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Abstract

In order to effectively evade anti-malware solutions, Android malware authors

are progressively resorting to automatic obfuscation strategies. Recent works

have shown, on small-scale experiments, the possibility of evading anti-malware

engines by applying simple obfuscation transformations on previously detected

malware samples. In this paper, we provide a large-scale experiment in which

the detection performances of a high number of anti-malware solutions are tested

against two different sets of malware samples that have been obfuscated accord-

ing to different strategies. Moreover, we show that anti-malware engines search

for possible malicious content inside assets and entry-point classes. We also

provide a temporal analysis of the detection performances of anti-malware en-

gines to verify if their resilience has improved since 2013. Finally, we show how,

by manipulating the area of the Android executable that contains the strings

used by the application, it is possible to deceive anti-malware engines so that

they will identify legitimate samples as malware. On one hand, the attained

results show that anti-malware systems have improved their resilience against

trivial obfuscation techniques. On the other hand, more complex changes to the

application executable have proved to be still effective against detection. Thus,

we claim that a deeper static (or dynamic) analysis of the application is needed

to improve the robustness of such systems.
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1. Introduction

Not surprisingly, malware writers are paying more and more attention to

mobile devices. In fact, the number of mobile devices sold worldwide has already

surpassed that of traditional personal computers. According to a recent report

by F-Secure, more than 99% of the new mobile malware families discovered in5

2014 targets the Android platform, which accounts for more than 750 millions

of active devices [1].

There are several reasons for which Android is a particular interesting target

for deploying malware:

1. Its open source nature allows an attacker to carefully study the operating10

system implementation, thus increasing the probability of finding vulner-

abilities.

2. There are multiple alternative markets besides the official one (Google

Play), in which it is possible to find applications that are not released

through the support of Google (for example, for copyright reasons) or to15

find popular premium applications at a reduced price. Popular examples

are the Amazon or Samsung app stores ([2, 3]). However, many of these

markets provide insufficient control on the security of the applications,

thus becoming the first source of mobile malware [4].

3. Even if Google Play features an advanced dynamic analysis system for20

detecting malware and spyware, called Google Bouncer, several malware

have managed to bypass it even very recently (see, for instance, [5, 6, 7]).

4. The problem gets even more serious because of the bad management of

digital signatures in the Google Play store. In order to upload an app

to the store and install it on the phone, an application must be signed25

with a certificate. This certificate is also used as a reference for other

applications to share their data. Sadly, many legitimate applications are
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signed with extremely insecure private keys (i.e., private keys that can

be easily obtained by an attacker). It is therefore not so difficult for an

attacker to digitally sign a malicious application so that its certificate30

would look trusted. In this way, it is even possible to replace a legitimate

app with its malicious variant through an update process [8]. Recently, a

dangerous vulnerability that exploited the lack of control in the certificate

issuer by the Android cryptographic system has been discovered, and it

has been there until the most recent versions of Android, including KitKat35

(4.4) [9].

To improve the security of the users, a number of different anti-malware

solutions has been developed. These solutions perform an in-depth scan of the

application, including its bytecode, external resources such as images, audio and

so forth. Consequently, Android malware are getting more sophisticated, not40

only because of the different types of attacks that they can implement (e.g., root

exploits, embedded executables, invisible layouts, encrypted C&C communica-

tions, etc. [10, 11]), but also for the possibility of deceiving reverse engineering

attempts or anti-malware analysis through obfuscation [12, 13]. In this paper,

we refer to the term obfuscation as actions that perform changes on the applica-45

tion while preserving its semantics. For instance, they can modify its bytecode,

strings, or resource files. The aim of obfuscation is making applications more

difficult to be analyzed by humans or automatic tools.

Obfuscation can be used to protect applications from being plagiarized or

cloned. However, some obfuscation strategies might also be used to easily cre-50

ate new versions of the same malware that are more difficult to analyze. The

attacker is motivated to adopt them, as automatic analysis tools often rely on

static signatures that can be easily evaded by changing few elements of the

applications (for example, replacing the name of the methods). It is possible

to find different examples of obfuscation in the wild, such as those reported55

in [14, 15, 16]. A number of automatic tools, available either as commercial

products or for free, can be used in order to ease malware obfuscation [17, 18].
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Previous works explored the world of obfuscation for the Android platform,

by pointing out how specific obfuscation techniques can be effective to evade

popular anti-malware solutions [19, 20]. In particular, the work by Rastogi60

et al. [21] clearly showed how anti-malware systems are weak against easy-

to-implement transformation techniques. In particular, it showed that it is

possible to evade the vast majority of the most popular anti-malware software

for Android by applying a combination of obfuscation techniques. It also showed

that many anti-malware software tend to rely on signatures that are weak and65

easy to bypass. That work was carried out by testing obfuscation techniques

against 6 malware samples, where anti-malware signatures were updated at the

beginning of 2013.

1.1. Contributions

In this paper, we provide a deeper insight into the effects of the obfuscation of70

Android malware. First, our interest is to assess the current status of the anti-

malware detection capabilities, as almost one year has passed since the analysis

made by Rastogi et al. We do so by deploying a large-scale experiment on more

than 50 malware families and two malware datasets, namely, Malgenome and

Contagio, for a total of more than 1200 samples [22, 23]. We obfuscate the75

malware samples in these datasets by means of different strategies, which differ

from each other in terms of complexity (from simple ones such as class and

methods renaming, to complex ones such as reflection and class encryption),

and areas of the Android executable that are targeted (e.g., strings, bytecode,

or both). We experiment new obfuscation strategies, and their combinations80

that have never been tested in previous works (such as the combination of

obfuscation by Reflection and Class Encryption). Our tests have been carried

out by running 13 among the most popular anti-malware solutions available

on the Android market Google Play. This experimental set-up provides, to

the best of our knowledge, the biggest assessment of anti-malware performances85

against obfuscated samples in comparison with previous works.

The second contribution of this work concerns the assessment of the parts
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of the application that might be decisive in the anti-malware detection process.

To this end, we focused on the incidence of external resources, such as assets.

We found that anti-malware engines resort to analyzing and flagging external90

resources as malicious as an aid for the detection, thus confirming the findings

in previous works. However, we also point out the extent to which the analysis

of external resources plays a key role in the final outcome produced by anti-

malware tools. To this end, we show that by manipulating the assets of a

malware sample it is possible to evade the detection. We will also explain,95

though, that while the ad-hoc manual implementation is quite easy to deploy,

its automatic version is quite difficult to develop.

We also examine the role of entry-point classes in the detection outcome

of anti-malware systems detection. In particular, we show that many anti-

malware engines rely on the analysis of such classes in order to perform malware100

detection. While obfuscating such classes is not trivial, as it might lead to

completely break the application, we believe that such a choice is reasonable,

to the extent to which other obfuscation strategies fail at evading detection.

Our analysis allows us also to show an interesting trend in the performances

of anti-malware products. On one hand, we show that trivial obfuscation tech-105

niques, as well as simple combinations of these techniques, are not enough any-

more to evade the majority of anti-malware solutions. In one year, signatures

and heuristics adopted by such systems have improved, forcing the attacker to

perform changes that might end up in breaking the application. Some anti-

malware solutions exhibit improved static analysis of the code, as well as a110

more in-depth analysis of the application entry points. On the other hand,

many anti-malware solutions still fail at detecting advanced combinations of

these techniques.

To further confirm this trend, the third contribution of this paper provides

a temporal analysis of the detection performances for some specific samples115

that have been considered in the past in previous works on obfuscation. We

show that, for such samples, the obfuscation techniques needed to evade specific

anti-malware solutions require more changes to the executable code and to the
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resource files compared to the past. From these analysis we can desume that, if

anti-malware solutions have shown great improvements compared to the past,120

they still need further development as they are still vulnerable when they are

targeted by complex obfuscation mechanisms.

Additionally, we also point out which obfuscation techniques effectively per-

form on each anti-malware solution. In particular, we show which strategy

allows for obtaining good evasion performances while keeping its complexity as125

low as possible.

The final contribution of the paper aims at providing an assessment of the

easiness of deceiving anti-malware systems. Is it possible to create benign sam-

ples that will be considered malicious by anti-malware engines? We show that

this result can be easily attained by injecting malicious strings, i.e., strings130

found in malicious samples (but that will be never used in, or called by the

code), inside a perfectly benign sample, which will only perform benign opera-

tions even after the injection. We show that the majority of the engines exhibit

a huge amount of false positives, thus pointing out that those signatures are

weak against those attacks. Interestingly, we show that these benign samples135

are wrongly detected as being of the same type of the malware from which the

malicious strings have been extracted, regardless of the actual bytecode, thus

showing that strings have a key role in the detection process. This is a seri-

ous issue, as the user might not trust its anti-malware product, if too many

false alerts are raised, and thus decide not to use anti-malware products. Fur-140

thermore, there are practical cases in which Intrusion Detection Systems rely

on signatures that are similar to the ones of the anti-malware engines (such as

Snort [25]), and this kind of attack might easily confuse them.

1.2. Organization

The remainder of this document is organized as follows. Section 2 briefly145

sketches the fundamentals of Android applications and provides a description of

the .dex file structure. Section 3 describes the obfuscation strategies adopted

in this paper, pointing out how they modify the classes.dex and the resource
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files. Section 4 presents the experimental evaluation. Section 5 provides a

description of the state-of-the-art works related to Android obfuscation. Section150

6 discusses the experimental evaluation, as well as possible countermeasures in

order to improve anti-malware performances. Section 7 closes the paper with

our conclusions.

2. The Android Platform

2.1. Android Applications155

An Android application is basically a compressed archive with .apk file

extension. This archive contains:

• AndroidManifest.xml, a file with the description of the main appli-

cation components, i.e., the classes from which the application starts its

execution (entry-points), the permissions used by the application (e.g.,160

requesting Wi-Fi of SMS functionalities), the actions used to activate a

specific component (intents), etc.

• classes.dex, a Dalvik Virtual Machine executable obtained by a) com-

piling the .java files that contain all the classes used by the application

(thus, generating .class Java Virtual Machine files) and b) convert-165

ing the Java Virtual Machine files to Dalvik byte code. Dalvik is a

virtual machine similar to its Java counterpart, but optimized for mobile

phones, and in particular for systems with limited memory or computa-

tional power. It is worth noting that the classes.dex file can be disas-

sembled into .smali files, a simplified format that facilitates the reading170

of disassembled bytecode (see, for instance, the usage of baksmali [26] to

disassemble Android executables).

• Assets, external resources needed for the execution of the application

(e.g., audio files for multimedia applications, images, or, more recently,

even executables containing exploits).175
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• Resources, a number of .xml files, which describe how layouts (i.e., the

visual structure of the user interface), menus, dialogs, etc., are designed.

When an application is started, the AndroidManifest.xml is accessed to

extract the entry-point classes of the application, i.e., those classes that are

explicitly declared in the AndroidManifest.xml file, and to read the permis-180

sions needed for the execution. These informations are used by the application,

for instance, to identify the main class of the application inside the .dex file.

Therefore, the entry point classes defined in the AndroidManifest.xml should

be coherent with the definitions contained inside the .dex file, in order not to

compromise the functionalities of the application.185

2.2. DEX Format

2.2.1. Overview

For the purposes of this paper, it is of interest to provide an insight into the

modus operandi of the Dalvik (.dex) format. The Dalvik Virtual Machine

is a register machine, i.e, the operands on which the instructions operate are190

stored in registers. This allows a higher optimization when compared to the

Java Virtual Machine (which is a stack machine). For example, the instruc-

tion c=a+b would be represented in Dalvik as add-int v0,v1,v2;. In a .dex

file, there is a unique Data section (at the end of the file) which contains in-

formation such as classes, fields, names access flags, fields and methods names195

and, ultimately, methods bytecode. The various parts of the Data section of

the .dex file are referenced by IDs, i.e., data structures that contain references

to specific parts of the Data section. In this way, it is easily possible to trace

methods, strings, and fields to reconstruct elements such as string names or

methods return types [27, 28].200

2.2.2. DEX File Structure

We will now provide a more detailed description of the elements of the .dex

file format [27, 28].
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• Header. It is a data structure which contains, in order: i) a magic number

(i.e., a byte sequence that directly identifies that a .dex file is used), ii)205

a file checksum number, iii) a 20 bytes SHA-1 hash of the whole .dex

file with the exception of the magic number, the checksum, and the hash

itself, iv) header and file size, v) an endian tag (data in .dex files are

stored in little endian format, i.e., bytes are in reversed order) vi)

specific addresses of the Data area, vii) size and position of the different210

IDs areas.

• String IDs. They are ordered addresses that point to the Data section in

which the related strings are stored. It is worth noting that the ID number

is defined by the position of the address in the section. For example, the

first address of the section will be related to the string with ID Number 0,215

the second to ID Number 1 etc.

• Type IDs. They are addresses related to String IDs which contain the

reference to the corresponding String type (for example, a string L rep-

resents a class).

• Proto IDs. They are data structures which contain addresses of strings220

that, when combined, creates a method prototype. Therefore, they mostly

indicate how to find the method return types and parameters.

• Field IDs. They are data structures which contain the references to

retrieve information about classes fields. In particular, they contain: i)

their class id, ii) their type id (reference to type IDs) and iii) their name225

id (they refer to string ids).

• Method IDs. They are data structures which contain the references to

retrieve information about methods. In particular, they contain: i) their

class index, ii) their prototype id (they refer to Proto IDs) and iii) their

name (they refer to string IDs).230

• Classes Defs. They are data structures which define all the class pa-

rameters such as the superclass, the access flags, the interfaces offsets, its
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bytecode method addresses (i.e., where the method bytecode starts), etc.

• Data. This is the main portion of the .dex file and it is divided into two

parts. The first, called class data item, is a data structure that contains235

all the information related to the size and offsets of static and instance

fields, as well as those of virtual and direct methods and annotations.

The second part is called code item, and contains the bytecode for each

method of each class. For the sake of simplicity, we will refer to the code

item section with the term bytecode.240

There is also a debug section, that contains some useful information about the

source files line numbers, variable names, etc. This section does not contain

crucial information on the execution of the application and might as well be

removed. From the above description, it is easy to observe that the .dex format

is extremely compact, as the IDs mechanism allows for an efficient management245

of the references. In addition, this format also allows, with some experience, to

easily understand the meaning of the different components of the application,

and even to decompile it.

3. Obfuscation Strategies

With the term obfuscation, we refer to any modification of the Android250

executable bytecode (i.e., the content of the .dex file) and/or .xml of the files

(such as AndroidManifest.xml or resources-related files like String.xml), that

does not affect the original functionalities of the application.

The techniques the we adopted can be divided into two sets. One set,

that we called Trivial Obfuscation Techniques in agreement with the cur-255

rent literature, contains obfuscation techniques that only modify strings in the

classes.dex file. In the other set, that we called Non-Trivial Obfuscation

Techniques, we employ techniques that modify both the strings and the byte-

code of the executable. For each set of strategies that we adopted, we also

include obfuscation techniques that target .xml files, such as AndroidManifest260
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.xml. In fact, there are cases in which obfuscated malware can be still detected

because of signatures based on information in the Manifest or other .xml files.

These choices are related to how anti-malware systems perform their de-

tection. The first and easiest way to find anomalies in an application is by

matching specific elements that are known to be related to malicious activities.265

For instance, in the case of Android applications, their package and class names

(contained in the string section) might alone be enough for the anti-malware to

decide about their maliciousness. Likewise, strings shown on the screen or used

as variables for performing specific operations can be useful indicators for the

detection. Anti-malware engines can therefore associate to a malware specific270

signatures extracted from the presence of certain strings inside its executable

[19, 21].

Obviously, such signatures might be quite easy to evade, as an attacker would

be able to conceal most of the strings with a minimum effort. For this reason,

some anti-malware engines also implement heuristics based, for example, on the275

static analysis of the code. In particular, they can analyze sequences of bytecode

instructions, thus trying to identify the presence of malicious operations. This

analysis is of course more computationally expensive, but more robust against

trivial evasion attempts. Other approaches might combine information retrieved

from strings and bytecode instructions.280

Another element that might provide contributes to the detection is the anal-

ysis of the AndroidManifest.xml and of the resource files, e.g., .xml files that

describe the application layout. Concealing information in these files is more

difficult, as careless modifications might completely break the application func-

tionalities. Thus, some engines perform a simple SHA1 check of these files against285

a blacklist of known malicious ones.

As most of anti-malware engines are not open-source, we do not exactly know

which detection strategies they employ to perform their detection. Therefore,

addressing different elements of the application is a useful strategy to stimulate

all possible detection mechanisms that can be adopted.290

It is worth noting that, among the obfuscation techniques that we have em-
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ployed, some of them have been already tested in previous works [21], while

other more sophisticated techniques, such as Class Encryption, have only been

proposed in previous works from a conceptual viewpoint. In this paper we

show how these more sophisticated obfuscation techniques can be actually im-295

plemented, and the related experimental results. In addition, we also want to

point out that the aim of this work is not to test the largest number of obfusca-

tion techniques, but to investigate a set of diverse obfuscation techniques that

exhibit different levels of implementation complexity, and that modify different

elements of the application. This choice also allowed us to propose novel com-300

binations of obfuscation techniques that were never proposed nor tested before

(e.g., the combination of Reflection and Class Encryption). These combinations

produced the largest amount of modifications of the bytecode never seen before.

3.1. Trivial Obfuscation Strategies

With the term Trivial we define an ensemble of obfuscation strategies that305

only affects strings, without changing the bytecode instructions. This strategy

consists in replacing the names of all packages, methods, classes, fields and

source files of an Android application with random letters. Obviously, such

operations include disassembling, reassembling and repacking the classes.dex

file. These techniques have also been employed by Rastogi et al. on a small310

number of cases [21]. We note that Rastogi et al. defined as Trivial only

simple repackaging and disassembling/reassembling solutions. In our definition

of Trivial, along with such strategies (that we name Naive for better clarity), we

include what Rastogi et al. called Transformations Attacks Detectable by Static

Analysis. When such changes are applied to entry-point classes (i.e., classes that315

extends fundamental functionalities of Android, such as activities, broadcast

receivers, etc.), the AndroidManifest.xml file must be changed accordingly,

otherwise the application will be broken. We expect these techniques to be

effective against anti-malware engine, as many anti-malware engines classify a

sample as malware by simply detecting the presence of the names of suspicious320

classes, packages or methods. This operation leads to changes at strings, fields,
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methods, classes definitions levels of the executable file structure. In particular,

since the same letters can be used to reference both name methods and fields,

there may be a reduction of the number of strings within the data section and

of their relative references (i.e., the size of IDs changes).325

3.2. Non-Trivial Obfuscation Strategies

In this section, we introduce techniques that affect both the strings and the

bytecode of the executable. All these techniques were mentioned by Rastogi et

al. [21]. However some of these, like Reflection and Class Encryption, have not

been extensively analyzed. Such techniques are effective against anti-malware330

systems that analyze the bytecode instructions to detect malware. Likewise,

different types of strings (e.g., constants) are modified, and this might tackle

engines which resort to analyze them in order to perform detection.

3.2.1. Reflection

Reflection is the property of a class of inspecting itself, thus getting informa-335

tion on its methods, fields, etc. In particular, Java supports such property, by

leveraging on the Java.reflect API [29]. In this paper, we use the reflection

property for invocations, i.e., we replace each invoke type instruction with a

number of bytecode instructions that leverage on reflective calls to perform the

same action as the replaced instruction. In this technique, three invocations340

are used to replace the original one: a) forName, which searches for a class

with a specific name b) getMethod, which returns the target method object

(related to the class name obtained before), and c) invoke, which performs the

actual invocation on the method object that is the result of the second invoke.

Typically, the use of reflection would bring to a waste of bytecode instructions.345

This is the reason why such technique is only used in code development under

particular circumstances.

3.2.2. String Encryption

This technique obfuscates every string that is defined inside a class by means

of an algorithm based on XOR operations. At runtime, the correct string is350
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generated by passing the encrypted string (represented as a byte array) to a

function that performs the decryption mathematical operations (it takes, as

arguments, three integers). Although this mechanism does not resort to DES or

AES algorithms, it is worth noting that it is more complex than other approaches

for string encryption that have been proposed in the literature, which adopted355

a Caesar shift [20].

3.2.3. Class Encryption

This is the most powerful and advanced obfuscation technique adopted in

this paper. This obfuscation technique completely encrypts and compresses

(by means of the GZIP algorithm) each class, and stores its data in a data360

array. Consequently, a new method that will perform decryption, and load

this class at runtime, needs to be created. Accordingly, during the execu-

tion of the obfuscated application, the obfuscated class needs to be first de-

crypted, decompressed, and then loaded in memory. After that, the methods

getClassLoader(), getDeclaredConstructor and newInstance() will create365

a new instance of the class [30]. Finally, every time the methods or the fields

of the class need to be accessed, the Reflection API will be used accordingly.

This technique can highly increase the overhead of the application as a lot of

instructions are added. However, it makes enormously difficult for a human

operator to perform static analysis.370

3.3. Other Obfuscation Strategies

3.3.1. .xml files and resources

We complement the obfuscation of the classes.dex file, by performing

some additional operations on the AndroidManifest.xml file and on other

resources-related .xml files. This is done for two reasons: i) To adapt the375

AndroidManifest.xml to some changes made on the executable file, and ii) to

undermine the effectiveness of signatures of anti-malware engines that might rely

on the MD5 value related to some resource files that has been found in malware

samples. Such changes include, for example, the removal of the android:name
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tag from the AndroidManifest.xml, as well as the modification of some entry380

point definitions. Nonetheless, we adapt the removal of specific strings in the

String.xml files.

3.3.2. Assets

We also perform obfuscation of assets, by means of a simple XOR encryption.

This is crucial, as many anti-malware engines, in order to detect a malicious385

application, perform a check on assets. Although easy to break, the employed

encryption technique is enough to make the asset non detectable by an anti-

malware engine.

3.4. Combining Obfuscation Techniques

The above techniques can be combined in order to make malware detection390

more hardly detectable. Combinations of different obfuscation techniques have

been previously proposed in the literature. However, as many anti-malware

systems at that time could be evaded by obfuscating just one of the components

of an Android application, few combinations have been tested in previous works.

The combinations tested and reported in this paper aim at providing a deeper395

level of obfuscation compared to single-ended solutions, as they allow for bigger

bytecode changes in comparison with previous works (i.e., more instructions are

changed).

We used different combinations of the obfuscation techniques described in

the previous sections. Some of these combinations (in particular, combinations400

between Trivial and non-Trivial techniques) have already been tested in the

literature to break detection when using single obfuscation techniques was not

effective. It is worth noting that Trivial Obfuscation Techniques will always

be adopted before non-Trivial ones. This procedure avoids possible crashes

of the obfuscated Android application when methods or classes are renamed405

after applying, for instance, Reflection. For the same reason, String Encryption

will always be applied before Reflection, and the latter will always be used
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before Class Encryption. In fact, once all classes are encrypted, no further

modifications are possible.

4. Obfuscation Assessment410

4.1. Objectives

In this Section we experimentally assess the effectiveness of the obfuscation

strategies described in Section 3, as well as the easiness of deceiving the anti-

malware detection capabilities. First, we are interested in pointing out which

obfuscation techniques allow for evading the largest fraction of anti-malware415

engines, by also combining the obfuscations approaches described in Section

3. This is done by also providing some insights into the overhead that each

technique will bring to the application in terms of size.

Second, we point out the role of external assets with respect to the main

application files. In particular, we show how anti-malware engines rely on the420

analysis of such external files to detect malicious applications.

Third, we analyze the role of the application entry-points, by showing how

much anti-malware detection capabilities rely on their analysis.

Fourth, we make a comparison between our results and the ones reported

in [21]. We performed the tests on the same set of malware samples used in425

[21] to see if the obfuscation techniques, with which it was possible to evade

anti-malware solutions at the time of the experiments reported in that paper,

were still effective. Thus, this experiment aims at assessing whether or not the

anti-malware detection capabilities have evolved through time.

Fifth, we show, for each anti-malware engine and under the scenarios consid-430

ered in the previous points (i.e., simple apk obfuscation, encrypted assets and

obfuscated entry-points), the least complex obfuscation that yields to a detec-

tion rate drop of more than 50%. This is done to prove that each anti-malware

engine is particularly sensitive to a specific obfuscation strategy and that the

optimal choice of the attack depends on the targeted system as well.435
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Finally, we test the easiness of deceiving the anti-malware detection capa-

bilities. For example, is it easy to trick an anti-malware engine so that a benign

sample is considered malicious? We will provide the answer in the next Sections.

4.2. Dataset and Anti-malware Engines

4.2.1. Datasets440

In order to perform the assessment, we used a dataset made up of samples

collected from two representative sources of Android malware. The first one is

MalGenome [22], a very popular dataset collected by Zhou and Jiang in 2012 [31].

This dataset contains more than 1200 malware samples that emerged in the wild

from August 2010 to October 2011. The second one is Contagio MiniDump, a445

dataset composed by 237 samples collected from the popular malware analysis

website Contagio [23]. These malware samples have been collected between

December 2011 and March 2013. We have not included recently discovered

malware, as detection engines might not have fully updated their signatures to

such new releases, and so they can be vulnerable to obfuscation. It is important450

to note that, to the purposes of our paper, we applied obfuscation strategies to

well known samples (i.e., samples for which we expect signatures have been fully

deployed) to see if they can still harm Android users by evading anti-malware

software.

4.2.2. Anti-malware Engines455

To perform a deep and significant analysis, we have collected 13 signature-

based anti-malware systems. These systems represent the most popular and

the most downloaded ones from Google Play. However, differently from pre-

vious works, we are not interested in assessing the performances of a specific

anti-malware system, or establishing a particular ranking among these systems,460

which is something that is already available from other online services (e.g.,

[32]). For this reason, we will report the attained results in terms of detection

statistics over the set of considered anti-malware engines. We believe that this

is a more interesting analysis, as a common user might randomly choose be-
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Table 1: List of Antivirus apps included in the experimental evaluation

Vendor Version Vendor Version

Avast 3.0.7118 AVG 3.5.1

Comodo 2.4.1 Dr.Web 9.00.1

ESET 2.0.853.0-15 Fsecure 8.3.14209

GData 24.5.4 Kaspersky 11.2.4.105

McAfee 3.2.0.2193 Norton 3.8.0.1199

TrendMicro 3.5.0.1348 WebRoot 3.5.0.6058

Zoner 1.8.2

tween one of the systems that have been tested in this paper. Table 1 shows465

the anti-malware engines that have been adopted for this analysis, along with

their version. All signatures have been updated in February 2014. To the best

of our knowledge, this is the largest amount of anti-malware systems ever used

in a mobile assessment of this kind.

We also point out that we did not resort to services such as VirusTotal470

or AndroTotal [24, 36]. Despite them being useful services, they have their

own limitations for the purposes of this paper. By using VirusTotal, we would

have leveraged on X86 anti-malware engines that are not specifically developed

for mobile applications, and therefore might not be accurate as their mobile

counterparts. In addition, we included in our testing environment a number of475

engines which is twice the number of those featured in AndroTotal and, more

importantly, we had complete control on the engine versions, which is crucial

for a fair evaluation. For this reason, every engine has been installed and run

on physical devices featuring Android 4.2.2.

4.3. Experimental Protocol480

In the following, we report the results of four sets of experiments, each aimed

at assessing the effectiveness of obfuscation from different viewpoints:

• General obfuscation assessment. In this experiment we obfuscate
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the whole Contagio and MalGenome datasets by means of the techniques

described in Section 3. We tested seven different obfuscation scenarios.485

In the first four scenarios, each of the techniques described in Section 3,

namely, Trivial techniques, Reflection, String Encryption, and Class En-

cryption, is used stand-alone. In the last three scenarios, the following

different combinations of these techniques are used: i) Trivial techniques

followed by String Encryption; ii) Trivial techniques followed by String490

Encryption and Reflection; iii) Trivial techniques followed by String En-

cryption, Reflection, and Class Encryption.

Malware obfuscation has been carried out by resorting to the commer-

cial tool DexGuard 5.5 [18] which is, to the best of our knowledge, the

most powerful obfuscation tool for Android applications that is publicly495

available.

• Extended obfuscation assessment. In this experiment, we tested the

same scenarios as in the first set of experiments with the addition of the

obfuscation of either a) assets or b) entry-points. We performed experi-

ments separately for the two additional components to be obfuscated, thus500

resulting in a total of 14 new scenarios. In both cases, Dexguard does not

provide reliable routines that allow the applications being fully functional

after being obfuscated. In fact, after obfuscating assets and entry points,

new functions need to be included in the application that allow the ob-

fuscated assets and entry points to be used at runtime. We thus wrote by505

ourselves the routines that allowed the obfuscated applications to be fully

functional.

• Temporal comparison. This experiment is aimed at comparing the per-

formances of anti-malware software using the same samples adopted in the

experiments reported in [21]. In particular, we reproduced the same obfus-510

cation techniques reported in that paper, and see if anti-malware software

are still vulnerabile. In other words, we assessed how anti-malware detec-

tion capabilities have evolved through time.
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• Single Anti-malware Evaluation. In this experiment we show, for each

anti-malware engine and under the scenarios of the previous experiments,515

the least complex obfuscation that yields to a detection rate drop of at

least 50%. This is done for two reasons: a) To understand if different anti-

malware engines are particularly sensitive to specific obfuscation strategies

and b) to verify if introducing assets and entry-points obfuscation can

reduce the complexity of the obfuscation technique that is needed for the520

evasion.

• Anti-malware deception. In this experiment, we assessed the depen-

dance of the detection capabilities of anti-malware engines on the String

section of the classes.dex file. To this end, i) we considered one benign

application, ii) we generate new benign samples by simply injecting, in-525

side the application, strings contained in malicious samples. Such strings

are never going to be used, as the benign bytecode is not changed, so

the application is benign even if the analysis of the String section may

drive to the conclusion that the application is malicious. The aim of this

experiment is to verify to what extent malware detection is triggered by530

the strings in the applications. If this is true, the benign samples crafted

according to the above procedure can be used to generate false positives.

It is worth noting that for each experiment, to avoid the detection rate being

influenced by the content of .xml files such as AndroidManifest.xml, changes

like the ones described in Section 3 are always performed in order not to trigger535

signatures based on the SHA1 value computed on .xml files.

4.4. General Obfuscation Assessment

In this experiment, we obfuscate the malware dataset according to the Ex-

perimental Protocol described above. In this way, we created seven obfuscated

datasets, and we used them to test all the considered 13 anti-malware solutions.540

Figure 1 shows, by means of a box plot, the statistics of the detection rate
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for the set of anti-malware systems for each of the seven obfuscation scenarios

considered.
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Figure 1: Statistics of the Average Detection Rates of the 13 anti-malware solutions when the

seven obfuscation scenarios are applied. Results are reported in terms of increasing effective-

ness of the employed obfuscation techniques

The box plot is structured as follows:

• On the X axis we represent the obfuscation techniques adopted. On the

Y axis, we represent the average detection rate of the engines, i.e., the de-

tection rate calculated on the whole dataset Da. Such value is calculated,

for each engine, as:

Da =
Nd

N

where Nd is the number of detected samples by the engine and N is the545

number of total samples of the dataset.

• The lower edge of the box represents the first quartile Hf of the anti-

malware average detection rate distribution, i.e., 25% of the anti-malware

engines exhibits an average detection rate below this value.

The red line represents the median M of the distribution, so that 50% of550

the anti-malware engines exhibits a performance below that value, while
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50% is above that value.

The upper edge of the box represents the third quartile Ht, i.e., 25% of the

anti-malware engines exhibits an average detection rate above this value.

• The dotted line represents the so-called whiskers Hw of the plot, i.e.,

the distance between the minimum/maximum of the distribution and the

first/third quartile (25% of engines are located on the whiskers). Their

maximum size Hwmax
is given by:

Hwmax = IQR ∗ 1.5

where IQR is the interquartile range, i.e., the height of the box, expressed

by:

IQR = Ht −Hf

• The red dots represent outliers Ho, i.e., anti-malware solutions whose

average detection rate falls outside the whiskers. Therefore, the condition

for obtaining an outlier is:

Ho > Hw

We now describe, in more detail, the results plotted in Figure 1:555

• Almost all of the engines (except for one outlier, WebRoot) are able to

correctly detect almost all the samples.

• Changing the code by using Reflection is not effective for many anti-

malware engines, as the median M of the detection rate is quite high

(around 90%). This means that 50% of the anti-malware solutions pro-560

vides very high performances against this technique. The remaining 50%

is distributed in this way: 25% of them shows a detection rate between

90% and 35% (this is obtained by observing the distance between the me-

dian M and the first quartile Ht). The remaining 25% shows a detection

rate under 35%, thus providing poor performances. The column Reflection565

therefore shows that, albeit many anti-malware solutions are resilient to
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this strategy, there are few that are extremely sensitive to it. This means

that some engines might only rely to static analysis of the code in order

to perform detection.

• By analyzing the Trivial column, we notice that Trivial techniques are570

not very effective at evading anti-malware engines. More than half of the

tested anti-malware solutions exhibit a detection rate that is very close

to 100% (i.e., the median M is close to 100%), suggesting that the usage

of simple obfuscation techniques is not effective anymore to bypass many

anti-malware systems. Another 25% has a detection rate between 50%575

and 90%, and this is indicated by the space between the median M and

the first quartile Hf . We also notice that few anti-malware systems (less

than 25%) exhibit a detection rate that is lower than 50%, and this is

pointed out by the presence of a lower whisker.

• Using String Encryption reduces the median value M when compared to580

the the Trivial column. This means that the maximum detection rate

value for 50% of the anti-malware engines is now reduced by around 30%,

thus pointing out that some engines base some of their detection heuristics

on the presence of strings that are not related to package or classes names.

• The highest detection rate drop, i.e, the decrement in height of the third585

quartile Ht (and, therefore, of the upper side of the box) is observed

when Trivial obfuscation techniques and String Encryption are combined.

In particular, we observe an average detection rate reduction of about

50% for the 75% of the anti-malware systems. This is interesting, as

changes in bytecode are quite minimal but, on the other hand, Strings590

play different roles in an Android application, so their encryption may

have a huge impact. As we explained in the previous sections, Trivial

techniques address strings that are used for identifying classes, methods

and fields, whilst String Encryption hides all the constant strings, that

are then decrypted at run-time. This is another hint that suggests that595
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Table 2: Average percentage increment of the obfuscated applications size

Technique Size Increment (%)

Trivial -17.17

String Encryption 12.47

Reflection 44.66

Class Encryption 194.23

Tri. + SEnc. -4.68

Tri. + SEnc. + Refl. 55.58

Tri. + SEnc. + Refl. + CEnc. 197

the detection capability of anti-malware engines strongly depends on the

String section.

• Adding Reflection to the previous combinations lowers the first quartile

Hf . This means that the maximum detection rate for the 25% is lowered

almost to zero. This point is in line to what we observed using Reflection600

alone, i.e., some engines are particularly sensitive to this strategy.

• Class Encryption is more effective than the combination of Trivial tech-

niques, String Encryption, and Reflection. In Figure 1, we observe how its

stand-alone adoption allows for obtaining slightly superior performances

with respect to the former obfuscation strategies (a slightly lower median605

value compared to the column immediately to the left). It is worth noting,

though, that Class Encryption is the most invasive and complex obfusca-

tion that we adopted in this paper. So, while it allows evading a large

number of anti-malware engines, it also introduces a massive overhead in

terms of file size. Table 2 shows the average file size increment in the610

case of obfuscation by Class Encryption, and in the case in which the

combination of Trivial, Reflection and String Encryption is used.

This table shows that there is a file size decrement (negative number) when

Trivial techniques are used. This is expected, as most of the times original
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strings are replaced with strings one- or two characters long. On the615

other hand, it is very interesting to point out the huge file size increment

introduced by Class Encryption. On average, such increment is almost

200%, which means that the size of the application can increase up to

four times with respect to its original size.

Summing up, the above results allow us to conclude that an attacker might620

attain a good evasion rate, with minimum size increment, by employing the

Trivial+String Encryption strategy. The use of more complex obfuscation

techniques, i.e., the combination of three obfuscation techniques or the

adoption of Class Encryption, provides small improvements in evasion,

while making the application size strongly increase.625

The combination of all the four obfuscation techniques considered in this

set of experiments reduces the size of the whiskers, which means that all

the engines exhibit a detection rate between, in this case, 0% and 35%.

This implies that applying all the four strategies is effective against any

anti-malware engine. The median value M indicates, though, that 50% of630

the engines still detects around 30% of the samples.

4.5. Extended Obfuscation Assessment

4.5.1. Assets Obfuscation

As observed in the previous experiments, part of the anti-malware engines

still exhibits a detection rate of roughly 40%, even when all the obfuscation635

techniques are combined.

For this reason, is it of interest to understand what still triggers anti-malware

engines to raise an alert, thus keeping the detection rate of half of them around

40%. An interesting hint is given by focusing the analysis on the less evasive

malware families, i.e., those malware families that can still be detected by the640

majority of the anti-malware engines when all the four obfuscation techniques

are applied. Table 3 shows such families, along with their average detection rate

attained by employing the combination of all the obfuscation strategies, ordered

from the least evasive to the most evasive one.
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Table 3: List of the most evasive families. The Average (Avg.) Detection Rate (DR) is

reported

Family Name Avg. DR (%) Family Name Avg. DR (%)

1 Zhash 61.54 6 JSMSHider 53.85

2 Asroot 55.77 7 BaseBridge 53.15

3 DroidDeluxe 53.85 8 DroidKungFu2 50.26

4 DroidDream 53.85 9 DroidKungFu1 46.83

5 GingerMaster 53.85 10 AnserverBot 46.4

All the applications belonging to these families, with the exception of JSMS645

Hider, have in common the presence of assets.

By individually testing each of the files belonging to the assets on the anti-

malware engines, we realized that they were flagged as malicious. When included

in a zipped archive, such as an .apk, this would result in flagging the whole apk

as malicious, despite the .dex and the .xml files being obfuscated and, therefore,650

undetected. The role of such assets in triggering alerts was already pointed out

in the literature [21]. However, our experiments were aimed at better evaluating

the impact of such assets on the average detection rate. We argue that this is a

crucial point for an effective obfuscation strategy aimed at completely evading

malware detection.655

Although encrypting the asset file, for example using XOR operations, is

rather straight-forward, decrypting them at run-time is not an easy task. Dex

Guard does not provide a reliable support for including decryption routines of

assets. We therefore developed a technique that can be reliably applied for

decrypting such assets, and we also developed a number of proof of concepts660

related to various families, thus allowing us to assess that the proposed obfus-

cation strategy can produce a working sample. The proposed technique can

be summarized as follows: i) Each asset is opened by using the method open

of the AssetManager class. This method will return an InputStream that will

be converted in a byte array, and then it will be written as a file in a location665
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when it can be then executed with the command exec. ii) We disassemble the

classes.dex executable by means of Baksmali [26] and we intercept the byte

array that is created. Then, we inject the decryption method inside the disas-

sembled class and we use the intercepted byte array as the method parameter.

Such method, at runtime, will return a new, decrypted byte array that will be670

written instead of the encrypted one. Then, we finally reassemble the whole

sample.

To see the effectiveness of Asset Obfuscation, we have performed the same

experiments shown in Figure 1 but this time, for each experiment, we also

obfuscated the Assets. Figure 2 shows the attained results.675
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Figure 2: Statistics of the Average Detection Rates of the 13 anti-malware solutions when

Assets are encrypted, and the seven obfuscation scenarios are applied. Results are reported

in terms of increasing effectiveness of the employed obfuscation techniques

In order to provide a better understanding of this Figure, we will describe it

by comparing it to Figure 1. The first thing we notice is that the trend expressed

by Figure 2 is basically the same as the one indicated in Figure 1. Thus, all the

observations we made about Figure 1 are still valid and the reader can refer to

them to understand the trend of this Figure. This means, for example, that the680

best performances are obtained when combined obfuscations are adopted and

27



when Class Encryption is employed. Likewise, Reflection and Trivial techniques

alone are not useful against at least half of the engines. However, we also point

out the following differences with respect to Figure 1:

• The median value M gets significantly lower when Trivial and String En-685

cryption techniques are combined. Likewise, the first quartile Hf gets

decreased. Therefore, for half of the anti-malware engines, the detection

rate gets significantly reduced. This means that the median value in the

same column of Figure 1 was higher because the detection rate was influ-

enced by the presence of assets. This is an important point, as combining690

Trivial and String Encryption techniques is even more effective than what

it seemed to be at a first analysis. However, we also observe that the

position of the third quartile has only slightly decreased. This means that

there is another 25% of anti-malware engines that are resilient to this

combination of obfuscations.695

• With respect to the previous point, employing Reflection in addition to

the previous techniques or Class Encryption alone will also reduce the

height of the third quartile Ht, thus reducing the whole box size. This

means that, in Figure 2 and for the combination with Reflection, 50% of

the engines exhibit a detection rate of 25% and the other 50%, including700

the whiskers, arrive to 35%. Interestingly, there is one engine (Comodo)

that does not seem to be influenced by that and it is the outlier with a

70% detection rate.

• Combining all the obfuscation techniques brings the detection rate of all

the engines to zero, except for one (TrendMicro). This indicates that705

combining all the obfuscation strategies, while removing at the same time

possible external interference, is very effective to bypass almost all anti-

malware systems.
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4.5.2. Entry Points Obfuscation

Assets obfuscation significantly reduces the detection rates of anti-malware710

engines, but some anti-malware systems are still capable of detecting a subset

of malware samples, even after applying the most complex obfuscating trans-

formations we have seen so far. There is one other component of an application

that we have not tried to obfuscate yet: entry-point classes. In this third exper-

iment, we add the encryption of entry-point classes to the experiments reported715

in the previous section.

Of course, in order for an application to run, the modification of entry-

point classes requires some specific changes in the AndroidManifest.xml file.

As DexGuard provides limited support for the modifications of the Android

Manifest.xml file, we have implemented different proof of concepts. In a simi-720

lar way to the case of assets encryption, we replaced the file names of the classes

in the AndroidManifest.xml file with their transformed ones. We were able

to prove that it is possible to make a fully working malicious sample even after

obfuscating the entry-point classes. Such a mechanism can be easily automated

but, in some cases, manual intervention might be required, in particular to han-725

dle malformed files. It is worth noting that, to further improve the obfuscation

process, we make all packages collapse to a single one. This makes also easier

to modify the Android Manifest with the correct package.

Figure 3 shows the result for this analysis.

Like we did when we described assets obfuscation, we will compare Figure 3730

with 2. Again, obfuscations are increasingly effective in the same way as Figures

1 and 2. Thus, Reflection is still the less effective strategy, while combining

obfuscations leads to excellent evasion results. Additionally, we point out the

following points:

• Median values get generally lower when adopting Reflection, Trivial and735

String Encryption techniques (in their stand-alone variant), while the first

and third quartile positions remain basically the same. This means that

acting on entry-point classes with this strategies influences the maximum
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Figure 3: Statistics of the Average Detection Rates of the 13 anti-malware solutions when

Assets and Entry Points are encrypted, and the seven obfuscation scenarios are applied.

Results are reported in terms of increasing effectiveness of the employed obfuscation techniques

detection rate value of half of the engines.

• A huge drop both of the median values (until 10%), as well as of the740

first and third quartile, is observed when Trivial and String Encryption

are combined. This suggests that most of anti-malware engines base their

detection on considering a combination of different types of strings that

often reside in entry-point classes. This is an interesting choice from the

viewpoint of anti-malware developers, as trying to obfuscate such classes745

requires to carefully adapt the AndroidManifest.xml file and, therefore, it

is an operation that can be hardly automated, as it could lead to damaging

the functionality of the application. We also observe two outliers, i.e.,

DrWeb and Comodo.

• Applying Reflection in combination with the techniques in the previous750

point further reduces the whiskers size (this mean that the maximum

detection rate value for all the engines is around 15%). An outlier, Comodo,

still exhibits a detection rate of 35%.
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• Applying Class Encryption to entry point classes completely nullifies the

detection rate of all anti-malware engines. However, we have also noticed755

that the obfuscation of entry-point classes and the use of Class Encryp-

tion break the functionalities of the application, regardless of the modifi-

cations made to the AndroidManifest.xml file. In order to have a still

working application after applying the Class Encryption transformation,

entry-point classes should not be compressed or, alternatively, their de-760

compression should be done by some external classes/methods.

4.6. Temporal Comparison

After having explored different transformations that allowed evading anti-

malware engines, Tables 4 and 5 present a comparison between the obfuscating

transformations that were needed to evade anti-malware systems in 2012 and765

2013, and ones required in 2014. These tables are based on a similar table re-

ported in [21] where evasion efforts have been compared for the years 2012 and

2013. For each malware sample that has been tested, and for each anti-malware

engine considered, we use this notation: SuccessfulObfuscation2012->Suc-

cessfulObfuscation2013->SuccessfulObfuscation2014. SuccessfulObfusca-770

tion2012 and SuccessfulObfuscation2013 represent the obfuscation transforma-

tions that were successful in 2012 and 2013, respectively, according to [21]. For

SuccessfulObfuscation2014, that are related to the experiments reported in this

paper, we indicate the less invasive obfuscation transformation required to make

the malware sample not detectableby anti-malware engines. We marked in bold775

SuccessfulObfuscation2014 if more changes to the executable code or resources

are now required to evade the anti-malware system compared to the past. For

better clarity, if the obfuscation strategies that were successful in one year were

successful the year before, we used the symbol *. We have adopted the following

criteria to choose the anti-malware engines in this analysis.780

• Only the anti-malware systems in common between our work and the

previous work were adopted. That is a total of 8 anti-malware systems.
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Table 4: Evolution of the anti-malware robustness to obfuscation from 2012 to 2014 for specific

samples (First set of Malware Samples) - See text for explanation of notation

Antivirus DroidDream Geinimi FakePlayer

AVG Tri.→ *→ CEnc.+AE Tri.→ *→ *+SEnc. Tri.→ *→ *+AE

Symantec Naive→ Tri.→ CEnc. Tri.→ *→ CEnc Tri.→ *→ SEnc

ESET AE→ Tri.+*→ Refl. SEnc.→ *→ Tri.+*+Refl. Tri.→ *→ *+SEnc

Kaspersky AE → *+StrEnc.→ Tri.+* Tri. → *→ *+SEnc. Tri. → *→ *+CEnc.

Trend M. AE → *+Tri.→ CEnc.+AE Tri.→ *→ *+SEnc. Nai.→ *→ Tri+EP

• Out of these eight solutions, we chose not to consider Zoner and Webroot,

as these tools can be easily evaded by trivial (or naive) obfuscation trans-

formations. In addition, they also exhibited some problems in detecting785

the original samples as being malware.

• We also decided not to include ESET as the obfuscating transformation

used in the previous work in order to evade it in 2012 and 2013 is not part

of DexGuard, and therefore we were not able to reproduce it to verify if

changes have effectively occurred during one year.790

With such considerations, we restrict our analysis to the 5 anti-malware sys-

tems reported in the Tables. We believe that the evolution in the detection

capabilities of these systems can clearly show the global trend in anti-malware

performances. In order not to generate confusion in the reader, we will use

the notation proposed in this paper to specify which obfuscation techniques795

were used to bypass the systems. It is worth noting that most of the successful

obfuscation techniques in the past fall in the Trivial category. If there is an

obfuscation technique used in the past, but that was not adopted in this paper,

we will explicitly mention it. We also refer to Naive strategies (see Section 3) as

Nai., to Encrypted Assets as AE, and to operations on Entry Points as EP. In800

one case, files were renamed in the obfuscation performed in the previous work,

and we refer to this case as FR.
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Table 5: Evolution of the anti-malware robustness to obfuscation from 2012 to 2014 for specific

samples (Second set of Malware Samples) - See text for explanation of notation

Antivirus Bgserv BaseBridge Plankton

AVG Tri.→ *→ SEnc.+AE Tri.→ *→ SEnc.+AE Tri.→ *→ *+EP

Symantec Tri.+SEnc.→ *→ CEnc. Nai.→ SEnc→ * Nai.→ *→ SEnc

ESET Tri.→ *→ CEnc. AE.→ *+SEnc.→ * Nai.→ Tri.+SEnc.→ *+Refl.

Kaspersky Tri+SEnc. → *→ CEnc. Tri.+SEnc. → *→

*+AE

Nai. → *→ Tri.+SEnc.

Trend M. Nai. → Tri.→ CEnc.+AE AE→ *+FR→ *+Tri. Nai.→ *→ Tri+SEnc.

Reported Results clearly show that while in the past it was possible to evade

anti-malware engines by resorting to trivial obfuscation strategies, this is not

possible anymore. This means that the complexity of the transformations that805

should be made to the code in order to evade detection is much higher than

before, and that malware signatures, along with detection heuristics, have sig-

nificantly improved during one year. This is in line with the experimental results

we have reported in the previous sections. Although it is still possible to evade

anti-malware engines, the effort that the attacker has to produce is considerably810

higher.

4.7. Single Anti-malware Evaluation

Although it is not our aim to provide a ranking of the anti-malware engines,

we believe it is useful to observe which obfuscation strategy particularly affects

a specific anti-malware system. For this particular test, assuming that the815

combination of all the obfuscation techniques is obviously the most effective one

and that the detection rate of the original samples is almost 100% for all the

engines, we will consider the less expensive, in terms of complexity, obfuscation

that will reduce the detection rate under 50%. This is because, in order to evade

a specific anti-malware solution, an attacker could try to find a balance between820

the effectiveness of the complexity of the adopted strategy. We also want to see

if an attacker, by adding further constraints, can reduce the complexity of the
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Table 6: Less complex obfuscation techniques that will bring detection rate under 50%, under

different constraints and for each anti-malware engine

Antivirus Apk Obf. Enc. Assets Enc. E.Points

Avast CEnc. Tri.+SEnc. *

Comodo CEnc. * Tri.+SEnc.+Refl.

ESET Tri.+SEnc.+Refl. * Tri.+SEnc.

GData Tri. * *

McAfee Tri.+SEnc. SEnc. Tri.

TrendMicro CEnc. Tri.+SEnc. *

Zoner Tri. * *

AVG Tri.+SEnc.+Refl. Tri+SEnc. *

Dr. Web Refl. * *

Fsecure CEnc. Tri.+SEnc.+Refl. Tri.+SEnc.

Kaspersky CEnc. Tri.+SEnc. *

Norton Tri.+SEnc. * *

WebRoot Tri. * *

chosen obfuscation technique. Table 6 shows the chosen obfuscation for each

anti-malware product considered in our evaluation, where such obfuscation is

denoted by using the groupings and the same labels as in Figures 1, 2, 3 (e.g.,825

plain .apk obfuscation, encrypted assets, encrypted assets and entry-points).

We will use the same notation as in Tables 4 and 5. For a better readability,

we will use the character * if the technique has not changed from the column

immediately to the left. To avoid confusion and for the sake of the clarity, we

also do not report the exact percentages drop in the detection rate for each830

anti-malware systems, and for each obuscation technique. We stress that our

aim is simply to make a comparison between the different obfuscations under

certain constraints and for each anti-malware system.

From these results it is interesting to see that, in order to affect the per-

formances of some anti-malware systems, advanced techniques such as Class835
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Encryption are normally required. We also point out that, when assets or

entry-point classes get obfuscated, the complexity of the obfuscation required is

generally reduced. When entry-points are obfuscated, it is possible to decrease

the anti-malware engines performances without employing Class Encryption

(with the exception of Kaspersky).840

4.8. Anti-malware Deception

In the previous experiments, we have shown a strong correlation between the

strings contained in the Strings section of the classes.dex file, and the anti-

malware detection capabilities. Now, we would like to bring this analysis one

step further. The question we want to answer is the following: how robust are845

the signatures of the anti-malware engines? In particular, we want to evaluate

how much the anti-malware engines signatures are dependent on the String

section. This can be done by injecting all the strings contained in a malicious

sample on a entirely benign sample, designed by ourselves. Such strings will

never be used or called inside the code. This is done to check if anti-malware850

engines will consider the sample as malicious even if it does not perform any

malicious actions. In other words, we are looking for the possibilities of polluting

anti-malware outcomes with false positives.

This analysis is useful as there are components of a computer security infras-

tructure, such as IDS, that generate alerts by analyzing application signatures855

in a very similar way to what anti-malware systems do. Although we are not

directly attacking IDS systems in this paper, we believe that this is a good ap-

plication in which a lot of false alarms can be raised in order to fool an analyzer.

We perform this experiment with the whole MalGenome and Contagio data

sets. In particular, we use one benign application as a base and we extract,860

for each malicious sample in the dataset, all its strings. Then, we inject them

into the base, thus creating a new sample that will not exhibit any malicious

behavior, but will contain Strings belonging to malware samples. Figure 4 shows

a comparison between the detection rate of the original base-samples (benign)

and the detection rate after string injection, i.e., the fake detection rate.865
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Figure 4: Detection rate of anti-malware engines when strings belonging to malicious samples

are injected into benign samples

From this Figure, it is possible to see that half of the anti-malware engines

have detected the fake malware with a detection rate up to 80%, whilst the

other half spans from 80% to 100%. Interestingly, the assigned malware la-

bel is exactly the same as the original one. It is worth noting, though, that

apart from two engines that resort to the static analysis of the bytecode (and870

that therefore are not affected by such injection), other three engines exhibit

poor performances even when detecting obfuscated malware, by losing almost

all their detection power even when using Trivial obfuscations. Therefore, we

can safely conclude that the engines that best perform in detecting obfuscated

malware resort to extremely weak detection logics. An attacker could resort to875

this strategy to make the user lose his confidence on the anti-malware engine

itself, due to the high number of false-alarms that might be raised. This result

is in agreement with other results in the literature [21]. Apparently, though,

compared to the results of the past year, some signatures have evolved, as they

include the analysis of the AndroidManifest.xml SHA1 in combination with the880

analysis of the .dex file, as well as an improved analysis of the embedded assets.
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5. Related Work

Obfuscation in the Android ecosystem has recently caught the interest of

the research community. A comprehensive review of all malware present for

the Android ecosystem, as well as their characteristics, has been provided by885

Zhou and Jiang [31]. Zheng et al. [19] proposed ADAM, an obfuscator that per-

forms simple changes on the Dalvik executable (e.g., methods renaming, simple

changes in the CFG, constant string encryption, etc.). A set of malware was

obfuscated with this tool and the capabilities of anti-malware systems in de-

tecting modified samples was tested. Rastogi et al. [20, 21] made similar tests890

with DroidChamaleon, an extended framework for obfuscating Android appli-

cations. Compared to ADAM, such framework provides more obfuscation options

(e.g., classes and fields renaming, package names renaming, etc.). This work

can be considered to represent the state-of-the-art of anti-malware assessment

for Android systems. Another interesting assessment is the one made by Huang895

et al., in which the resilience of repackaging detectors against obfuscation has

been evaluated [33]. Protsenko et al. tested some bytecode obfuscation strate-

gies against anti-malware [34]. All the obfuscation strategies mentioned in this

paper are part of the ones proposed by Collberg et al. [35]. In order to provide

a better test bench for anti-malware performances, Maggi et al. introduced900

AndroTotal [36], an online service with which it is possible to scan a malicious

application by means of multiple anti-malware systems. Conceptually, the ser-

vice is the same as VirusTotal [24], but solely focused on Android. Recently, an

anti-malware system based on machine learning techniques (Drebin) has been

proposed [37].905

Some obfuscators were also proposed outside the academic community. Pro

guard [17] is included in the Android SDK and provides basic obfuscation op-

tions. DexGuard [18] is its commercial version, exclusively developed for An-

droid, and it provides advanced functionalities such as reflection, class and

string encryption, etc. Among other Android obfuscators, we mention DashO910

[38], DexProtector [39], and Allatori [40]. Apkfuscator [41] is a tool that
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obfuscates Android applications in order to evade specific decompilers, such as

Androguard [42], Dedexer [43] and Baksmali [26].

6. Discussion and Countermeasures

From the assessment we have carried out, it is clearly evident that anti-915

malware engines have significantly improved compared to the past. However,

the problem is still clear and present. To be more specific, an attacker would

still be able to automatically obfuscate an entire dataset and therefore attack his

victims with different families, without even being spotted by an anti-malware

engine. We have also shown, with an extended assessment, that strings are920

still used as a mean to build signatures. Although this can be effective if such

strings are contained in entry-point classes, this can be a huge drawback when

strings from other classes are took into consideration. We therefore discourage

the usage of such strategy, unless it is combined with the analysis of some other

resources. For example, the analysis of the AndroidManifest.xml file could be925

a better source of information in order to retrieve basic class names and permis-

sions used. Even this analysis, of course, could be evaded, but it strengthens

the detection capabilities. Likewise, an analysis of instruction sequences can be

helpful to detect some malicious behaviors. This also translates into the need of

developing some specific heuristics that can improve the quality of the applica-930

tion scanning. It could be also useful to analyze annotations, debug information

or other specific parts of the classes.dex file that are sometimes overlooked

by an attacker, especially when applications are repackaged.

Class encryption seems to be the best solution for an attacker, but that in-

troduces a big overhead in the application size and execution, and thus might935

not be the optimal strategy to evade a system. However, if such techniques

are used, we suggest that anti-malware engines deploy some dynamic heuristics

that, although computationally expensive, might allow for a dynamic dump and

decryption of the class, which might most likely show evidence of malicious be-

havior. An example of this analysis is the one that is performed, for example, by940
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Google Bouncer [44] and by other systems like Anubis [45]. Such systems exe-

cute the Android application in a virtualized environment and extract different

elements, such as system calls, network traffic, services used, and so forth. In this

way, all static evasion attempts are overcome, as only the application behavior

is analyzed. However, such analysis might require a lot of time to be performed,945

e.g., several minutes/sample to provide significant results, especially for applica-

tion with a lot of lines of code and services to be called. It also usually requires

more computational resources in comparison to static solutions. For this reason,

some systems perform their analysis on dedicated servers and remotely provide

the results to the user. However, if such servers are filled with requests, there950

could be further slowdowns, and even hours might be then required to analyze

a single sample. A client-oriented solution, like an anti-malware system, better

fits the needs of the user to have a proper answer in a very short time (usually,

less than a minute/sample). It is interesting to observe that dynamic analysis

is also vulnerable to evasion attempts. For example, some malware implement955

routines that are aimed to detect emulation or to delay their execution, since

most of dynamic systems run the analysis for a certain amount of time (see,

for instance, [46]). Static anti-malware solutions have also improved their sig-

natures so that, in some cases, they can recognize obfuscation attempts, even

without having knowledge of the specific malware. Examples are signatures960

such as Crypt3.BBOK or Gen:Trojan.Heur.Ey1@ruWJdYoi that are associated

to malware in the wild and they most likely employ obfuscation techniques.

7. Conclusions

In this paper, we have provided a deep insight into the efforts needed to

obfuscate Android malware, in particular when targeting anti-malware engines.965

We have tested several obfuscation techniques, which operate on different parts

of the classes.dex file, and differentiate each other in terms of complexity. We

carried out our tests on a large number of samples coming from two popular

datasets. We showed that, one year after the last assessment [20, 21], anti-
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malware engines have significantly improved their performances. Hence, the970

number of changes that should be made to the executable in order to evade

anti-malware systems is now significantly higher.

Our experiments pointed out the decisive role of specific strings in the de-

tection capabilities of anti-malware engines. We argued that an attacker can

generate an obfuscated sample, with minimum overhead in file size and appli-975

cation performances, by carefully understanding how signatures are designed

to identify malware. On the other hand, we also showed that anti-malware en-

gines are protecting from obfuscation attacks by including in their analysis other

components of the .apk file, such as assets, and entry-points. Thus, effective

obfuscation mechanisms should keep these components into account to evade980

detection.

However, although anti-malware performances have improved since 2013,

they still exhibit some weaknesses in the detection of complex obfuscation mech-

anisms, such as the ones made up of combinations of different techniques, or

the ones that resort to class encryption. We also showed how specific anti-985

malware solutions are particularly sensitive to certain obfuscation techniques,

thus pointing out that it is not necessary to resort to extremely complex obfusca-

tion strategy to obtain good evasion performances. We argue that an improved

static analysis of the code, as well as some dynamic analysis, are required to

improve robustness against obfuscated malware.990

Our analysis also aimed at evaluating the easiness of deceiving anti-malware

engines, with respect to false positives. To do so, we automatically injected

strings belonging to malicious samples into a benign sample, thus creating an

entire fake malware dataset that contains the strings of the Malgenome and

Contagio datasets embedded into benign samples. Reported results showed that995

the majority of the anti-malware engines classifies the benign samples as mal-

ware, thus pointing out a deep weakness in their detection capabilities. We can

thus conclude, from our extensive evaluation over different obfuscation strate-

gies and under different conditions, that anti-malware engines have significantly

improved their resilience to obfuscation in comparison to the past years and,1000
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for a subset of them, evasion is much more difficult. However, for a number of

anti-malware engines, and for a number of malware families, it is still possible

to evade detection without resorting to complex obfuscation mechanisms. Some

recent security reports clearly pointed out the rise of obfuscated malware that

leverage on these weaknesses. So, additional effort is needed from anti-malware1005

developers to take into account obfuscation mechanisms when designing anti-

malware heuristics and signatures.

As soon as the vast majority of anti-malware detection systems improves

its robustness against obfuscation techniques, it is likely that obfuscation will

become more difficult to implement, and may end up to be too costly to be1010

effective, as our experiments clearly pointed out.
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