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Abstract—1In this paper, we propose a quantization approach,
as an alternative of sparsification, to curb the growth of the radial
basis function structure in kernel adaptive filtering. The basic
idea behind this method is to quantize and hence compress the
input (or feature) space. Different from sparsification, the new
approach uses the ‘“redundant” data to update the coefficient
of the closest center. In particular, a quantized kernel least
mean square (QKLMS) algorithm is developed, which is based
on a simple online vector quantization method. The analytical
study of the mean square convergence has been carried out.
The energy conservation relation for QKLMS is established,
and on this basis we arrive at a sufficient condition for mean
square convergence, and a lower and upper bound on the
theoretical value of the steady-state excess mean square error.
Static function estimation and short-term chaotic time-series
prediction examples are presented to demonstrate the excellent
performance.

Index Terms—Kernel methods, mean square convergence,
quantized kernel least mean square, vector quantization.

I. INTRODUCTION

URING the last few years, enormous research efforts

have been dedicated to the development of the kernel
learning methods such as support vector machine [1]- [3],
kernel regularization network [4], kernel principal component
analysis [5], and so on. These methods show powerful classi-
fication and regression performance in complicated nonlinear
problems when using Mercer kernels to map the original
input space into a high-dimensional feature space and then
performing the linear learning in feature space. However, they
usually require significant memory and computational burden
due to the necessity of calculating a large Gram matrix.
As a remedy, some fast learning methods such as fixed-
size kernel models have been studied [6]-[8]. The online
kernel learning (OKL) provides more efficient alternatives that
approximate the desired nonlinearity incrementally, usually
with gradient descent techniques [9]. As the training data are
sequentially (one by one) presented to the learning system,
OKL requires much less memory and computational cost. The
resource-allocating network (RAN) [10], generalized growing
and pruning radial basis function (RBF) networks [11], online
kernel-based classifier using adaptive projection algorithms
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[12], and the Forgetron [13] are typical OKL algorithms
in recent literature, and more recently, the kernel adaptive
filtering has become an emerging and promising subfield
of OKL [14]. The kernel adaptive filtering algorithms are
developed in reproducing kernel Hilbert spaces (RKHS) [15],
[16], using linear adaptive structure in RKHS to obtain non-
linear filters in the input space, which preserve the conceptual
simplicity of the classical linear adaptive filters (no local
minima), while inheriting the rich expressiveness from the
kernel methods (universal approximation). These algorithms
include the kernel least mean square (KLMS) [17], [18], kernel
affine projection algorithms (KAPAs) [19], kernel recursive
least squares (KRLS) [20], extended KRLS [21], etc. When
the kernel is Gaussian, they are essentially the growing RBF
networks, where the weights are related to the error at each
sample.

The main bottleneck of the kernel adaptive filtering algo-
rithms is their linear growing structure with each new sample,
which poses both computational as well as memory issues
especially for continuous adaptation scenarios. To address
this problem, a variety of sparsification techniques have been
proposed to curb the growth of the networks, where only the
important input data are accepted as the new centers. Existing
sparsification criteria for data selection include the novelty
criterion [10], prediction variance criterion [22], approximate
linear dependency (ALD) criterion [20], and the surprise
criterion [23]. The ALD and the variance criterion can be
viewed as special cases of the surprise criterion [23].

The sparsification methods are quite effective in reducing
the network size while preserving a desirable performance.
However, there is a common drawback to these methods:
the redundant input data are purely discarded. Actually, the
redundant data are very useful and can be, for example,
utilized to update the coefficients (or weights) of the existing
network, although they are not so important for structure
update (adding a new center). By doing so, we can expect
to achieve better accuracy and a more compact network (with
coefficients update, fewer centers are needed to approximate
the desired nonlinearity). This idea has already been used by
Platt in his RANs [10]. There are two drawbacks to Platt’s
method: 1) for each redundant input (pattern), the whole
coefficients of the present network must be updated, which
is computational expensive, and 2) as each pattern lies in
a local region of the input space, the learning performance
may be negatively affected by the global update (GU) of the
coefficients. Thus a simple yet efficient way is to carry out
a local update for each redundant input, i.e., only update
the coefficients within the responsive domain. To implement
such a learning scheme, we propose in this paper a novel
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quantization approach: the input space is quantized, and if the
current quantized input has already been assigned a center,
we do not need to add a new center (from the viewpoint
of sparsification, this input is redundant), but update the
coefficient of that center (only one coefficient is updated!).
In this paper, for simplicity, we only apply this quantization
approach to the simplest KLMS algorithm, and name the new
algorithm the quantized KLMS (QKLMS).

The quantization concept has, in fact, already been used
in the traditional adaptive filters [24]—[30]. The principal
motivation behind these studies is to reduce the numerical
complexity and dynamic range requirements of the adaptive
algorithms, and hence to reduce the hardware complexity in
the implementation or to meet the demand of real-time high-
speed applications. For example, the power-of-two quantizer
has been successfully used to simplify adaptive algorithms
such as LMS by replacing multiplications with logical shifts
or bit comparisons [25], [27], [29], [30].

The organization of this paper is as follows. In Section II,
after briefly introducing the KLMS, we describe the QKLMS.
In Section III, we carry out mean square convergence analysis
for QKLMS. A sufficient condition for mean square con-
vergence and a lower and upper bound on the steady-state
excess mean square error (EMSE) are derived on the basis
of the energy conservation relation. In Section IV, simulation
examples on static function estimation and short-term chaotic
time-series prediction are presented. Finally, Section V gives
the concluding remarks and future lines of research.

II. QKLMS

Consider the learning of a continuous nonlinear input—
output mapping R” +— R

d=f@),

where u is the m-dimensional input vector, U is a compact
input domain in R™, and d is the output signal. Here the output
is assumed to be 1-D for simplicity, it can be easily generalized
to the multidimensional cases. If a sequence of input—output
pairs {u(i),d(i),i =1,2,...} is available (we call them the
training data), the problem is to find an approximation f
of the mapping f based on these data. A kernel adaptive
filter is a kernel-based sequential estimator of f such that
fi (the estimate at iteration i) is updated on the basis of the
last estimate f;_; and current example {u(i),d(i)}. Before
formally introducing the QKLMS, we briefly describe in the
following the KLMS algorithm.

uclUCR" deR (1)

A. KLMS

A Mercer kernel is a continuous, symmetric, and positive
definite function ¥ : U x U — R [15]. The commonly used
Gaussian kernel is

12
K (u,u') = exp(%) )

where ¢ > 0 is the kernel width. According to the Mercer’s
theorem, any Mercer kernel x (u,u/) induces a mapping ¢
from the input space U to a high-dimensional feature space
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F (which is an inner product space) such that the following
relationship (the so-called kernel trick) holds [16]:

e o) =x(uu). 3)!

The feature space I is essentially the same as the RKHS
induced by the kernel if we identify ¢ (u) = « (4, .). We do
not distinguish these two spaces in this paper if no confusion
arises.

The KLMS is actually the linear LMS algorithm in feature
space [F [17]. First, the kernel-induced mapping ¢ is employed
to transform the input (i) into IF as ¢ (1(i)). Denoting ¢ (i) =
¢ (u(i)) and applying the LMS algorithm on the new example
sequence {@(i), d (i)} yields

QO)=0

e(i) =d(i) — G — Do) 4)

Q@) =0 — 1) +ne(i)p(i)
where e(i) is the prediction error at iteration i, # is the step
size, and (i) denotes the estimate of the weight vector in F.
fi is the composition of (i) and ¢, that is f; = (@) @(.).
If identifying ¢ (u) = x (u,.), we obtain the learning rule in
original space for KLMS

fo=0
e(i) =d(@) — fi-1(u(@)) (&)
fi = fic1 + ne(x (), ).

The KLMS produces a growing RBF network by allocating

a new kernel unit for every new example with input u(i) as
the center and 7e(i) as the coefficient.

B. QKLMS

The QKLMS algorithm can be obtained by just quantizing
the feature vector ¢ (i) in the weight-update equation (i) =
Q@G — 1)+ ne(@)e(i) in (4), which can be expressed as

QO)=0
e(i) =d(i) — @i — D" 9() ©)
Qi) = Qi — 1)+ 7e(H)2[e(1)]
where Q [.] denotes a quantization operator in F. Since the
dimensionality of the feature space is very high (can be even

infinite), the quantization is usually performed in the original
input space U. In this situation, the learning rule for QKLMS is

fo=0
e(i) =d(i) — fi-1(u@)) @)
fi = fic1 +ne(x (Qu(@)],.)

where Q[.] is a quantization operator in U. In the rest of this
paper, to simplify the notation, we denote ¢, (i) = Q [(p (i )],
and u, (i) = O [u(i)].

Remark 1: Quantization techniques have been widely used
in fields such as digitization, data compression, and speech
and image coding. Here we use the quantization method to
compress the input (or feature) space and hence to compact

n this paper, we use the notation ¢ @’ ] (u/ ) to refer to the inner product
(@), 9@")) of the high-dimensional feature space F.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

CHEN et al.: QUANTIZED KERNEL LEAST MEAN SQUARE ALGORITHM

Algorithm 1 Online VQ in U

Algorithm 2 QKLMS Algorithm

Input: {u(i) eU},i=1,2,...
Initialization: Choose the quantization size ey > 0, and
initialize the codebook C(1) = {u(1)}.

Computation:
while {u(i)} (i > 1) available do
1) Compute the distance between u(i) and

Ci — 1): dis@@),Ci —1) =

Jut) ;6 - 1)

2) If dis(u(i),C(i —1)) < ey, keep the codebook
unchanged: C(i) = C(i — 1), and quantize u(i) to the
closest code-vector: u, (i) = Cj«(i — 1), where
j¥= arg min Hu(i)—Cj(i—l)’

1<j<size(C(i—1))

3) Otherwise, update the codebook: C(i) = {C(i — 1),
u(i)}, and quantize u(i) as itself: u, (i) = u(i)

min
1<j<size(C(i—1))

end while

the RBF structure of the kernel adaptive filter by reducing
the network size (number of centers). The network size of
QKLMS, obviously, will be always smaller than the size of
the quantization codebook (dictionary).

The key problem in QKLMS is the design of the vector
quantizer including: 1) how to assign the code vectors to the
data, and 2) how to find the closest code-vector representation.
There exist a variety of vector quantization (VQ) algorithms in
the literature [31]-[34]. Most of the existing VQ algorithms,
however, are not suitable for online implementation because
the codebook must be supplied in advance (which is usually
trained on an offline data set), and the computational burden
is rather heavy. In this paper, we propose a very simple online
VQ method in which the codebook is trained directly from
online samples and is adaptively growing. The online VQ
algorithm in U is described in Algorithm 1.

In the above VQ algorithm, C;(i — 1) denotes the jth
element (code vector) of the codebook C(i — 1), and ||.]|
denotes the Euclidean norm in U.

In the rest of this paper, the kernel is assumed to be Gaussian
without explicit mention. For a Gaussian kernel, we have

l0G) — e()lle =/ (@(@) — 0N (0() — 9()
= V22 @) ()

. N2
_ 2_2exp(—nu(z>—u<nn) ®

202

where |.||r denotes the norm in F, ie., Vo € F, |¢lp EX
VoT@. Equation (8) implies that the distance in feature
space [ will be monotonically increasing with the distance
in original input space U. In this case, the VQ in U is actually
equivalent to the VQ in F, and we can identify x (uq @), )
with ¢, (i), where ¢, (i) is obtained by performing similar
online VQ in F but with quantization size

_8%
EF = 2—2exp W . (9)

Imput: {u(i) € U,d@(i)}, i =1,2,...
Initialization: Choose step size # > 0, kernel width ¢ > 0,
quantization size ey > 0, and initialize the codebook (center
set) and coefficient vector: C(1) = {u(1)}, a(1) = [rd(1)].
Computation:

while {u(i),d(i)} (i > 1) available do

1) Compute the output of the adaptive filter:

size(C(i—1))
y(@i) = _zl aj(i — D (Ci(i — 1), u(i))

j=

2) Compute the error: e(i) = d(i) — y(i)

3) Compute the distance between u(i) and C(i — 1):
di ), C(i—1))= i )—Ci(i —1

is @@, CG—)= _ min [u@)—C;G~D]

4 If dis((@),Ci —1)) < ey, keep the codebook
unchanged: C(i) = C(i — 1), and quantize u(i) to the
closest center through updating the coefficient of that
center: a;=(i) = a«(i — 1) + ne(i), where

|ui) —C;G —1)|

<k

jr= arg min

1<j<size(C(i—1))
5) Otherwise, assign a new center and corresponding
new coefficient: C(i) = {C(i —1),u(i)}, a(i) =
lai — 1), ne(D)].

end while

Remark 2: The proposed online VQ method merely relies
on the distance measure (in U or ) and, obviously, is not an
optimal VQ method, because it is not derived by optimizing
some distortion measure. A more reasonable VQ method
should consider the distribution of data. However, it is very
simple and suitable for our QKLMS.

Now we give a summary of the QKLMS with online VQ:

Remark 3: The above QKLMS is somewhat similar to the
sparsified KLMS with novelty criterion [14]. In fact, they have
almost the same computational complexity. The key difference
between the two algorithms is that the QKLMS has utilized
the “redundant” data to locally update the coefficient of the
closest center. Intuitively, the coefficient update can enhance
the utilization efficiency of that center, and hence may yield
better accuracy and a more compact network. For the case
ey = 0, the QKLMS will reduce to the true KLMS algorithm.

In QKLMS algorithm, the “redundant” data can also be
used to globally update the whole coefficients of the current
network, using the LMS algorithm, just like Platt’s approach
in a RAN [10]. This variant of the algorithm, which we
refer to as the QKLMS-GU, however, may perform worse
than the original QKLMS, although it is more computational
intensive. This has been confirmed by the simulation results
in Section IV. One possible reason for this is that the local
update (only updates the closest center) of QKLMS avoids
the negative influence caused by far away centers which are
still under learning.

III. MEAN SQUARE CONVERGENCE ANALYSIS

The convergence performance is the key aspect of an
adaptive filter. We carry out in this section the mean square
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convergence analysis for QKLMS. For classical linear adap-
tive filters, the energy comnservation relation is shown to be
a powerful tool for the mean square convergence analysis
[35]- [39]. In the following, we derive the energy conservation
relation for QKLMS, then, on this basis, present a sufficient
condition for mean square convergence, and establish a lower
and upper bound on the theoretical value of the steady-state
EMSE.

A. Energy Conservation Relation

Consider the nonlinear system identification case in which
the output data {d (i)} are related to input vectors {u(i)} via

d(i) = f* (@) + @) 10)

where f*(.) denotes the unknown nonlinear mapping that
needs to be estimated, and v(i) stands for the disturbance
noise. According to the universal approximation property [16],
there exists a vector % € F such that f* = @*7 ¢(.) holds.
Therefore, we can rewrite (10) as

d(i) = X7 () + v(i).
And then, the prediction error e(i) becomes
e(i) = d(i) — i — D" 9(0)

= (270 + () - G~ DT o)

= Qi — DTp@) +0()

=e,(i) +0(@)
where Q(i —1) A Q*—Q(i —1) is the weight error vector in F,
and e, (i) 2 QG — 1)T (i) is the a priori error at iteration i.

Subtracting * from both sides of the QKLMS update
equation (i) = Q@ — 1) + ne(i)e, (i), we get

Qi) = Qi — 1) — ne()e, ().

Defining the a posteriori error e (i) B Q)T ¢ (i), we have

Y

12)

13)

ep(i) = eqli) + (fz(i)T — Qi - 1)T) o). (14
By incorporating (13)
ep(i) = eqli) — ne()e, (i) 9 (i)
= eq(i) — ne(i)x (uq (i), u(@)) (15)

where the latter equation follows from ¢, (i) = « (uy(i), .)
and the kernel trick (3).

Combining (13) and (15) so as to eliminate the prediction
error e(i) yields

Q00) = 81— 1)+ (ep i) — ea() — 2

RS S — 16
wia) 0

Squaring both sides of (16), we have
Qi) Q) = [fz(i — 1)+ (epi) — eali)) W"’(’ji)(l)u(l))}
q s
X |:S~2(i -+ (ep(i) - ea(i)) K(uq’((ji)(l)u(l))]
q ’
e (i) — e2(i)

=Qi-D'ei-H+L—5
K (uq(i),u(i))2
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2 (ep()—ea()) {0 = 1T 0, (i) (g (). 1)) —ea(i)}

+ . RV :
K (uq(z), u(z))
(17)
It follows that:
NE ea(i) - 2
Q e’ Qi -1
H (l)H]F x(uq(i),u(i))z H ¢ )Hur
2 /s
@O 4 s

K (uq(i), u(i))2

-2 - .
where HS’Z(z’)H]F =Q@()TR(@), and By is expressed as

Aep(D) = eal) [R0 =170y ()x (g (1), u(0)) —ea)]}
K (uq(i),u(i))2 19

Remark 4: Equation (18), which we refer to in this paper as
the energy conservation relation for QKLMS, shows how the
error powers evolve during learning with QKLMS. If we omit
the term f,, this relation is very similar to the classical energy
conservation relation for linear adaptive filters [35]—[39].
When the quantization size ey approaches zero, we have
K (uq @), u(i)) — land g; — 0, and in this case, (18) reduces
to the energy conservation relation for KLMS

~ ? 2. ~ . 2 2.
|20], +&o = [2¢ -]+ 50
which in form is identical to the energy conservation relation
for normalized LMS (NLMS). This is not a surprise since the
KLMS (with Gaussian kernel) is essentially the NLMS in the
feature space F.

q=

(20)

B. Mean Square Convergence Analysis

Substituting e, (i) = eq(i) — ne(i)x (uq (i), u(i)) into the
energy conservation relation (18), and after some simple
manipulations, yields

~ 2 ~ 2 -

HSZ(i) - HSl(i - 1)“ + n2e2(i) — 2ne()R(i — 1) 9, (),

F F 1)
Because we are interested in the mean square behavior of the
QKLMS, we take expectations of both sides of (21) and write

au[}] = o of}] < e[

~21E [e@)80i = DT 9, ()]

E

1

(22)

where E
in F.

Now we use (22) to analyze the mean square convergence
of the QKLMS. Before proceeding, we give an assumption
that will be used in the rest of this paper.

Al: The noise v(i) is the zero-mean, independent, iden-
tically distributed (i.i.d.), and independent of the a priori
estimation error e, (i).

Remark 5: The i.i.d. assumption of the noise sequence
is commonly used in the convergence analysis for adaptive

~ 2
Hﬂ(i )HF} is called the weight error power (WEP)



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

CHEN et al.: QUANTIZED KERNEL LEAST MEAN SQUARE ALGORITHM

filtering algorithms [35]. A sufficient condition for the inde-
pendence between v (i) and ¢, (i) is the independence between
v(i) and the input sequence {u(i)}.

Incorporating assumption Al into (22) yields

) = ellae ol (e[zo] o)

~21E [ea )90 = DT 0,(0)] (23)

E [Hfz(i)

where o2 denotes the noise variance.
1) Sufficient Condition for Mean Square Convergence:
From (23), we observe that

£|leo];] = #[|ad -v[]

& it (E[e0)]+02) = 20E [eadR0i — 1) 0, ()] =0

2E [ea(i)fl(i - l)T(pq(i)]
E[e2()] + o2

on= (24)

Therefore, to ensure the monotonic decrease of WEP in F,
we should choose a step size # (which can be variable) such
that Vi

2E [ea(i)fl(i - 1)T¢q(i)]

0<y< - (25)

T EG0]+ e

The existence of such step size requires Vi
E [ea(i)fl(i - l)T(pq(i)] > 0. (26)

Thus a sufficient condition for mean square convergence
(monotonic decrease of WEP) will be

E [ea(i)fl(i - 1)T(pq(i)] >0 (C1)
ZE[ea(i)fl(ifl)T(pq(i)]
Elez(D)]+a?

Vi, 27

0<y< (C2).

If (i) and Qi — 1) are statistically independent> we have
E e — 1) 0, ()]
= E[9G - D700, () 26 - 1)]
—E [fl(i —)TE (q)(i)q)q(i)T) Qi — 1)] . ©8)

In this case, the condition (C1) in (27) can be replaced by a
more stringent condition

E (o), ()") > 0. (29)
The above condition, in form, is similar to the persistence

of excitation condition for the quantized regressor algorithm
given in [26].

2The independence assumption between current input and weight error
vector are commonly used in literature.

2) Steady-State Mean Square Performance: Let us take the
limit of (23) as i — o0, and write

~ 2 - 2
tim £ |80, | = i # {86 0] |
+? (il_iglo Elem]+ 03)
27 lim E [ea()$0 — D79, ()]
(30)

Supposing the mean square convergence sufficient condition
(27) holds and the algorithm reaches the steady state, we have

- 2 - 2
R (T
And hence
7 (fim £ [0)] +o7)
27 lim E [ea(i)fl(i - l)T(pq(i)] —0. (32

It follows that:
n ('lim E [eg(i)] + 01)2) =2lim E [ea(i)fl(i — l)T(pq(i)]
1—> 00 1—>00
=2 lim £ [e,)2G = D (9() + (0,() —9)))]
=2 lim E[e2()]
1—> 00
+2 lim E [fz(i 176 — 1) (9,) - (p(i))] .
(33)
Thus the steady-state EMSE? is
lim E [e2(i)]
1—> 00 . .
noi=2 lim E[@(=7 o)~ (o, ()= (0) |
2—n .

(34)

Since

’E [fz(i - Do) — DT (p,6) — w(i))]]
< EI:HSNl(i—1)”;\|(ﬂq(i)—‘ﬂ(i)n]b‘:|

_E Hs”z(i—l)HfF 2—2exp(——”uq(i)_u(i)Hz)

202
2
S 2—2exp(—%)E[HSB*HH2,]
o

= [2ew (<) e 10

where (a) follows from ||uq @) — u(i)|| < ey and the
monotonic decrease of the WEP, y is the quantization factor
defined as y = ¢y /o, then we can derive

2 2

-2 2

max u,() < lim [eg(i)] < w (36)
2 — n i—00 2 — n

(35)

3The a priori error power is also referred to as the excess mean square
error in the adaptive filtering community.
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Fig. 1. Steady-state EMSE (dotted) versus the quantization factor y in static

function estimation. The derived lower and upper bounds of the steady-state
EMSE are also plotted.

where &, = \/2 —2exp (—(1/2)72) E[I2*|2].

Remark 6: We establish in (36) a lower and upper bound
on the steady-state EMSE for QKLMS algorithm. For the case
the quantization factor y = 0, we have ¢, =0, and

2
lim E [eg(i)] = 1% (37)
1—00 2 — n
which is actually the steady-state EMSE for KLMS. From
(36), the lower bound of the steady-state EMSE for QKLMS
is smaller than the steady-state EMSE for KLMS. This is
beyond our intuition, because we think that the quantization
should always decrease the accuracy, and the final EMSE of
the QKLMS should be always larger than that of the KLMS.
In the next section, we prove by simulation that the QKLMS
can really produce smaller EMSE than KLMS algorithm.

IV. SIMULATION RESULTS

Now we conduct Monte Carlo simulations to demonstrate
the performance of the proposed QKLMS in static function
estimation and short-term chaotic time series prediction.

A. Static Function Estimation

Suppose the desired output data are generated by the fol-
lowing static nonlinear (mix-Gaussian) system:

. 2 . 2
di)=0.2x [exp (—(u(l)%l)) + exp (—(u(l)%l))}
+o(i) (38)

where the input sequence {u(i)} is a zero-mean white Gaussian
process with unit variance, and the noise {0 (i)} is another zero-
mean white Gaussian process that is independent of {u(i)}.
The kernel size is set as 0 = 1.0.

First, we investigate how the quantization factor affects
the performance. Assume the noise variance is 0.04 and
let the step size be 0.6. We plot in Fig. 1 the steady-state
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——KLMS
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28]
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Fig. 2. Convergence curves in terms of the EMSE for QKLMS (y = 2.0)

and KLMS in static function estimation.

40

30

final network size
[\*]
S
PPPTTTEIEL UL bbbkt iy

10

0.1 2 4 6 8 10
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Fig. 3. Final network size versus the quantization factor y in static function
estimation.

EMSE, as well as the lower and upper bounds of (36), versus
the quantization factor y. Here the steady-state EMSE is
calculated as an average of 2000 Monte Carlo simulations. For
each Monte Carlo simulation, 500 iterations are run and the
last 100 iterations are used to compute the EMSE. From Fig. 1
we observe: 1) the steady-state EMSE indeed lies between
the derived lower and upper bounds; 2) when the quantization
factor approaches zero, the steady-state EMSE of the QKLMS
approaches that of the KLMS, which can be theoretically
calculated as 0.0171; 3) with quantization factor increasing,
the steady-state EMSE will not always increase; and 4) the
steady-state EMSE of the QKLMS can even be smaller than
that of the KLMS. In this example, the steady-state EMSE
attains its smallest value when y =~ 2.0. One possible reason
for this is that, when quantization factor (also the quantization
size) equals 2.0, it is more likely to yield a codebook that
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Fig. 4. Convergence curves in terms of the testing MSE for QKLMS, NC-
KLMS, and SC-KLMS in static function estimation. The parameters of the
algorithms are chosen such that they produce almost the same testing MSE
at final stage of adaptation.
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Fig. 5. Network size evolution curves for QKLMS, NC-KLMS, and SC-

KLMS in static function estimation. The parameters of the algorithms are
chosen such that they produce almost the same testing MSE at final stage of
adaptation (see Fig. 4).

is close to the ideal codebook {—1, 1} which, corresponds to
the centers of the desired mix-Gaussian function (note that
the distance between the desired centers is just 2.0). Fig. 2
illustrates the ensemble convergence curves for QKLMS (y =
2.0) and KLMS. It is evident that the QKLMS can outperform
the original KLMS in terms of the EMSE. The network size
of QKLMS can be very small. Fig. 3 shows the final network
size averaged over 2000 Monte Carlo simulations versus the
quantization factor. As expected, when quantization factor y
increases, the network size will decrease dramatically. For very
large quantization factor, the network size reduces to 1 (using
only one Gaussian function to estimate the desired mapping).
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Fig. 6. Segment of the processed Lorenz time series.
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Fig. 7. Effect of the quantization factor y on final testing MSE in Lorenz

time series prediction.

Second, we compare the performance of the QKLMS with
that of the sparsified KLMS. The novelty criterion and surprise
criterion (which includes the ALD and variance criterion
as special cases) are two typical sparsification criteria. In
the following, we use NC-KLMS and SC-KLMS to denote,
respectively, the novelty and surprise criterion based sparsified
KLMS. Assume the noise variance is 0.01. The convergence
curves in terms of the testing MSE (along with its standard
deviation) averaged over 100 Monte Carlo simulations for
QKLMS, NC-KLMS and SC-KLMS are plotted in Fig. 4, and
the corresponding network size evolution curves are depicted
in Fig. 5. In the simulation, the testing MSE is calculated on
the basis of 200 noise-free test samples (the filter is fixed in
the testing phase). The step sizes of all the algorithms are
set as 0.1, and the other parameters of the three algorithms
are selected such that they produce almost the same testing
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Fig. 9. Convergence curves in terms of the testing MSE for QKLMS, NC-
KLMS, and SC-KLMS in Lorenz time series prediction. The parameters of
the algorithms are chosen such that they produce almost the same testing MS.

MSE at the final stage of adaption. Specifically, for QKLMS,
we set the quantization factor y = 0.8, for NC-KLMS, we
set the distance threshold 6; = 0.07, and the error threshold
02 = 0.005, for SC-KLLMS, we set the regularization parameter
A = 0.1, the upper threshold of the surprise measure 77 = 100,
and the lower threshold 7> = —0.7. As one can see clearly

from Fig. 5, the QKLMS performs best, as it yields the
smallest network size.

B. Short-Term Chaotic Time-Series Prediction

Consider the Lorenz chaotic system whose states are gov-
erned by the differential equations [21]

fli—fz—ﬁx—kyz
& — 5z —y) (39)
F=—xytpy—z

Network size evolution curves for QKLMS, NC-KLMS, and SC-
KLMS in Lorenz time-series prediction. The parameters of the algorithms are
chosen such that they produce almost the same testing MSE (see Fig. 9).
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Fig. 11.

Network size evolution curves for QKLMS, NC-KLMS, and SC-
KLMS in Lorenz time-series prediction. The parameters of the algorithms are
chosen such that they produce almost the same final network size.

where the parameters are set as f = 8/3, 0 = 10, and p = 28.
The sample data are obtained using first-order approximation
with step size 0.01. The first component (namely x) is used
in the following for the short-term prediction task. The signal
is preprocessed to be zero mean and unit variance before the
modeling. A segment of the processed Lorenz time series is
shown in Fig. 6.

The problem setting for short-term prediction is as follows:
the previous five points u(i) = [x(i — 5),x( — 4),...,
x(i — 1)]7 are used as the input vector to predict the cur-
rent value x (i), which is the desired response here. In the
simulations below, the kernel size is set as ¢ = 0.707, and
unless mentioned otherwise, the step sizes involved are set
as 7 = 0.1. The effect of the quantization factor on final
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TABLE I
PARAMETER SETTINGS FOR DIFFERENT ALGORITHMS

To produce the same To produce the same
testing MSE final network size
QKLMS y =10 y =02
NC-KLMS 01 =0.1, 9o =0.001 o1 =0.142, 5, =0.001
A = 0.005, A =0.01,
SC-KLMS Ty =300, Th = —0.5 Ty =300, 75 = 0.0
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Fig. 12.  Convergence curves in terms of the testing MSE for QKLMS,

NC-KLMS, SC-KLMS, QKLMS-GU, and the original KLMS in Lorenz time-
series prediction. The parameters of the algorithms (except KLMS) are chosen
such that they produce almost the same final network size (see Fig. 11).

testing MSE is shown in Fig. 7, whilst the effect on the final
network size is shown in Fig. 8. For each quantization factor,
100 independent simulations are run with different segments
of the signal. The length of each segment (or equivalently, the
number of iterations in each simulation) is 4000. The final
network size is calculated as an average over 100 simulations.
The final testing MSE is calculated as an average over the
last 1000 iterations in the ensemble learning curves over
100 simulations. For each iteration cycle, the testing MSE is
calculated on the basis of 200 test data (the filter is fixed
in the testing phase). It can be seen from Fig. 7 that, when
the quantization factor is small (say, less than 0.5), the final
testing MSE of the QKLMS will be very close to that of the
KLMS (for comparison purpose, we also plot in the figure
the final testing MSE of the KLMS). As shown in Fig. 8§,
with quantization factor increasing, the final network size will
decrease dramatically. Even for a small quantization factor
(say, 0.1), the final network size will be much smaller than
4000 (which is the final network size of the KLMS).

The performance comparisons between QKLMS, NC-
KLMS, and SC-KLMS in short-term Lorenz time series pre-
diction, are presented in Figs. 9-12, where all the simulation
results are averaged over 100 simulations run with different
segments of the signal. In Figs. 9 and 10, the parameters of the

three algorithms are chosen such that they produce almost the
same testing MSE (see Fig. 9)*, while in Figs. 11 and 12, the
parameters are selected such that the algorithms yield almost
the same final network size (see Fig. 11). Table I lists the spe-
cific parameter settings. Simulation results clearly indicate that
the QKLMS exhibits much better performance, i.e., achieves
either much smaller network size or much smaller testing
MSE than NC-KLMS and SC-KLMS. For further comparison
purpose, we also plot in Fig. 12 the convergence curves of
the QKLMS-GU and the original KLMS. It is evident that
the QKLMS performs better than QKLMS-GU and achieves
almost the same testing MSE as the KLMS. In the simulation,
the QKLMS-GU and QKLMS are set the same quantization
factor, and hence their network sizes are always identical. The
step size for GU (LMS) in QKLMS-GU is experimentally set
to 0.002.

V. CONCLUSION

Quantization techniques have been widely used in data
compression where a larger dataset is represented by a smaller
set of code vectors. This paper used the idea of quantization
to compress the input (or feature) space of the kernel adaptive
filters so as to curb the growth of the RBF structure. Unlike
conventional sparsification methods, the new approach utilizes
the “redundant” data to update the coefficient of the closest
center, and hence may yield better accuracy and a more
compact network. Based on a simple online VQ method, we
developed a QKLMS algorithm. The mean square convergence
analysis for this algorithm has been studied. A sufficient
condition for mean square convergence, as well as a lower
and upper bound on the theoretical value of the steady-state
EMSE, was derived based on energy conservation relation.
Simulation results have confirmed the theoretical analysis and
shown the excellent performance of QKLMS.

There are many problems that need to be studied in the
future. The first and probably the most important one is how
to design a more efficient VQ method. The simple online
VQ method of this paper considers only the distance measure
in input (or feature) space. It might be more reasonable to
incorporate other information, such as the prediction errors
and the distance in the desired signal space. The idea of
coding theory or information bottleneck can also be applied
in developing a new online VQ method. How to determine
the quantization size (coarseness of quantization) was another
important problem. In general, the choice of the quantization
size depends upon a tradeoff between accuracy and complexity
(network size). For a nonstationary learning system, the quan-
tization size should be adaptive. In future study, we should
also develop the quantized version of other kernel adaptive
algorithms, such as the quantized KAPA, quantized KRLS,
and so on.
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