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Abstract—This correspondence is concerned with asymptotic properties
on the codeword length of a fixed-to-variable length code (FV code) for a
general source with a finite or countably infinite alphabet. Sup-
pose that for each 1 is encoded to a binary codeword ( ) of
length ( ( )). Letting denote the decoding error probability, we
consider the following two criteria on FV codes: i) = 0 for all 1
and ii) lim sup for an arbitrarily given [0 1). Under
criterion i), we show that, if is encoded by an arbitrary prefix-free FV
code asymptotically achieving the entropy,

1
( ( ))

1
log

2

1

( )
0

in probability as under a certain condition, where denotes
the probability distribution of . Under criterion ii), we first determine
the minimum rate achieved by FV codes. Next, we show that ( ( ))
of an arbitrary FV code achieving the minimum rate in a certain sense has
a property similar to the lossless case.

Index Terms—Asymptotic optimality, convergence in distribution,
fixed-to-variable length coding, general source, information spectrum.

I. INTRODUCTION

Suppose the situation that a random variableXn 2 Xn, n � 1, gen-
erated from a discrete source is encoded to a binary codeword'n(Xn)
by using a fixed-to-variable length code (FV code)'n : Xn ! f0; 1g�

satisfying the prefix condition, where X is a finite source alphabet and
f0; 1g� denotes the set of all binary sequences of finite length. Denote
by PX the probability distribution of Xn and l('n(Xn)) the code-
word length of the codeword 'n(xn) for a sequence xn 2 Xn. It is
well known that, if no decoding error is permitted, the expected code-
word length E [l ('n(X

n))] satisfies

E [l ('n(X
n))] � H(Xn); for each n � 1 (1)

whereH(Xn) denotes the entropy ofXn of base 2 and for eachn � 1,
the equality in (1) holds if and only if

l ('n(x
n)) = log2

1

PX (xn)
; for all xn 2 Xn

:

In addition, it is also well known that there exists an asymptotically
optimal FV code, such as the Huffman code or the Shannon–FanElias
code, satisfying

1

n
E [l ('n(X

n))]�H(X)! 0; as n!1 (2)

provided that Xn is composed of n independent and identically dis-
tributed (i.i.d.) random variables, whereH(X) denotes the entropy of
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X to base 2. Therefore, we can easily guess from (1) and (2) that the
codeword length l ('n(xn)) of the optimal FV code satisfying (2) is
nearly equal to log2

1
P (x )

.
There are a few studies [2], [9], [10] that discuss relationships be-

tween log2
1

P (x )
, the ideal codeword length, and l ('n(xn)), the

actual codeword length, for xn 2 Xn in detail. In fact, the Huffman
code satisfies

l ('n(x
n)) = log2

1

PX (xn)
; for all xn 2 Xn

if and only ifXn is dyadic [2]. Nemetz and Simmon [10] show that

1

n
log2

1

PX (xn)
�

1

n
l ('n(x

n))! 0

uniformly in xn 2 Xn under the assumption that Xn is i.i.d. In addi-
tion to these results, there are FV codes that are known to achieve the
entropy rate in almost sure sense for stationary ergodic sources (see,
e.g., [11], [12], [16]). For such FV codes it holds that

1

n
l ('n(x

n))�
1

n
log2

1

PX (xn)
! 0

almost surely (therefore in probability) as n ! 1 because of the
asymptotic equipartition property (AEP).
The objective of this correspondence is clarifying relationships be-

tween the two random variables 1
n
log2

1
P (X )

and 1
n
l ('n(X

n))
for a wide class of sources.We take the information-spectrum approach
that originates from [4] and is described in detail in [5]. No assump-
tion is imposed onXn in the information-spectrum framework, which
enables us to treat nonstationary and/or nonergodic sources not satis-
fying the asymptotic equipartition property. We can show that, for any
sequence of FV codes achieving the entropy in a certain sense,

1

n
l ('n(X

n))�
1

n
log2

1

PX (Xn)
! 0

in probability as n!1 for any source with a finite alphabet jX j. The
same result holds for sources with countably infinite alphabets under a
certain assumption on the sources.
It is also interesting to investigate relationships between

1

n
log2

1

PX (Xn)
and

1

n
l ('n(X

n))

under another criterion on the decoding error. In this correspondence,
we consider a criterion under which the limit superior of the decoding
error probability must be less than or equal to ", where " 2 [0; 1) is an
arbitrary constant given in advance. We first obtain the minimum rate
achieved by prefix-free FV codes satisfying the criterion. This result
can be regarded as an extension of Han’s result [5], [6] that treats the
case of " = 0, We next unveil a relationship between

1

n
log2

1

PX (Xn)
and

1

n
l ('n(X

n)) :

It is shown that 1
n
l ('n(X

n)) has a property similar to the lossless case
for any FV code with a certain optimality.
This correspondence is organized as follows. In Section II, loss-

less FV codes are treated, and notation is introduced. A class of
mean-optimal FV codes, which was first defined in [15], is introduced.
The codeword length of the mean-optimal FV code is analyzed in
detail. Section III is devoted to a characterization of FV codes with
the decoding error probability asymptotically upper-bounded by an
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arbitrarily given " 2 [0; 1). We give a formula for the minimum rate
achieved by such FV codes. The obtained minimum rate motivates us
to introduce a new class of FV codes called the "-mean-optimal FV
codes. After that, we analyze the codeword length of the "-mean-op-
timal FV code.

II. LOSSLESS FV CODES

Let X be a finite or countably infinite source alphabet. For each
n � 1, letXn be a random variable onXn subject to a probability dis-
tribution PX . We set XXX = fXng1n=1. Actually, XXX can be regarded
as an infinite sequence of probability distributions PX , n � 1, not
required to satisfy the consistency condition, i.e.,

PX (xn) =
x2X

PX (xnx); for all xn 2 Xn
:

Such anXXX is called a general source [4], [5]. The class of the general
sources includes nonstationary and/or nonergodic processes.

For each n � 1, we define an encoder 'n as a surjective mapping
from Xn to Cn, where Cn � f0; 1g� is a set of codewords and f0; 1g�

means the set of all binary sequences of finite length. The length of
the codeword 'n(xn) for an xn 2 Xn is denoted by l ('n(xn)). Let
E[l ('n(X

n))] denote the expected codeword length defined by

E [l('n(X
n)] =

x 2X

PX (xn)l ('n(x
n)) : (3)

We define a decoder as a mapping  n : Cn ! Xn. The decoding error
probability is denoted by "n, where

"n = Pr f n ('n(X
n)) 6= X

ng : (4)

In this section only infinite sequences of FV codes, satisfying "n = 0
for all n � 1, are of interest. Hereafter, an infinite sequence of FV
codes is simply called an FV code when there is no confusion.

Kieffer [8] and Han [4], [5] characterize the infimum achievable FV
coding rate for a general source XXX . Precisely, Kieffer’s result is re-
stricted to the case where jX j is finite andXXX satisfies the consistency
condition.

Definition 1: A rate R is called achievable if there exists a prefix-
free FV code f('n;  n)g1n=1 satisfying

lim sup
n!1

1

n
E [l ('n(X

n))] � R

and "n = 0 for all n � 1. In particular, the infimum of the achievable
rate is called the infimum achievable FV coding rate and is denoted by
R(XXX).

Theorem 1 ([4], [8]):

R(XXX) = H(XXX)
def
= lim sup

n!1

1

N
H(Xn)

where H(Xn) denotes the entropy of Xn defined by

H(Xn) =
x 2X

PX (xn) log2
1

PX (xn)
:

Notice that 1
n
H(Xn), n � 1, may not have the limit since the sta-

tionarity of XXX is not assumed.
In this correspondence, we are interested in asymptotic behaviors of

two random variables
1

n
log2

1

PX (Xn)
and

1

n
l ('n(X

n)) :

While Theorem 1 tells us that for any  > 0 there exists an optimal FV
code satisfying 1

n
E[l ('n(X

n))] � H(XXX)+ for all sufficiently large
n, we can know little about asymptotic behavior of these two random

variables. In order to develop an interesting relationship between the
two random variables, we introduce another stronger notion of opti-
mality on FV codes.

Definition 2: An FV code f('n;  n)g1n=1 is called mean-optimal
if it satisfies all of

(L1)
x 2X 2�l(' (x )) � 1, for all n � 1;

(L2) lim sup
n!1

1
n
E[l ('n(X

n))]� 1
n
H(Xn) � 0;

(L3) "n = 0, for all n � 1.

The class of FV codes given in Definition 2 was first introduced by
Visweswariah, Kulkarni, and Verdú [15], though (L1) is not clearly
written in [15]. Since for all n � 1; E [l ('n(X

n))] � H(Xn) holds
for all f('n;  n)g1n=1 satisfying (L1), the limit superior in (L2) can be
replaced with the limit. However, we use the limit superior instead of
the limit in order to facilitate comparison of the two classes of optimal
FV codes given in Definitions 2 and 4.
It is easy to check that the Huffman code [7] is mean-optimal if for

each n � 1, the Huffman algorithm is applied to a general source
XXX = fXng1n=1 with a finite alphabet X . In addition, the Shannon–
Fano–Elias code (see, e.g., [2]) is also mean optimal forXXX with a finite
or a countably infinite alphabet X .
For an FV code f('n;  n)g1n=1 and an arbitrary � > 0, define

Wn(�) by

Wn(�) = x
n 2 Xn :

1

n
l ('n(x

n))�
1

n
log2

1

PX (xn)
� � :

(5)
Then, the mean-optimal FV codes have the following property.

Theorem 2: If 1
n
log2

1
P (X )

1

n=1
is uniformly integrable, i.e.,

if it satisfies

lim
u!1

sup
n�1

1

n
x : log �u

PX (xn) log2
1

PX (xn)
= 0

then for an arbitrary constant � > 0 any mean-optimal FV code
f('n;  n)g

1
n=1 satisfies

lim
n!1

Pr fxn 2 Wc
n(�)g = 0

whereWc
n(�) denotes the complement ofWn(�).

Theorem 2 immediately yields the following corollary that is proved
in Appendix II.

Corollary 1: If 1
n
log2

1
P (X )

1

n=1
is uniformly integrable,

then any mean-optimal FV code f('n;  n)g1n=1 satisfies

lim
n!1

L
1

n
log2

1

PX (Xn)
;
1

n
l ('n(X

n)) = 0

where L(S; T ) denotes the Lévy distance between two real-valued
random variables S and T defined by

L(S; T ) = inf � : PrfS � �� �g � � � PrfT � �g

� PrfS � �+ �g+ � for all real number � : (6)

Remark: Corollary 1 means that the distribution of 1
n
l ('n(X

n))
approaches the distribution of 1

n
log2

1
P (X )

as n ! 1 in the
sense of the vanishing Lévy distance. We may use the variational dis-
tance or the normalized divergence distance instead of the Lévy dis-
tance. However, we cannot have a claim corresponding to Corollary
1 under such distances because the distributions of 1

n
l ('n(X

n)) and
1
n
log2

1
P (X )

are often concentrated onmutually disjoint sets. Note
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that 1
n
l ('n(X

n)) takes rational values while 1
n
log2

1
P (X )

takes
real values in general.

Now, we define the following two quantities called the spectral sup-
entropy rate and the spectral inf-entropy rate, respectively:

H(XXX) = inf R : lim
n!1

Pr
1

n
log2

1

PX (Xn)
� R = 0 (7)

H(XXX) = sup R : lim
n!1

Pr
1

n
log2

1

PX (Xn)
� R = 0 : (8)

These two quantities play key roles in coding theorems from the infor-
mation-spectrum approach. In fact,H(XXX) has an operational meaning
as the infimum achievable fixed-to-fixed length (FF) coding rate forXXX
with the vanishing decoding error probability [4], [5]. In addition, for a
given FV code f('n;  n)g1n=1, we defineL(XXX) andL(XXX) as follows:

L(XXX) = inf R : lim
n!1

Pr
1

n
l ('n(X

n))� R = 0

L(XXX) = sup R : lim
n!1

Pr
1

n
l ('n(X

n))� R = 0 :

Then, we obtain the following corollary as a byproduct of Theorem 2.

Corollary 2: If 1
n
log2

1
P (X )

1

n=1
is uniformly integrable,

then any mean-optimal FV code f('n;  n)g1n=1 satisfies

L(XXX) = H(XXX) (9)

and

L(XXX) = H(XXX): (10)

Theorem 2 is proved by using the following lemma characterizing
a property on the uniformly integrable random variables. The uniform
integrability, which was first introduced by Han [5] in the Shannon-the-
oretic field, is substantially used as a sufficient condition for guaran-
teeing the property (11) given in Lemma 1 below. See, for example, [1,
Theorem 4.5.3] for a proof of the lemma.

Lemma 1: If 1
n
log2

1
P (X )

1

n=1
is uniformly integrable, then

it holds that

lim
n!1

1

n
x 2A

PX (xn) log2
1

PX (xn)
= 0 (11)

for any fAng
1
n=1 satisfying An � Xn for all n � 1 and

lim
n!1

Pr fXn 2 Ang = 0:

Remark: If jX j is finite, the claim of Lemma 1 is immediately ob-
tained from the following inequality:

1

n
x 2A

PX (xn) log2
1

PX (xn)

�
1

n
Pr fXn 2 Ang � log2 jAnj

�
1

n
Pr fXn 2 Ang log2 Pr fX

n 2 Ang

� Pr fXn 2 Ang � log2 jX j+
log2 e

en
(12)

(see, e.g., [12, Lemma I.6.8]), where e denotes the base of the nat-
ural logarithm. Notice that, if jX j is countably infinite, (12) does not
imply (11). In addition, it is also known that there exists a source with a
countably infinite alphabet X not satisfying uniform integrability (see
[5], [6]).

Proof of Theorem 2: Fix � > 0 arbitrarily and define

Un(�) = x
n 2 Xn :

1

n
l ('n(x

n)) + � <
1

n
log2

1

PX (xn)

(13)

Vn(�) = x
n 2 Xn :

1

n
l ('n(x

n))� � >
1

n
log2

1

PX (xn)
:

(14)

SinceWn(�) in (5) is written asWc
n(�) = Un(�) [ Vn(�), it is suffi-

cient to prove both

lim
n!1

Pr fXn 2 Un(�)g =0 (15)

lim
n!1

Pr fXn 2 Vn(�)g =0: (16)

First we show

Pr fXn 2 Un(�)g < 2�n�; for all n � 1 (17)

which clearly implies (15). We note that (L1) and Un(�) � Xn yield

1 �
x 2X

2�l(' (x )) �
x 2U (�)

2�l(' (x ))
: (18)

Since we have �l ('n(xn))> log2 PX (xn)+n� for all xn2Un(�),
it follows that

x 2U (�)

2�l(' (x ))
>

x 2U (�)

2log P (x )+n�

=2n� � Pr fXn 2 Un(�)g : (19)

Then, the combination of (18) and (19) yields (17).
Next, we prove (16) under the uniform integrability of
1
n
log2

1
P (X )

1

n=1
. Setting �n =

log n

n
, (17) guarantees that

Pr fXn 2 Un(�n)g �
1

n
! 0; as n!1:

Since Un(�n) and Vn(�) are disjoint, we have

1

n
E [l ('n(X

n))]�
1

n
H(Xn)

=
x 2U (� )

+
x 2V (�)

+
x 2U (� )\V (�)

� PX (xn)
1

n
l ('n(x

n))�
1

n
log2

1

PX (xn)
: (20)

Notice that the first sum on the right-hand side of (20) is nonpositive
from the definition of Un(�n) and its absolute value is evaluated as

1

n
x 2U (� )

PX (xn) l('n(x
n))� log2

1

PX (xn)

�
1

n
x 2U (� )

PX (xn) log2
1

PX (xn)
: (21)
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Since Pr fXn 2 Un(�n)g ! 0 as n ! 1, Lemma 1 guarantees that
the right-hand side of (21) tends to zero as n!1. On the other hand,
the second sum in (20) is lower-bounded as

x 2V (�)

PX (xn)
1

n
l ('n(x

n))�
1

n
log2

1

PX (xn)

> � � Pr fXn 2 Vn(�)g (22)

from the definition of Vn(�). The third sum in (20) is evaluated in a
following way:

x 2U (� )\V (�)

PX (xn)
1

n
l ('n(x

n))�
1

n
log2

1

PX (xn)

� ��n � Pr fX
n 2 Ucn(�n) \ V

c
n(�)g

� ��n (23)

where xn 2 Ucn(�n) is used to obtain the first inequality in (23). By
substituting (21)–(23) into (20), we have

1

n
E [l ('n(X

n))]�
1

n
H(Xn) > � �Pr fXn 2 Vn(�)g+o(1) (24)

where o(1)! 0 as n ! 1. Clearly, (24) implies that

lim sup
n!1

1

n
E [l ('n(X

n))]�
1

n
H(Xn)

� � � lim sup
n!1

Pr fXn 2 Vn(�)g (25)

which develops (16) since the left-hand side of (25) is assumed to be
nonpositive from (L2).

Proof of Corollary 2: Equations (9) and (10) are proved by es-
tablishing all of H(XXX) � L(XXX), L(XXX) � H(XXX), H(XXX) � L(XXX),
and L(XXX) � H(XXX). However, only H(XXX) � L(XXX) is proved here
since the others can be obtained similarly.

Fix an mean-optimal FV code f('n;  n)g1n=1 arbitrarily. Suppose
that H(XXX) � L(XXX) does not hold, i.e., there exists a constant � > 0
satisfyingH(XXX) � L(XXX) + 3�. Since the definition of L(XXX) implies
that

Pr
1

n
l ('n(X

n))� L(XXX) + � ! 1; as n!1

we have

Pr
1

n
l ('n(X

n)) � H(XXX)� 2� ! 1; as n!1:

Define

Bn(�) = x
n 2 Xn :

1

n
l ('n(x

n)) � H(XXX)� 2� :

It is important to note that

1

n
log2

1

PX (xn)
� H(XXX)� �

for any xn 2 Bn(�) \ Wn(�), where Wn(�) is defined in (5). In
addition, since PrfXn 2 Bn(�)g ! 1 and PrfXn 2 Wn(�)g ! 1
as n ! 1, we have

Pr
1

n
log2

1

PX (Xn)
� H(XXX)� � ! 1; as n!1: (26)

We now obtainH(XXX) � L(XXX) because (26) contradicts the definition
ofH(XXX).

III. "-ERROR FV CODES

In this section, FV codes satisfying lim supn!1 "n � " for an ar-
bitrarily given " 2 [0; 1) are considered, where "n denotes the de-
coding error probability defined in (4). First, we investigate the infimum
achievable FV coding rate.

Definition 3: Let " 2 [0; 1) be a constant arbitrarily given. A
rate R is called "-achievable if there exists a prefix-free FV codes
f('n;  n)g

1
n=1 satisfying

lim sup
n!1

1

n
E [l('n(X

n)] � R

and

lim sup
n!1

"n � ":

In particular, the infimum of the "-achievable rate is called the infimum
"-achievable FV coding rate and is denoted by R["](XXX).

Since R[1](XXX) = 0 is trivial, we do not consider the case of " = 1
throughout this section.
Han [5], [6] shows that R[0](XXX) is expressed in the following for-

mula:

R[0](XXX) = H
�(XXX)

def
= lim

#0
lim sup
n!1

1

n
H[](X

n) (27)

where

H[](X
n) = inf

A :PrfX 2A g�1�
x 2A

PX (xn)

Pr fXn 2 Ang

� log2
Pr fXn 2 Ang

PX (xn)
:

Notice that setting " = 0 means that f('n;  n)g1n=1 is required to
have the vanishing decoding error probability. Han [5], [6] also shows
that the right-hand side of (27) is equal to

H(XXX) = lim sup
n!1

1

n
H(Xn)

i.e., the infimum achievable FV coding rate if 1
n
log2

1
P (X )

1

n=1
satisfies the uniform integrability.
We have the following theorem that can be regarded as an extension

of Han’s results.

Theorem 3: For any constant " 2 [0; 1) it holds that

R["](XXX) =G["](XXX)
def
= lim

#0
lim sup
n!1

1

n
G["+](X

n)

where

G["](X
n) = inf

A :PrfX 2A g�1�"
x 2A

PX (xn)

� log2
Pr fXn 2 Ang

PX (xn)
:

Theorem 3 can be proved similarly to the development of (27). But
we give the proof of Theorem 3 in Appendix I for readers’ convenience.
Note that H�(XXX) obviously coincides with G[0](XXX). However, the

definitions of H�(XXX) and H[](X
n) are not adequate for character-

izingR["](XXX) because it cannot be generalized to the case of " 2 [0; 1).
The following theorem gives a lower and an upper bounds of

G["](XXX). In fact, the upper bound in (28) corresponds to the infimum
"-achievable FF coding rate [5].

Theorem 4: For any constant " 2 [0; 1) it holds that

(1� ")H(XXX) � G["](XXX) � inffR : F (R) � "g (28)

where H(XXX) is defined in (8) and

F (R) = lim sup
n!1

Pr
1

n
log2

1

PX (Xn)
� R :

Proof: We first develop the upper bound of G["](XXX) in (28). Fix
an " 2 [0; 1) arbitrarily and set R0 = inffR : F (R) � "g. Then, the
definition of R0 implies that

F (R0 + ) � " (29)
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for any  > 0. Furthermore, (29) guarantees the existence of an integer
n0 = n0() such that

Pr
1

n
log2

1

PX (Xn)
� R0 +  � "+ ; for all n � n0:

(30)
Now, define An 2 Xn and �n(An) by

An = x
n 2 Xn :

1

n
log2

1

PX (xn)
< R0 + 

and

�n(An) =
1

n
x 2A

PX (xn) log2
Pr fXn 2 Ang

PX (xn)
(31)

respectively. Since (30) implies that Pr fXn 2 Ang � 1� "�  for
all n � n0, the definitions of G["+](X

n) and �n(An) yield

1

n
G["+](X

n) � �n(An); for all n � n0: (32)

In addition, notice that �n(An) is evaluated in the following way for
all n � 1:

�n(An) =
1

n
Pr fXn 2 Ang log2 Pr fX

n 2 Ang

+
1

n
x 2A

PX (xn) log2
1

PX (xn)

<
1

n
Pr fXn 2 Ang log2 Pr fX

n 2 Ang

+ Pr fXn 2 Ang � (R0 + )

�R0 +  (33)

where the inequality in (33) is obtained from the definition ofAn. Then,
it follows from (32) and (33) that

lim sup
n!1

1

n
G["+](X

n) � R0 + : (34)

Since  > 0 is arbitrary, the upper bound in (28) is obtained by letting
 # 0 in (34).

The lower bound in (28) can be developed similarly to the proof of
[5, Theorem 1.7.2]. For an arbitrary  > 0, define

Sn = x
n 2 Xn :

1

n
log2

1

PX (xn)
� H(XXX)�  :

From the definitions of Sn and H(XXX) it is clear that

Pr fXn 2 Sng ! 1; as n!1: (35)

Let An be an arbitrary subset of Xn satisfying PrfXn 2 Ang �
1�"�. Then, (35) guarantees the existence of an integer n1 = n1()
satisfying

Pr fXn 2 Sn \Ang � 1� "� 2; for all n � n1: (36)

We evaluate �n(An) in the following manner for all n � n1:

�n(An)
1)

�
1

n
Pr fXn 2 Ang log2 Pr fX

n 2 Ang

+
1

n
x 2A \S

PX (xn) log2
1

PX (xn)

2)

��
log2 e

en
+

1

n
x 2A \S

PX (xn) log2
1

PX (xn)

3)

��
log2 e

en
+ (1� "� 2) � (H(XXX)� ) (37)

where the marked inequalities in (37) follow from

1) PX (xn) log2
1

P (x )
� 0, for all xn 2 AnnSn;

2) x log2 x � �
log e

e
, for all x 2 [0; 1];

3) the definition of Sn and (36).

SinceAn � Xn in (37) is an arbitrary set satisfyingPrfXn 2 Ang �
1 � " �  and the right-hand side of (37) no longer depends on An,
(37) leads to

(1� "� 2)(H(XXX)� )�
log2 e

en
�

1

n
G["+](X

n)

for all n � n1, which implies that

(1� "� 2)(H(XXX)� ) � lim sup
n!1

1

n
G["+](X

n): (38)

The lower bound ofG["](XXX) in (28) immediately follows from (38) by
letting  # 0.

We can explicitly express R["](XXX) for the following two sources.
The proofs of (39) and (40) below are given in Appendix III.

Example 1 (i.i.d. Source): LetXn be n i.i.d. random variables sub-
ject to a probability distribution P over a finite alphabet X satisfying
H(P ) > 0, where H(P ) denotes the entropy of base 2. DefineXXX =
fXng1n=1. Then, for any " 2 [0; 1) we have

R["](XXX) = (1� ")H(P): (39)

Example 2 (Mixed Source): Let Xn
1 and Xn

2 be n i.i.d. random
variables subject to probability distributions P1 and P2 over a finite
alphabet X , respectively. Assume thatH(P1) < H(P2). LetXn be n
random variables satisfying

PX (xn) = �1PX (xn) + �2PX (xn)

for some �1 and �2 satisfying �1 > 0, �2 > 0, and �1 + �2 = 1.
DefineXXX = fXng1n=1. Then, for any " 2 [0; 1), we have

R["](XXX) =
�1H(P1) + (�2 � ")H(P2); if 0 � " < �2

(1� ")H(P1); otherwise.
(40)

In this section, as well we are interested in asymptotic behavior of

1

n
log2

1

PX (Xn)
and

1

n
l ('n(X

n))

for a class of FV codes f('n;  n)g1n=1 achievingR["](XXX) for an arbi-
trarily given " 2 [0; 1). We introduce the following class of FV codes.

Definition 4: Let " 2 [0; 1) be an arbitrary constant. An FV code
f('n;  n)g

1
n=1 is called "-mean-optimal if it satisfies all of

(E1)
y 2C

2�l(y ) � 1, for all n � 1;

(E2) lim
#0

lim sup
n!1

1
n
E[l ('n(x

n))]� 1
n
G["+](X

n) � 0;

(E3) lim sup
n!1

"n � ";

where Cn denotes the range of 'n.

Remark: The meaning of condition (E2) in Definition 4 can be un-
derstood from the following argument. If we consider FV codes satis-
fying (E3), for any constant  > 0 it holds that "n � " +  for all
sufficiently large n. Then, Lemma 2 in Appendix I tells us that for any
constant � > 0 there exists an FV code satisfying

1

n
E [l ('n(X

n))] �
1

n
G["+](X

n) + � (41)
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for all sufficiently large n and "n � " +  for all n � 1. Since (41)
leads to

lim sup
n!1

1

n
E [l ('n(X

n))]�
1

n
G["+](X

n) � 0

and  > 0 can be made arbitrarily small, we have condition (E2) by
letting  # 0.

It is also important to note that any FV code satisfying (E2) achieves
G["](XXX) in Theorem 3. In fact, it is easy to verify that

0 � lim
#0

lim sup
n!1

1

n
E [l ('n(X

n))]�
1

n
G["+](X

n)

� lim
#0

lim sup
n!1

1

n
E [l ('n(X

n))]

� lim sup
n!1

1

n
G["+](X

n)

= lim sup
n!1

1

n
E [l ('n(X

n))]� lim
#0

lim sup
n!1

1

n
G["+](X

n)

which implies that

lim sup
n!1

1

n
E [l ('n(X

n))] = G["](XXX)

i.e., G["](XXX) is achievable.

The following theorem characterizes a relationship between

1

n
log2

1

PX (Xn)
and

1

n
l ('n(X

n))

of an "-mean-optimal FV code.

Theorem 5: Let " 2 [0; 1) be an arbitrary constant and
f('n;  n)g

1
n=1 be any "-mean-optimal FV code. Define Dn by

Dn = fxn 2 Xn :  n ('n(x
n)) = x

ng : (42)

Then, for any � > 0 it holds that

lim
n!1

Pr fxn 2 Wc
n(�) \Dng = 0

whereWn(�) is the set defined in (5).

Remark: Notice that Theorem 5 holds without any as-
sumption on the source such as the uniform integrability of

1
n
log2

1
P (X )

1

n=1
. However, this does not mean that Theorem

5 includes Theorem 2 as a special case of " = 0. While we are
interested in FV codes with "n = 0 for all n � 1 in Theorem 2,
FV codes treated in Theorem 5 with " = 0 satisfy only "n ! 0 as
n ! 1. It is also important to notice that the claim of Theorem 2 is
stronger than the claim of Theorem 5. While Theorem 2 considers
codeword lengths for all sequences xn 2 Xn, Theorem 5 only treats
codeword lengths for sequences belonging toDn.

Theorem 5 yields the following corollary that is proved in Ap-
pendix II.

Corollary 3: Let " 2 [0; 1) be an arbitrary constant. Then, any
"-mean-optimal FV code f('n;  n)g1n=1 satisfies

lim sup
n!1

L
1

n
log2

1

PX (Xn)
;
1

n
l ('n(X

n)) � ":

Proof of Theorem 5: For proving the theorem it suffices to prove
both

lim
n!1

Pr fXn 2 Un(�) \Dng =0 (43)

lim
n!1

Pr fXn 2 Vn(�) \Dng =0 (44)

for an arbitrarily fixed � > 0, where Un(�) and Vn(�) are the sets de-
fined in (13) and (14), respectively. We first prove (43). It is important
to notice that 'n is one-to-one inDn and f'n(xn) : xn 2 Dng satis-
fies the prefix condition. Therefore, it follows that

1 �
x 2D

2�l(' (x ))

�
x 2U (�)\D

2�l(' (x ))

> 2n� � Pr fXn 2 Un(�) \Dng ; for all n � 1 (45)

where the last inequality follows from the definition ofUn(�). Dividing
both sides of (45) by 2n� establishes (43).
In order to prove (44) we partition Xn into four disjoint subsets,

Dc
n, Un(�n) \ Dn, Vn(�) \ Dn, and Ucn(�n) \ V

c
n(�) \ Dn, where

�n =
log n

n
. By using these four subsets 1

n
E [l ('n(X

n))] is evaluated
in the following way:

1

n
E [l ('n(X

n))]=
1

n
x 2D

+
x 2U (� )\D

+
x 2V (�)\D

+
x 2U (� )\V (�)\D

PX (xn)l ('n(x
n))

�
1

n
x 2V (�)\D

PX (xn)l ('n(x
n))

+
1

n
x 2U (� )\V (�)\D

PX (xn)l ('n(x
n)) :

(46)

From the definition of Vn(�), the first sum in (46) is bounded as fol-
lows:

1

n
x 2V (�)\D

PX (xn)l ('n(x
n))

>

x 2V (�)\D

PX (xn)
1

n
log2

1

PX (xn)
+ �

=
1

n
x 2V (�)\D

PX (xn) log2
1

PX (xn)

+ � � Pr fXn 2 Vn(�) \Dng : (47)

The second term in (46) is evaluated as

1

n
x 2U (� )\V (�)\D

PX (xn)l ('n(x
n))

�
1

n
x 2U (� )\V (�)\D

PX (xn) log2
1

PX (xn)
� �n (48)

where xn 2 Ucn(�n) is used to obtain the inequality. By substituting
(47) and (48) into (46) and noticing that Un(�n)\Vn(�) = �, we have
the following lower bound on the expected codeword length:

1

n
E [l ('n(X

n))] >
1

n
x 2U (� )\D

PX (xn) log2
1

PX (xn)

+� � Pr fXn 2 Vn(�) \Dng � �n: (49)

We notice here that

Pr fXn 2 Ucn(�n) \Dng

= Pr fXn 2 Dng � Pr fXn 2 Un(�n)\Dng :
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Since (45) guarantees thatPr fXn 2 Un(�n) \Dng ! 0 as n!1,
(E3) and the definition ofDn guarantee that for any  > 0 there exists
an integer n1 = n1() satisfying

Pr fXn 2 Ucn(�n) \Dng � 1� "� 2; for all n � n1:

Therefore, the first term on the right-hand side of (49) is evaluated in
the following way:

1

n
x 2U (� )\D

PX (xn) log2
1

PX (xn)

�
1

n
x 2U (� )\D

PX (xn) � log2
Pr fXn 2 Ucn(�n) \Dng

PX (xn)

�
1

n
G["+2](X

n); for all n � n1 (50)

where the second inequality in (50) follows from the definition of
G["+2](X

n). Then, (49) and (50) lead to

1

n
E [l ('n(X

n))]�
1

n
G["+2](X

n)

> � � Pr fXn 2 Vn(�) \Dng � �n

which implies that

lim sup
n!1

1

n
E [l ('n(X

n))]�
1

n
G["+2](X

n)

� � � lim sup
n!1

Pr fXn 2 Vn(�) \Dng :

Since  > 0 is arbitrarily, it follows from (E2) that

0 � lim
#0

lim sup
n!1

1

n
E [l ('n(X

n))]�
1

n
G["+2](X

n)

� � � lim sup
n!1

Pr fXn 2 Vn(�) \Dng : (51)

Now, (44) is immediate from (51).

APPENDIX I
PROOF OF THEOREM 3

We first give the following lemma which is valid for all n � 1 and
" 2 [0; 1).

Lemma 2: Let " 2 [0; 1) be an arbitrarily given constant. Then, for
any FV code f('n;  n)g1n=1 with "n � " for all n � 1 satisfies

E [l ('n(X
n))] � G["](X

n) (52)

for all n � 1. In addition, there exists an FV code f('n;  n)g1n=1

satisfying "n � " for all n � 1 and

1

n
E [l ('n(X

n))] �
1

n
G["](X

n) + � (53)

for all sufficiently large n, where � > 0 is an arbitrarily given constant.
Proof: We first prove that any FV code with "n � " for all n � 1

satisfies (52). Fix an FV-code f('n;  n)g1n=1 satisfying "n � " for
all n � 1 arbitrarily. Define Dn by (42). Then, it clearly holds that
Pr fXn 2 Dng � 1 � " for all n � 1. We evaluate E [l ('n(X

n))]
in the following way:

E [l ('n(X
n))] �

x 2D

PX (xn)l ('n(x
n))

= Pr fXn 2 DngE [l ('n(X
n)) jXn 2 Dn]

(54)

where

E [l ('n(X
n)) jXn 2 Dn] =

x 2D

PX (xn)

Pr fXn 2 Dng
l ('n(x

n)) :

Since PX (xn)=Pr fXn 2 Dng is a probability distribution overDn

and f'n(xn) : xn 2 Dng satisfies the prefix condition, it holds that

E [l ('n(X
n)) jXn 2 Dn]

�
x 2D

PX (xn)

Pr fXn 2 Dng
log2

Pr fXn 2 Dng

PX (xn)
: (55)

The combination of (54) and (55) leads to

E [l ('n(X
n))] �

x 2D

PX (xn) log2
Pr fXn 2 Dng

PX (xn)

�G["](X
n);

where the last inequality follows from the definition of G["](X
n) and

Pr fXn 2 Dng � 1 � ".
Next, we prove the existence of an FV code satisfying (53). We first

notice that for any  > 0, there exists a set An � Xn satisfying
Pr fXn 2 Ang � 1 � " and

x 2A

PX (xn) log2
Pr fXn 2 Ang

PX (xn)
� G["](X

n) + : (56)

Without loss of generality, we can assume that PX (xn) > 0 for
all xn 2 An. Since PX (xn)=PrfXn 2 Ang gives a probability
distribution over An, we can construct the Shannon–Fano–Elias code
~'n : An ! f0; 1g�. We define an encoder 'n : Xn ! f0; 1g� by

'n(x
n) =

0 ~'n(x
n); if xn 2 An

1; otherwise
(57)

for each n � 1. Note that f'n(xn) : 'n(x
n) 2 Xng satisfies the

prefix condition because the Shannon–Fano–Elias code satisfies the
prefix condition. We define a decoder n in such a way that every xn 2
An is correctly decodable. Clearly, we have "n � Pr fXn =2 Ang � "
for all n � 1. On the other hand, 1

n
E [l ('n(X

n))] is evaluated in the
following way:

1

n
E [l ('n(X

n))] =
1

n
x 2A

PX (xn)l ('n(x
n))

+
1

n
x 2A

PX (xn)l ('n(x
n))

1)
<
1

n
x 2A

PX (xn) log2
Pr fXn 2 Ang

PX (xn)
+ 3

+
1

n
x 2A

PX (xn) � 1

�
1

n
x 2A

PX (xn) log2
Pr fXn 2 Ang

PX (xn)
+

3

n

2)

�
1

n
G["](X

n) +
3 + 

n

�
1

n
G["](X

n) + �; for all sufficiently n

where the marked inequalities follow from

1) l( ~'n(x
n)) < log2

PrfX 2A g
P (x )

+ 2 [2] and (57);

2) Equation (56);

which completes the proof of the lemma.
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Proof of Theorem 3: First, we establish the converse part of The-
orem 3. To this end, let f('n;  n)g1n=1 be an arbitrarily fixed FV code
satisfying lim supn!1 "n � ". Clearly, for any  > 0 there exists an
integer n0 = n0() such that "n � " +  for all n � n0. Then, the
first claim of Lemma 2 tells us that

E [l ('n(X
n))] � G["+](X

n); for all n � n0

which leads to

lim sup
n!1

1

n
E [l ('n(X

n))] � lim sup
n!1

1

n
G["+](X

n):

Since  > 0 is arbitrary, we have

lim sup
n!1

1

n
E [l ('n(X

n))] � lim
#0

lim sup
n!1

1

n
G["+](X

n):

Next, we establish the direct part. Let � > 0 be an arbitrary constant
and f�ig1i=0 an arbitrary sequence satisfying

1� " = �0 > �1 > � � � > �n > � � � > 0

and �n ! 0 as n ! 1. Then, the second claim of Lemma 2 tells
us that for each i � 1 there exists an FV code f('� ;n;  � ;n)g

1
n=1

satisfying

Pr f � ;n ('� ;n(X
n)) 6= X

ng � "+ �i; for all n � 1 (58)

and

1

n
E [l ('� ;n(X

n))] �
1

n
G["+� ](X

n) + �; for all n � ni (59)

where ni is an integer dependent on �. We define a sequence fNig
1
i=0

by N0 = 1 and Ni = maxfNi�1 + 1; nig for i � 1. Notice that
fNig

1
i=0 is monotone increasing and Ni � ni for each i � 1. By

using fNig
1
i=0, we define 'n = '� ;n and  n =  � ;n for all Ni �

n < Ni+1. For n satisfying N0 � n < N1 'n and  n can be defined
arbitrarily. Then, it follows from (58) and (59) that

"n = Pr f n ('n(X
n)) 6= X

ng � "+ �i (60)

and

1

n
E [l ('n(X

n))] �
1

n
G["+� ](X

n) + � (61)

for allNi � n < Ni+1. If we define in = maxfi : n � Nig for each
n � 1, (60) and (61) can be written as

"n � "+ �i (62)

and

1

n
E [l ('n(X

n))] �
1

n
G["+� ](X

n) + � (63)

respectively. Clearly, both (62) and (63) are valid for all n � 1. We
notice here that in ! 1 as n ! 1 and, therefore, �i ! 0 as
n!1 from the definitions of fNig

1
i=0 and f�ig

1
i=0. Then, it follows

from (62) and (63) that f('n;  n)g1n=1 satisfies

lim sup
n!1

"n � "

and

lim sup
n!1

1

n
E [l ('n(X

n))] � lim sup
n!1

1

n
G["+� ](X

n) + �

= lim
#0

lim sup
n!1

1

n
G["+](X

n) + � (64)

where the equality in (64) holds because lim supn!1
1
n
G["](X

n) is
monotone nonincreasing in ". In fact, for any fixed  > 0, there exists
an integer n0 such that �i �  for all n � n0 and therefore,

1

n
G["+](X

n) �
1

n
G["+� ](X

n); for all n � n0:

This leads to

lim
#0

lim sup
n!1

1

n
G["+](X

n) � lim sup
n!1

1

n
G["+� ](X

n)

by letting n!1 and then  # 0. On the other hand, for an integerM
define ~�n = maxf�i ; �i g. Since ~�i = �i for all 1 � n � M

and ~�i = �i for all n > M , we have

lim sup
n!1

1

n
G["+~� ](X

n) � lim
#0

lim sup
n!1

1

n
G["+](X

n)

which leads to

lim sup
n!1

1

n
G["+� ](X

n) � lim
#0

lim sup
n!1

1

n
G["+](X

n)

by lettingM ! 1. Now the proof of the direct part of Theorem 3 is
completed since � in (64) is arbitrary.

APPENDIX II
PROOFS OF COROLLARIES 1 AND 3

We may use a known result (see, e.g., [1, Sec. 4.4, Problem 8]) for
proving Corollaries 1 and 3. However, we give proofs of the two corol-
laries in order to make this paper self-contained.
For a real number � 2 RRR define En(�) and Fn(�) as follows:

En(�) = x
n 2 Xn :

1

n
log2

1

PX (xn)
� �

Fn(�) = x
n 2 Xn :

1

n
l ('n(x

n)) � � :

The following lemma plays a key role.

Lemma 3: For an arbitrary constant � > 0 define Wn(�) by (5).
Then, for any � > 0 it holds that

Pr fXn 2 En(�� �)g � Pr fXn 2 Wc
n(�)g

� Pr fXn 2 Fn(�)g

� Pr fXn 2 En(�+ �)g+ Pr fXn 2 Wc
n(�)g : (65)

Proof: We first note that the definitions of Wn(�), En(�), and
Fn(�) imply that

(Wn(�)\En(�� �)) � (Wn(�)\ Fn(�))

� (Wn(�)\En(�+ �)): (66)

Then, the upper bound of Pr fXn 2 Fn(�)g in (65) can be developed
in the following way:

Pr fXn 2 Fn(�)g = Pr fXn 2 Fn(�) \Wn(�)g

+Pr fXn 2 Fn(�) \W
c
n(�)g

� Pr fXn 2 En(�+ �) \Wn(�)g

+Pr fXn 2 Fn(�) \W
c
n(�)g

� Pr fXn 2 En(�+ �)g

+Pr fXn 2 Wc
n(�)g ; (67)
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where the first inequality in (67) follows from (66). On the other hand,
the lower bound of Pr fXn 2 Fn(�)g in (65) is developed in the fol-
lowing manner:

Pr fXn 2 Fn(�)g = Pr fXn 2 Fn(�) \Wn(�)g

+ Pr fXn 2 Fn(�) \W
c
n(�)g

� Pr fXn 2 En(�� �) \Wn(�)g

+ Pr fXn 2 Fn(�) \W
c
n(�)g

� Pr fXn 2 En(�� �) \Wn(�)g

� Pr fXn 2 En(�� �)g

� Pr fXn 2 Wc
n(�)g (68)

where the first inequality in (68) follows from (66). Now the claim of
this lemma is immediate from the combination of (67) and (68).

Proof of Corollary 1: Theorem 2 guarantees that for any � > 0
there exists an integer n0 = n0(�) such that

Pr fXn 2 Wc
n(�)g � �; for all n � n0:

Thus, it follows from Lemma 3 that

Pr fXn 2 En(�� �)g � � � Pr fXn 2 Fn(�)g

� Pr fXn 2 En(�+ �)g+ �

for all n � n0 (69)

which, together with the definition of L(�; �) in (6), means that

L
1

n
log2

1

PX (Xn)
;
1

n
l ('n(X

n)) � �; for all n � n0:

Since � > 0 in (69) is arbitrary, the claim of Corollary 1 is established.

Proof of Corollary 3: Let Dn be the set defined by (42). It is
important to notice that we can prove

Pr fXn 2 En(�� �)g � Pr fXn 2 (Wn(�)\Dn)
cg

� Pr fXn 2 Fn(�)g

� Pr fXn 2 En(�+ �)g+Pr fXn 2 (Wn(�)\Dn)
cg (70)

by using the same argument in the proof of Lemma 3 and replacing
Wn(�) with Wn(�) \ Dn. We now use Theorem 5 for evaluating
PrfXn 2 (Wn(�) \Dn)

cg. Since it holds that

Pr fXn 2 (Wn(�)\Dn)
cg

= Pr fXn 2 Wc
n(�) \Dng+ Pr fXn 2 Dc

ng (71)

and f('n;  n)g1n=1 is assumed to be "-mean-optimal, Theorem 5 guar-
antees that for any � > 0 there exists an integer n1 = n1(�) satisfying
both

Pr fXn 2 Wc
n(�) \Dng � �=2; for all n � n1 (72)

and

Pr fXn 2 Dng � "+ �=2; for all n � n1: (73)

Hence, by combining (71)–(73) we have

Pr fXn 2 (Wn(�)\Dn)
cg � "+ �; for all n � n1: (74)

In addition, notice that we have

Pr fXn 2 En(�� �)g � Pr fXn 2 En(�� "� �)g (75)

Pr fXn 2 En(�+ �)g � Pr fXn 2 En(�+ "+ �)g (76)

from the definition of En(�). Then, the substitution of (74)–(76) into
(70) yields

Pr fXn 2 En(�� "� �)g � "� �

� Pr fXn 2 Fn(�)g

� Pr fXn 2 En(�+ "+ �)g+ "+ �; for all n � n1 (77)

which means that

L
1

n
log2

1

PX (Xn)
;
1

n
l ('n(X

n)) � "+ �; for all n � n1:

Since � > 0 in (77) is arbitrary, the claim of Corollary 3 is established.

APPENDIX III
PROOFS OF (39) AND (40)

Proof of (39): SinceH(XXX) = H(P ) is obvious from the defini-
tion ofH(XXX), in view of Theorems 3 and 4 it is sufficient to establish

G["](XXX) � (1� ")H(P) (78)

for arbitrarily fixed " 2 (0; 1). Note that (78) is obvious from the or-
dinary source coding theorem if " = 0. We fix a constant � satisfying
0 < � < minf";H(P )g arbitrarily and define

Tn = xn 2 Xn :
1

n
log2

1

PX (xn)
�H(P ) � � :

Then, the weak law of large numbers guarantees thatPr fXn 2 Tng �
1� � for all sufficiently large n. Letting  > 0 be a sufficiently small
constant, we note that we can choose a subset An � Tn satisfying

1� "�  � Pr fXn 2 Ang

� 1� "�  + max
x 2T nA

PX (xn) (79)

for all sufficiently large n. Denoting �n(An) the function defined in
(31), it follows that

1

n
G["+](X

n)
1)

��n(An)

2)

�
x 2A

PX (xn)(H(P) + �)

3)

� (1� "�  + 2�n(H(P )��))(H(P ) + �) (80)

where the marked inequalities in (80) follow from

1) the definition of G["+](X
n) and (79);

2) Pr fXn 2 Ang log2 Pr fX
n 2 Ang � 0 and

1

n
log2

1

PX (xn)
� H(P ) + �; for all xn 2 An � Tn;

3) PX (xn) � 2�n(H(P )��), for all xn 2 TnnAn.

By taking the limit superior of both sides of (80) and letting  # 0,
we have G["](XXX) � (1� ")H(P) + �. This establishes (39) because
� > 0 can be made arbitrarily small.

Proof of (40): Since

G["](XXX) �
�1H(P1) + (�2 � ")H(P2); if 0 � " < �2
(1� ")H(P1); otherwise

(81)

can be obtained similarly to (39), we prove only the inequality opposite
to (81). Theorem 4 and H(XXX) = H(P1) tell us that it is sufficient to
prove

G["](XXX) � �1H(P1) + (�2 � ")H(P2)



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 51, NO. 4, APRIL 2005 1555

for an arbitrarily fixed 0 � " < �2. To this end, we fix a constant
� > 0 and define T (1)

n and T (2)
n by

T
(1)
n = x

n 2 Xn :
1

n
log2

1

PX (xn)
�H(P1) < �

T
(2)
n = x

n 2 Xn :
1

n
log2

1

PX (xn)
�H(P2) < �

respectively. Notice that we can choose a sufficiently small � > 0 such
that

Pr X
n 2 T (1)

n = �1 � �n

Pr X
n 2 T (2)

n = �2 � �n

and T (1)
n \ T

(2)
n = �, where �n ! 0 as n!1. We note that for any

An � Xn such that Pr fXn 2 Ang � 1 � " � , where  > 0 is
an arbitrary constant, �n(An) defined in (31) is lower-bounded in the
following way:

�n(An) =
1

n
Pr fXn 2 Ang log2 Pr fX

n 2 Ang

+
1

n
x 2A

PX (xn) log2
1

PX (xn)

�
1

n
x 2A \T

PX (xn) log2
1

PX (xn)

+
1

n
x 2A \T

PX (xn) log2
1

PX (xn)
+ o(1)

4)

� Pr X
n 2 An \ T

(1)
n H(P1)

+ Pr X
n 2 An \ T

(2)
n H(P2)� � + o(1)

5)

� (�1 � �n)H(P1)

+ (�2 � "�  � �n)H(P2)� � (82)

where o(1)! 0 as n!1 and the marked inequalities follow from

4) the definitions of T (1)
n and T (2)

n ;
5) H(P1) < H(P2),

Pr X
n2An \ T

(1)
n +Pr X

n2An \ T
(2)
n �1�"��2�n

and

Pr X
n2An \ T

(1)
n ��1��n:

Since the right-hand side of (82) no longer depends on An, (82) leads
to

lim sup
n!1

1

n
G["+](X

n) � �1H(P1) + (�2 � "� )H(P2)� �:

By letting  # 0, we haveG["](XXX) � �1H(P1)+(�2�")H(P2)��.
Now we have (40) because � > 0 can be made arbitrarily small.
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Results on the Nonlinear Span of Binary Sequences

Panagiotis Rizomiliotis, Member, IEEE, and
Nicholas Kalouptsidis, Senior Member, IEEE

Abstract—The problem of finding the length of a shortest feedback shift
register that generates a given finite-length sequence is considered. An ef-
ficient algorithm for the determination of the span is proposed, that takes
advantage of the special block structure of the associated system of linear
equations. The span distribution of finite-length binary sequences is also
studied.

Index Terms—Binary sequences, nonlinear feedback functions, shift reg-
isters, span.

I. INTRODUCTION

The binary sequences produced by finite-state machines find various
applications in modern communications [13]. Depending on the appli-
cation, the sequences are required to possess certain properties. When
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