roanfulE anad ranaff sertes fram three different
concepdal vdrelopical madels

Cachmactt twde] ‘ITaimng sequence Waormal wetifization sequence
Aelaver ANN 4 laver AMBN M-layver ANN d-laver AN

Togular LI R g ] 05957

lingat 0 HES 09933 R T 19904

oxemely non-lingar 11,5940 R frega IR




Ramfall-rienadl Modeiling ]

&0
{ﬂ} Lairing dada raguar calckrmanl
0 L A Alayor AWM
o MHayer Ak
L
r
E
Kl
{b} . InAar cAlChrnare
— RRining duly
& Hypw AHH
o Alana 2NN
i
at
&
E
= e
il
ELTE 419 430 450 ATR
e, ©
50
i) )
— br&anrg dala ror-knggr zalckean!
a0 L A h-ayar ARK
o A aHH
ﬂ aa
&
é 20
in

a0 410 430 450 470

Fig. 4.8 Training of 3- and 4-fayer ANNG o [rgie dind owipul froer cor of the theee coreepdun catehment models.
fap regreiar cutchmenr, ) hnegr caicheent, and fo) exiremely wor-linear cotchment. For clavie of s rarion. o
ererts onfy Agve beer seleelind



Gl Artificial Meural Metworis 2t Subspmbolic Prvcety Deseriplors

40

{3} regpear cahcimant
— nermal v enficaion

& Hayer ald

P R LT

30 24a 1hd Ll aca 420

o

h) _
{ __ noemal v Al s EnuEr Lalehm s

a Mg Al
o A ANN

Mo, (T3

an

c ..
{ } — noma v aton w3 chm et

A 3dpy i SNH
a dqaypr AWk

Thirw , (T3S

| 340 FH 240 00 120
Ly ]

Fra. 4.8 Narmeal verification of 3- and $-laper AN on il end oufpet fram sach aff the tirgs conveprum!
catehment modale: fqi regefar eatehment: thi linear cotehment; and () artregeely gon- fieae caichtend, For clurny
af il fFn, S ety gl fitwe beek Sedected



Reunfell-runcif Modeliing a1

Table 4.5 shows that the goodness-of-fit obtained was such that the majority of the coetficients
of cfficiency varied only in (he thind or founth place of decimals. ln verfication, the perlomance
of the ANM on he regular catchment was marginally (he best, although there was Litle to choose
between that and ihe two ather extreme cases. Since the network inputs included the flows at
previous kme steps, the AWN could be considered 1o be modelling the change in Aows rather
than their absolute valucs. o these cireumstaness, lor the caleulatbion of the coeflicients of
efficiency, the variance of the differences in flows, @, - g,., . could be preferred 1o the vanance af
the observed flows in Eq. {4.2.1), However, Invesligation showed that, for the data sets emiployed
ity thiz stady, the variance of the differences was usually of the order of 100 times the variance
of the observed flows, but that the mean square crror could be as high as 140 times the variance
of the differences, In thase circumstances, use of the flow differences would then lead 1o Fovalues
well below minus one, whereas in this case Eq. (4.2.1) remains between 7era and one and was
thersfore preferred.

The apparent deterioration in the performance of the 3-layer ANN under exiremely lineat
conditions can cusily be explained by the inlerent non-linearity of the mapping function that is
instantialed by an ANN vsing sigmoid fransfer fimctions. The ANN could be made 1o repraduce
s more linear behaviowr by simply replacing the sigmoid function by a linear transfer function,
as piven in (2.4.25), but this would inevitably resulf i a decrease in the performance level of the
AMNN in the presence of even the slightest non-linearicy,

In an atternpt (o further improve the performance of the ANN under extremely non-linear
conditions. it was decided to repeat the exercise using 4-layer ANNE (i.e. two hidden layers).
The resulis are suminarised also in Fips 4.8 and 4.9, and in Table 4.5, Although Fig. 4.9 indicates
a marginal impravement n the level of peribrmance of the ANN far the lingar catchment, this
is not reflected in the cocfMicients of efficiency in Table 4.5, The differences between the results
of the 3-laver and 4-laver ANNMg are, in fact, insigniticant in these expenments. The above rasults
together with the increazed computational effort required Lo train a 4-layer ANN compared o that
far a 3-layer ANN raises some doubt as ko the suitability of the 4-layer ANN for modelling the
rainfall-munnff process.

Hertz et af (1991, p. 142} also reach the same conclusion, They state that the total number of
hidden units necessary to solve 2 given probien s net genarally known and, in Fagt, this number
may grow exponentially with the number of imput units, Furthermore, although two or more
hidden layers may wetl permil a solution with [ewet wiils in all, nothing at all can be said about
the corresponding leaming or generalisation propertics. 1t is possible that some functions are
representable but not leamahle with two hidden lavers, perhaps due to the preseace of local
LA,

Thest results lond o support the contention by Rumelhart e af {1994) thal minimal networks can
offer hetter peneraliscd performance than more complex oetworks, The extreme accuracy ol the
ANNs for the typical non-linear case (m = (LR}, which would appear represcotative of many
ramfall-runcoll data sets, indicates that a 3-layer netwark is capable of identifying usable
relatienships between discharges and antecedent rainfalls for a wide range of caichments with
responses varying from the linear to the non-linear, typical of the majority of real-world
applications, In termis of individual slotm hydrographs, the largest peaks were not always
reproduced closely. This performance can be cxpected when the number of ‘high’ peaks s small
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cotnpared with the number of ‘average” peaks in the rzining data set; the ANN assigns relatively
more impartance 1o the latter, rather than to matching the forrner. These findings are sufficient
to suggesl that extreme cantion would have 1o be exercised if ANNs were (o be emploved in
stadies of extreme floods,

4.3  Extreme Events: The Problem of Extrapalation

As mentioned im §4.4.1, if an ANN were to be applied o a real catchment, even il the training
data included all the available measurements, there is always a small but non-negiligible
probability that an extreme event beyond the range of recorded experience may occur in the
fulure. The RAING data set was therelore generated thatl contained rainfall maxima ourside the
range of those upon which the training data was based (scec Tables 4.3 and 4.4) The runaff
hydropraphs produced by applying this rainlall data set to cach of the three catchment mosdcls
were then used as verification dala sets on the trained networks from the previous section. The
resulis of these verifications arc shown in Fig. 4.10.

The cocfficients of efliciency for these experirnents were 0,750, 0848 and 0,775 for the repular,
linear and non-linesr catchment models respectively. Fig. 4.10 depicts quite clearly the problem
of extrapoiation that anises when the ANN madels are conffonted with extreme data that it has
not seen before. In cach case, the ANN “cuts—off " the predicted discharges at 2 value eguivalent
Lo the maximum value of discharge in the training data sequences. [n these expeniments, the
maximum discharges in (he raining data scts were stendardised to a value of 0.9 on the sigmoid
funciion outpul. Thiz in fact allows the network to extrapolate beyond the maximum training
discharge by up to 0%, a= shown on Fig 4.10.

The depreze of extrapolation exhibited hy these networks is by ne means sufficicnt to capture the
behaviour of each of the catchment responses. In these experiments, the maximum flaws in the
verification data sequences have magiitudes that ars more than twice the maxima that sccur in
the training data sequences. Fig. 4,10 shows that this problem of extrapalation ig the same far
each of the three theoratical catchment models considered.

I fact, the problems of extrapolalion 13 vety obviously litked to the choice of the standardisation
fuctors that are apphicd 10 the training and verification data sequences. [noorder to investigate (the
effect of these standardisation faciors in sorme more detail, further experiments were performed
i1 which other ranges of standardisation were used than the range of 0.1 to 0.9 mentioned in
§4.4.3.

Wheteas (he previous expetiments standardised the discharge values at the output node ta a range
al 0] w 09, il was decided to set the maximum discharge value in the tainmpg set to 0.5 on the
sigmoid function. This then keeps up to 50% of the oulput range of the sigtoid function, 1.¢.
from (4.6 to Lk "hee' (ot posaible extrapolation bevond the maximurn value of the teaining data,

Fot thess and subscquent experiments only the data for the regular catchment was used, as this
1& most imdicative of the catchment behaviour that may reasonably be encounteted in practice.
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Usimp this new standardisalion range, a 3-layer ANN was trained and verified as before. The
performance of this network provided coefficicnts of efficiency of 1,995 and 0.995 f{or the
training and normal verification scguences réspectively, which are comparable to the results
abrained previously.

Now, however, when the extreme verification dala is applied to the trained ANN, the coefficient
of determination for the extreme verification becomes 0818, compared o 0.790 previously. This

is, of course, only @ very minor improvemen, and is depicted in Fig, 4.11 for the same events
shown in Fig. 4.11
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Fig 4.1 Comparcon of the extreme verification resuits of the 3-layer ANN ured previous'y toea I-faper A0 i1
which the training daiz set was standardised ta the ramge 0 | ta 03, frus eflawing o degree of extrapelation heyond
the pucrimum vafwe af the trainine dave

The results in Fig 4,11 show that this approach 15 not very satisfactory for selving the
extrapalation problem. Indeed, the degree to which the ANN extrapalates beyond the maxinium
training value has only increased fom about 10% to 20%, even though the oatput newron has a
thearetical extrapalation range of up to 100% of the maximuom training valoe. This is quire
obvigusly a problem of *saturation” of the neurans in the hidden layer, caused by the associared
extreme values ol the input rainfalls and antecedent flows, The mput data sequences contain
values wilh magnitudes that are aboul iwice the trainmg values, resulling in wetpghted sums to
the neurons in 1he hidden layer that are either very large or very negative, so that the cutputs from
the neurgns are 'stuck’ at either zero or 1.0

Another approach to the choice of standardisation values is w consider the actual ranpe of values
in the verification data sequences. For example, the extreme venification data for the regular
catchment model has a maximum rainfall ordinate of 13.0 mm/h and a maximum discharpe
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ordinate of 37.95 m's. Using the standardisation factors based on the training data se, this leads
to a maximum standardised rainfall value of 7.3 instead of 3.0 at the input oodes, and a
maximum standardised flow value of 2.0 at the output node, The standardised output valee of
2.0 is, of course, impossible o represent on the stgmoid ransfer functien, which is limited 1o 2
maximum value of 1.00 [t is possible, however, to "re-standardisc” the extreme venficalion data
sequenee 50 thal the maximuom standurdised rainfall value is 3.0 and the maximum standardised
floaw value (5 0.9, This was done, and this re-standardised extreme venficalion sequence was
simply applicd to the onginal trained 3-layer ANN, The resulis for the two selected verification
events are depicted in Fig. 4.12.
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Flig. 4.12 Extrene verification of a 3-fover ANN in which the verification data sequence iv siaudardined uiing we
OWR MArirtd aid Aet the maxieeg af the trainiig data sequence

The coefficient of efficiency for (he entire restandardised veri fication sequence has now increased
to 0.995, which i1 comparahle te the ceefficients of efficiency ohtained Far the training and
‘normal’ verification data sequences {Table 4.5). Although this oulcome appears to be quike
promising, considerable care should be exerciscd in interpreting these results. By restandardizing
the extremie verification data sequence we are actually reassigning a different “meaning’ to the
input and cutput values than the one that was assigned during the training process. For examnple,
although we believe thal the maximum rainfall ordinate is 130 mm, correspondimg to a
standardised value of 3.0, the ANN aaly interprets this 1o be 5.2 mum, Similacly, the ANN can
only outpul a maximum discharpe value of 43.7 ms, corresponding to a standardised value of
1.0, bul we now interpret this ko be 97.7 m*s. The ANN is in facl modelling a regular calchment
under notrnal comlitions, and we are simply (aking these tesults and rescaling them by a factor
of betwoen 2.2 and 2.5 to oblain results under extreme conditions.
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The accuracy af the results cbtained indicates that the ANN has indeed captured quile well the
essential rainfall-runoff relationship for this type of catchment. Furthermore, 1€ the raintall-runelf
process was an enbirely linear process, e, twice the ramfall were to lead 1o twice the runoft, then
rescaling the inputs and oulputs for extreme events would be quile acceptable. The minfall-runall
process 18, however, not at all lincar, so that the above rescaling is, in this case, quite
meaningless, and even rather dangercus to apply. Obvionsly, for the theoretical caichment vsed
gbove, there 15 a large degree of limeanty arismp due to the absence of non-linear hydrological
parameters, like infiltration, evaporation, ete., that have been excluded from the RORB model
used here. Further testing of the ANN models using real calchment data is therefere required.

4.6  5ilk Siream and Dollis Brook Catchments

blinns and Hall (1997} demonstrale the ability of an ANN 10 learn a general rainfall-runcdf
refationship applicable to a hydrologically-homogeneous area. Inorder to investigate whether the
relationshups between rainfatl and runoff learned by an ANN had any hydrological significance.
networks were fitted to data from two drainage areas situated fo the north of London. and
previously analvsed by Hall {1977). The Dollis Brook and the Silk Stream arc two aldjacent
catchments of 23.99 and 31.25 km?2 drairung intg the Brent Reservoir. The geolopy of bolh areas
15 predominantly Londen Clay, with puterops of the Clavgate beds and the Pebhle heds occurming
on the higher ground to the north. Since the 1920s, both catchments have been extensively
ntbanisadd, siuch that the proporticns of impervioos area had by 1970 reached 21 and 25 per cent
for the Dollis Brook and the Silk Streatn respectlively.

Records of stream flows were avanlable for Dollis Brook at Henden Lane for 40 events over the
period 1952-569, and for the Silk Stream at Colindeep Lane for 51 events over the years | 929-44.
Individual storms were abstractad and paired with rainfall data from awtographic raingauges at
Stanmare and Edgeware (Silk Stream} and Bamet and Mill Hill {Dallis Braok} A J0-minute
time interval was used throughout, With these peniods of record, the amount of impervious area
in the Dollis Braook increased by only 3 per cent, wheteas that of the Silk Stream increased from
14 to 21 per cent,

The analyses began by dividing the available storms into training and verification data sels. For
the Dollis Broolk, the first 23 events were used for training, and the last |7 for venfication. This
division ensured that the maximum fow peak of 16.8 m's waz included in the traming data.
Since Ihe %ilk Stream had beop subjeeted to a aipnificant increase in urban development during
the period of the record, the first 13 and the last 10 storms were included in the tratning data set,
and the remaining 28 were reserved for venfication. This mixture of storrns not only convertiently
cncapsulaled the hislorical changes it percentage impervious area, but also ensured that the
maximum flow i the training data of %.8 m’s was smaller than the peak of 13.8 m¥s in the
venlication data, Both features were introduced for 1he purposes af the numerical experiments
treported helow,

Although individual events were extracted, the data were prescnted to the networks in the form
altime senics, 1.2 sach event was placed In sequence, with a clear period of hydrograph recession
being included prior to the start of the succecding event. Sudden jurnps in flow magnitude were
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avoided, even at the expense of inserting a short, artificial extension of the previeus recession,
in order to gvoid the wotroduction of false leatures thal could be leamed as readily ag the “free’
catchment behaviour.

The ANMN models fior both catchments were constructed with cight npuls (rainfz]] at time ¢ and
the four previous time steps, and the flows at three previous tme steps) and one output of Aow
at ime ¢, This selection was based upon a series of ioitial trrals with different combinations of
ranfall and flow inputs, and was partly constrained by the need o use the same conliguration for
hoth catchments, as will become more apparent in the discission below. [naddition, farther tnals
with different numbers of nodes in the hidden laver indicated that the yse of three or four ludden
nodes provided the smallesr netwark configurations with the hest results on both the raining and
on the verification data sels as shown i Table 4.0 (see also Appendix 17, For the following
expenmments, four hidden nodes were subsequently psed.

Table ¢ RMY vreges cafogfmted b the RSN saftware for varioug configueanons of AN for borh fenining ond
vErieaian dala seguemoey

Number of EMS ermors

hidden nodes
traumng data et venification data sel

2 [1L0f1A2 (hAICHRI S
1 Q0077 (00098
4 Q0076 EALAINE]
3 Q.04 0.00127

An AN for each catchment was trained and then venlied on the data sels compiled as described
above, The restlls are summansed in 'Table 4.7, and show that for both catchments efficiencics
inn excess of 97 per cent were achieved in training, a result which the majority of hydrological
modellers would be gratified to achieve! For the verification events, the coefficient of efficiency
of the Tallis Rronk netaork s slightly inpeoved but that of the Silk Stream network falls from
0974 1o 0.949.

Tuhle 4.7 Coeficienms af efficiendy: for the eraining and verification of aeea metwork sodets of e S0k Sircam ard’
Dt Brook curtchmenis wsing five raniolls and three fovwy ar inpart and ore Tow ar outpur

Cclenent AMN mode] Trasninyg dala erilcation Jala
Dollis Brook  Dollis Brook 1.574 [t583
Salk Stream Silk Strerm 74 19449

sk Stream Dallis Prook f.924 0.957
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The reason for the difference in performance between (he two ANN models is readily apparent
when the plots of simulated and observed flows are examined in Figs 4.13 and 4.14. Rather than
present e whole venfication data set for each catchnrent, which 15 in excess of 2000 poinls, a
set of 30 ordinates has been selected to illustrate the prohlem.
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Fig. 4. 0.1 Segemant af M andinater of the verification dufa set far the Suk Stream useng on ANN with five rainfalls
und three Tows ar erpur emd ome Tow ax curpet

In Fig. 4.13 for the Silk Stream catchment, the higher peiks in the verification data set, which
exceed Lhoge in the raining data set in magnilude, are not captured comrectly. By way of contrast,
the paaks in the training data set for the Dellis Brook catchment were higher than those in the
ver{ication data set, resulling o 3 much more flattering performance level for this catchiment,
as shown in Fig. 4.14.

These results clearly demonstrate thal, if sufficient care iz excreised in Lhe seleclion of the
training and verification data sequences, then many problems ol extrapolation might be avoided
in practice. Far calchments with sufliviently long historical reeords, the tramung dala sequence
mst include the maximum recorded historical events so that the ANN can learn to reproduce the
reaponse of the catchment over the widest possible range of hvdrological and meteoralogical
condinons, as was demonstrated 10 the Dollis Brook catchment model above, Thus will not, of
course, preclude the necessity (oo extrapolation during some wnforeseen flure evenl that 1s
greater than all htstorical events, There will always be a small, but nen-negligtble, probability
that some maxinum probable cainfall or discharge cvent could accur in the future, As was
mentioned above, the Silk Stream traming and verification data sequences were in fact
specifically chosen 1o highlight this problem of cxtrapelation on real catchment data for the
purposes of the following investigations.



Rainfeli-runcli Modeiling 6%

8

fire

Fig. 414 Seemeent of 200 ordinates of the verfication dado sel for the Dollie Brook wine on A8 with fee rainfulls
arrd theee fIvws ax impiee and oue faw ay aupns

4.6.1 Transicrability of the notwork

The traimng and verlication data for the Silk Stream catchment were now presented o the ANN
that had previously been trained on the Dollis Brook data, These results are also summansed in
Table 4.7. Since the Dollis Brook ANN had been Irmined on data containing a maximum flow of
16.% m's, as opposed to the 9.8 m¥s of the Silk Stream traiming data, the former actually
performed better oo the Silk Stream vetification data (maximurn low 13.8 m’s) than did the Silk
Stream ANN Hself ! Figo 4.13% shows the plod of the same 300 ordinates of the Silk Stream
verification data as used in Fig. 4,13, but now the curput has been produced by the ANM trained
on the Dollis Brook dala, the sg-called Dollis Brook ANN. The peak flows are now reasonably
well caught, buk the recessions are tending to undershoot and there 1s some evidence of *noise’.

Thege resifts provide some mdication that the ANNs of these two adjzcent catchments, or for
that matter, any other bydrologicatly-similar catchments, are interchangeable, hut that
petformance 15 still conlounded by the range ol standardization of the oulpul data. The
possibilities of using ANBNs developed from data for one catchment as models for the response
of other, hydrologically-similar areas are inexiricably linked with the problems of extrapolation.
Nevertheless, the superior performance of the Dallis Brook ANN oo the Silk Stream data appears
1 indicate that some interchangeability is possible, perbaps even 1o (he extent of develaping an
ANN for an ‘ungauged calchroent”. However, in this case, an cxtended ANN model would be
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required to incorporate factors that would reflect different land uses and even the chanpes in
those land uses over time. This approach is investigated in more detail below.

15

—_ S Sreomressurad | Dolis Brook Al

me

Frg. 415 Segorent of 100 ordinutas of the verification dare sof for che Sitk Stragm wuing an ANN devived for the
adrecent cutcfment of the Dallis Brook

4.7 The Extrapolation Prohlem Rewisited

In an attemnpt to improve the performance of the Silk Stream ANN, the network was retrained
using the rhange in discharge, AQ, as the network oukpil rather than the absolute flow ordinate,
This choice has its anigins in the widely-used empincal rule, dating back at least to F.F. Snyder
in the late 19308 {see Johnstone and Cross, 1949) and promulgated in the UK Flood Stodics
Report (Watural Environmenl Research Couneil, 1975), that at least 5 or 6 points should be used
1o define the rising Iimb of a fioite-penod unit bydrograph. 1o eifect, this rule is an allempt to
restricl ALKAY, and therelore AC). Furthermore, when anterior values of discharge are introduced
as inputs to the ANN, then the resultng discharge outpue from the AN can better be regarded
as a model of the chamge in discharge from one tme step bo another rather than a prediction of
the absolute value of the discharge,

An AN was now trained and verified using exactly the same data as that which was nsed to
train the ANNe in §4.4.1, but now incorporating an outpul of A al time ¢ rather than (2 at time
¢. The coefficients of efficiency for the training and verification of the Dollis Braok ANN show
littfe change over the previous experiments, as summarised m Table 4.5, The differences in the



Ralrfili-runoff Modelling 71

behaviour of the $ilk Strcarm ANN are, bowever, more obvious. In training, the cocfficient ot

efficiency is almost he same, but in venfication, the coeflicient of eificiency has increased from
(k249 By (LR

Tible 4 & Coefficiears of efficeancy for the raining and veriffragion of reural network modals af the 530 Seevam ard
Deffin Broak catchmenis wsing five ramfulls und three fows acrpus aed the change in foa, AQL a1 guipur

Carchrct AMM madet Training data Verilication data
Dolls Brook Tiollis Bronk ety (bR
Sl Smeamn S1lk Stream A5 (480
Silk Sream Silk Stream 0.970 HAE2
with IMF

These results appoar to indicate that the use of fist differenees in flow effects some improvement
in performance of the networks, especially under extrapalation conditions. However, as shown

in Fig. 4.16, the larger peaks in the verification data set are now overestimated and the output is
somcwhat noisy.
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Fig. 4.4 Seyment of 200 erdirurey of the vormffoaten dale sef for the Stik Streanr wiine an AN with ffve rainfaily
ard three foves ag mpie and e chenge Tn flow, 0 a5 owipd

The overshooting in the results supgests that the sabtlety of the hydrological respoise has net
keen fully caught. This result is not alwogether unexpected, sinee the Silk Sieepm has been
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subyected to urbanisation. As mentioned befere, the amount of impervious area in the Silk Stream
calechment increased from 14 to 21% during the period of data measurements. The possibility of
incorporating some index of change led Lo an cxtension o the above mode] with an additional
inpul data stream consisting of the percentage impervious area, IMP, applicable to the catchment
for the vear in which the storm event was recorded, A new ANN was configured and trained that
now censisted of @ input nodes {i.e. 5 rainfalls, 3 discharges and the percentage imporvious arca)
and one output node for the discharge. For this particular exampls, the generalization propertics
of the nepvork were also considerably improved when the mumber of hidden nodes was reduced
from four to three,

The results for both waining and venification arc also summansed in Table 4.8, and the visual It
of the same 300 ordinates ol the verifcation data are shwown in Fig, 4,17
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The very slight decrease in the ceefficient ol efficieney given in Table 4.8 for the training data
sequence cah be explained by the fact that the input data artay 15 tww mure complex, containing
mote Information than before, making the relationships slightly more difficult to learn. There 15
alzo one less node In the hidden laver compared to the previous network, which reduces the
numiber ol degrees-of-frecdom thal the ANN has in fitting a relationship to 1he ttaming Jata. The
reason for this change was the observed tendency of this ANN to overlears and subsequently
overfit the results. This was overzome by roducing the hidden nodes in the detwork and by
stopping Whe training at the moment that the overlitting started {see Appendix 1) Far the
verification dara sequence, the coefficient of efflciency has only impraved in the third decimal
place, but the peaks and recessions appear now o be much better fitted,
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These results demanstrate that the inclusion of an extra input, consisting of the petcentage of
impervions area, mmproves the visual fit of those flood peaks that are not included in the training
data sef for an urbanising catchment. However, (he noisiness of the ANN eulput, particularly in
the second event of Fig, 4,17, appears w indicate that (here may be cven Further scope fot
refincment of this mode]. The above experiments indicate the direction in which lurther progress
i applying artificial neuzal networks might proceed.

In surnmarizing then, the results of all of the numernical experiments reparted above indicate that
suitably configured artificial neural networks are capable of identifying wsable relationships
between runcif discharges and antceedent raintall depths tw an exceplional degree of accuracy.
The relationstups are obtained wsing oaly the raw, measured data and do not reguite the usc of
any detived or arlificial calibration parameters.

In particular, attention should be drawn 1o the fact that the ANN medel provides these
exceptiomal results unhindered hy constraints of volume continuity in the input and output dara
and, in fact, the units of the data are choscn simply for convenience of measurement and
representation {cg. rainfall depths in mm. discharges in m'fs). Furthermore, simple, non

hydrological parameters like the percentage of impervious area nuay be easily incorpotated into
the model al the discreton of the modeller. These types of parameters may be dedved Fom
simple measuremenlts or may even be highly intuitive, and are likewise unrestricted in terms of
conditions of dimension or hydrological-physical consistency.






5 Madelling of Pure Advection Processes

5.1 The Scalar Wave Equation

It is easily shown (c.g. Abbotr 19791992, p. 102, Abbort and Minns, 1997, p. 1623 that a wide
class of rainfall-runoff models of the kind deseribed in the preceding chaprer can be descnibed
in retins of pure advection peocesses (see also the resutts of Babovic and Abboetl, 1997). This 15
50 hecause the pure advection, or scalar wave equation:

Iz f'?z

—_ 1 f"[:z} — =0 |:'5'].|.':|
of ™

=

describes the movement or ‘lransport’ ol any property of the Quid, =, with a representative
veloeity or ‘celerity’, e, which mav even be a function of the fluid properly itself, i.c. £ = £fz).
The partial differential equation (5.1.1) lends itsell very conveniently to solution by traditional
numerical methods, such as those referred to as Anite-difference methods { Abbolt and Minns,
1997, pp. 196 et segh, bul, i nol most carefully copstructed, these methods may snffer
tremendously From problems of accuracy and stability, especially when the local celetity is not
constart in timc and space,

For cxample, the simplest (nite difference scheme, which consists of a forward ditference
approximation in time and a hackward difference approximation in space, produces a translacian
of the differential equation {5.1.1} into a finite diffcrenee eguation of the form:

z_l.“-l - -0 zJH + r z}“1 £5.1.2)
whera
{7r - Courant Mumber - % (5.1.3}

and /1,7, + | represent adjacent gridpoints in space, separated by Ax; and 1, + ] represent
consecutive time levels, separated by AL

The finite difference scheme (5.1.2} produces an exact solution to the differential equation (5.1.1)
only when O — 00 gnd Or — 1.0, in which case the solution reads:
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AR {5.1.4a)
and

g - (5.1.4b)
tespectively.

If Cr = 1.0, the solution of (3.1.2) produces unstable hehavioor and the results are meaningless.
Un (he other hand, if =2 Cr = |0, the selution of (3.1.2) suffers from rather scvere numencal
diffusion. A Taylor scrics cxpansion of (5.1.2) shows that the Anite differcnee cquation £5.1.2)
is in [act not exactly equivatent to the differential aquation (5.1, 1) under all conditions. 1 can be
shown that (5.1.2) comesponds to the differential equation:

oz, o —a-f- -1 cdx {1l -CM -ﬂi + higher -order rerms (5.1.53)
Ji dx 2 Sl

where we can soc (hat (5.1.57 differs from (5.1.1) enly by an “amount” represented by the rght-
hand side af (3.1.5). We call the expression on the tight-band side of the equality of (5.1.53) the
trencation ervor of the finite difference scheme (5.1.2) relative to the differential equation 5.1.1)
{see, for more detailed derivabions, Abbott and Minns, 1997, p.202). The most significant terms
in the truncation error expression io (5.1.5) have heen combined into a single, second-order
spacc-dervative ferm that elearly demonstrates the diffusive nature of this lorm. 1t is obvious
from (3. 1.5) that the numerical diffusion will be at a minimum when the trancation error is at a
miniemwn, The most significatt tene of the rencation ermor 15 equal to zero when the celerity,
o= and hence O = 04} as well az with O - 1.0, I these cases, the solution of 5.1.2) reduces
exactly o {5.1.4), so that the truncation error bas m fact disappeared completely.

The pure advection equation arises wm many apphications in bydraulics and hydrology, The
kimematic woave approxieraion used n Hvert hydraulics 8 simply another formn of the pure
advection equation (Abbott and Minns, 1997, p. 710, It has been shown by Cunge (| 969) that the
well-knowrs Muskingnm hMethod for flood wave propagatwon ¢an actually be represented by an
approkimate salution of the pure advechon equation, wheree the desired Noad wave stlenualion
is obtained artificially through the oumerncal difTusion. Furthermore, as already iniredoced, it can
be shown that the instamianzous wrie Rvdrograph sethod of rainfall-runoff modelling can be
represtnied as a linear syslem of pure transport { Abbott and Minns, 1997, p. 162). The search for
a stable and accurate solulion technigue for problems of pure advection is still the subject of
truch cogoing research in mumerical modelling (see, for example, Cunpe et al, 1980, and Verwey
amd i, 1993). This chapter describes an investigation imto the application of artificial neural
network to the problem of pure advecton modelling,
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5.2 The ANN as an BExplicit Mumnetical Scheme

The first experiments in this fovestigation invobved traiving an ANN to reproduce the exact
solution of the purc advection equation on a Bnite prid, The ipat array to the ANN consisted of
two values represenling the value of the funcuon 7 at the gridpoints fand 7 - 1 al ime level x,
while the output consisted of the value of the funclion 2 at gridpoint 7 at time level n + 1. The
pallerms uscd for traiming and venfication of the ANMN consisted of a simple trjangular
distribuetion and 3 Gaussian distribuotion of the funection - along (he x-axis. as illustrated in Figs
5.1 and 5.2 respectively.
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For {r =1, (he exact solution ol the pure advection equation means that the distributions should
be translated exactly one gndpoint in the x-diection during one time step, which 15 also
illustrated in Figs 3.1 and 5.2

Agthisis a linear process, it is obyvious that the simplest linear perceptron should suffice for ihis
problent, and indeed may be the most eminently suitable. 1F the output fram the artificial neurgos
i3 taken o be tinear, that is:

7 [Ewu x,,l] - YW, {5.2.1)

then the simplest network that would solve this problem is a two-layer network (1.2 no hidden
layers ) ws shown m Fig, 5.3, Note that (s simple network 1s in fact identical to the Rosenblatt
perceptran that was discusscd in §2.3 bul now using the lincar activation function {2.4.25)
instead of 8 Heaviside step function.

n+l

n ’ linear

Frg 5.1 The semplest posstiale teg Ver nefwgrk (PRrcepienas i sofve the puse advariion egdatteon for Cv =]

The weight distnbetion shown in Fig. 5.3 (s in fact the exact configuration 1hat was obiainod
when a 2-layer, linear ANN was trained using the data for the tdangular distribulion of =z, that
was sketched i Fig, 5.1, Doe to the fact that the activation lunction used in the above example
is linear, we can derive the mathemarical expression of the scelution in Fig. 5.3 as a simple
weighted sum of the input variables, 1.e.:

L n "
z, - 0.0 x LA 1.0 = Z .

which 15 idenucal to the exact solution given earlier as {3.1.4b],

One hidden Tayer was then intreduced into the above network with linear threshold funclions
maintained throwghout, This ANN was then rained on the same data that was used above (Tig.
5.1). For the traiming of this AN, (he back-propagation a.gorithun converged extremely quickly
to a residual RS error (1.e. the etror between the desieed outputs and the outputs produced by
the ANMN) of less than 10r%, The final distribution of weights iz shown in Fig. 5.4.
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The smaller shaded neurans in Fig. 5.4 represent the so-called bias neurons that always have an
input sigoal of +1 and have the effect of off-seltng the threshold function, as described earlier
m §2.4. The weights attached to the bias neurons are leamed during the fraining process along
with the other connection weights

The conliguration of the ANN in Fig. 5.4 can be cxpressed mathcrmatically as:

2 - -p104 [—u.sss:}ﬂ © 161727 - I].Z'F]l {first hidden node}
0.677 [ 1.3462,7, - 0.250z," n.ngs] {sccond hidden node)
+0.036 |- (hias node in hidden laver)

which reduces to:

H-1
4

S = 100027, + 0.0002," + 0.000 {5.2.2)

£5.2.27 18, onee apain, exactly equivalent to the exact solulion of the problem given by {5140}
The above expecniments indicate that a lincar ANN is indeed capable of leaming the exact linear
relationship represented by the solution of the pure adveetion squation under the condition that
Cr— 1.0

It 18, however, much morne common e use sigmoid threshold funetions in multi-layer perceptron
networks. In order o sec how such a non-lincar network could cope with this purety linear
problem, the ANN used above was subscquently relrained on the triangular distribution of =,
using sigineid threshold fnctions throughout, The mos noticeable change in performance of this
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non-linear AN compared Lo the linear ANMN was the marked increase in tme required to train
the network. Additionally, the residual error, which is caleulated as the mean square error
hatween tite desired ougu values and the ourpurt values produced by the ANN, was significantly
higher than the residual emor obtained with the linear AINN, The fOnal conflgoration of the
weights that was obtained is shown in Fig. 5.5,

sigmoid
no . G.44d3
i1 g ES - A 9 sigmoid
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Fig 1.5 Confipuration af waiphts for @ 3-layer, nou-tinear ANK (Lo, sigrmold theeshold functions) wieh teeo npuls
thert hay been frained to reprdduee the pere advection eguadion for Or f

The mnst obvious Feature of the distbation of weights shown i Fig. 5.5 is the relative
magnitude of the weights attached to the 2" node in the input layer. These weights are up to
180 times smaller than all other weights in the network. The influence of the z: valug upon the
final value of the putput is therafore almost negligible. This indicates that the ANHN has leamed
toignorethe 2" value when calculating z;’" . which is an entirely carrect conclusion based
upon our knowledge of the nature of the exact solution [5.1.4). If we now in fact neglect the

cffect of ";“ , fhe resulting mathematical expression derived from the weight diseribution of Fig.
5.5 1s;

n-] I

- 2.
gl | .o |TURE e, - EDI2E e, 0 5100 (5.2-3)
where
1 .
LI = the output from hidden node 4;
- -5 A4 2T - AT
1. +
and
1
CI — the aukput lrem hidden node 8.

e [-1.7302 2T, + 4043T]
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It is quile obvious that he cxact mathematical solution given in {5.1.4b), that is zf' =27 .
canmot be obained from (5.2.3}. This solution can, therefore, enly be an approximation of the
exact solution, Fig. 5.6 illusirares the accuracy of this approxittation by plotting the verification
roesults (hat were obtaimed when the tfrained AMN was subsequently applied o the probiem of the

advection of a Craussian distnbution for three Ume steps with £ = 1.

For (he lirst time step, (he initial disinibution, which is skelched in Fig. 5.2, was used o produce
the input data array, i€ {z’, , z"] , for each calculation point il;l the golution domain. The
ANN is Ihen applied at each gridpoint 4o produce an ammay of [z "] |, which thus constitutes
the solution after one time step. The results for the second and consecutive time steps were
obtained by using the outpul array of the previous time step catcalalion to produce the input data
array for the subsequent caloulation. In this way, the residual errors that are generated at cach
tirne level are alse propagated through the solution in each consecutive calowlation, The elfect
of the propagation of the residual errors 15 quite clearly illustrated in Fig, 3.6,

1.5
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Fig 50 Ferlficaron rasalts ohrgingd by applying o won-tinear AMN (1 o, sigmodd thraghold fhactions) o the probfeme
af pure advection af @ Cioussorn dectrbution for three time steps, 0+, R-2 and R+ 3, waing Cr =1

Fig. 5.6 indicates that the ANN has learmed how to translate the given initial conditigns throngh
a distance of one grdpoint per time step, corresponding to Cr = 1. The residual eror in the
training, however, has resulled in a slight underestimation of the peak value of z at cach time
step, which, of course, gets progressively warse as the emars are accunulated at each consecutive
Hme step, This underesimation has led W a tloss of mass' in he distribution of z, expressed as
the area under each of the solutiom curves, and which, in this case, has decrcascd from a level of
17.66 m the jcutial distdbution 1o a level of 17.49 after three time steps, a losz of almost 1%,
Although this solution is still relatively accurate, it cannot compare al all to the accuracy of the
exact solution, z}"" = zf'f, . which was obtained using the linsar AWM and which, naturally,
has exactly zerc error.
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As has been demonstrated sbove, the solution to the pure advection equation for O = 1 is almost
tivial, A more challenging problem to be eonsidered 15 what happens when the Courant number
i5 ool egual to 1, The major prablem with numerical schemes that are used to solve the pure
advection eyuation is their rapid detenoranon in perfrmancs wnder conditions when the Courant
number varies. The fallowing experiment was therefore carried owt to determine il a suitable
configuration of an ANMN could be developed and Iraned w perform the required numerical
operations under a vaniety of Courant numbers. The data used for traming the network was
derived from the Gaussian distribution that was sketched in Fig. 3.2 and the data used for
verification of the tramed ANN was derved from (be (o angular distobution that was sketched
inkFig- 5.1.

From our knowledge about the nature of the solution on a finite grid, we know that the exact
solution to the pure advection equation can gnly exist for integer values of O, which coincide
with the exact translation of the solution values frorn one gridpoint W the other. It was therefore
proposcd Lo tram an ANN using the exact known solutions for thtes different Courant numbers,
fer example Cr = (000, 1.0 and 2.0} The raimng data sequence thercfore consisted of an input
armay: [z, 22, . z" . Cr] ,and a desired output array: [zj."q] , where the values of cach

! [
in the outpul array were determined from the exacl mathematical solution as follows:

a1l _ " . _ B
t, z, for ¢ - @ ;
z;m - z,.: for 7 - 140 ;and
"= z". for Cr - 2.0

! 4o

This sohatiog can clearly not be represented by a simple linear expresgion imvolving only the
weighted sums of the input vaniables 7, , 77, , " and Cr. Subscquently, an ANN consisting
of only lincar threshold funcuons failed 1o leam how to reproduce these training paltemns to
anywhere near the degree of accuracy obtained in the previous experiments. Whereas Lhe
previous experiments with linear thresheld functions and with CF = 1 reduced the restdual RMS
ertar during training to less than 1, the residual RMS crmor in this case could not be reduced
to much less than 1.4, This corresponded o a coefficient of efficiency, as defined by {4.2.1),
of 0.984R. Although these ermor measures appear 1o be relatively small in magrutude, their cffect

upon the performance of the tramed ANN may be quile severe,

The efiects of these residual erpers can be visualised by plotting the resulte of the verification
data sequences, Fig. 3.7 shows the plots of the venfication results From the trained AN for two
conscoutive time steps when applicd 1o the problem of pure sdvection of a triangular dismbation
fot three different values of Courant number,

[t 15 obvious from the results that are plotted in Fag. 5.7, that the soluton for Cr = 1.0 i3
signilicantly more acoueale thar the results for € — D or for O = 2.0 The three verfication 1ests
actually appear to produce almost identical outputs from the ANN in each case. That is, the
solution provided by the ANN is msensitive 1o the acloal valae of O given in the input.
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To investigate this problem a little forther we can consider once more the dismibution of weights
that were obtained during the trainine of the ANIN, as shown in Fig. 3.8,

Cr - ., linear
%,
%?E%‘% 7 ﬂ{—‘ linear
fn - » o
Z., .02 y | Fn i
A . __A0.5574 z,
G255 i . - . o .
n -D.daég b . rllb’bs‘ ’
z _]'I: Gﬁ?ﬁdiJ A - ?Iﬁf
vl Y 9
[ R
n , A
z . - -QEAFOC 5
R P |
) Q‘? g Fl

s
n @

Fig 5.8 Configurasion ol weights for @ 3-faver, dinear ANN with fowr inpuis thar e tecn trained to reprodiuce te
pure adveczing equarion for Cr = 0 [0 ond 2.0

The configuration of the ANN in Fig. 5.8 can be expressed mathematically as:

7 = 02199 |—l{}.d939(.‘r + 008522 - 0025525 - 0.85012" + n.m]s|

-0.5574 [ﬂ.ﬂEIECr - 044422, - 0482827 + 008742  + ﬂ.&?ﬁ?]
-0.2448 [ﬂ.?ﬁ'llt‘r - 0270427, - 0.5684z7, - G.66702" - u.eauz}

-0.2300 [+1

which raduces to

2 - 0.0003Ck + 0295127, + 0.402627, + 03015z + £.0000 {3.2.4}

Lt can be seen quite clearly from the magmitude of the factor associated with the first term on the
right-hand side of {5.2.4} why the results shown in Fig, 5.7 were insensitive to the value of O,
The coeflicient associated wilh the Cowrant number 15 only ©.0003, which is very clase 1o zero,
50 Lhal varations in the value of €% in {5.2.4) will nol lcad to any significant variation in the
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value of z;' "

den vations,

- The enure Or term has therefore been entirely neglected in the subscquent

Taylor series expansions of the remaining lerms in(5.2,4) ghoul the cemire paint of 1he scheme
at (f&x, ndr) provide the Tollowing expansions:

Ml gz . At S

7, -+ A— + h.old 5.2.5)
! y o P T {
n " L:-II ﬂl‘z E-FZ
FATE A Ac= + == 5+ heedt. (53.2.6)
ax 2 &e?
7 -
P Y Ay Fa (527
ax I et

where “hoot” slands for higher-order terms in the Taylor senics expansion.

{5.2.5) - [3.2.7) can he substituted inta the remaiming terms of {3.2.4} to abtain;

n : i r H N ":f! I.
S Al L BUTT L paagy i aaclE L pant TR
Lir FET: dx ilg
123 .
- o026l - aa D L B2 O
ax 2 gx?
+ 0.30155"  + hedt, £5.2.8)

Rearranying (he terms jo (3.2.8) and dividing by Af then leads 1o

* haat, (5.2.m

A A -0, n t o2
iz (U.QQERE] dr  -0.0008 . E& \ 0.?915‘% o'z

Arf o Ar ! rA A1 et

Cnce more, a tormm has appeared on the fght-hand side of his expression, with a cocfficicot cgual
to 000084 ¢. which is several orders oF magnitude smajber than all other terrns m the senes,

Therefare, we neglect the zr" term in (5. 2.9 and obtain:

Nk St OTISEE ST et (5.2.100
rlox o fodx

& h[ﬂ_msg] de AR A?
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Ifw compare (5.2.10) with the pure advecthion equation (5,11}

oz dz
—_— T —

e &

=1 =(5.1.1)

we see that the relalionship that has been leamad by the ANN is in fact an advection-type
gquastion with a celenty of:

o (Q_QQES%} (5.2.11)

and a truncanion errar of:

T 2
TE - &gz prots T ot {5.2.12)
1 5t A1 dx?

The truncaten orror £5.2 12) ¢an he rewnnen in terms of asingle, second-order space derivative
and gorresponding numerncal diffusion cocfficient by substituting the sccond-order time
derivative with the following expression, vbtained by differentiating {5.1 1} once with respect
to ¢ and once with respect to x and subtracting the two resulling cxpressions in order to gancel
out the cress derivative terms.

) S
dz 2 (5.2.13)
et y
Substituning (3.2.13) im0 (5.2.12} we get:
_.1 2 ot
TE - |28 L pqers | €2 L pan £5.2.14)
2 LY

The celerly of the differential equation represented by the ANN model was given already by
£5.2.11) as o = 09928 Av/Af so that we can substtule this expréssion for ¢ in (5.2.14) o
amive at:

ﬂle o'z

A Oy?

TE. = | 02987 * hoat.
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which is clearly a diffusion term with a positive diffusion coefficient of 0.2987 Ax¥/ar This
demonsirates that 1he most dominant terms in the tuocation emor will have e effect of
introducing diffusion into the solution of the problem. The numerical diffusion coefficient is
constant and positive for any cheice of (constant) Ax and A, This explains why, for the cxample
described in Fig, 5.7, the results appear 1o be almost identical in each case. Furhermore, a value
of {r =1.0in Lhiz example is equivalent to a physical celerity of ¢ = 1.0 AxfAs. This 18 praclically
the same value as the celenty that was given by the ANN model of ¢ = 0.9928 Ax/Ar, and thus
the AMMN model gives the most accurate results for CF — 1.40.

The linear ANN used in this example has obvigusly not heen able 1o generalise the solution of
the pure advecuon problem for the whole range of Courant numbers from 0 to 2.0, 1o fact, the
hest performance thal the ANN has bean ahle 1o reproduce (s simply the 'averuge case’,
represettel by Or = 1.0 Tt was therefiore decided 10 see whether 3 non-linear ANN would
perform any better on this same problem.

Ancther ANN was then configured using sigmaid threshold functions throughoul and trained on
the same data as before, The residual RMS error an the traiming data was reduced significantly
i this case from .04 w 005, giving an improvetnent in the coefficient of cfficiency from
Q.U848 in the lincar case to 0.9995 in thes case. The extreme accuracy of this result can be
visualised inn Fig. 5.9, which shows a plot of the venfieation data applicd te the trained ANN for
two eonscoulive Ume sleps using Cr = 1.0, as well as the solution for one time step using Or =

1.5,

it gonddns - soduton al nel psing G =1 0

- solufion M n+2 using Sr =10 g solution#al ¥l 5usng Gr = 1.5

A .

- walye

Z

[FR-N

025

A-ANE

Fi 3.8 Ferificatron rexelts afraimed by apelving o rea-ftnegr AN w the proffem of pure advecrion af a trianpelar
dhatrrtmition wirh vareable Couranl rumber

It i clear from Fig. 5.9 that the sndution at Bime step # + L5, which represents the result of one
caleulation with ©CF = 1.5, lics somewhere between the solutions at time sleps s+ Tand A ¢+ 2.
The prak valoe of the triangular distribution should in fact eccur halfway between bwa adjacent
gridpoints. Due to the fact that the solation on a discreie grid cannor posaibly provide values at
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laculions between grdpoints. the ANN has had to provide some sort of interpolation between
gridpoints where solution wialues sctually do exist. In this case, the ANN 15 obviously
interpolating and geteralismg quile sdequately for Cowrant mumbers between 1.0 and 2.0, which
i hias novt 'seen’ hefore.

T investigate how the error 15 actually propagating through the solution for both integer and
non-itteper values of the Courant imuniber, the results of the verification data sequence have &lsa
been analysed at an integer step (0 the time level, tor which the exact solulion is known. In this
way, the effect of the interpolation (ibal arises when non-integer values of Courant nurnber are
used) upon the overall agcuracy of the solution can be examined. For this example, the results
are compared at time level & + 3, which is ammived at after three conscoulive calculalions using
Cr = 1.0 and after two conscoutive calculations using £ = 1.5, These results of Wnis comparison
are depicted in Fig. 5.140.

1.5 e

— inihal conditions o 0luhon atn+d uging £ =110

425 & ScAutEan Al nv3 aking O - 1.5 axact soélian al ny3d
(el

£ -vale

KR

Fog. 500 Veriffcaton resawlts chisited by apglying o mod-lkear AMN fo the problom of pere advection of o
ranrgniar digtrdgecion an pere devel nd 3 for both O =0 ehree eoleulptions aed O =18 fvp colewlatonsy

Fig. .10 also depicts the “exact” solution of the problem, which is simply the initial conditions
translated through a dislanes of three gridpoints. Both solutions arc excepuonally acourate, with
a cocfficient of cfficiency of 0,994 for the solution using O = 1.0 and a coclficient of efficiency
of (L9397 far the solution using Cr — 1.5 Once again we also s22 an amownt of *thass falsification®
produced by the ANN model, such that the area under the solution eurve has increased from 1000
1o 10,13 for Or = 1.0, an inerease of 1.3%, and from 100010 10,28 for O = 1.5, an increase of
2.8%.

The non-lincar ANN has indeed learned a useful relationship for modelling the pure advection
process with a variable Courant number e a reasonable depres of uccuracy. However, the exact
mathcmatical form of this relationship is practically impossible to determineg due o the nherent
complexity of the sigmoid function and the number of npwt nodes and hidden opodes in the
netwark, No such simphfied expression ¢an be found that 15 siimlar w he onc found carlier for
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(he noo-linear ANN 0 Fig, 5.5 The ANM in Fig. 5.5 had in fzet only 9 weighled connections in
its entirg structure and even included 2 weights in the input laver that were very close lo zero and
were subscguently neplected. The ANN in the cument expenment has a 1otal number of 49
weighted connections, and none of thess connections can be neglectad, These 42 weights would
thersfore load to a much more complex exprossion than (5.2.3), and (he resulting formula would
not lend itself to any further physical interpretalion.

The problem of a non-constant, local colenty could now be addressed by examining the
performance of this ANN model under more “realistic’ flow conditions. If the celenty m a
channel shouid vary in ibe x-direction, this would mean that, for a given value of Ay and Ax, the
{Courant number showld also vary at each gridpoint. The value of the Cr that should then be wsed
in the input array should be the value of the fecalfy consranr Courant munber. Tlus may even be
replaced by the average of the local Cr dunog the time step & to 1+ 1 and over the gridponts §,
3-landj- 2.

In order 10 obtain more realistic flow conditions, flow data was gencrated using the
hydrodynamic modelling sysiemy MIKEL from the Danish Hydroulic Institnte. & gimple,
sloping, rectangular channel, 10 kilometres in length, and with steady, non-uniform low was
mstantiated in the hvdrodynamic (AD) module of the MIKE11 system. 'The velocilics were
calculated at each gridpoint for Av = 10 metres. The results of this calculation are given in
Table 5.1,

Tadde 5 1 Pefocrtes, Causgn! mumBrrs and codcdatration editihbution dam far @ roctongalar chosmel with sheeefy.
now-urifarm fiea

gridpaims

O L 2 1 4 5 & 7 & 9 10
velogiy ns) 126 132 13 152 Led 173 20 121 135 237 AL
lucal CF a76 07 483 081 4% 104 L2 1.33 L4l 1Ak 149K
average {r - - L AL = R ] | B4 108 1492 .32 147 1.69
mitial
SoncEntration L a 25 .5 075 1.0 0% i3 Q25 v 0
imgT)
MIKETN

Lmcentration 0 A s 027 RE OTR O D95 081 frad 032 0I5
alter 10) mans

The velocity disinbulion given in Table 5.1 was then used in the adveclion-dispersion {AD)
module of fhe MIKEL] system to calculate the pure advection (1.e. dispersion coeflicicat equal
to zeto) of a distribution of concentrations of conservative matter that was being tmnsported by
this flow. The initial distribution of concentrations and the solution feom the MIKEL1L AD
module aller 10 minutes are also given an Table 5.1, Due 1o the accuracy and srability
requirements of the MIKELL AD module, the value for Ar that was used in this modei could not
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exceed 5 minutes in this example. The results in Takle 5.1 therefore rapresent two consecutive
calculations of the AD module.

The A™NN moxdel in this example required a valuc of the local Courant number g be caloulated
for each gridpoint in the imput aray. Yalues of A = 10 minotes and Ax = 10HK) metres were
chosen for this cxperiment, o that the local Cr could be calealated from (5.1.3) at each gndpoint
as given in Tahle 3.1. As mentoned above, a more relevant approximation of the Courant
rumber would be the Cr that was averaged over the gridpants f, 7 - 1 and 1 - 2, which would give
a benter deserphion of the Mow conditions that geeur imymediately npstream of the calculation
point f. This averaged Cr i5 alao piven in Table 5.1.

The resulis of the ANN mode] afler one caleulation (1.e. after one Lime step of 10 minules) are
plotted in Fig. 5.11 for both the local Courant number and the locally-averaged Cowrant numbet.

The initial concentration disirbution and the tesulis from the MIKET]D AD meodule are also
depicted in this figure,

1.4
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Fig. 501 Verificazion renlen nf an AN made! for puve advectian of o trasgelar conceniration dissribution under
steaidy, ron-wmiform Jow corefitens

The uge of the Iocallv-averazed Courant number appears to give a slight improvement i the
resulls, as expected. [o this exarople, the root-mean-square (EMS) error between the MIKELI
results and the two ANMN moedels were G036 and 027 for the Jocal £ and for the locally-
averaged Cr models respectively. The ANN model has therefore provided an exceptionally
accurate solution of the pure advection scheme using a time step that was twice as large as the
MIKE!D medel. Although there may be some degree of mass falsification in the ANN model,
it is only refatively small in this case. Furthennore, the results of the ANM model contain only
positive valucs for concentralion, wheteas the MIKE 1 models gives small nsgative valuus al
the extremes of the concentrabion distribation, as seen in 'Takle 5.1,
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&0 General

Data mining constitutes one parl of the muolii-step knowledge discovery process for extracting
useful patterns and tmodels from raw data stores. Fayvad ef el {1996, p. 44) describe a varety of
data mining procedures that include:

- otagsification: in which a function iz learmed that maps (classifies) a data item into ane of
several predefined classes.

- pegressior: in which a function 35 leamed that maps a data item to a real-valued prediciion
varighbe.

- cluzterims: it which one seeks o identify a Onile set of catepories or clusters (o descnbe the
dala.

- semarizadion: in which a compact deseription is found for 4 subscl of the data.

- dependency modelling: in which a mode] (s ound that deseribes significant dependencies
betweon variables.

- chunge and deviatan deteceion: which foouses on discovering the most signiticant changes in
the data from previously measured or normative values,

‘The other stgps in the kuowlaedge discovery process are those of data preparation, data selection,
data cleaning, the incorporation of appropriate prior knowledge and propet interpretation of the
discovered resulls. As was mentioned 1o §1.3, cultural knowledge is only uscful if itis in 2 form
that can be aceessed and used reliably by different people. The raw data invelved here are nspally
so numerous that the more traditional, maneal methods of data minimg st now make way for
compuler-hased methods, which are mach bener suited to unearthing meaningful patiemns and
structurcs from vast databases rapidby and reliably.

The poal af the knawledge discovery steps may be simply to condense the dala into a short,
printed repott, or it may be to find a model of the process that generated the data and witich may
be wsed to estimnate values in future cases. The fitted models plav the role of inferred knowledpe.
This is similar ta the prablem of systems investigation, or systems identification, defined carlier
in §4.1 as (he Acld of study which s concerned with the drect sobution of techonalogival problems
subject anly to lhe constraints impnsed by the available data and sa not subject ta *physical’
consuderalions {Amerocho and Hart, 1964},

Follow ing [ha er af. (1993}, we may define systems identification in the following way. Ilmagme
that a svstem produces an eulput value, v, and that this ¥ 15 depeodent on #r inpul valucs, thus:

p = f{r!, Xy Xy X (6.1.1
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Given a set of & observations of input-output wples, as shown Table 6.1, the system
identification task is to approximate the tue funchion § with

Tuble 8.1 A input-tnalowt esimple set

(PUT QUTPUT
e A e Apm Fi
T Xt o Um ¥s
Moy  Myn o Xaim P

Cmec this approximale lunction £ has besn estimated, a predicted output ¥ can be found for any
UL vectar (X, Xy, ... Xt fTom:

oo f Oy Ky By 1) (6.1.2)

The f iscalled the complere form of . As was mentioncd in Chapler 1, and as demonstrated
repeatedly in Chapters 4 and 5, artificial neural nstworks constitute one class of sub-symbolic
patadizm that lends iself very easily to the problem of ssarching for and storing the complote
form of f.

An ANN iz an electronic knowledge encapsulator which encapsulaies ils knowledge at the level
of the raxinomia by establishing sotne useful relationship between a collection of signs on the
input side and a collection of signs on the putput side. The actuat relationship is stored
clectronically at the sub-symbolic level as a serics of weights and connections between nodes,
Il iz usually not possible to extract and interpret an exact, symhbolic, mathematical formulation
ol this relationshup. Al the level of the methesis, this relationship becomes extremely complex
due to the non-linear nature of the transformations that teke place upon the weiphied sums of the
sigmals thraugh the application of sipmaoid threshold functions.

In £5.2 it was shown that, under very special circumstances that allow the use of linear threshald
functions, it was possible to derive a physically-realisiic, mathematical representation of the
encapsulated relationshep in the form of the differential equation (5.2, 10} Unfortunately, ANNs
with linear tiresheld functiens do nat find much use in praclice, so that this type of analysis
cannot generally be applied,

Artificial nevral petworks may thercfore provide an extrernely powerful paradigm for only some
of the dala mining procedures mentioned above (2.8, ¢lassification and regression). In some other
procedures, the use of the existing types of ANN= may he entirely inappropriate. This chapter
describes (he performance of ANNS when applied 1o vatous problems of data mining and system
identification. These rosulls arc comnpared to the results obtained from more traditionai, manual
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methods, as well as some olher, computer-based methods, In particular, & comparison is made
to results ohtained from ancther sub-symbolic approach called genetic proptamming (GP)

A desenibed 1 §3.2, GP is one of the evolutionary algorthms thal can actually generate models
th a symbohe form, Whereas traditional genctic algorithms typically operate by combining
binary strings which encode real-valued imdependent vanables {see, for example, Bahowvic
{19237} in the case of GP, the symbolic expressions themselves are subipscl to the genetis
operators of recombination and mutation (see Babovic and Abbott, 1947 1o this way, GP may,
at first, appear to be entirely sybelic in nature. This is, however, not at al] true. As explained
by Babovié (1994, p. 248), both ANNs and OFs are sub-symbolic in the sense that a
manipulation of data occurs at a leve] which 1s bolow that of the symbol. The tokens which are
maniputated are, at best, indicafive signs, but do not have any eapressive capability in and by
themselves. GP manipulates tree stuctares thal only acquire any mcanig, or Semantic content,
once the ee has been interpreted as an algcbraic expression in Reverse Polish Notation, or prefix
natation, of standard compuler science {see Babovic and Abbotl, 1997, p. 402,

1.2 Rainfall-runoff Madelling

Bahovic {1996, fw see also Babovié and Abbott, 1997 performed data nuning experiments
using genetic programming on the same rainfall-nmoff dala that was generated for the artificial
calchment experiments described in §4 .4, Even though expeniments were performed over the
cntire rapge of artificial catchments, from the extremely linear o the extremely non-linear case,
the following section only describes Ihe tesulls from the moderately non-linear catchment,
referred to in the earhier seetion as the repular catebment. The reason lor this 15 that the resulls
abrained by Babowid ot the regular catchment are considered to be quite representative of the
typical performance of GF when applied to this tvpe of hydrological data analvsis,

The training data for the GP consisted ol thc concurrent and fourteen antecedent rainfall depths
Che [rmorm . mo g on el 1@ well as two antecedent flow values €l [ .., ¢, | ) 1he
output data consisted only of the conourrent low value ¢, This is very similar 10 the tramning duta
configuration that was used for the ANN model, which vsed the concurent and fourteen
antecedent rainfall depths and three antecodent Aow ordinates..

A fter a sufficient number of generalions of the GP, bwo expressions were gensrated that fitted
the training data with rather similar accuracy. Babovie (1996) givis these two eXpressions as:

g, = u.lusz[qr_L - 12903+ 00312 - g, , - DGEIGr | - D003 (6.2.1)
and

g, - 0.10f¢, | - 0.201r,_ . - G.0032] + g - D.7Z14r, - 0.0032 {6.2.2)

1a |
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These two cquations can be simplified o give

g, = 1.1052g, | - D.1367%, . - 0.6636r, , + D.DO03 (6.2.3)

and

g, = 11000g , - 0.7214r_, - 0.02017,_,, - 00035 {6.2.4)

That is, thc G has found that the cntire rainfall-munoff proccss can be described by a
superposition of pure advection processes, {For a more detailed discussion of this interpretation
see Bahowic and Abbott 1997, p. 416). Purely from the viewpeint of data mining, the GP has
found thal only three input variables are necessary to describe the rainfall-runoff medelling
process in @ach case. Regardless af whether one accepts expressions (6.2.3} and §6.2.4) as heing
‘physically realistic” or nol, the OF has achieved ong of the primary goals of dsla mining - that
afl finding a compact description af the data set. [t is now interesting Lo compare the performance
ol expressions (6.2 3) and (6.2.4) with the sclution obtained by the 3-layer ANN that was trained
on he same data, as described in §4.4, The coefficients of efficiency for the traiping data
sequence and For the so-called ‘normal” venification data sequence arc gmiven in Table 6.2 for the
ANN modde] and lor both of the GP expressions.

Table 0.2 Performance cvervicw 37 ferms of cogfficeenes af efficiency fir @n ANN madel and for owo (GF expreasions
ont trazeing aad verificadion diade from g reguigr carciment

cocfticienis of efficency

moded trainiig daty sequense ‘normal” venficatean data
3 dayer 8NN O amsr 09941
GP expression 6.2.3) {19903 0,9%926
GP expression (0.2 4) 13300 09924

Table 6.2 indicales that efficiencies of more than 99% have been achieved for both methods in
fitting a function to the given data, The ANN model periorms slightly better than the GI
expressions on both traiming and verification data; however, the AMN model requires 18 mnput
variables, whereas the (P expressions reguire only 3 input vaniables cach.

The interpretation of the ANMN model was given carlier when it was concluded that the total timc
interval of the window of inpw rainfall data should encompass the centroid to centroid lag times
of the catchment runoff data. The GP expressions then confiom this conclusien by selecting only
the rainfull ordinates with similar Jag tmes. All other rainfall ordinates have been neglected.

Il is not possible here, nor even very prudent, to draw conclusions abouat the superiarity of the
one method over the other, The advantage of the extra accuracy of the ANN approach in one
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application may, (or exampls, be counteracted by the advantlage of the cxtreme compaciness of
the GP expressions in another. In fact, a toly supetior trethod i8 most Likely to be oblained when
the two techniques are combined in a se-called ‘hyhrd' approach. This approach can be
demunstrated by considering in more detail how the strengths of each separate techiique can be
used 1o enhance the performance of the other.

In the ahove example, the use of 13 rainfall nrdinates in the input data set (o the GP was decided
upon after several ANN models with different configurations had been instantiated and ested
to discover the oplemal length of input window, This initial lesting of a nuimber of varjations can
be done much more rapidly with an ANN than with (GF, duc to the extreme simwdation time
teguired for every application of the GF algorithm as compared to the fraining time of an ANN,
Having established this optimum window length, the input data to the GF was (hen seleeled and
the resulting expressions (6.2.3) and {6.2_4] resulted from the evolution process,

However, (6.2.1) and {6.2.4) can now be used 1o further enhance the perfommance of the ANN.
Far example, expression (6.3.3) indicates that a very aceurate solution can be found with only
the thtee mput vanables, #, |, r.;, and ¢, This infortnation was therefore used to configare a
new AN model with only these three input variailes. The results of uzing an ANW maodeal with
5 hidden nodes, and vsing sigmoid threshold functions throughowt, peoduced coefficients of
efftciency of {.9915 for the training dala and 09933 for the validation dara, which can he
compared 1o the coefficients of efficiency given m Table 6.2 Tuis seen that these new results are
only slightly 1ess ageurate than the ongimal ANN model, bowever, they are still more accurate
than the GP expressions, but now wtilising the same ameount of input data as the GP model. The
new ANN model is ol course much more compact than the ertginal model and is subsequently
much easier and laster 1o train,

Lastly, it is also possible to use the power of the ANN leamning algorithm te improve directiy
vpon the given GF expressions. The lincar nature of the GF cxpressions means that these
cxpressions can be exactly represcnied by a simple two-layver ANN which uses hinear threshold
functions, Two linear ANNs were therefore configured and trained using [#,,. £ @ ] 85 Ipat
data in the frst case, and |7, 5 7,1, 4, ] 28 inpot data in the second cage. These small, linear
ANNs converged very rapidly using the back-propagation leaming algorithm to provide 1he
golutions:

q, - L.0962q,_, - O.5238r . - D181y, - J.0825 {6.2.5)
in the first casc, and:

g, = 1.0970g,_, - 06478 - 0.03207, ,, - 0.]090 (6.2.6)

in the second case.

The coeflicients of efficiency for expressions {6.2.5) and {6.2.6) are summansed in Table 6.3,
which can be compared to the results in Tablc 6.2 for cxpressions (6.2.3) and {(6.2.4).
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Tabie 6.3 Cogffietann of efficiency far linear ANY modele on oy and veryficason data fhom @ raguinr
o fremett

cociTicients of efficiengy

nodel

training data sequence ‘normal’ venfication data
ANN cxpression §6.2.5) .31 1 [.94932%
ANN expression (6.2.8) (L9512 0.9023

The mast significant result of thas experiment 13 the extreme simualarty that exisls between the
O expression (6.2.4) and the ANN-induced cxpression (6.2.8). The caoefficients of cfficicney
fpr these expressions differ only very slightly and thus indicate that both the (GI" and ANMN have
found the optimum values of the coefficients in the linear expression that relates these three input
variables. The more sigmificant differences berween the GP expression (6.2.3) and the ANN-
mduced expression (6.2 6) indicate that the GP had not yet amived ar the optimuem values for the
coctiicienis in this case. This i ot nocessanly due to an emor in the OP algonthm, bl mether
indicates that the evolulionary process for this particular expression was halted prematarsly,

6.3 Salt Intmsion in Estuanies

The resulis in this section are taken from the previonsly published paper of Babovié and Minns
(1994).

The management of estuarine waler resournces requites as a central fmstrument accurate models
af the salt intrusion length and the longitudinal distribution of the salinity as a function of sone
directly measurable parameters such as the geemetry of the estuary. fresh-waler flow and nide,
There have been gquite a nummber of models developed to serve thes purpose, but atmost ali ol
thesc models have somc drawbacks. The existing models are mainly based on Yaboratgry
experiments and are either inaccurate or demand rather specific data that are both difficult and
gxpensive to collect.

A novel technique for the rapid ssscssment of salt intrusion in alluvial estouarics has been
presemted by Savenije {19920 This work describes a methedology which is readily implemented
and which allows engineers to delermine the deprere of salt intmsion on the hasis of a minimuam
amount of available information. The method s based on the fulk equations for motion and
conservation of mass of water, salt and sediment in which a number of assumptions are made
wilh respect to usluaty geometry, tidal hydravlics and the mixing mechanism. The method is
predictive in the sense that it allows the user to predict the salt intrusion as a function of fresh
watcr inflow mmto ihe estuary and vice versa, For this purpose, empincal relations were denived
that relate model parameiers o measurable csluary paramsters.

The rapid assessment technigue can be applied 10 both steady and unsteady stare situations and
to estuanes where cvapotation plays an impotiant role, The technique for steady state has been
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uged and applied successfully to 52 surveys in 16 different cstuanes world wide. The data and
the petfotroance of various salt intrusion formwlae are summarised in Savenje (1393ah).

The most important output of this predictive model is the salt intrusion lengeh L, this being the
distance from the estuary mouth to the point wherc the salinity level reaches the river salinity
level, Obviously, the intrusion length will vary duning a tidal cyvele, and so, subseguently, the
maost descriptive vaniable in this case has been taken to be the salt intrugsion length at highawater
slack, L%

Savenije (1993a.b) pives an cxpression for L7 ag:

LI |n[l+1J (6.3.1)
fi

wherc:

p- = (6.3.2)
gy

with

2y - -2 (6.3.3)

a2,

and
A, =cross-section area ab the estuary mouth,;
a - cross-section area convergence length;

13, =dispersion al the estuary mowth;
K =V¥ao der Burgh's coefficient {defined by Savenije, 1993ab),
() = fresh water discharge.

[t some estuaries the geometry of the estuary can only be described sufficiently by using two
exponential funclions, one being valid up o the inflection pount, and the other buyond this point.
In this case the expression for sall intrusion lengih becomes:

L7 - x v a, In| —-I {6.3.4)
B,
where:
a Ka, £6.3.5)
'oad
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Sl g][m[i] -1] i6.3.6)
®, ) q,

and:
a. = pross-section convergence length for main branch;
gy = cross-seclion convergence leapth for secondary branch;
X, — distance from the mouth to the inflection point.

As cin be seen from (6.3.11 and (6.3.4), the spplicalion of this methedalogy to any general
estuary would reguire considerable 2 prion knowledee of the physical charactenstics of the
cstuary, such as, for exarnple, the number of branches that need to he defined in order to desceribe
the estuary shape adequately.

[deally, a method of this sort should be general enough 1o be used under any circumstances, The
ideal solution should therefors consist of 4 single formulation, containing vanahles which are
universal 1o all estuaries, and not requiting additional expressions depending on anomaloos
penmeteias. In plirsut of this ideal, Bahovié and Minns {1994} attempied o duplicate the above
results by applymp ANNs and GPs In order to arrive at simpler, mote peneral and, hapedully,

more accurate EK]:IIESSiDI'I.S.

A three-layer ANN was constructed and traned to relate an input pattern conssting of all of the
sall inlrusion parameters, g K, o, O and o, toran outpat patters comsisting of only the salt
intrusion length - £%*% The input layer of the network consisted of five nodes (one for each
parameter) and the hidden layer consisted of five nodes, The AN converged to its most accurate
solution alter sorne 12000 iterations of the input data.

The results of the applying the ANM o the data given by Sevenife (1993) are depictled in Fig, 6.1
This figure shows the actual measured salt intrusion length for 453 steady-state measuremants in
15 estuaries worldwide. These measured data are alsa compared 1o the resulis obtaimed by
Savenije using expressions (6.3.1) and {6.3.4).

The GF resultad in the following expression for L%

L4
L. —2 - g, - Ay[In(K) + 1] + (@) + 102.26%10% {6.3.7)
f

The results of using expression (6.3.7) to predict £™F arc alsa illustrated in Fig. 6.1, Tt should
ke noted that the evolution wwards the solution (6.3.7) was halicd in this case afler somc 1 2000
gcnerations duc to time limitalions. Therefore (6.3.7) cannol be said to represent the end result
of the process of cvelulion, and benee the final solution. Indeed, as in any non-trivial
evolutionary process, it i3 anpossible 1o denhfy the end of this process. Evolution, whether
nararal or compurational, is not a purpasive or direceed process and there is certainly no scientfic
evidence, for example, 1o support the assection that the only gnal of nabiral evelution i to
produce Momo Soprens!
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An coror measure was introduced in order o quantify the accuracy of cach of the modelling
techmigues. One measure of the aceursey 1s the abselutle comor between the measurcd sall intrusion
length and the predicted salt intrusion length. A measure of error, g, has therefore been adopted
that iz calculated as the average absolule ermor hetween the predicted and measured salt intrusion
length, averaged over the 45 sets of data, The overall, average errors, €, for cach method are
given in Table 6.4.

Tirlify & 4 Average chraliete errary for cuch metiond 0 prodicieng sre saft mtrsion fengeh for 13 diffrrent guuarivg
worliv e
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A more satisfactory method for visualising the overall performance of each of the methods in
their representation of the measured data is 1o use a scatter plot. The scatter plot for this data is
cshown in Fig. 6.2
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Figs. 6.1 and 6.2 and Table 6.4 indicate that ANN and OF methodelogies are certainly just as
accurate as traditional, empirically-bascd methods for discovenng usahle salt-intrusion-length
relationships based only upon measured data 1o estuaties. [n the case of the ANN we see that the
arror 15 axtraordinarily small compared to all of the other methads, On the othar hand, the ANN
does not produce 3 symbolic-algebraic expresaon of the complete fotn of the salutuon, As such
it doss not allow the modeller to aain insight directly into the physical problem, Ir does, however,
cotficm the existence of a strongly deterministic relavonship between the five measured input
quantitivs and the salt mirusion length at ligh-water-slack.

Contrarily, ;P preduccs an expression that is slightly less accurate than the empitically-based
tesulls but is. nevertheless, a syimbolic-algebraic expressian that highlights the imponance of
only the most significant varables in the caleulation of the salt intrusion length. This rosull

demensirates the power of GP to producs new expressions that may never have been considered
previously by the modeiler.

The resulis of bath Savenije and GP demonsirate quite clearly that, of suflicient measurcments
are made af a sufficient number of relevant parameters, it 15 possible 1o derive quite complex,
empinical and physically-hased formuolas that, through the enomons calculaning capacity of
modern computers, can be solved very rapidly and accurately. However, the problem with this
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npe of approach, is the extremie comiplexity of the combinanions of parumeiers that appear in the
derived relationships which, even {f physically-hased, da not really provide a great deal of
engineering insight mio the problem at hand due to the fact that (hese cxpressions are very
difficull to interpret in terms of a descrption in a natural langoage.

Finally, one of the most significant strengths of the resulls provided by the sub-symbolic
paradigms s that the irained ANN and ihe GF expression {6.3.7) are valid for all 45 sets of data,
which means that the results oblaimed can be applied direetly to all of the above estugrics. In
confrast, the ecnpinivally-based results ol Savenije involve the occastonal use of either expression
(B.3.1) or (6.3.4), depending on the estuary under consideration, which reyuires an exira measare
of knowledge and insight on the side of the modeiler in order to select the most appropriate
relatipnship in each case.

&4 Sediment Transporiation

The resulls of this section are {aken from the previowsiy published paper of Minons { 1995). The
data sets used in thus study were taken from the work of Zvserman and Uredsse (1994), wluch
were i tumn derived from Guy et af. (1966 This work involved the determination of the bed
concentratinn of suspended sediment ¢, from flume cxperiments. The experimental dala provided
the total, steady-state sediment load for a range of hydraulic condivians including varying
discharge, bed-slope and waler depths. The measurement of the concentratinn of suspendsd
sediment 15 extremely difficult near to the bed due w0 the large vertical pradients in the
concentralions that coonr very close w the bed. A& further problem is that of tryving to separate the
bed load irom the suspended load.

Zyserman and Fredsee cafculaied the susponded sedicnemt foad ¢, by subtracting the bed-load,
calculated from the Engelund-Fredsee {1976} formulation, from the total load. ¢, eould then be
determined from g, by appiving Einstein’s {1950} formulabion in which the suspended sediment
concentraricn profile is integrated over the deplb dowm to the lower limit of the suspended
seddiment Jayer located at a distancy of iwice the gran diameter from the bed.

In erder to denive an expression relating the extremely-difficult-te-measure bed concenteatio,
oy, b olher, easy-to-messtre, hydraulic parameters, Zyserman and Fredsee applied dimensional
analysis techinigues to all of the available measured data described above. The hydraulic
conditions of each expeniment could then be represented by the derved Shiclds parameters 6
and 8°, given by

]

_ i {6.4.1)
{z-1)gd
and
g Hr 10.4.2)

) (5-1ygd
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where:
u.  —shear velocity = e o1
3 — relative dengity of sediment;
i — &~ median grain diameter;
I} = averape watet depth;
Fl = water surface slope;
u = shear velocity related to skin friction = 1,,-'g D't
£¥ = tboundary layer thickness defined by:
=6 + 2.5in 2= (6.4.3)
My Y
¥ = mean flow velocity;

k. =bed roughness = 254

Yarious combinations of the Shields parameter were considered ogether with various forms of
the Rouse number, z, given hy:

W

L (6.4.4)
L

where:
w, = acttling vebocity of suspended sediment;
K —von Karman's canstant (= 0.4)

The resniting relationship amved at by Zyserman and Fredzee {1994) was piven as:

g.331 (0 - G4y

p . 2331 (8" - o045y

0.46

{6.4.5)

Equation {.4.5) implics (hat the oudv significant parwmeter for determining the bed concentration
is B, The discussiot of Eq. (6.4.5) given by Zyserman aned Fredsoe indicates that this expression
gives comparzable, if nol beller, accouracy than sevetal other, more complex, cmpirical
formulations. The question remains, however, whether this result could he improved by incloding
aff of the measured data instead of enly one parameler. Artficial neural networks can be wsed
very easily to assess thiz hypothesis.

A set of paramelters that actually incorporates all of the measured data includes 8, 87, w5/, dy,
and w_ An ANN was therefore set up with six nodes i the input layer, one node for each of the
patameters given above, four nodes in the hidden laver and a single node in the output laver
consisting of the hed concentration, ¢, The AN was trained using 21l of the daia thar was
available to Zyserman and Fredsas, The results of the training are depicted in Fig. 6.2, which
is a scalter plot of the measurcd bed conventrations compared to the bed concentrations as
caloulaled by the trained ANN and by Eg. {6.4.5),
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[t can be seen from Fig. 6.3 that the ANN has a smaller scatter (rom the diagonal compared o
the results from Fq. (6.4.5), especially for the higher values of bed concentration. To compare
the accuracy of the AN to that of Eq. {5.4.3), the rool-mcan-square (RMS) cmor was calculated
for each method. The RM3S errar for the ANN was (0034 and the RMS crmror for Eq. (6.4.5) was
0,049, which was equivalent to an increase in the coefficient of efficiency from 0502 o 0,905,
This indicates a significant improvement in the predicting capahility on the part of the ANN, as
compared o the more traditional approach. Forhermore, the ANN makes use of all of the
available dala and hence provides a solution that will be sensifive to varations in any of the
hydraulic paramelers and nol just 87 as is the case with Eg. (6.4.5),

An ANN has there fure demonstrated the capacily to discover and leam a relationship Between
casy-to-measure hydraulic (ow parameters and the bed concentration of suspended sediment
with significantly more accuragy than that achieved by more traditional regression analysis and
dimensional analysis (echniques. Furthermaore, whereas ditnensional analysis may reject some
hydraulic paramerers in order o simplify the resulung expressions, the ANN makes use of all of
the available measurcd data, thus improving the aceuracy and sensiivity of the resulling
telationship without the need for any preliminary analysis to select the most significant
parameters, of to disregard less significant parameters.

miercstingly enough, 1F the ANN used above is simplified and trained to caleulale ¢, from only
one input parameter, namely £, then results are obtamed that are of very similar acouracy to Eq.
{6.4.5). For the sake of comparison, an AN was trained with anly this one input parameter. The
scatter plol of the tesules 15 Dustrated in Fig, 6.4, In this case, the ANN results have an RMS
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error of 0048 and the scatter of points ahoyt the diagonal line in Fig. 6.4 is almost exactly
comparablc to the results from Eq. (6.4.5).

ek

| o Eq.{545) « ANNwithonly 1input |

o
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=
b

madcted bad concentration
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Fig 6.4 Scater plor of hed concengations calowtored e grn ANN with ealy one mpue perameter contpared tn vasulls
Jrom Eg. (8.4.3)

Wow, if Eq. (6.4.5) 15 accepted as having no deeper physical meanine (Le it Bas to semantic
content), 5o that it is only a computational ool to caleulate ¢y, then the only major difference
hetween this compulational tool and the ANM is that Eq. (6.4.5) can be written down exactly on
paper while the ANN 15 stored, usually elceiromically, as a senics ol weights and coonections
between nodes. The evaluation of Bq. {6.4.5), however, also requires the vse of some sort of
modern compulational device and so the restriction of ANNS to be used only ot computers is not
considered as an extranrdinanly limiling factor here.

Lastly, a GP analysis of (his same data is also deseribed in Babovid and Abbott {(1997). In this
case, the G performs slightly better than the dimensional analysis approach, but produces
algehraic cxprossions of remarkably similar form to Eq. {(6.4.5) thal again utilise only seme of
the s1x% parameters that encapsulate all of the measwred data. The best perfonming GP cxprossion
can be wrillen in algcbraic fomrn as:

174
0,331 [ﬂ“ - E]
W
LV + 111

(6.4.6)
0.65 (8 - D402 Jd, VM
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Eq. (6.4.6) actually only itnproves the coellicient of elliciency from 0 802 to 0.816. Once again,
the GF hag found the simplest expression that contains only the "most significant’ parametars in
the relationship. If we compare the accuracy of this sclution to the accuracy of the ANN made]
achieved above {i.e. coefficient of efficiency of 0.905), 1t becomes clear that the exclusion of
even only some of the 'less signiflcant” parameters can stifl affect the overall accuracy of the
final sclution quite sipnificantly when dealing with the more complex physical relationships,
typicul of those that exist in sediment iranspertation problems, In elfect, the GF approach can
hecome subjected to the same limitations of a restricted symbaol system as does any algebraic
svstem, whereas the ANMN, being much ‘more sub-symhalic’, largely escapes fram this
restriction. For a more complete discussion of the problems of reading a physical ‘meaning” into
Eq. {6.4.6), or, for that matter, ¢ven Eq. (6.4.5), relerence is made 1o the paper of Babovic and
Abbou {1997 pp. 416-4204.






7 Conclustons

This present work, like all research works, is really only a kind of progress report. Research itself
15 like a rugged lundscapse, punctualed by tumerons local oplima. Exploring our way through it,
we may choose to stop, temporanly trapped at these local optima, to rest and survey the hills
arcutid, atd W woate a publication or two. A mevement in the direetion ol a new hill delineates
the definition of a new rescarch programme, an claboration of frapments of existing works, and
an exchange of ideas. This present work, then, is an amalgam of various efforts direeted towards
a definiuen of a urulied view on sub-symbolie paradigns and, in particular, the suitability of one
specific such paradipm, that of artificial pewral networks (AMNNS) for wse within a
hydroinformatics framewark.

In Chapter 4, the ability of an ANN 1o relate & runoflordinate to the pattern of antecedent rainfall
depths was demonstrated. In hydrological modelling termas, the ANN does not ideneify a form
of meodel, such as the non-linear reservoir model of Fg. (4.3.1); however, a bom of model is
impicit in the ANN within the distnbotion of its weights, Morsovet, this distribution is obtained
automalically with Do user intervention. Simce the ANN works with tokal rainfalls and total flows,
of changes in flows, there 15 no necessity to apply loss functions, base-flow separation and ather
such mare-or-less {or illusory} physics-hased techniques, as in conventional approaches. The
AMNN 15 indeed the uldmate hydrological black-box, The latency of the mode] appears, on the one
hand, (o0 he one of its greatest victues; however, on the other hand, it may create even more
dangerous situations, since the model now becomes, so o say, a “prisoner’ of its training dalta,

The nwmerical experiments reporial here constitute, of couwrsc, only some first sieps owards the
testing of the generalivy of ANNs for use on more complex. real-world catchments, since all the
problems of spatial distbulion of raintall and seasonal changes m catchment response have been
avoided, However, promising results in the related field of distributed rainfall modelling have
already been achieved by French e af (1992) in their study of (he application of an ANN 10
lorecast the rainfall over a grid of 25 x 25 points al time f -~ 1 Tomm Bt eL ime ¢, using a nebwork
with 525 impul and 625 outpu! nodes.

The potentral tole of ANN models in hydrological modelling in general is manifold. At the
simiplest level, an ANN may function as a flcxible, easy-to-implement. lumped-conceptual model
that relares rainfall data to monefl data for individual catchments, At the olher end of the
spectrumn, ANNs may be used (o generate important components of physically-based, distributed
hydrological medelling svstems, whereby the ANN is used to mduce a syb-modet of individua)
phvsical processes {¢.g. unsaturated zone Mow dynarmics) based ooly upon measured data (5ee,
Jor exanple, Schaap and Bouten, 1996), Such a sub-madel may then replace whole systems of
complex, non-lincar, differential equations that othersise oflen require great skills from the
modeller to calibrate and powerlul computing devices ko salve,
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The greatest potential lor artificial neural networks in hydrainformatics, however, would appear
to he in the area of real-time forecasting and control in the general fleld of water tesources
management. The “raining-rangs” lmitation may indecd be considercd to be a serious restriction
when dealing with measured data only, which iz 3 restriction that applies Bbr any ‘black-box’
methed. However, by using results of physically-based, detettninistic models to creale ‘off-ling’
training data sets it would borome possible to create computationaily-fast ANN models that
cover all of the expected ranges of behavipur ol the patural system, as demaonstrated by Masood-
L l-Hassan er @f {1993} i their study of the application of ANNs 10 the problem of real-time
control of hydraulic structurces in Bangladesh,

The results in Chapter 5 indicated fhat even if the exact mathematical formulation of a physical
process [s known, the use of ANNs in the solution of these partial and ordinary differential
equations may offer an improvement pver the traditional methods of numerical analysis, such as
finite difference methods, which are plagued by problems of stability and accuraey. It has been
shown that, in the simplest cese ol pure adveciion wilth 8 constanl velocity, a linear ANN is
capable of learning (he exact solution, which (s alse exactly equivalent o the differential eguation
deseription, For problems of variahle velocity, non-linear ANNs, ie. ANNs with sigmoid
threshold funetions, have been shown to provide exceptionally accurate salutions over the range
of velocities for which they were trained. In some cases, however, the ANN model was found
to suffer from the prablem of mass falsification in the solution. This problem may be scen us
being equivalent to the problem of obtaining “nepative concentrations’ when applyimg traditional
nurnetical methods, The problem of mass falsification tn ANN models can, however, be
rucimahised by ensuring that the training errar has been reduced as close as possible 1o an
ahsolule global minimum.

Finally, Chapter 6 demonstrated that ANNs may alse be used a8 a data-mtining technigue to
ciscover wsable relationships in measured or experimental data. A common, more traditional
approach 1o the amalysis of meastured and experimental data is through dimensional analysis and
statistical curve ftting. (Gencrally, the objoctive of such an analysis s simply to relale guantitics
that are very difficult to mersure outside a specialised laboratory to parameters that can be easily
measursd 1o the fieid, Although the smpirical formulae thus denved often [t the expenmental
data to a hizgh degree of accuracy, (hese formulae oflen prosent the aspect of cxtremely complex,
nort-linear combnatons of paranieters and constants that do not really give much insight inte
the physical gystemn heing described. Also, 1he form and accuracy of the formulae are oRen very
seasitive 1o the choice of paraineters, dimersionless or otherwise, Tn many cases, for the sake of
gimplicity, several parameters, and bence measured data, may be disregarded entirely, at the cost
of some accuracy inthe fipal formulation of the relationship. The fact that the cxact {form of the
empirical relation is thus not as importani as the ability of the formeia to map the experimental
data accorately indicates that this kind of anpalysis may be very efficiently camied oyl using
AlNs,

The true sirenpth of the ANN paradipm lies moils abality to deniily telationships between
measurad data without requiring 1 detailed knowledge of physical process charactanisties o
priori, The ANN is indeed a very Mlack” box, where (he user of the mode] has very little (if any)
mfluence upon the farm of model to be fitted to the measured dara. The ANN does not explicitly
wentify a forn of model but this form is impligit in the ANN, being encoded within the
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distnbution of weights. With traditional conceptual modelling techniques the modeller applics
his or her measured data wgsther wilh some physical insight in order to adjust madelling
parumeters and cquations manually and so eventually te calibrate the roodel, In ANN modelling,
one could almost speak of an aniomatic cafbradion procedure.,

This superior performance characteristic of the ANN paradigm over the more raditional, manoal
methods of data mining and analysis can also be claimed by other sub-syrubolic paradigms, such
as genclic programming (GF). Although cssentially sub-symholic at it most basic level, GP will
supply a symhbolic-algehraic relation between the measured data through a process of cvolution
and competition bereeen all possible solution expressions. An AMN. on (e other hand, witl
usually fimd a relationship between the input and output data that has a much higher aceuracy,
but then the resubting relationships can only be represented sub-symbotically and are therefore
essentiatty ‘hidden’ from the user of tae model.
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Appendix: Overfitting and Generalisation

The back-propapation algorithm is an extremely cificicnt methed for fitting a function to any
given sclof data points. However, in some circumstances it may end up filting a function far too
well. That is, rather than finding a function that describes the peneral underlying relationship that
links the data points, we may end up with a funetion that actually passes exactly through each
data point, and may thus include all of the *noisy’ data points as weli as any owtliers in the data
set, This phenomennn iz referred to ag everfttike. Smith [1993) provides a particularly detailed
discussion oF this problem. A simple example will sulfice here (o demonstrate the problem as it
applies o learning in artificial nevral netwaorks.

Consider a set of dara scattered about the straight jine ¥ = x as skciched in Fig A 1. A least-
squares, linear regression of the data would lead 1o the fiding of the straight line function ¥ = »
as imdicated in Fig, AL

8

L

Y-Axis
-9
1

XeAxis
Figr A | Example dila vef seatered abore P siemiphs line y — x

However, by using an arlificial neural network, or for that matter any other non-linear regression
techrgue, it 12 also poszible to fit a higher-order fanction to the data as sketched in Fig. A2,

Any measure of the crror between (he higher-order funclion and the data paattts in Fig, A 2 would
obviously be ruch less than the ecror bebween the lingar function and the data pointsin Iig. A1
Howaever, the higher-order funetion does not necessarily provide a better solunion (o the problem
in this case. It has not generalived the relationship between £ and 3, and will in fact perform very
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poorly when used o interpolate the value of 3 = x for vaiues that lie batween the piven data
poirts,

B

¥ -
F:9
T

(e

u] 1 2 3 4 5 =] T B
M-

Fig A 2 Exampla of overfizeing @ function i the datg

This simiple example suffices 10 show the results of overfitting and indicates that the anly way
to check whether overfitting has ocourred is either to inspect the fined curve visually, or to test
the fitted function with other data points which lic in between the original data points. This latter
procedure is the recormmended procedure for the training and verification of an ANN. Tt is vital
that, after a network has been tained, it is confionted with a new set of data that it has not *seen’
before, If the performance of the ANN on this venfication data set differs significantly from the
performance of the ANN on its own raining data set, then it can be concluded that the AMN has
nat generalised the training data and the solution iz in fact |ess satisfactory, and possibly actually
worthless,

The shape of the linction fitted by an ANN to a set of training data points will depend very
strongly upon the degrees of Feedom provided by (he nebwork structure. The number of degrees
of freedom is very closely linked to the total number of nodes and connactions in the network,
An increase in the number of hidden nodes in an AWN will increase the number of degrecs of
freedom and (hus increasc the capacity of the network w model mare complex functions
aecurately. 10will also, however, imerease still further the capacity of the network @ overfit,

The cffect of changing the number of hidden nodes i an ANN can most easily he demanstrated
by using to the exarnple data given above, The data set depicted in Fig. A.| was used to train four
different ANNs with 1, 2, 3 and 4 hidden nodes respectively. In each caze, the ANN was trained
as long as possible until there were no more changes occutring in the weight configurations. Each
configuration was alsa trained several times with different initial random distribulions of weights
lo ensure that the network had converged on the global minimum error. The results of the
ltaiming procedure are depicted in Figs, A3a and A 3b.
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The plobal minimum errors for cach ANN configuration, expressed as ibe residual RMS ermor
between the fitled function and the tratning dutw, are siven in Table AL

Tty A { BMS cerars abtained after traming ANNG with varing numbers of fidder nodat

umher af RMS emor
hidden nodes  on waining data s&i
1 753 "
2 LRI
3 038
4 10

From these results it is obvious thal the performance of an ANN can be significantly influenced
by the choice of the nurmher of hidden nodes. Althoupgh the nebwork with four hidden nodes had
the least residual error after training, the network with enly one hidden node leamed a3 function
that provided a pwch more generalised description of the training data,

Many of these prohlems of overfiting and generalisation can be overcome by increasing the
sample size of the training data set, If the training data set contains & sufficiently [arge number
of dala points, the ANM will not be able to pass & function exactly through cach data point and
it will be forged to generalise. Far example, if there were more data available in the simple
cxarmnple described above, it would become clear whether the scatter of data ponis about the line
b= x was merely doe to noisc ar whether the vanation was in fact due o some other uncderlying
relationship between « and v,

Throughour this stdy, and especially for the problem af rainfall-nunolf medelling described in
Chapter 4, the data sets were exiremely large (¢ g, several thousands of data points in the training
and venfication data sequences) and the problem of overfithing did not generally ocour, For these
types of applications, it is vsually sufficient o find a nerwork configuration with the minimuom
trumker of hidden nodss that can successfully leam lo fit the given trainng data, Above a cerlain
number of hidden nodes the ratming performance will not be significanily improved by the
addition of further nodes.

However, overfining may also occur Jue to overrraining of the network. As the network i3
trainéil, ils mapping function grows more and mare complex. At some potnt it will arrive at a
configuration that gives the best generalisation, after which any additional learning will simply
give rise to overfitting,

The effect of the length of the traibing ume upon the performmance ol the network can again be
demonstrated using the simple cxample above. 1o this casc, a network with four hidden nodes
was lrained once more on the given data, bot the training was stopped at carefully chesen tumes
during the waining process. The results of the training at the intermediate tme levels are depicted
in Figs. A 4a and A.db.
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A comparison between Figs. A3 and A4 shows a striung similarity between Figs. A3a und Ada
and between Figs AJb and Adb. The results from the converged network with one hidden node
are almost identicgl to the intermediate training results from the ANM with 4 ludden nodes afier
L0 ilerations. Simlarly, we obtain comparable mapping functions botween the converged
nctworks with twao and three hidden nodes and the intermediate traming results after 2000 and
4500 terations respecuvely. The ANN wiih four hidden nodes finally converges w the least-
EMS -crror selution alter 17500 terations,

Dring the training process, e network appears to pass through successive slages in wiuch the
numnber of hidden nodes that are actually contributing to the solution goes up one by one.
Consequently, the network passes through stages during which its autput is sitilar to the cutput
of converped networks with vanous numbers of idden nodes.

Smith {1993) supwests a procedurs o check for overfitting by controlling the crror on the
validation dala seyuence ag follows:

I.  Dhvide the data sel into waining and validation sob-sets.

2. Train the network on the training data act.

3. Periadically stop the training and measure the etror on the validation data set. Save the
weights of the netwerk before continuing,

4. Repeat steps 2 and 3 until the errar on the vahdauon data set starts 1o merease. This s the
moment that overfitting has begun. Stop the (taining <f the nerwork and go back to the weights
thal produced the lowest error oo the validatian data set, and use these weights far the trained
ANN mdel,

This procedure also enahles us W avoid the problem of finding the ¢xact number of hidden nodes
to give the best peneralisation praperties. By following steps 1 to &, we can simply configure a
nciwork that has at least enough hiddet: nodes to leamn a relationship from the data set, and
conscquently stop the raining process ar the right fAme.

As mentioned earlier, the larpe amounts of data wsed in the experiments in Chapter 4, meant that
overfilting was penetally not a problem. The netwaorks were trained for very long periods of time
in order o reduce the BMS error on the training data set, and (his almost always went together
with a subsequent decrease in the error on the validation data set. Only in one or twe cases did
the cffcets of overlearming become apparent after a very, very long time. Since the problem of
overfitting was considered 1o be negligible, the problem of the selection of fhe number of hidden
norles was then simply reduced to finding the minimum numnber of nodes (hat would still give
satisfactory results, This then led to the selection of the smallest possible networks in each case,
which were subsequently quickur and easier to teain,
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