
IJCSES International Journal of Computer Sciences and Engineering Systems, Vol.1, No.3, July 2007 
CSES International ⓒ2007 ISSN 0973-4406 
 

 Manuscript received March 1, 2007 
Manuscript revised June 1, 2007 

149

Enhanced Rate Monotonic Time Demand Analysis 
 

Nasro MIN-ALLAH1,3,  Yong-Ji WANG2, and  Jian-Sheng XING1 
 
 

1Laboratory for Internet Software Technologies, Institute of Software, 
Graduate University, Chinese Academy of Sciences, Beijing 100080, China 

E-mail:  nasar, jiansheng@itechs.iscas.ac.cn  
 

2Key Laboratory of Computer Science, Chinese Academy of Sciences, Beijing 100080, China 
E-mail: ywang@itechs.iscas.ac.cn 

 
3COMSATS Institute of Information Technology, 

Department of Computer Science, Islamabad 44000, Pakistan 
E-mail: nasar@comsats.edu.pk 

 
 

Abstract 
Latest real-time systems are capable of changing its speed at run 
time to prolong its battery life and, demand efficient techniques 
for online decisions making. Available real time feasibility tests 
have pseudo-polynomial complexity and can not be executed 
online. This paper proposes that the time complexity of existing 
techniques could be lowered when task schedulability is 
analyzed at points, where task feasibility is expected to be true. 
This paper also identifies False Points (FP) in feasibility analysis. 
By propagating false points, our technique greatly reduces the 
number of points that would be tested with existing approaches. 
We have extending the Time Demand Analysis under Rate 
Monotonic (RM) policy for periodic tasks. Our proposed 
technique can be executed online for guaranteeing task 
feasibility. Mathematical formulation and simulation results 
show the significance of our technique. 
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1. Introduction 

On one hand, current devices offer high computation 
power at the expense of more energy consumption, while 
on the other, the gap between energy demand and 
improvements in battery capacity is widening day by day. 
Although, the law of Gordon Moore [1] is maintained for 
micropcessor improvements, increase in battery capacity 
has only tripled since 1990[2]. In CMOS circuitry 
dynamic power consumption is directly related to the 
voltage/speed [3, 4, 5] i.e. the more is operating speed, the 
higher is the power consumption of the system. A number 
of solutions such as Dynamic Power Management (DMP) 
and Dynamic Voltage Scaling (DVS) are recently 
proposed to lower the total energy consumption of the 

power hungry devices. Among these, Dynamic Voltage 
Scaling (DVS) is the cutting edge technique to adjust 
system speed on the fly for reducing the power 
consumption. 
 
Real-time systems are promising target for DVS because 
such systems are usually under utilized. As DVS is 
exploited at run time, more efficient online solutions are 
needed to lower the run time overheads (space and time 
complexity) associated with current techniques. This paper 
is an attempt to lower the complexity of the feasibility test 
for hard periodic tasks, which can be deployed to DVS-
enabled systems so that power consumption could be 
reduced up to maximum extent. 
 
For real time systems, to maintain system reliability, 
feasibility tests are required at run time. However, the 
available tests are too complex to be applied online. In this 
paper we discuss the feasibility of periodic tasks, driven 
by priority driven algorithms which fall into two types: 
fixed priority and dynamic priority. A fixed-priority 
algorithm assigns the same priority to all jobs in each task. 
In contrast, a dynamic priority algorithm assigns different 
priorities to the individual jobs in each task [6]. Although, 
dynamic algorithms promise higher system utilization as 
compared to fixed priority algorithms, they become 
unpredictable, when transient overload occurs, while real 
time system must provide predictable response times. 
Therefore, this requirement makes the worst case behavior 
of real time systems more important than the average 
response time or user conveniences, which are important 
issues for general purpose computing systems. Due to 
reliability and simplicity, today, among fixed priority 
scheduling algorithms, Rate Monotonic (RM) scheduling 
has become the de fecto standard for real time systems and 
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adopted by Boeing, General Dynamics, General Electric, 
Honeywell, IMB and NASA etc [7]. 
 
To fulfill timing constraints of periodic tasks, feasibility 
tests are performed over the entire task set to answer, 
whether the task set is RM schedulable. The first 
feasibility test for RM is proposed by Liu and Layland [8], 
called LL -bound. A recent attempt is made by Bini et.al. 
[9] that further improved the LL-bound. Both tests offer 
polynomial time complexity and can be performed for on-
line guarantee of periodic task schedulability, however, 
they are sufficient conditions only and, do impose a bound 
on system utilization.  
 
To overcome the utilization issue, Lehoczky, Sha and 
Ding provided an exact RM test that is both sufficient and 
necessary in [10]. Their work is extended by authors in 
[11, 12] and proposed tests based on response time 
analysis. All [10, 11, 12] are necessary and sufficient 
conditions but their time complexity is very high and again 
impede these tests to be performed online. In this paper we 
present a novel technique to tackle the complexity of time 
demand analysis [10] by reducing the number of points to 
be checked for analyzing task schedulability. Our 
technique first observe false points in current task 
feasibility and then avoid testing such points for lower 
priority task. A formal formulation is given and simulation 
results show the effectiveness of our algorithm, while no 
compromise is made on feasibility analysis. 
 
The rest of the paper is organized as follows. Section 2 
describes the task model and states our notations. Section3 
explains the pervious work and apply results to an 
example task set. We extend the pervious work [10] in 
Section 4. Experimental results are discussed in Section 5, 
followed by conclusion and future work in Section 6. 

2.  Task Model and Assumptions 

Let 1 2, ,..., nτ τ τ τ=  represents a set of n hard periodic 
tasks. They are preemptive and non-idling (processor can 
not be left inactive if there exists some pending tasks). 
In our model of a hard real-time tasks, each task 

iτ generates a job at each integer multiple of ip  and each 
such job has an execution requirement of ic  time units 
that must be completed by the next integer multiple of iτ . 
Task set is synchronous and all tasks initially arrive at 
t o= (critical instant [8]). All tasks are independent: 
requests for any are not dependent upon the initiation or 
completion of any other task. Tasks can not be blocked 
and worst case execution time (WCET) is always in 
accordance with actual execution time (ACET). 

Furthermore, the overhead due to context switching, 
scheduling etc is included in the WCET of tasks. 
 
The response time of the jobs are smaller than or equal to 
their respective periods. i.e. at most one instant/job of a 
task exit at any particular time. To determine weather a 
task can meet all its deadlines, we compute the total 
demand for processor time by task iτ and check whether 
this demand can be met before its deadline. For verifying, 
timing constraints, feasibility tests are performed over the 
entire task set τ  to make it RM schedulable. RM assigns 
static priorities on task activation rates (periods) such that 
for any two tasks iτ and jτ , Priority ( )iτ >  

Priority ( )jτ ⇒ Period ( )jτ > Period ( )iτ , while ties are 
broken arbitrary. Determining whether an arbitrary 
periodic task system is feasible has been shown to be 
intractable - co-NP complete in the strong sense [13].  

 
Based on above assumptions we describe a pseudo-
polynomial time schedulability test developed in [10] for 
tasks scheduled according to a RM priority algorithm. We 
need the following additional notations for later 
convenience. The cumulative processor demand 
by iτ ,1 i n< ≤ , during the time interval [0, ]iP  is 
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3.  Time Demand Analysis 

Authors in [10], provide an exact formula to determine if a 
given set of periodic tasks can meet their deadlines when 
the Rate Monotonic algorithm is used. To carry out the 
time demand analysis on τ  , we consider one task at a 
time, starting from the iτ  with the highest priority in 
decreasing priority order. The necessary and sufficient 
condition for the task schedulability as given by  
 
Theorem 1 ([10]) 
Given a set of n  periodic tasks 1 2{ , ,..., }nτ τ τ , iτ can be 
feasibly scheduled for all tasks phasing using RM iff 

1iL ≤  
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The test is known as time-demand analysis [6]. Assuming 
the task phasings are all zero, task iτ is feasible if we find 
some ' 't satisfying the above condition. In other words, 
task iτ  completes its computation requirements at 
time [0, ]it P∈ , if and only if the entire request from the 
higher priority tasks and computation time of iτ , are 
completed at time t . As t is a continuous variable, there 
are infinite numbers of points to be tested. Authors in [10] 
noted that ( )iW t  is constant except at points, when task 
are released, called rate monotonic scheduling points. 
Consequently, to determine if iτ  is schedulable, we need 
to compute ( )iW t , only at multiples of ,1j i j iτ τ< ≤ ≤ .  
Specifically, let  
 

{ | 1,..., ; 1,..., / }i j i jS lP j i l P P⎢ ⎥= = = ⎣ ⎦   (5) 

 
Theorem 2 ([10]) 
Given a set of n  periodic tasks, 1 2{ , ,..., }nτ τ τ , iτ can be 
feasibly scheduled for all tasks phasing using RM iff 

min{ ( ) / 1}
i

i it S
L W t t

∈
= ≤   (6) 

It can be seen that set iS has a finite number of points and 
limits the number of inequalities to be tested. We represent 
this test by Time Demand Analysis (TDA) in rest of the 
paper. We now apply results parented in Theorem.1 to a 
set of three tasks with parameters given in Table.1  

Table: 1 A 3-task set example 
Task Execution Requirements Time Period RM-Scheduling 

Points 

1τ  1c  3 3 

2τ  2c  7 3,6,7 

3τ  3c  20 3,6,7,9,12,14,15,1
8,20 

 
In algebraic terms, we have: 
 
Task 1τ is RM-schedulable iff  

 c1 ≤  3 
 
 

Task 2τ is RM-schedulable iff  
c1+c2 ≤  3 or 
c1+ c2 ≤  6 or 
3c1+ c2 ≤  7  
 

Task 3τ  is RM-schedulable iff  
  c1+c2+c3 ≤ 3 or 

2c1+c2+c3 ≤  6 or 
2c1+c2+c3 ≤  7 or 
3c1+2c2+c3 ≤ 9 or 
4c1+2c2+c3 ≤  10 or 
4c1+2c2+c3 ≤  12 or 
4c1+2c2+c3 ≤  14 or 
5c1+3c2+c3 ≤  15 or 
6c1+3c2+c3 ≤ 18 or 
7c1+4c2+c3 ≤ 20 

              List. 1 Redundant list of points 

4.  Enhanced Rate Monotonic Analysis 

 
From List 1, we obtain the following major points and 
propose solutions accordingly: 
 
4.1 Complexity 
 
The time complexity of Theorem 2 is ,1( )nO nq , where 

,1nq denote the period ratio, i.e. the ratio of largest period 

np  to the smallest period 1p .For large task set, the 
number of points to be tested is huge and is equal to the 
sum of elements in iS .The number of elements in iS is 
high when ,1nq is large. For any task iτ , inequalities 
constraints are tested in ascending order, beginning with 
the smallest element it S∈ , up to ip (the largest value 
in iS ). However, there is a high probability that workload 
constituted by iτ might not be fulfilled at smallest element 
of iS which is 1p , while the probability is higher that this 
demand could be completed at the largest element of iS , 
which is ip , as the interval 1[0, ] [0, ]iP P≥ . 
 
4.2 Redundancy  
 
Many points are redundant such as 1p , the time period of 
the highest priority task 1τ , which is equally important to 
be checked for lower priority task despite the fact that it is 
very likely that lower priority tasks might become 
unschedulable at this point. We avoid this redundancy by 
proposing that, when the time demand for task iτ is not 
fulfilled at any point ' 'iP , then it becomes unnecessary to 
test feasibility of lower priority tasks at the same point t as  

1
/

i
j j lower

j
c t p c t

=
∑ ⎡ ⎤ + >⎢ ⎥   (7) 
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where lowerc  is the execution demand of tasks whose 
priority is lower than iτ , and 1,...,0,lower lower i nc c c c+> ∈ ,  

 
 
Definition 1(False Point):  
RM scheduling point t , is said to be a false point for iτ iff 

( )iW t t> at point ' 't . 
 
Based on the above observations we are now ready to 
present the necessary and suffecient condition for the fixed 
priority systems by extending the work of Lehoczky et al. 
discussed in Theorem 2. We implement an aggressive 
approach in Theorem 3, which unlike traditional approach, 
commence with largest point in it S∈ in order of 
decreasing value. Generally, our test needs a small number 
of inequalities to be tested, however, in worst case the 
complexity of our approach is the same, as that of TDA. 
We can immediately exit, when feasibility condition is 
satisfied at some point, otherwise that point is marked as 
false point, which further lowers the complexity of our 
approach. 
 
Theorem 3  
Given a set of n  periodic tasks 1 2{ , ,..., }nτ τ τ , iτ can be 
feasibly scheduled for all tasks phasings using RM iff 

( )min 1
i

i
i t Z

W tL
t∈

= ≤    (8) 

where 1( )i i iZ S X −= −  is a list RM-scheduling points in 
descending order, and 1iX − is the set of false points for 
task iτ ; by definition 0X φ= . It can be seen that when 
task number is increased ( )i n→ , more false points are 
added to the set of false points i.e. 0 1 2 ,..., nX X X X≤ ≤ . 
 
Proof:  
According to the definition of false point ( )iW t t> , 
and 1 0ic + > , so: 

1
1 1 1

1 1
( ) / / /

i i
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+ + +

= =
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The entire task τ , is feasible for all tasks phasings using 
RM iff 
 

1
max{ 1}i

i n
L L

≤ ≤
= ≤   (10) 

 

We have replaced iS given in Theorem 2 by iZ  in 
Theorem 3, which immediately reflects the reduced 
complexity of our algorithm i iZ S⊆ : we need to test task 
feasibility at fewer points. Although the complexity class 
is the same, we have lowered the complexity of Theorem 2 
by a factor of 1nX − (set of false points for nτ ). The results 
obtained with Theorem 3 can be directly applied to DVS-
capable real-time systems without any modification to the 
fundamental constraints. 
 
We use the term Enhanced Rate Monotonic Analysis 
(ERMA) hereafter, for our proposed technique. Below is 
the pseudo code of ERMA. 
 

ERMA(τ  ) 
{ X0=0; 

For each iτ  τ∈  
{  

{ | 1,..., ; 1,..., /i jS lP j i l Pi Pj= = = ⎢ ⎥⎣ ⎦  

1( )i i iZ S X −= −  
For each t∈Zi 

{ 
If  (Li<=1);  

iτ  is schedulable:break. 
else update Xi; 
} 

} 
if (L<=1); τ is feasible. 
else τ is infeasible. 
} 

 
Here we graphically illustratye ERMA in Fig 2. Let 
assume iτ  is infeasible at RM scheduling point t , or 

algebraically  1 /i
j jj t p c t=∑ ⎡ ⎤ >⎢ ⎥ . This makes it 

unnecessary to analyze feasibility of lower periodic task 
1,...,i nτ τ+  at the same point ' 't , as execution demand of 

lower priority task is added to the already false inequality. 
we mark such ' 't  as false point and avoid this point to be 
tested during analyzing fesibility of lower priority tasks.  
The same treatment is applied to all false points that arise 
as ERMA proceeds. In the diagram symbol | shows the 

Rate Monotonic testing points while ↑ shows time periods 
of the current tasks. In Fig. 2, point 2p is a false point, 
which is kipped for all lower priority tasks 3τ up to the 
lowest priority task nτ  . 
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Fig. 1 Identification and propagation of false point 

5.  Experimental Results 

In this section, we evaluate the performance of our scheme. 
In order to make a comparison of ERMA, Lehoczky, et 
al.’s work in [10] is also implemented. The performance 
of a test is evaluated in terms of number of inequalities 
tested. Together, a series of tasks were generated by 
varying the range from of 5 to 30. Task periods ip  are 
randomly extracted in [10,10000] (with uniform 
distribution) and task computation times ic  are computed 
as a random variable in [1, ]iP  (also with uniform 
distribution). Both tests begin with a common point 1p , 
which is the largest as well as the smallest point for 
highest priority task 1τ , however the advantage of ERMA 
becomes more promising when lower priority tasks are 
analyzed. As can be seen in Fig. 3(a) and 3(b), both tests 
are susceptible to total utilization i.e. more points are 
tested before feasibility is confirmed. Fig 3 shows the 
result of our experiment; ERMA has significant advantage 
over TDA. It can be easily seen that with time demand 
analysis the average number of inequalities checked 
increases dramatically, in contrast, ERMA exhibit a 
smaller increase with increased task numbers.  

 

(a) System utilization 0.75≤  

 

(b) System utilization 1.0≤  

Fig. 3 Inequalities versus task number  

6. Conclusions 

This paper exploits the idea that tasks are usually 
unschedulable at points, which lie in beginning of their 
feasible interval. We also present the concept of false 
points, a point that fails to satisfy the workload presented 
by active tasks. The false points are propagated to lower 
priority tasks so that these points are skipped from their 
intended search space. 
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As a future work, we are intended to propose a bound on 
false points by adjusting tasks period. 
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