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Abstract

Ad-Hoc localization of wireless sensor nodes is a fundamental problem in wireless sensor networks.

Despite the recent proposals for the development of ad-hoc localization algorithms, the fundamental

behavior in systems using measurements has not been characterized. In this paper we take a first step

towards such a characterization by examining the behavior of error inducing parameters in multihop

localization systems in an algorithm independent manner. We first derive the Cramér Rao Bound for

Gaussian measurement error for multihop localization systems using distance and angular measurements.

Later on, we use these bounds on a carefully controlled set of scenarios to study the trends in the

error induced by the measurement technology accuracy, network density, beacon node concentration

and beacon uncertainty. By exposing these trends, the goal of this paper is to develop a fundamental

understanding of the error behavior that can provide a set of guidelines to be considered during the

design and deployment of multihop localization systems.

Index Terms

multihop node localization, sensor networks, Cramér Rao bounds, position estimation

I. INTRODUCTION

Node localization in multi-hop sensor networks is a fundamental component of network self-

configuration. When endowed with the ability to “sense” their location in space, ad-hoc deployed

sensor nodes can support a rich set of geographically aware protocols, and can accurately report

the positions of detected targets or events.

One problem setup that received considerable attention in the literature is the case where

a small fraction of the nodes in a multihop network are aware of their locations and act as

beacons assisting other nodes to estimate their locations [1]–[6]. Nodes with unknown locations

use advertised beacon node locations and a set of distance or angular measurements to their

neighboring nodes to estimate their locations. Despite their encouraging results, the proposed
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solutions do not provide a systematic decomposition of the resulting error in position estimates.

Even in idealized setups with no obstacles or other external factors, relatively small error from

noisy sensor measurements can induce much larger errors in node position estimates. This error

is associated with a set of attributes that we refer to as the network setup attributes. The

network setup attributes include the type of measurement technology used (distance or angle

measurement), the accuracy of the measurement technology used, network density, uncertainties

in beacon node locations and beacon node densities.

In this paper we examine localization error behavior with respect to the aforementioned

network setup attributes. Our study considers the “idealized” case where measurements are

not impacted by changes in the surrounding environment, and the underlying measurement

error distribution is known. Under this assumption, we consider the error characteristics of

different measurement technologies and a set of carefully controlled deployment setups, to

develop a fundamental understanding of how network setup parameters affect the error behavior

in node position estimates in systems that use distance and/or angular measurements. This study

reveals a set of guidelines for the multihop localization problem. The resulting rules expose

the trends associated with each of the network setup attributes and provides valuable insight

into understanding the fundamental error behavior in multihop localization. Such knowledge

can help to answer questions regarding the scalability of multihop localization, and provides

a set of directions to consider as part the design cycle and during deployment. In addition to

the preliminary results of our earlier work presented in [19], this paper provides the details of

the bound derivations and includes a comparison of the error tradeoffs associated with the use

of angular or distance measurements for localization. Moreover, it considers a wider range of

scenarios, and provides some indication of how beacon location errors affect the final location

estimates. To the best of our knowledge this is the first effort that constructs an analytical

framework that attempts to characterize the trends error behavior for multihop localization.
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Our analysis is based on analytical bounds for the covariance of localization parameter

estimates, given by the Cramér-Rao bound for the case in which there is no beacon uncertainty,

and the covariance bound on the maximum a posteriori (MAP) estimate when beacon location

uncertainty. These bounds provide an analytical means of characterizing localization uncertainty,

thus avoiding Monte-Carlo simulations. On the other hand, the bounds are tight in the sense that

maximum likelihood (ML) or MAP estimates of location parameters achieve these variance

bounds for high signal-to-noise ratio.

This paper is organized as follows. The next section presents a classification of the error

components and defines the problem. Section III presents the Cramér-Rao bound result for the

multihop case. Section IV describes our scenario setup and the simulation results. These results

are summarized in Section VI.

II. OVERVIEW

A. A Classification of Error Components

Sensor measurement error can be broken down into two main categories, extrinsic and intrinsic.

Extrinsic error is attributed to the physical effects on the measurement channel, such as the

presence of obstacles, multipath and shadowing effects and changes in the signal propagation

speed due to changes in the surrounding environment. Intrinsic error is caused by imperfections

of the sensor hardware and software. While extrinsic error is more unpredictable and harder

to handle in realistic deployments, intrinsic error can also cause many complications when

estimating node positions that utilize measurement information over multiple hops. Even rela-

tively small measurement errors can significantly amplify the error in position estimates. This

error amplification is inherently related to the network setup parameters. Denser deployment

for example increases the number of possible measurements, thus helps to reduce the error in

position estimates. Other changes such as the use of a lower precision measurement technology
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and higher uncertainty of beacon locations will induce increased errors in position estimates.

TABLE I

EXPECTED ACCURACY OF DIFFERENT MEASUREMENT TECHNOLOGIES

Technology System Measurement Accuracy (Intrinsic) Range

Ultrasound AHLoS 2cm 3m

Ultra Wide Band PAL UWB 1.5m N/A

RF Time of Flight Bluesoft 0.5 m 100m

Laser Time of Flight Laser range finder 1cm 75m

In this paper we consider a range of intrinsic error characteristics representative of different

measurement technologies. Table I lists the typical intrinsic average measurement error of four

different systems: the ultrasonic distance measurement system used in the AHLOS project [4],

and ultra-wide-band system [7], and RF Time-of-Flight system [8] and a SICK laser range finder

[9]. With the trends exposed in this paper one should be able to answer a set of fundamental

questions regarding the use of each technology. Examples of such questions are listed below:

• What deployment density is required to achieve a certain localization accuracy with a

particular technology?

• What are the tradeoffs between the use of distance vs. angular measurements?

• Is the use of measurements over multiple hops scalable? How does error propagate?

• How does beacon density improve localization accuracy?

• How does beacon uncertainty affect the node position estimates?

B. Problem Statement

Assume we have a set of N sensors in a plane, with unknown locations {ri = (xi, yi)}N
i=1

and unknown orientation angles {θi}N
i=1. The orientation angles can be thought of as rotation
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angles of the sensor nodes’ local frame of reference with respect to an absolute reference frame.

In addition, a set of B beacon with locations {ri = (xi, yi)}0
i=−B+1 and orientations {θi}0

i=−B+1

are placed in the plane. The beacon locations and orientations are assumed to be known, but

perhaps with some uncertainty. We define the location parameter vectors

αB = [x−B+1, y−B+1, θ−B+1, . . . , x0, y0, θ0]
T (3B × 1) (1)

αN = [x1, y1, θ1, x2, y2, θ2, . . . , xN , yN , θN ]T (3N × 1) (2)

α =

⎡
⎢⎣αB

αN

⎤
⎥⎦ (3(B + N) × 1) (3)

where αB contains beacon node location parameters and αN contains unknown (non-beacon)

node location parameters. Each beacon node advertises its location and orientation and this

information is forwarded to the other nodes in the network.

For node localization, each sensor node and beacon node emits a known signal that allows

neighboring nodes to estimate their distance and/or angle to the emitting node. The measurements

contain measurement error. We denote the distance measurement at node i to node j as d̂ij

d̂ij = dij + edij
(4)

dij = ‖ri − rj‖ =
√

(xi − xj)2 + (yi − yj)2 (5)

where edij
is the distance measurement error and where dij is the true distance between nodes

i and j. We denote the angle measurement at node i to node j as φ̂ij

φ̂ij = φij + eφij
(6)

φij = θi + � (ri, rj) = θi + tan−1

(
yi − yj

xi − xj

)
(7)

where eφij
is the angle measurement error and where φij is the true angle between nodes i and

j, measured with respect to node i’s local frame of reference.
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We will consider four localization subproblems. First, the nodes may or may not measure

angles to emitting nodes. This may be the case for sensor nodes having a single, omnidirectional

sensor. In this case, orientations of sensors are not identifiable, and the θi elements are removed

from the αB and αN vectors, and their dimensions reduce to (2B×1) and (2N×1), respectively.

If angle measurements only or if distance and angle measurements are collected, the localization

solution includes both position and orientation estimates of sensor nodes. Second, the beacon

node locations (and orientations) are either assumed to be known exactly, or assumed to have

uncertainty. When they have uncertainty, we simultaneously estimate both sensor node and

beacon node locations (and orientations), as the measurements provide additional information

about beacon locations (and orientations) that reduce the uncertainty.

We denote the availability of a measurement from node i from a signal emitted at node j (for

i, j = −B +1, . . . , N) using the indicator function Iij where Iij = 1 if the signal is detected and

Iij = 0 otherwise. Depending on the particular subproblem being considered, Iij = 1 indicates

that a distance measurement, an angle measurement, or both measurements are observed. The

measurement are stacked into a vector X whose length is defined to be M .

In this paper we assume the measurement errors are independent Gaussian random variables

with zero mean and known variances σ2
d and σ2

φ, respectively. We acknowledge that although

this uncorrelated-Gaussian measurement error does not capture all practical cases, it is a good

starting point for exposing some of the error trends in multihop networks. More general cases

are considered in [10], [11].

The general localization problem statement is as follows: Given noisy distance measurements

d̂ij and/or noisy angle measurements φ̂ij, beacon locations ri, and orientations θi for i =

−B + 1, . . . , 0, estimate the locations r̂i and orientations θ̂i for i = 1, . . . , N . We note that

the orientations θ̂i are only estimated when angle measurements are available.
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III. LOCALIZATION ERROR

In this section we develop two analytical expressions for sensor node localization error. The

first assumes beacon nodes have known locations and orientations. In this case, the localization

accuracy is computed using the the Cramér Rao bound (CRB) [10]. When beacon nodes have

location uncertainty, we characterize localization accuracy using a covariance bound that is

similar to the CRB. Both bounds are tight in the sense that localization algorithms (specifically,

maximum likelihood parameter estimates in the known-beacon case and maximum a posteriori

parameter estimates in the uncertain-beacon case) achieve these bounds for high measurement

signal-to-noise ratio. In addition, the bounds are computed analytically, and avoid the need for

expensive Monte-Carlo simulations. The computational advantage afforded by analytical bounds

permit us to study localization performance for a large number of network topologies.

A. Localization Error Bound for Multihop Topologies with Known Beacon Locations

When beacon nodes have known location (and, if applicable, orientation), the CRB is used to

bound localization error. The CRB gives a lower bound on the error covariance matrix for an

unbiased estimate of parameter vector αN (see, eg, [12]). The lower bound is given in terms of

the Fisher Information Matrix J(αN ). Let α̂N be any unbiased estimate of parameter αN based

on observation vector X having a pdf of fX(x). The error covariance matrix is defined as

C = E{(α̂N − αN )(α̂N − αN)T} (8)

This error covariance matrix is bounded below by the CR bound, which is given by

CRB = [J(αN)]−1 (9)

where the matrix J(αN) is given by

J(αN) = E
{

[∇αN
ln fX(X; αN)] [∇αN

ln fX(X; αN)]T
}

(10)
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The matrix J(αN) is called the Fisher Information Matrix (FIM).

The (M × 1) measurement vector X in (10) is a vector formed by stacking the available

distance measurements d̂ij and/or the angle measurements φ̂ij, where the (ij) pairs correspond

to those for which Iij = 1. Thus, the mth element of X has a corresponding value of i and

j. Since it is assumed that the measurements are Gaussian, the measurement pdf is the vector

Gaussian pdf

fX(x; αN ) = N (µ(αN), Σ)

=
1

(2π)M |Σ| 12 exp

{
−1

2
[x − µ(αN)]T Σ−1[x − µ(αN)]

}
(11)

where the mean vector µ(αN) is a vector of true distances and angles whose elements are given

by equations (5) and (7) and are stacked in the same order as the measurements in X . When

the measurements are uncorrelated, the covariance matrix Σ in equation (11) is diagonal, and

the diagonal elements Σkk are σ2
d for distance measurements and σ2

φ for angle measurements.

However, the derivation that follows holds for more general Σ matrices.

For the measurement pdf in (11) we find that

J(αN) = [G′(αN)]T Σ−1[G′(αN )] (12)

[G′(αN)]m,n = ∂µm(αN)/∂αN n (M × dim(αN)) (13)

The partial derivatives in (13) are readily computed from equations (5) and (7), (2), and (11).

The mth element µm(αN) is either a distance dij or an angle φij for some corresponding i and j;

thus, for each m ∈ [1, M ] there is a corresponding pair (i, j), and we denote this correspondence

as m ↔ (i, j). Similarly, the nth element of αN , denoted αNn is one of {xi′ , yi′, θi′} for some

corresponding i′ ∈ [1, N ] and we denote the correspondence αNn ↔ xi′ or αNn ↔ yi′ or

αNn ↔ θi′ . With this notation, if the mth element of µ(αN) is a distance dij with m ↔ (i, j),
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then from (5) we have

[G′(αN )]mn =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xi−xj

dij
, αNn ↔ xi

xj−xi

dij
, αNn ↔ xj

yi−yj

dij
, αNn ↔ yi

yj−yi

dij
, αNn ↔ yj

0, otherwise

(14)

Similarly, if the mth element of µ(αN) is an angle, say φij for some corresponding values of i

and j, then from (7) we have

[G′(αN )]mn =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

yj−yi

d2
ij

, αNn ↔ xi

yi−yj

d2
ij

, αNn ↔ xj

xi−xj

d2
ij

, αNn ↔ yi

xj−xi

d2
ij

, αNn ↔ yj

1, αNn ↔ θi

0, otherwise

(15)

The CRB is then given by the inverse of the FIM as in (9).

B. Localization Error Bound for Multihop Topologies with Uncertain Beacon Locations

When the beacon locations have some uncertainty, we model the beacon localization parameter

vector αB as a random vector with a (known) prior pdf f0(αB). We assume the prior pdf is

Gaussian:

f0(αB) ∼ N (µ0, Σ0) (16)

where µ0 is the vector of nominal location (and orientation) of the beacon nodes and Σ0 is the

beacon location (and orientation) uncertainty. For the case of distance-only measurements, αB
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contains only xi and yi parameters, and is of size (2B × 1).

When beacon locations are uncertain, the measurement vector X informs about node localiza-

tion for both unknown nodes and beacon nodes. Thus, we can estimate the unknown sensor node

locations (and orientations) and simultaneously estimate the beacon locations (and orientations),

thereby reducing beacon uncertainty. We do so by estimating the combined parameter vector, α,

in (3).

The pdf f0(αB) provides prior information about the parameter vector αB, as given by

J0 = E
{

[∇α ln f0(αB)] [∇α ln f0(αB)]T
}

For the Gaussian pdf assumed in (16), the corresponding information matrix is found to be:

J0 =

⎡
⎢⎣ Σ−1

0 0

0 0

⎤
⎥⎦ (17)

We will assume in the numerical studies in Section IV that Σ0 is diagonal with elements σ2
0,d

corresponding to location parameters and σ2
0,φ corresponding to orientation parameters. However,

equation (17) applies to more general prior errors. For example, if the x and y location errors

for each beacon node are correlated, then Σ0 is block-diagonal, with 2 × 2 block representing

the covariance of the (x, y) errors for each node. In addition, if beacon locations are known

(with some uncertainty) but there is no prior orientation information, then Σ−1
0 has zeros on the

diagonal elements corresponding to the θi parameters.

The information provided by the measurements and the a priori information are assumed to

be independent, and can be summed. Thus, the total information matrix is given by [12]:

JT = J(α) + J0 (18)

where J(α) is given by (12) with αN replaced by α. Then, as with the CRB, a lower bound on

the mean squared error C of an estimate of α is given by

C ≥ J−1
T (19)
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The bound J−1
T in (19) is used to study localization performance for multhop topologies when

beacon nodes have uncertain location (and orientation).

IV. LOCALIZATION PERFORMANCE ANALYSIS

In this section we analyze the localizaton properties of several multihop network topologies,

using the covariance bounds derived in the previous section. Our goal is to characterize localiza-

tion performance as a function of several sensor network characteristics, such as node density,

percentage of beacon nodes, network size, and beacon uncertainty. To do so we generate several

network topologies that have similar characteristics (for example, similar node density), and

compute the localization error bound using equation (9) or equation (19), depending on whether

the beacon node locations are uncertain or not. We then average the performance over these

network topologies.

A. Network Generation

In this section we describe the procedure by which we generate candidate networks with

different characteristics. We characterize a network of nodes by its density, total size, and node

detection range. Let n̄ denote the average number of neighbors per node, let D denote the density

of the network in nodes/m2, and let R be the detection range of the sensors in meters. We have

the following relation

n̄ + 1 = πR2D (20)

We note that n̄ corresponds the average number of neighbors per node only for nodes on the

interior of the network. Nodes near the edge of the network will have fewer neighbors. We define

the density as the number of nodes per square meter. As the density increases, the connectivity

increases because there are more nodes within detection range of each other. The density and
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Fig. 1. Scenario generation (a)radial deployment pattern (b) hexagon pattern, nodes outside the perimeter have exactly six

neighbors each

connectivity are are also closely related to the detection range of the sensors. To expose the

trends in our study, the scenarios are designed so that the density is uniform across the network.

In addition to closely controlling network density, the generated scenarios also aim to minimize

the effects of geometry. Bad geometry can induce more error that that would make it more

difficult to isolate the error components of the network setup parameters under investigation. The

effects of geometry on computed locations has been demonstrated as the geographic dilution of

precision (GDOP) factor, described in previous work. A notable characterization of geometry

error for the case where the locations of 1-hop anchor nodes is shown in equation 21 described

in Spirito in [13].

GDOP = GDOP (N, θ) =

√
N

ΣiΣj,j>i| sin(θij)|2 (21)

N is the number of nodes used as anchors and θij is the angle between each pair of nodes

(i, j) used as anchor points by a node during the localization process. The relation in (21) shows

that the error contribution due to unfavorable geometries is largest when the angles between two
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nodes acting as anchor points is very small or when the anchor points are across from each

other, forming an angle close to 180 degrees.

To minimize the error associated with geometry, the scenarios are generated using a radial

deployment pattern. Node positions are generated in polar coordinates by generating a radius r

and an angle θ for each node. Nodes are deployed in a circular field, which is divided into a

set of rings. The number of nodes deployed in each ring is proportional to the fraction of the

area of the ring with respect to the total area of the circular field as shown in Figure 1a. This

pattern tries to approximate the effect of hexagonal cells (shown in Figure 1b). In a hexagonal

placement a node is placed at the center of each hexagon and the detection range is set to R as

shown in the figure. In this case, each node that is not part of the perimeter has exactly six evenly

spaced (60◦ apart) neighbors. While this placement will isolate the geometry effects, it is only

possible for hexagonal placement. The radial scheme described above aims to approximate this

hexagonal placement for higher densities. Furthermore, to ensure that no nodes with unknown

positions are placed on the boundaries, the beacon nodes are deployed in the outer ring of the

circular sensor field. Varying the area of the field controls network density.

Figure 2 shows three example networks having different densities, with beacons drawn as

squares and unknowns drawn as circles. The networks in Figures 2a and 2b were generated using

the method described above. Both networks contain a total of 50 nodes, but the denser network

occupies a smaller area and has more connections. These networks were generated assuming

detection range of 10m. Circles in the figures denote node locations, and edges between nodes

denote that they are within detection range of each other, and thus that there is a distance and/or

angle measurement between them that appears in the vector X . Figure 2c is an example of a

hexagonal deterministic deployment pattern used in some of the simulation experiments. In this

network, all the nodes on the perimeter are beacon nodes, so each node with unknown location

has exactly six evenly spaced neighbors.
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Fig. 2. Two example 50-node networks with different node densities. (a): 0.03 nodes/m2; (b): 0.06 nodes/m2. Circles are beacon

nodes and squares are unknown nodes. Both networks have a detection range of 10 m, and edges in the graph correspond to

node pairs for which distance or angle measurements are available: (c) A 37-node scenario where every unknown node has

exactly 6 neighbors
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B. Network Density

For this experiment, we generated a number of network scenarios with varying densities using

the method described above. Each of these networks contain a total of 50 nodes, 10 of which

are beacon nodes. The detection range was set to 10 m. For each density value examined, we

compute the RMS location error for each of 20 different networks having the same density, using

the computed CRB matrix associated with that network. From the CRB matrix, we compute the

average RMS location error of each of the 40 non-beacon nodes, computed as

RMS error =
1

40

√√√√ 40∑
i=1

[CRB](i−1)K+1,(i−1)K+1 + [CRB](i−1)K+2,(i−1)K+2 (22)

where K = 2 when αN is (2N × 1) and K = 3 when αN is (3N × 1) We then average this

RMS error over the 20 networks, and compute the standard deviation of this RMS error for the

20 networks. We plot the average value as a function of network density, and we indicate the

±1 standard deviation of this value with error bars on the figures.

The results using distance only measurements are shown in Figure 3(a), and results using an-

gular measurements are shown in Figure 3(b). In these and all remaining figures, we have plotted

the RMS location error (in meters) divided by the distance measurement standard deviation σd

in meters (RMS error/σd), or by the angle measurement standard deviation σφ in radians (RMS

error/σφ), which we write as (RMS error/σ) for short. By multiplying points on this curve by the

measurement error that corresponds to a given sensor, the average location error is found. For

example, the average RMS location error in a network with 20 neighbors/node and a ranging

technology with a 20 mm accuracy is given by (0.02) · (0.36) = 0.007 m.

As we can see from these plots, the error does decrease with increasing connectivity for both

distance and angular measurements. In the case of distance measurements, the decrease is rapid

at first, then becomes more gradual. This suggests that after a certain point, increasing the density

of the network may not be very beneficial to the localization process. We also note that the one
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Fig. 3. Normalized RMS node localization error, (RMS error/σ) as a function of the average number of neighbors per node.

(a) using distance-only measurements with distance measurement error σ = σd. (b) using angle-only measurements with angle

measurement error σ = σφ. (c) localization error in hexagon scenario when inter-node range is scaled; the linear scaling of error

for angle-only measurements corresponds to the linear dilation of tangential location error with range. (d) angle-only localization

error when node locations are normalized by the average distance between the nodes.
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standard deviation error bars are quite small.

Intuitively, one would expect an improvement in position estimates as the network density in-

creases, due to the increase in measurement constraints. Both angular and distance measurements,

have an asymptotic response to density effects, where the effect of adding more neighbors in

low density scenarios yields more improvement in position estimates. Furthermore, when angular

measurements are used, density effect is also correlated to range, since the error contribution of

angular measurements increases with distance.

The plot in Figure 3(b) corresponds to angular measurements for the same set of scenarios as

the one used to obtain the density trends when distance measurements are used in Figure 3(a). The

two plots have similar shapes for a small number of node neighbors, but the RMS location error

corresponding to angle measurements decreases more rapidly than for distance measurements

when the number of neighbors becomes large. The primary source of this more rapid decrease

is that when the node density increases, the average distance between nodes decreases, and the

distance error corresponding to a fixed angular measurement error correspondingly decreases.

Similarly, increasing the density by increasing the detection range, would increase the error in

the angle measurement case. This is intuitive since the tangential error increases with range.

Figure 3(c) shows how the localization error behaves as the detection range is scaled for a 61-

node hexagonal placement scenario. In the case of angle measurements, the localization error

scales linearly with range, whereas for the case of distance measurements it remains constant.

Figure 3(d) shows a normalized version of the angle measurement trend that removes the effect of

detection range. This plot was obtained by normalizing the node locations in each of the scenarios

used with the average internode distance for the whole network. The trend in Figure 3(d) is very

similar to the distance only measurement trend in Figure 3(a).

From Figures 3(a) and 3(b) we can compare the distance and angle measurement accuracy

requirements to achieve similar localization accuracy. At 10 neighbors/node and a distance
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measurement standard deviation of 20 mm, Figure 3(a) gives an average localization error of

0.012 m. From Figure 3(b) in order to achieve the same localization accuracy one needs an angle

measurement standard deviation of σφ = .012/4.8 = 0.0025 rad, or 0.14◦. Even for very dense

networks (each node having on average 42 neighbors) DOA measurements must be accurate to

a standard deviation of 0.27◦ to achieve the same localization accuracy as that obtained using

distance measurements with 20 mm standard deviation. This suggests that technologies using

distance measurements such as acoustic ultrasonic and laser will produce higher accuracy loca-

tions than technologies using angle measurement only since very high precision measurements

are required to achieve the same location accuracy as distance measurement technologies. The

role of angular measurements however should not be overlooked. Recent work by Nicolescu and

Nath in [14] have shown angle only localization to produce favorable results.

C. Network Size

In this section we investigate how the localization error varies as the network scales in overall

size. We evaluate the CRB for a number of networks having a fixed density/connectivity (.03

nodes/m2 or about 8 neighbors per node), a fixed percentage of beacon nodes (10% of the

nodes are beacons), and varying size. This means that we increase the area that the network

occupies while increasing the number of nodes so as to keep the node density constant. Again,

we compute the average RMS error/σ over 20 different networks having the same size and

perform this experiment for both distance measurements and angle measurements. The results

are shown in Figure 4.

From Figure 4 we can conclude that for both distance measurements and angle measurements

the localization error is not greatly affected as the network scales. One might have expected that

as a multihop network gets larger the nodes farther away from beacons might suffer from error

propagation, thereby increasing the localization error. This is apparently not the case.
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Fig. 4. Normalized RMS node localization error, (RMS error/σ) as a function of the number of nodes in the network. (a)

using distance-only measurements with distance measurement error σ = σd. (b) using angle-only measurements with angle

measurement error σ = σφ.

To further study the effect of the distance to beacon nodes on the localization error, we look

at the RMS error at each node as a function of the number of hops to the nearest beacon node.

Using 20 different networks each containing 140 total nodes (of which 14 are beacon nodes) we

compute the average RMS error as a function of the number of hops to the nearest beacon when

distance measurements are used, and again when angle measurements are used. The results are

plotted in Figure 6. For the scenarios examined here, the localization error does not appear to

vary greatly as the number of hops to the nearest beacon increases when distance measurements

are used. Somewhat counterintuitively, the error appears to decrease as the distance to beacon

nodes increases. We hypothesize that this decrease may be due to the fact that node far from a

beacon are well in the interior of the network, and tend to have a slightly higher average number
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Fig. 5. RMS node localization error, (RMS for a 61-node hexagonal placement scenario (a) error profile when angle-only

measurements are used. (b) error propagation as the number of hops from the network perimeter increases

of neighbors than nodes close to a beacon; in addition, these neighbors are more likely to be

in all directions, whereas nodes near beacons are also near boundaries, and tend to have fewer

neighbors on one side than on the other. Initial results, reported in [15], support this hypothesis,

but a more thorough study of this point is needed in order to make more concrete statements.

Figure 5 shows how error propagates on a more controlled hexagonal deployment pattern with

a total of 61 nodes, 24 of which are beacons. The plot on the left shows the profile of the error

(magnified by a factor of 10) for the case where angle-only measurements are used. The plot

on the left is a vertical cut-through that shows how the RMS location error increases for the

nodes that are located towards the center of the hexagonal field. The error propagation increases

sub linearly with the number of hops. The percentage increase in error from hop to hop is

shown is shown in Table II. The table shows that although the overall error is more when angle

measurements are used, the hop-to-hop error propagation is slower when angle measurements
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Fig. 6. Normalized RMS node localization error, (RMS error/σ) as a function of the number of hops to the nearest beacon

node. (a) using distance only measurements, with distance measurement error σ = σφ (b) using angle-only measurements with

angle measurement error σ = σφ

are used.

TABLE II

PERCENTAGE INCREASE IN RMS LOCATION ERROR WITH HOP DISTANCE

Hop 2 Hop 3 Hop 4

Distance measurements 36.75% 11.16 % 2.65%

Angle measurements 30% 7.61% 1.2%

D. Beacon Percentage

We next consider the effect of percent of beacon nodes on the localization error. In other

words, we would like to find out if increasing the percentage of beacon nodes in the network
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Fig. 7. Normalized RMS node localization error, (RMS error/σ) as a function of percentage of beacon nodes in the network

(a) using distance-only measurements with distance measurement error σ = σd. (b) using angle-only measurements with angle

measurement error σ = σφ.

improves the location estimates. To do this, we used a set of network scenarios each having

100 total nodes. The number of beacons was varied from 4 to 20. The network density was

held constant at 0.035 nodes/m2 or about 10 neighbors per node. We again average the RMS

error/σ for 20 different networks having the same beacon percentage to obtain each point on

the curve. Figure 7 shows the results of this experiment using distance and angle measurements.

The percentage of beacons does not appear to have a large impact on the localization error.

E. Beacon Uncertainty

The beacon locations may not be known exactly, uncertainty in the beacon locations will

affect the accuracy of the sensor location estimates. For this experiment, we have used the

same network scenarios that were used in the network density experiment. Each network used

contains 50 total nodes, 10 of which are beacons. We vary the relative beacon uncertainty standard
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deviation (σ0/σ) from 0 to 3. The CRB matrix is computed using the method of Section III-B

and the RMS error/σ is computed for non-beacon nodes only. The results are averaged over

20 different network scenarios having the same density and for each density, we plot a curve

showing the RMS error/σ as a function of the beacon uncertainty variance.

The resulting curves for distance measurements are shown in Figure 8. At low σ0, the

localization error is dominated by the distance measurement error, but at higher σ0 (σ0/σ > 1)

the localization error is dominated by σ0 and increases linearly.

For higher beacon uncertainty values, it turns out that the relative location error between

sensors remains small (on the order of that predicted when σ0 = 0) and most of the location

uncertainty error can be attributed to an overall translation of beacons from their nominal

locations. More details on this aspect, and a derivation of the relative location error CRB, are

found in [16].

V. RELATED WORK

Some of the trends discussed here have been partially mentioned in works studying specific

localization schemes. The quantitative comparison of different schemes presented in [17] and

the references thereof, is a representative example of this effort. In [17] a detailed side-by-side

comparison of three localization schemes is presented. This comparison gives some indications

of the resulting localization error as observed from each of the three schemes considered. The

drawback of using this approach in exposing the trends, is that some of the error introduced

into the result is an artifact of the particular localization algorithm being used. Furthermore, the

comparison in [17] considers a more limited set of scenarios that does not reveal all the trends

and their association with the network setup parameters.

The most relevant work to this paper is the work presented in [18] and [6]. In [18], Patwari

et. al. use Cramér Rao bound analysis to analyze the performance of a localization system based
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Fig. 8. Normalized RMS node localization error, (RMS error/σ) when beacon nodes have location uncertainty, as a function of

normalized beacon uncertainty standard deviation (σ0/σ). Localization error was computed using distance-only measurements.

n denotes the number of neighbors per node

on radio received signal strength. This study was more focused very specific scenarios. More

recently in [6] the Cramér Rao bounds for radio received signal strength and round-trip TOA of

RF signals are considered; since RF signals were used, timing accuracies for TOA measurements

on the order of 1 nsec are needed. The work in this paper presents a similar derivation of the

bounds for different error distributions. Unlike the work presented here, [6] is focused on a

limited set of scenarios and does not try to reveal the trend behavior by considering different

network setup scenarios. Our previous work in [19] also outlines some of the issues presented in

this paper but does not consider angles at all. In contrast to [19], this paper presents the details of

the bounds derivations, provides a more detailed evaluation over a larger set of network scenarios

and also includes a comparison of the error behavior for both distance and angle measurements.

Furthermore, it provides the detailed CRB derivation for both cases and explores the trends in
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error propagation using carefully selected scenarios to account for the geometry effects.

VI. CONCLUSIONS

In this paper we have developed an analytical method for examining node location error

in multihop networks. The analytical bounds developed here eliminate the need for expensive

Monte-Carlo simulations. Moreover, the bounds help in developing and understanding of the

fundamentals of multihop node localization. In this paper we applied the knowledge of the bounds

to study the error trends with respect to network density, network scaling, percentage of beacons

and beacon uncertainty. Our simulation results have shown that location uncertainty decreased

rapidly until 6-10 neighbors/node, then more gradually. Distance and angle measurements exhibit

similar trends in localization error with varying network density. The error when angle-only

measurements are used is much higher that when distance measurements are used. Furthermore,

location error when angle-only measurements are used increased linearly with the distance

between nodes. We also found that multihop localization is scalable since error propagation

is very slow and since localization accuracy appears to be insensitive to increases in the number

of beacon nodes. Finally when the beacon uncertainty is high, most location error is an overall

translation error of the entire network. Overall, we found that node localization can be more

accurate when using distance measurements since the bounds predict that that it is possible obtain

location estimates with lower uncertainty that the uncertainty in the distance measurement. The

understanding of the error behavior with respect to the network setup parameters is also important

in practical setups when evaluating localization systems. By applying this knowledge, one can

determine which part of the error is due to setup parameters, thus helping to isolate and quantify

algorithmic error and the error contribution due to changes in the surrounding environments.
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