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ON INJECTIVE AND GORENSTEIN INJECTIVE DIMENSIONS OF

LOCAL COHOMOLOGY MODULES

MAJID RAHRO ZARGAR AND HOSSEIN ZAKERI

Abstract. Let (R,m) be a commutative Noetherian local ring and let M be an R-

module which is a relative Cohen-Macaulay with respect to a proper ideal a of R and

set n := htMa. We prove that injdimM < ∞ if and only if injdimHn
a (M) < ∞ and

that injdimHn
a (M) = injdimM − n. We also prove that if R has a dualizing complex

and GidRM < ∞, then GidRHn
a (M) < ∞ and GidRHn

a (M) = GidRM − n. More-

over if R and M are Cohen-Macaulay, then it is proved that GidRM < ∞ whenever

GidRHn
a (M) < ∞. Next, for a finitely generated R-moduleM of dimension d, it is proved

that if K
M̂

is Cohen-Macaulay and GidRHd
m(M) < ∞, then GidRHd

m(M) = depthR−d.

The above results have consequences which improve some known results and provide

characterizations of Gorenstein rings.

1. introduction

Throughout this paper, R is a commutative Noetherian ring, a is a proper ideal of R

and M is an R-module. For a prime ideal p of R, the residue class field Rp/pRp is denoted

by k(p). For each non-negative integer i, let Hi
a(M) denotes the i-th local cohomology

module of M with respect to a; see [1] for its definition and basic results. Also, we use

injdimRM to denote the usual injective dimension ofM . The notion of Gorenstein injective

module was introduced by E.E. Enochs and O.M.G. Jenda in [4]. The class of Gorenstein

injective modules is greater than the class of injective modules; but they are same classes

whenever R is a regular local ring. The Gorenstein injective dimension of M , which is

denoted by GidRM , is defined in terms of resolutions of Gorenstein injective modules. This

notion has been used in [3, 15, 21] and has led to some interesting results. Notice that

GidRM ≤ injdimRM and the equality holds if injdimRM <∞.

The principal aim of this paper is to study the injective (resp. Gorenstein injective)

dimension of certain R-modules in terms of injective (resp. Gorenstein injective) dimension

of its local cohomology modules at support a.

In this paper we will use the concept of relative Cohen-Macaulay modules which has been

studied in [7] under the title of cohomologically complete intersections. The organization

of this paper is as follows. In section 2, among other things, we prove, in 2.5, that if

M is relative Cohen-Macaulay with respect to a, then injdimM and injdimHhtMa
a (M) are

simultaneously finite and there is an equality injdimHhtMa
a (M) = injdimM − htMa. Then,
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2 M.R. ZARGAR AND H. ZAKERI

as a corollary, we obtain a characterization of Gorenstein rings. Next, in 2.10, for all n ≥ 0

and any p ∈ Supp (M), we establish a comparison between the Bass numbers of Hn
pRp

(Mp)

and Hn+dim (R/p)
m (M) whenever (R,m) is a homomorphic image of a Gorenstein ring and

M is finitely generated.

In section 3, we first prove some basic properties about Gorenstein injective dimension

of a module. In particular, Proposition 3.6 indicates that Gorenstein injective dimension is

a refinement of the injective dimension. As a main result, in Theorem 3.8 we establish a

Gorenstein injective version of 2.5. Indeed, it is proved that if, in addition to the hypothesis

of 2.5, R has a dualizing complex, then GidRM < ∞ implies GidRH
n
a (M) < ∞ and the

converse holds whenever R and M are Cohen-Macaulay. This theorem has consequences

which recover some interesting results that have currently been appeared in the literature.

As a first corollary of 3.8, we deduce that GidRH
n
m(M) = GidRM − n, wherever M is a

Cohen-Macaulay module over the Cohen-Macaulay local ring (R,m) and dimM = n. This

corollary improves the main result [15, Theorem 3.10](see the explanation which is offered

before 3.9). As a second corollary, we obtain a characterization of Gorenstein local rings

which recovers [21, Theorem 2.6]. As a main result, it has been shown in [15, Theorem

3.10] that if R and M are Cohen-Macaulay with dimM = d and GidRH
d
m(M) < ∞, then

GidRH
d
m(M) = dimR−d. In 3.12, we will use the canonical module of a module to improve

the above result without Cohen-Macaulay assumption on R and M . This result provides

some characterizations of Gorenstein local rings.

2. local cohomology and injective dimension

The starting point of this section is the next proposition, which plays essential role in the

proof of Theorems 2.5 and 3.8.

Proposition 2.1. Let n be a non-negative integer and let N be an a-torsion R-module.

Suppose that Hi
a(M) = 0 for all i 6= n. Then

Ext iR(N,H
n
a (M)) ∼= Ext i+n

R (N,M)

for all i ≥ 0.

Proof. First we notice that HomR(N,M) = HomR(N,Γa(M)). Hence, in view of [14,

Theorem 10.47], we have the Grothendieck third quadrant spectral sequence with

Ep,q
2 = Ext pR(N,H

q
a(M)) =⇒

p
Ext p+q

R (N,M).

Now, since Hq
a(M) = 0 for all q 6= n, Ep,q

2 = 0 for all q 6= n. Therefore, this spectral sequence

collapses in the column q = n; and hence one gets, for all i ≥ 0, the isomorphism

Ext iR(N,H
n
a (M)) ∼= Ext i+n

R (N,M),

as required. �

The following corollary, which is an immediate consequence of 2.1, determines the Bass

numbers µi(p,Hn
a (M)) := vdim k(p)Ext

i
Rp

(k(p),Hn
aRp

(Mp)) of the local cohomology module

Hn
a (M).
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Corollary 2.2. Let n and M be as in 2.1. Then, for all p ∈ V(a), µi(p,Hn
a (M)) =

µi+n(p,M) for each i ≥ 0.

Definition 2.3. We say that a finitely generated R-module M is relative Cohen Macaulay

with respect to a if there is precisely one non-vanishing local cohomology module of M with

respect to a. Clearly this is the case if and only if grade (a,M) = cd (a,M), where cd (a,M)

is the largest integer i for which Hi
a(M) 6= 0 and grade (a,M) is the least integer i such that

Hi
a(M) 6= 0.

Observe that the above definition provides a generalization of the concept of Cohen-

Macaulay modules. Also, notice that the notion of relative Cohen-Macaulay modules is

connected with the notion of cohomologically complete intersection ideals which has been

studied in [7] and has led to some interesting results. Furthermore, such modules have been

studied in [8] over certain rings.

Remark 2.4. Let M be a relative Cohen-Macaulay module with respect to a and let

cd (a,M) = n. Then, in view of [1, Theorems 6.1.4, 4.2.1, 4.3.2], it is easy to see that

SuppHn
a (M) = Supp (M/aM) and htMa = grade (a,M), where htMa = inf{ dimRp

Mp| p ∈

Supp (M/aM) }.

The following theorem, which is one of the main results of this section, provides a compar-

ison between the injective dimensions of a relative Cohen-Macaulay module and its non-zero

local cohomology module. Here we adopt the convention that the injective dimension of the

zero module is to be taken as −∞.

Theorem 2.5. Let (R,m) be local and let n be a non-negative integer such that Hi
a(M) = 0

for all i 6= n.

(i) If injdimM <∞, then injdimHn
a (M) <∞.

(ii) The converse holds whenever M is finitely generated.

Furthermore, if M is non-zero finitely generated, then injdimHn
a (M) = injdimM − n.

Proof. (i). Let s := injdimM <∞. We may assume that Hn
a (M) 6= 0; and hence s− n ≥ 0.

Therefore, in view of 2.2, µi+(s−n)(p,Hn
a (M)) = 0 for all p ∈ Spec (R) and for all i > 0; so

that injdimHn
a (M) ≤ s− n.

(ii). Suppose that M is finitely generated. We first notice that Hn
a (M) = 0 if and only if

M = aM ; and this is the case if and only ifM = 0. Therefore we may assume that Hn
a (M) 6=

0. Suppose that t := injdimHn
a (M) < ∞. Then there exists a prime ideal q of R such that

µt(q,Hn
a (M)) 6= 0. Hence, by 2.2, µt+n(q,M) 6= 0. Next we show that µt+n+i(p,M) = 0

for all p ∈ Spec (R) and for all i > 0. Assume the contrary. Then there exists a prime ideal

p of R such that µt+n+j(p,M) 6= 0 for some j > 0. Let r := dimR/p. Then, by [11, §18,

Lemma 4], we have µt+n+j+r(m,M) 6= 0. Hence, by 2.2, µj+t+r(m,Hn
a (M)) 6= 0 which is a

contradiction in view of the choice of t. Therefore, injdimM ≤ t+ n. The final assertion is

a consequence of (i) and (ii). �
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Next, we provide an example to show that if R is non-local, then Theorem 2.5(ii) is no

longer true. Also, in 3.11, we present two examples which show that 2.5(ii) and 2.5(i),

respectively, are no longer true without the finiteness and the relative Cohen-Macaulayness

assumptions on M .

Example 2.6. Suppose that R is a non-local Artinian ring with injdimR = ∞. Let

Max (R) = {m1, ...,mn}. Then, in view of [17, Exercise 8.49], we haveR =
⊕

m∈Max (R) Γm(R).

Now, since the injective dimension of R is infinite, there exists a maximal ideal mt of R

such that the injective dimension of Γmt
(R) is infinite. Set M := ER(R/ms)

⊕
Γmt

(R),

where ms ∈ Max (R) with ms 6= mt. Then M is a finitely generated R-module with infinite

injective dimension and Hi
ms

(M) = 0 for all i 6= 0; but Γms
(M) is injective.

It is well-known that if (R,m, k) is a d-dimensional local ring, then R is Gorenstein if and

only if R is Cohen-Macaulay and Hd
m(R)

∼= ER(k). The following corollary, which recovers

this fact, is an immediate consequence of 2.5.

Corollary 2.7. Let (R,m) be local and let R be relative Cohen-Macaulay with respect to a.

Then R is Gorenstein if and only if injdimHhtRa
a (R) is finite.

In particular, if x = x1, ..., xn is an R-sequence for some non-negative integer n, then R

is Gorenstein if and only if injdimHn
(x)(R) is finite.

The following proposition, which is needed in the proof of 3.8, provides an explicit minimal

injective resolution for the non-zero local cohomology module of a relative Cohen-Macaulay

module.

Proposition 2.8. Suppose that M is relative Cohen-Macaulay with respect to a and that

n = cd (a,M). Then

0 −→ Hn
a (M) −→

⊕

p∈V(a)

µn(p,M)E(R/p) −→
⊕

p∈V(a)

µn+1(p,M)E(R/p) −→ · · ·

is a minimal injective resolution for Hn
a (M). Furthermore, AssRH

n
a (M) = {p ∈ V(a)| µn(p,M) 6=

0}.

Proof. Let

0 −→M
d−1

−→ E0(M)
d0

−→ · · · −→ En−1(M)
dn−1

−→ En(M)
dn

−→ En+1(M)
dn+1

−→ · · ·

be a minimal injective resolution for M . If there exists a prime ideal p in V(a) with

µn−1(p,M) 6= 0, then depthRp
Mp ≤ n−1. On the other hand, since p ∈ Supp (M/aM), 2.4

implies that Hn
aRp

(Mp) 6= 0. Therefore n = gradeRp
(aRp,Mp) ≤ depthRp

Mp ≤ n− 1 which

is a contradiction. It follows that Γa(E
n−1(M)) = 0; and hence we obtain the minimal

injective resolution

0 −→ Hn
a (M) −→ Γa(E

n(M)) −→ Γa(E
n+1(M)) −→ · · ·

for Hn
a (M). Now, we may use this resolution to complete the proof. �
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The following elementary lemma, which is needed in the proof of the next theorem, can

be proved by using a minimal free resolution for M and the concept of localization.

Lemma 2.9. Let (R,m, k) be local and let M be finitely generated. Then, for any prime

ideal p of R, vdim k(p)Tor
Rp

i (k(p),Mp) ≤ vdim kTor
R
i (k,M) for all i ≥ 0.

The next theorem provides a comparison of Bass numbers of certain local cohomology

modules.

Theorem 2.10. Suppose that (R,m, k) is a local ring which is a homomorphic image of a

Gorenstein local ring and that M is finitely generated. Let n,m be non-negative integers.

Then µm(p,Hn
p(M)) ≤ µm(m,Hn+dimR/p

m (M)) for all p ∈ Spec (R).

Proof. Let (R′,m′) be a Gorenstein local ring of dimension n′ for which there exists a sur-

jective ring homomorphism f : R′ → R. Let p be a prime ideal of R and set p′ = f−1(p).

Now R′

p′ is a Gorenstein local ring and dimR′/p′ = dimR/p. Since R′ is Gorenstein, we

have dimR′

p′ = dimR′ − dimR′/p′. In view of [1, Exercise 11.3.1] there is, for each j ∈ Z,

an Rp-isomorphism Ext jR′

p′

(Mp, R
′

p′) ∼= (Ext jR′(M,R′))p. Also, by the Local Duality The-

orem [1, Theorem 11.2.6], we have Hn
pRp

(Mp) ∼= HomRp

(
Ext n

′
−n−t

R′

p′

(Mp, R
′

p′),ERp
(k(p))

)

as Rp-modules, where t := dimR/p, and Hn+t
m (M) ∼= HomR(Ext

n′
−n−t

R′ (M,R′),ER(k)). It

therefore follows that

ExtmRp
(k(p),Hn

pRp
(Mp)) ∼= ExtmRp

(k(p),HomRp
(Ext n

′
−n−t

R′

p′

(Mp, R
′

p′),ERp
(k(p))))

∼= HomRp
(Tor

Rp

m (k(p),Ext n
′
−n−t

R′

p′

(Mp, R
′

p′)),ERp
(k(p))).

and

ExtmR (k,Hn+t
m (M)) ∼= ExtmR (k,HomR(Ext

n′
−n−t

R′ (M,R′),ER(k)))

∼= HomR(Tor
R
m(k,Ext n

′
−n−t

R′ (M,R′)),ER(k)).

Since by 2.9

vdim k(p)(Tor
Rp

m (k(p),Ext n
′
−n−t

R′

p′

(Mp, R
′

p′))) ≤ vdim k(Tor
R
m(k,Ext n

′
−n−t

R′ (M,R′))), one

may use the above isomorphisms to complete the proof. �

It is known as Bass’s conjecture that if a local ring admits a finitely generated module

of finite injective dimension, then it is a Cohen-Macaulay ring. For the proof of this fact

the reader is referred to [12] and [13]. In the next corollary we shall use this fact and the

concept of a generalized Cohen-Macaulay module. Recall that, over a local ring (R,m), a

finitely generated module of positive dimension is a generalized Cohen-Macaulay module if

Hi
m(M) is finitely generated for all 0 ≤ i < dimM .

Corollary 2.11. Let the situation be as in 2.10. Then the following statements hold.

(i) injdimRp
Hn

pRp
(Mp) ≤ injdimRH

n+dimR/p
m (M) for all prime ideals p of R and for

any n ≥ 0.

(ii) If M is generalized Cohen-Macaulay with dimension d such that Hd
m(M) is injective,

then Mp is Gorenstein, in the sense of [18], for all p ∈ Supp (M) \ {m}.
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Proof. (i) is clear by 2.10.

(ii) Let p ∈ Supp (M)\{m}. By [1, Exercise 9.5.7],Mp is Cohen-Macaulay and dimMp+

dimR/p = dimM . Hence, in view of (i) and 2.5, we have injdimMp = dimMp. Therefore,

by [18, Theorem 3.11], [2, Theorem 3.1.17] and Bass’s conjecture, Mp is Gorenstein. �

3. local cohomology and gorenstein injective dimension

We first recall some definitions that we will use in this section.

Definition 3.1. Following [4], an R-module M is said to be Gorenstein injective if there

exists a Hom(Inj,−) exact exact sequence

· · · → E1 → E0 → E0 → E1 → · · ·

of injective R-modules such that M = Ker (E0 → E1). We say that an exact sequence

0 →M → G0 → G1 → G2 → · · ·

of R-modules and R-homomorphisms is a Gorenstein injective resolution for M , if each Gi

is Gorenstein injective. We say that GidRM ≤ n if and only ifM has a Gorenstein injective

resolution of length n. If there is no shorter resolution, we set GidRM = n. Dually, an

R-module M is said to be Gorenstein projective if there is a Hom (−, P roj) exact exact

sequence

· · · → P1 → P0 → P 0 → P 1 → · · ·

of projective R-modules such that M = Ker (P 0 → P 1). Similarly, one can define the

Gorenstein projective dimension, GpdRM , of M .

Definition 3.2. For a local ring R admitting the dualizing complex DR, we denote by KM

the canonical module of an R-module M , which is defined to be

KM = Hd−n(RHomR(M,DR)),

where d = dimR and n = dimM . Note that if R is Cohen-Macaulay, then KR coincides

with the classical definition of the canonical module of R which is denoted by ωR.

Definition 3.3. Let R be a Cohen-Macaulay local ring of Krull dimension d which admits

a canonical module ωR. Following [4], let J0(R) be the class of R-modulesM which satisfies

the following conditions.

(i) Ext iR(ωR,M) = 0 , for all i > 0.

(ii) TorRi (ωR,HomR(ωR,M)) = 0, for all i > 0.

(iii) The natural map ωR ⊗R HomR(ωR,M) →M is an isomorphism.

This class of R-modules is called the Bass class.

Definition 3.4. Following [19], let a and b be ideals of R. We set

W (a, b) = { p ∈ Spec (R) | an ⊆ p+ b for some integer n > 0}.

For an R-module M , Γa,b(M) denotes a submodule of M consisting of all elements of M

with support in W (a, b), that is, Γa,b(M) = { x ∈M | Supp (Rx) ⊆W (a, b)}.
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The following lemma has been proved in [10, Lemma 4.2] and is of assistance in the proof

of Proposition 3.6.

Lemma 3.5. Let (R,m, k) be local. Then

Ext iR(ER(k),M) ∼= Ext iR(E(k),M ⊗R R̂) ∼= Ext i
R̂
(ER̂(k),M ⊗R R̂)

for all i ≥ 0.

Let (R,m, k) be local and let M be a non-zero non-injective R-module of finite Goren-

stein injective dimension. It was shown in [5, Corollary 4.4] that if Ext iR(E,M) = 0

for all i ≥ 0 and all indecomposable injective R-modules E 6= ER(k), then GidRM =

sup{ i | Ext iR(ER(k),M) 6= 0}. Our next proposition, which is concerned with this result,

indicates that Gorenstein injective dimension is a refinement of the injective dimension.

However we will use 3.6 and 3.7 to prove the main theorem 3.8.

Proposition 3.6. Let (R,m, k) be local and let M be non-zero with GidRM <∞. If either

M is finitely generated or Artinian, then

GidRM = sup{ i | Ext iR(ER(k),M) 6= 0}.

Proof. First assume that M is finitely generated. Then, by [3, Theorem 3.24], GidRM =

Gid R̂M̂ . Now, since R̂ is complete and M̂ is finitely generated as an R̂-module, the proof

of [6, Proposition 2.2] in conjunction with [5, Corollary 4.4 ] implies that

Gid R̂M̂ = sup{ i | Ext i
R̂
(ER̂(R̂/m̂), M̂) 6= 0}.

Therefore we can use 3.5 to complete the proof.

Next, we consider the case where M is Artinian. By [15, Lemma 3.6 ] and [1, Exercise

8.2.4], GidR(M) = Gid R̂(M) and, by [3, Theorem 4.25], Gfd R̂(Hom R̂(M,ER̂(R̂/m̂))) =

Gid R̂(M), where, for an R-module X , GfdR(X), denotes the Gorenstein flat dimension of

X . Therefore, since Hom R̂(M,ER̂(R̂/m̂)) is finitely generated as an R̂-module, in view of

[3, Theorem 4.24] and [3. Theorem 1.10] we have the first equality in the next display

Gfd R̂(Hom R̂(M,ER̂(R̂/m̂))) = sup{ i| Ext i
R̂
(Hom R̂(M,ER̂(R̂/m̂)), R̂) 6= 0}

= sup{ i| Ext iR(ER(k),M) 6= 0}.

The last equality follows from [10, Theorem 4.3], because ER(k) and M are Artinian. �

Lemma 3.7. Let (R,m) be a Cohen-Macaulay local ring and let M be finitely generated.

Suppose that x ∈ m is both R-regular and M -regular. Then the following statements are

equivalent.

(i) GidRM <∞.

(ii) GidR/xRM/xM <∞.

Furthermore, GidR/xRM/xM = GidRM − 1.

Proof. In view of [3, Theorem 3.24], we can assume that R is complete; and hence it admits

a canonical module ωR.
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(i)⇒(ii). It follows from [3, Proposition 3.9] that GidRM/xM < ∞. Therefore we

can use [4, Proposition 10.4.22], [11, p.140,lemma 2] and [2, Theorem 3.3.5], to see that

GidR/xRM/xM <∞.

(ii)⇒(i). By [4, Proposition 10.4.23], M/xM ∈ J0(R/xR). Since ωR/xR
∼= ωR/xωR, in

view of [11, p.140, lemma 2] we have Ext iR(ωR,M/xM) = TorRi (ωR,HomR(ωR,M/xM)) =

0 for all i > 0 and ωR/xωR ⊗R/xR HomR(ωR,M/xM) ∼= M/xM . Now, using the exact

sequence Ext iR(ωR,M)
x

−→ Ext iR(ωR,M) −→ Ext iR(ωR,M/xM) and Nakayama’s lemma,

we deduce that Ext iR(ωR,M) = 0 for all i > 0. Thus we have the exact sequence

(3.1) 0 −→ HomR(ωR,M)
x

−→ HomR(ωR,M) −→ HomR(ωR,M/xM) −→ 0.

Now, we may use (3.1) and similar arguments as above to see that Tor iR(ωR,HomR(ωR,M)) =

0 for all i > 0. Also, in view of [2, Lemma 3.3.2], we can see that ωR⊗RHomR(ωR,M) ∼=M .

Therefore by [4, Proposition 10.4.23], GidRM < ∞. The final assertion is an immediate

consequence of [3, Theorem 3.24]. �

Theorem 3.8, which is a Gorenstein injective version of 2.5, is one of the main results of

this section. As we will see, this theorem has consequences which recover some interesting

results that have currently been appeared in the literature. Here we adopt the convention

that the Gorenstein injective dimension of the zero module is to be taken as −∞.

Theorem 3.8. Suppose that the local ring (R,m) has a dualizing complex and let n be a

non-negative integer such that Hi
a(M) = 0 for all i 6= n.

(i) If GidRM <∞, then GidRH
n
a (M) <∞.

(ii) The converse holds whenever R and M are Cohen-Macaulay.

Furthermore, if M is non-zero finitely generated with finite Gorenstein injective dimension,

then GidRH
n
a (M) = GidRM − n.

Proof. (i) Notice that if Hn
a (M) = 0, then there is nothing to prove. So, we may assume

that Hn
a (M) 6= 0. Hence, by [20, Lemma 1.1], we have n ≤ d, where d = GidRM . Let

0 −→M
d−1

−→ G0 d0

−→ G1 d1

−→ · · · −→ Gn−1 dn−1

−→ Gn dn

−→ Gn+1 dn+1

−→ · · · −→ Gd−1 dd−1

−→ Gd −→ 0

be a Gorenstein injective resolution for M . By applying the functor Γa(−) on this exact

sequence, we obtain the complex

0 −→ Γa(M)
Γa(d

−1)
−→ Γa(G

0)
Γa(d

0)
−→ Γa(G

1)
Γa(d

1)
−→ · · · −→ Γa(G

n−1)

Γa(d
n−1)

−→ Γa(G
n)

Γa(d
n)

−→ Γa(G
n+1)

Γa(d
n+1)

−→ · · · −→ Γa(G
d−1)

Γa(d
d−1)

−→ Γa(G
d) −→ 0

in which, by [15, Theorem 3.2], Γa(G
i) is Gorenstein injective for all 0 ≤ i ≤ d. If n = 0

the result is clear. So suppose that n > 0. Now, since by [20, Lemma 1.1] each Gi is

Γa-acyclic for all i, we may use [1, Exercise 4.1.2 ] in conjunction with our assumption on

local cohomology modules of M to obtain the following two exact sequences

0 −→ Γa(M)
Γa(d

−1)
−→ Γa(G

0)
Γa(d

0)
−→ · · · −→ Γa(G

n−1)
Γa(d

n−1)
−→ Γa(G

n) −→
Γa(G

n)

ImΓa(dn−1)
−→ 0

and
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0 −→ ImΓa(d
n) = KerΓa(d

n+1) →֒ Γa(G
n+1) −→ · · · −→ Γa(G

d−1) −→ Γa(G
d) −→ 0.

But, by assumption, Γa(M) = 0. Therefore, by using the first above exact sequence and

[4, Theorem 10.1.4], we see that Γa(G
n)

ImΓa(dn−1)
is Gorenstein injective. Notice that Hn

a (M) =

ker Γa(dn)

ImΓa(dn−1)
. Therefore, patching the second above long exact sequence together with the

exact sequence

0 −→ Hn
a (M) −→

Γa(G
n)

ImΓa(dn−1)
−→

Γa(G
n)

ker Γa(dn)
−→ 0,

yields the following long exact sequence

0 −→ Hn
a (M) −→

Γa(G
n)

ImΓa(dn−1)
−→ Γa(G

n+1) −→ · · · −→ Γa(G
d−1) −→ Γa(G

d) −→ 0.

Hence, GidRH
n
a (M) ≤ GidRM − n.

(ii) Suppose that R and M are Cohen-Macaulay. Since H0
m(E(R/m)) = E(R/m) and,

for any non-maximal prime ideal p of R, H0
m(E(R/p)) = 0, we may apply 2.8 to see that

Hi
m(H

n
a (M)) = Hn+i

m (M) for all i ≥ 0. Therefore, we can use the Cohen-Macaulayness of M

to deduce that

Hi
m(H

n
a (M)) =




0 if i 6= dimM/aM

Hd
m(M) if i = dimM/aM,

where d = dimM . Hence, by using part(i) for Hn
a (M), we have GidRH

d
m(M) < ∞. Now,

we proceed by induction on d to show that GidRM is finite. The case d = 0 is clear. Let

d > 0 and assume that the result has been proved for d − 1. Suppose that x ∈ m is both

R-regular and M -regular. Then one can use the induced exact sequence

0 −→ Hd−1
m (M/xM) −→ Hd

m(M) −→ Hd
m(M) −→ 0

and [3, Proposition 3.9] to see that GidR(H
d−1
m (M/xM)) is finite. Hence, by inductive

hypothesis, GidRM/xM is finite. Therefore, since, in view of [9, Corollary 6.2], R admits a

canonical module, one can use the same argument as in the proof of 3.7(i)⇒(ii) to deduce

that GidR/xRM/xM < ∞. Therefore GidRM is finite by 3.7. Now the result follows by

induction.

For the final assertion, let M be non-zero finitely generated with GidRM = s < ∞.

Then, by part(i), we have GidRH
n
a (M) ≤ s − n. If GidRH

n
a (M) < s − n, Then, in view

of [3, Theorem 3.6], we deduce that Ext s−n
R (E(k),Hn

a (M)) = 0. Hence, by Proposition 2.1,

Ext sR(E(k),M) = 0 which is a contradiction by 3.6. Therefore, GidRH
n
a (M) = GidRM −

n. �

Let (R,m) be a local ring. As a main theorem, it was proved in [15, Theorem 3.10]

that if R and M are Cohen-Macaulay with dimM = n and GidRH
n
m(M) < ∞, then

GidRH
n
m(M) = dimR − n. Notice that if GidRH

n
m(M) < ∞, then, in view of [15, Lemma

3.6], 3.8(ii) and [3, Theorem 3.24], we have depthR = GidRM . Therefore, the next corollary,

which is established without the assumption that GidRH
n
m(M) <∞, recovers [15, Theorem

3.10]. Another improvement of the above result will be given in 3.12.
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Corollary 3.9. Let (R,m) be a Cohen-Macaulay local ring and let M be Cohen-Macaulay

of dimension n. Then GidRH
n
m(M) = GidRM − n.

Proof. First we notice that M ⊗R R̂ is a Cohen-Macaulay R̂-module of dimension n. By

using [15, Lemma 3.6] and [1, Exercise 8.2.4], we have GidRH
n
m(M) = Gid R̂H

n
m̂(M ⊗R R̂).

Also, in view of [3, Theorem 3.24], GidRM and Gid R̂M̂ are simultaneously finite. Therefore

we may assume that R is complete; and hence it has a dualizing complex. Now, one can use

3.8 to obtain the assertion. �

In [21, Theorem 2.6] a characterization of a complete Gorenstein local ring R, in terms of

Gorenstein injectivity of the top local cohomology module of R, is given. The next corollary

together with 2.7 recover that characterization.

Corollary 3.10. Let (R,m) be a Cohen-Macaulay local ring which has a dualizing complex.

Then the following conditions are equivalent.

(i) R is Gorenstein.

(ii) GidRH
n
a (R) <∞ for any ideal a of R such that R is relative Cohen-Macaulay with

respect to a and that htRa = n.

(iii) GidRH
n
a (R) <∞ for some ideal a of R such that R is relative Cohen-Macaulay with

respect to a and that htRa = n.

Proof. The implication (i)⇒(ii) follows from 2.7 and the implication (ii)⇒(iii) is clear. The

implication (iii)⇒(i) follows from 3.8(ii) and [3, Proposition 3.11]. �

Concerning the above corollary, we notice that if Hn
a (R) is Artinian, then it is not needed

to impose the hypothesis that R has a dualizing complex. Therefore [21, Theorem 2.6]

follows from 3.10 without the completeness assumption on R.

Next, as promised before, we provide examples to show that ifM is not finitely generated

orM is not relative Cohen-Macaulay, then 2.5(ii) and 2.5(i), respectively, are no longer true.

Examples 3.11. (i). Let (R,m) be a Gorenstein local ring with dimR ≥ 2 such that

Rp is not regular for some non-maximal prime ideal p of R (for example, one can take

R = K[[X,Y,Z]]
(X2) and p = (x, y)R, where K is a field). Then one can use [3, Theorem 3.14]

to see that there exists a non-zero Gorenstein injective Rp-module Mp which is neither

injective nor finitely generated. Hence, by [4, Proposition 10.1.2 ], injdimRp
Mp = ∞; so

that injdimRMp = ∞. Now, we notice that, for all x ∈ m − p, injdimRMx = ∞ because

(Mx)pRx

∼= Mp. It is easy to check that Hi
m(Mx) = 0 for all i and that Mx is not finitely

generated as an R-module. Set N = Mx ⊕ ER(k). Then injdimN = ∞, but Γm(N) is

injective. This example shows that, in 2.5(ii), the finiteness assumption on M is required.

(ii). Let R = k[[x, y]]/(xy), where k is a field. Then R is a 1-dimensional complete

Gorenstein local ring. Let m be the maximal ideal of R and let J = (y)R. In view of [1,

Theorem 8.2.1] and [21, Corollary 2.10], H1
J (R) is a non-zero Gorenstein injective R-module.

Note that ΓJ(R) 6= 0. Now, we show that H1
J (R) is not injective. If H1

J(R) were injective,

then HomR(H
1
J(R),ER(R/m)) = Rn for some positive integer n. Therefore, by using [19,
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Theorem 5.11] and [21, Lemma 3.1], we get an R-isomorphism

ψ : Rn = HomR(H
1
J(R),ER(R/m)) → Γm,J(R) = J.

Now, ψ(xRn) = xJ = 0 which is a contradiction. Hence, by [4, Proposition 10.1.2], we have

injdimH1
J (R) = ∞. Therefore, by using the exact sequences

0 −→ ΓJ(R) −→ R −→ R/ΓJ(R) −→ 0

and

0 −→ R/ΓJ(R) −→ Ry+(xy) −→ H1
J (R) −→ 0,

we achieve injdimΓJ(R) = ∞.

As a mentioned just above 3.9, the next theorem is an improvement of [15, Theorem

3.10]. Indeed, we will use the canonical module of a module to prove the above result

without assuming that R andM are Cohen-Macaulay. Notice that ifM is Cohen-Macaulay,

then KM is Cohen-Macaulay. But the converse does not hold in general; see for example

[16, Lemma 1.9] and [16, Theorem 1.14].

Theorem 3.12. Assume that (R,m) is local, and M is non-zero finitely generated of di-

mension d. Then the following statements hold.

(i) GidRH
d
a(M) = Gpd R̂ΓmR̂,aR̂(KM̂

).

(ii) If K
M̂

is Cohen-Macaulay and GidRH
d
m(M) <∞, then GidRH

d
m(M) = depthR−d.

Proof. (i) By [1, Theorem 7.1.6], Hd
a(M) is Artinian. Therefore, by use of [1, Theorem

4.3.2] and [19, Theorem 5.11], we have Hd
a(M) = 0 if and only if Γ

mR̂,aR̂(KM̂
) = 0. Hence,

we may assume that Hd
a(M) 6= 0. Now, by [15, Lemma 3.6], GidRH

d
a(M) = Gid R̂H

d
a(M)

and, by [3, Theorem 4.25], Gid R̂H
d
a(M) = Gfd R̂Hom R̂(H

d
a(M),ER(k)). Therefore, since

Hom R̂(H
d
a(M),ER(k)) is finitely generated as an R̂-module, one can use [3, Theorem 4.24]

and [19, Theorem 5.11] to establish the result.

(ii) First notice that Γ
mR̂,mR̂(KM̂

) = K
M̂
. Hence, by part(i), GidRH

d
m(M) = Gpd R̂(KM̂

).

Therefore, in view of [3, Proposition 2.16] and [3, Theorem 1.25], GidRH
d
m(M) = depth R̂−

depthK
M̂
. Now, one can use [16, Lemma 1.9(c)] to complete the proof. �

The following corollary is a generalization of the main result [21, Theorem 2.6].

Corollary 3.13. Assume that (R,m) is local with dimR = d and that KR̂ is Cohen-

Macaulay. Then the following statements are equivalent.

(i) R is Gorenstein.

(ii) injdimRH
d
m(R) <∞.

(iii) GidRH
d
m(R) <∞.

Proof. The implication (i)⇒(ii) follows from 2.5 while the implication (ii)⇒(iii) is clear.

(iii)⇒(i). By 3.12(ii), we have GidRH
d
m(R) = depthR − dimR; and hence R is Cohen-

Macaulay. Now one can use 3.9 to obtain the assertion. �
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Corollary 3.14. Let (R,m) be local with dimR = d ≤ 2. Then the following statements

are equivalent.

(i) R is Gorenstein.

(ii) GidRH
d
m(R) <∞.

(iii) Hd
a(M) is Gorenstein injective for all finitely generated R–modules M and for all

ideals a of R.

Proof. Let M be a non-zero finitely generated R-module. Then, by [1, Theorem 7.1.6],

Hd
a(M) and Hd

m(R) are Artinian. Therefore, in view of [15, Lemma 3.5], we may assume

that R is complete. Since, by [16, Lemma 1.9], KR is Cohen-Macaulay, (i)⇔(ii) follows

immediately from 3.13. The implication (iii)⇒(i) is clear and the implication (i)⇒(iii)

follows from [21, Corollary 2.10].

�
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