
IJCSES International Journal of Computer Sciences and Engineering Systems, Vol.1, No.3, July 2007
CSES International ⓒ2007 ISSN 0973-4406

 Manuscript received March 1, 2007
Manuscript revised June 1, 2007

149

Enhanced Rate Monotonic Time Demand Analysis

Nasro MIN-ALLAH1,3, Yong-Ji WANG2, and Jian-Sheng XING1

1Laboratory for Internet Software Technologies, Institute of Software,
Graduate University, Chinese Academy of Sciences, Beijing 100080, China

E-mail: nasar, jiansheng@itechs.iscas.ac.cn

2Key Laboratory of Computer Science, Chinese Academy of Sciences, Beijing 100080, China
E-mail: ywang@itechs.iscas.ac.cn

3COMSATS Institute of Information Technology,

Department of Computer Science, Islamabad 44000, Pakistan
E-mail: nasar@comsats.edu.pk

Abstract
Latest real-time systems are capable of changing its speed at run
time to prolong its battery life and, demand efficient techniques
for online decisions making. Available real time feasibility tests
have pseudo-polynomial complexity and can not be executed
online. This paper proposes that the time complexity of existing
techniques could be lowered when task schedulability is
analyzed at points, where task feasibility is expected to be true.
This paper also identifies False Points (FP) in feasibility analysis.
By propagating false points, our technique greatly reduces the
number of points that would be tested with existing approaches.
We have extending the Time Demand Analysis under Rate
Monotonic (RM) policy for periodic tasks. Our proposed
technique can be executed online for guaranteeing task
feasibility. Mathematical formulation and simulation results
show the significance of our technique.

Key words: Real Time Systems, Fixed priority Scheduling, Rate
Monotonic Feasibility Analysis, Time Demand Approach

1. Introduction

On one hand, current devices offer high computation
power at the expense of more energy consumption, while
on the other, the gap between energy demand and
improvements in battery capacity is widening day by day.
Although, the law of Gordon Moore [1] is maintained for
micropcessor improvements, increase in battery capacity
has only tripled since 1990[2]. In CMOS circuitry
dynamic power consumption is directly related to the
voltage/speed [3, 4, 5] i.e. the more is operating speed, the
higher is the power consumption of the system. A number
of solutions such as Dynamic Power Management (DMP)
and Dynamic Voltage Scaling (DVS) are recently
proposed to lower the total energy consumption of the

power hungry devices. Among these, Dynamic Voltage
Scaling (DVS) is the cutting edge technique to adjust
system speed on the fly for reducing the power
consumption.

Real-time systems are promising target for DVS because
such systems are usually under utilized. As DVS is
exploited at run time, more efficient online solutions are
needed to lower the run time overheads (space and time
complexity) associated with current techniques. This paper
is an attempt to lower the complexity of the feasibility test
for hard periodic tasks, which can be deployed to DVS-
enabled systems so that power consumption could be
reduced up to maximum extent.

For real time systems, to maintain system reliability,
feasibility tests are required at run time. However, the
available tests are too complex to be applied online. In this
paper we discuss the feasibility of periodic tasks, driven
by priority driven algorithms which fall into two types:
fixed priority and dynamic priority. A fixed-priority
algorithm assigns the same priority to all jobs in each task.
In contrast, a dynamic priority algorithm assigns different
priorities to the individual jobs in each task [6]. Although,
dynamic algorithms promise higher system utilization as
compared to fixed priority algorithms, they become
unpredictable, when transient overload occurs, while real
time system must provide predictable response times.
Therefore, this requirement makes the worst case behavior
of real time systems more important than the average
response time or user conveniences, which are important
issues for general purpose computing systems. Due to
reliability and simplicity, today, among fixed priority
scheduling algorithms, Rate Monotonic (RM) scheduling
has become the de fecto standard for real time systems and

IJCSES International Journal of Computer Sciences and Engineering Systems, Vol.1 No.3, July 2007

150

adopted by Boeing, General Dynamics, General Electric,
Honeywell, IMB and NASA etc [7].

To fulfill timing constraints of periodic tasks, feasibility
tests are performed over the entire task set to answer,
whether the task set is RM schedulable. The first
feasibility test for RM is proposed by Liu and Layland [8],
called LL -bound. A recent attempt is made by Bini et.al.
[9] that further improved the LL-bound. Both tests offer
polynomial time complexity and can be performed for on-
line guarantee of periodic task schedulability, however,
they are sufficient conditions only and, do impose a bound
on system utilization.

To overcome the utilization issue, Lehoczky, Sha and
Ding provided an exact RM test that is both sufficient and
necessary in [10]. Their work is extended by authors in
[11, 12] and proposed tests based on response time
analysis. All [10, 11, 12] are necessary and sufficient
conditions but their time complexity is very high and again
impede these tests to be performed online. In this paper we
present a novel technique to tackle the complexity of time
demand analysis [10] by reducing the number of points to
be checked for analyzing task schedulability. Our
technique first observe false points in current task
feasibility and then avoid testing such points for lower
priority task. A formal formulation is given and simulation
results show the effectiveness of our algorithm, while no
compromise is made on feasibility analysis.

The rest of the paper is organized as follows. Section 2
describes the task model and states our notations. Section3
explains the pervious work and apply results to an
example task set. We extend the pervious work [10] in
Section 4. Experimental results are discussed in Section 5,
followed by conclusion and future work in Section 6.

2. Task Model and Assumptions

Let 1 2, ,..., nτ τ τ τ= represents a set of n hard periodic
tasks. They are preemptive and non-idling (processor can
not be left inactive if there exists some pending tasks).
In our model of a hard real-time tasks, each task

iτ generates a job at each integer multiple of ip and each
such job has an execution requirement of ic time units
that must be completed by the next integer multiple of iτ .
Task set is synchronous and all tasks initially arrive at
t o= (critical instant [8]). All tasks are independent:
requests for any are not dependent upon the initiation or
completion of any other task. Tasks can not be blocked
and worst case execution time (WCET) is always in
accordance with actual execution time (ACET).

Furthermore, the overhead due to context switching,
scheduling etc is included in the WCET of tasks.

The response time of the jobs are smaller than or equal to
their respective periods. i.e. at most one instant/job of a
task exit at any particular time. To determine weather a
task can meet all its deadlines, we compute the total
demand for processor time by task iτ and check whether
this demand can be met before its deadline. For verifying,
timing constraints, feasibility tests are performed over the
entire task set τ to make it RM schedulable. RM assigns
static priorities on task activation rates (periods) such that
for any two tasks iτ and jτ , Priority ()iτ >

Priority ()jτ ⇒ Period ()jτ > Period ()iτ , while ties are
broken arbitrary. Determining whether an arbitrary
periodic task system is feasible has been shown to be
intractable - co-NP complete in the strong sense [13].

Based on above assumptions we describe a pseudo-
polynomial time schedulability test developed in [10] for
tasks scheduled according to a RM priority algorithm. We
need the following additional notations for later
convenience. The cumulative processor demand
by iτ ,1 i n< ≤ , during the time interval [0,]iP is

1
() /

n
i j j

j
W t c t P

=
∑ ⎡ ⎤= ⎢ ⎥ (1)

() () /i iL t W t t= (2)

0
min()

i

i i
t p

L L
< ≤

= (3)

1
max{ }i

i n
L L

≤ ≤
= (4)

3. Time Demand Analysis

Authors in [10], provide an exact formula to determine if a
given set of periodic tasks can meet their deadlines when
the Rate Monotonic algorithm is used. To carry out the
time demand analysis on τ , we consider one task at a
time, starting from the iτ with the highest priority in
decreasing priority order. The necessary and sufficient
condition for the task schedulability as given by

Theorem 1 ([10])
Given a set of n periodic tasks 1 2{ , ,..., }nτ τ τ , iτ can be
feasibly scheduled for all tasks phasing using RM iff

1iL ≤

Enhanced Rate Monotonic Time Demand Analysis

151

The test is known as time-demand analysis [6]. Assuming
the task phasings are all zero, task iτ is feasible if we find
some ' 't satisfying the above condition. In other words,
task iτ completes its computation requirements at
time [0,]it P∈ , if and only if the entire request from the
higher priority tasks and computation time of iτ , are
completed at time t . As t is a continuous variable, there
are infinite numbers of points to be tested. Authors in [10]
noted that ()iW t is constant except at points, when task
are released, called rate monotonic scheduling points.
Consequently, to determine if iτ is schedulable, we need
to compute ()iW t , only at multiples of ,1j i j iτ τ< ≤ ≤ .
Specifically, let

{ | 1,..., ; 1,..., / }i j i jS lP j i l P P⎢ ⎥= = = ⎣ ⎦ (5)

Theorem 2 ([10])
Given a set of n periodic tasks, 1 2{ , ,..., }nτ τ τ , iτ can be
feasibly scheduled for all tasks phasing using RM iff

min{ () / 1}
i

i it S
L W t t

∈
= ≤ (6)

It can be seen that set iS has a finite number of points and
limits the number of inequalities to be tested. We represent
this test by Time Demand Analysis (TDA) in rest of the
paper. We now apply results parented in Theorem.1 to a
set of three tasks with parameters given in Table.1

Table: 1 A 3-task set example
Task Execution Requirements Time Period RM-Scheduling

Points

1τ 1c 3 3

2τ 2c 7 3,6,7

3τ 3c 20 3,6,7,9,12,14,15,1
8,20

In algebraic terms, we have:

Task 1τ is RM-schedulable iff

 c1 ≤ 3

Task 2τ is RM-schedulable iff
c1+c2 ≤ 3 or
c1+ c2 ≤ 6 or
3c1+ c2 ≤ 7

Task 3τ is RM-schedulable iff
 c1+c2+c3 ≤ 3 or

2c1+c2+c3 ≤ 6 or
2c1+c2+c3 ≤ 7 or
3c1+2c2+c3 ≤ 9 or
4c1+2c2+c3 ≤ 10 or
4c1+2c2+c3 ≤ 12 or
4c1+2c2+c3 ≤ 14 or
5c1+3c2+c3 ≤ 15 or
6c1+3c2+c3 ≤ 18 or
7c1+4c2+c3 ≤ 20

 List. 1 Redundant list of points

4. Enhanced Rate Monotonic Analysis

From List 1, we obtain the following major points and
propose solutions accordingly:

4.1 Complexity

The time complexity of Theorem 2 is ,1()nO nq , where

,1nq denote the period ratio, i.e. the ratio of largest period

np to the smallest period 1p .For large task set, the
number of points to be tested is huge and is equal to the
sum of elements in iS .The number of elements in iS is
high when ,1nq is large. For any task iτ , inequalities
constraints are tested in ascending order, beginning with
the smallest element it S∈ , up to ip (the largest value
in iS). However, there is a high probability that workload
constituted by iτ might not be fulfilled at smallest element
of iS which is 1p , while the probability is higher that this
demand could be completed at the largest element of iS ,
which is ip , as the interval 1[0,] [0,]iP P≥ .

4.2 Redundancy

Many points are redundant such as 1p , the time period of
the highest priority task 1τ , which is equally important to
be checked for lower priority task despite the fact that it is
very likely that lower priority tasks might become
unschedulable at this point. We avoid this redundancy by
proposing that, when the time demand for task iτ is not
fulfilled at any point ' 'iP , then it becomes unnecessary to
test feasibility of lower priority tasks at the same point t as

1
/

i
j j lower

j
c t p c t

=
∑ ⎡ ⎤ + >⎢ ⎥ (7)

IJCSES International Journal of Computer Sciences and Engineering Systems, Vol.1 No.3, July 2007

152

where lowerc is the execution demand of tasks whose
priority is lower than iτ , and 1,...,0,lower lower i nc c c c+> ∈ ,

Definition 1(False Point):
RM scheduling point t , is said to be a false point for iτ iff

()iW t t> at point ' 't .

Based on the above observations we are now ready to
present the necessary and suffecient condition for the fixed
priority systems by extending the work of Lehoczky et al.
discussed in Theorem 2. We implement an aggressive
approach in Theorem 3, which unlike traditional approach,
commence with largest point in it S∈ in order of
decreasing value. Generally, our test needs a small number
of inequalities to be tested, however, in worst case the
complexity of our approach is the same, as that of TDA.
We can immediately exit, when feasibility condition is
satisfied at some point, otherwise that point is marked as
false point, which further lowers the complexity of our
approach.

Theorem 3
Given a set of n periodic tasks 1 2{ , ,..., }nτ τ τ , iτ can be
feasibly scheduled for all tasks phasings using RM iff

()min 1
i

i
i t Z

W tL
t∈

= ≤ (8)

where 1()i i iZ S X −= − is a list RM-scheduling points in
descending order, and 1iX − is the set of false points for
task iτ ; by definition 0X φ= . It can be seen that when
task number is increased ()i n→ , more false points are
added to the set of false points i.e. 0 1 2 ,..., nX X X X≤ ≤ .

Proof:
According to the definition of false point ()iW t t> ,
and 1 0ic + > , so:

1
1 1 1

1 1
() / / /

i i
i j j j j i i

j j
W t t p c t p c t p c

+
+ + +

= =
∑ ∑⎡ ⎤ ⎡ ⎤= = + ⎡ ⎤⎢ ⎥⎢ ⎥ ⎢ ⎥

1() ()i i iW t c W t+= + > (9)

The entire task τ , is feasible for all tasks phasings using
RM iff

1
max{ 1}i

i n
L L

≤ ≤
= ≤ (10)

We have replaced iS given in Theorem 2 by iZ in
Theorem 3, which immediately reflects the reduced
complexity of our algorithm i iZ S⊆ : we need to test task
feasibility at fewer points. Although the complexity class
is the same, we have lowered the complexity of Theorem 2
by a factor of 1nX − (set of false points for nτ). The results
obtained with Theorem 3 can be directly applied to DVS-
capable real-time systems without any modification to the
fundamental constraints.

We use the term Enhanced Rate Monotonic Analysis
(ERMA) hereafter, for our proposed technique. Below is
the pseudo code of ERMA.

ERMA(τ)
{ X0=0;

For each iτ τ∈
{

{ | 1,..., ; 1,..., /i jS lP j i l Pi Pj= = = ⎢ ⎥⎣ ⎦

1()i i iZ S X −= −
For each t∈Zi

{
If (Li<=1);

iτ is schedulable:break.
else update Xi;
}

}
if (L<=1); τ is feasible.
else τ is infeasible.
}

Here we graphically illustratye ERMA in Fig 2. Let
assume iτ is infeasible at RM scheduling point t , or

algebraically 1 /i
j jj t p c t=∑ ⎡ ⎤ >⎢ ⎥ . This makes it

unnecessary to analyze feasibility of lower periodic task
1,...,i nτ τ+ at the same point ' 't , as execution demand of

lower priority task is added to the already false inequality.
we mark such ' 't as false point and avoid this point to be
tested during analyzing fesibility of lower priority tasks.
The same treatment is applied to all false points that arise
as ERMA proceeds. In the diagram symbol | shows the

Rate Monotonic testing points while ↑ shows time periods
of the current tasks. In Fig. 2, point 2p is a false point,
which is kipped for all lower priority tasks 3τ up to the
lowest priority task nτ .

Enhanced Rate Monotonic Time Demand Analysis

153

Fig. 1 Identification and propagation of false point

5. Experimental Results

In this section, we evaluate the performance of our scheme.
In order to make a comparison of ERMA, Lehoczky, et
al.’s work in [10] is also implemented. The performance
of a test is evaluated in terms of number of inequalities
tested. Together, a series of tasks were generated by
varying the range from of 5 to 30. Task periods ip are
randomly extracted in [10,10000] (with uniform
distribution) and task computation times ic are computed
as a random variable in [1,]iP (also with uniform
distribution). Both tests begin with a common point 1p ,
which is the largest as well as the smallest point for
highest priority task 1τ , however the advantage of ERMA
becomes more promising when lower priority tasks are
analyzed. As can be seen in Fig. 3(a) and 3(b), both tests
are susceptible to total utilization i.e. more points are
tested before feasibility is confirmed. Fig 3 shows the
result of our experiment; ERMA has significant advantage
over TDA. It can be easily seen that with time demand
analysis the average number of inequalities checked
increases dramatically, in contrast, ERMA exhibit a
smaller increase with increased task numbers.

(a) System utilization 0.75≤

(b) System utilization 1.0≤

Fig. 3 Inequalities versus task number

6. Conclusions

This paper exploits the idea that tasks are usually
unschedulable at points, which lie in beginning of their
feasible interval. We also present the concept of false
points, a point that fails to satisfy the workload presented
by active tasks. The false points are propagated to lower
priority tasks so that these points are skipped from their
intended search space.

IJCSES International Journal of Computer Sciences and Engineering Systems, Vol.1 No.3, July 2007

154

As a future work, we are intended to propose a bound on
false points by adjusting tasks period.

Acknowledgments

This work is jointly supported by COMSATS Institute of
Information Technology under faculty development
program, the research collaboration between the Chinese
Academy of Sciences and the Royal Society of the United
Kingdom (Grant Number: 20030389, 20032006) and, the
State Education Ministry’s Scientific Research Foundation
for the Returned Overseas Chinese Scholars (Grant
Number: 406).

References
[1] G. E. Moore, "Cramming More Components onto Integrated

Circuits", Electronics, Vol. 38, April 1965, pp.114-117.
[2] D. Linden, and T. Reddy, Secondary Batteries-

Introduction. In Handbook of Batteries, NY: McGraw-
Hill, 3rd edition, 2002, pp.22.3-22.24.

[3] N. Min-Allah, Y. Wang, J. Xing, W. Nisar, and A. Kazmi,
"Towards Dynamic Voltage Scaling in Real Time Systems -
A Survey", International Journal of Computer Science
and Engineering Systems, Vol. 1, No. 2, 2007, pp.93-103.

[4] T. D. Burd, T. A. Pering, A. J. Stratakos, and R. W.
Brodersen, "A Dynamic Voltage Scaled microprocessor
System", IEEE J. Solid-State Circuits, Vol. 35, No. 11,
2000, pp. 1571-1580.

[5] A.P. Chandrakasan, S. Sheng, and R.W. Brodersen, "Low
Power CMOS Digital Design", In IEEE Journal of Solid
State Circuits, 1992, pp.472-484.

[6] J. W. S. Liu, Real Time Systems , Prentice Hall, 2000.
[7] J. Obenza, "Rate Monotonic Analysis for Real Time

Systems", J.ACM, Vol.26, No. 3, 1993, pp.73-74.
[8] C. L. Liu, and J.W. Layland, "Scheduling Algorithms for

Multiprogramming in A Hard Real-time Environment",
Journal of the ACM, Vol.20. No.1, 1973, pp.40-61.

[9] E. Bini, G. C. Buttazzo, and G. Buttazzo. "A Hyperbolic
Bound for the Rate Monotonic Algorithm", In IEEE 13th
Euromicro Conf. on Real-Time Systems, pp. 59-66, 2001.

[10] J. P. Lehoczky, L. Sha, and Y. Ding, "The Rate Monotonic
Scheduling Algorithm: Exact Characterization and Average
Case Behavior", in IEEE Real-Time System Symposium,
1989 , pp.166-171.

[11] N. C. Audsley, A. Burns, K. Tindell, and A. Wellings,
"Applying New Scheduling Theory to Static Priority
Preemptive Scheduling, Software Engineering Journal,
Vol. 8, No. 2, 1993, pp: 80-89.

[12] M. Sjodin, and H. Hansson, "Improved Response-time
Analysis Calculations", In Proceedings of the 19th IEEE
Real-Time Systems Symposium, 1998, pp.399-409.

[13] P. R. Goossens1, Overview of Real-time Scheduling
Problems, Universite Libre de Bruxelles, 2004

