
Narrowing the Semantic Gap in Wide Area Motion Imagery 
Reid Porter, Andrew M. Fraser, Don Hush 

Abstract  
Wide-Area Motion Imagery sensors are placed on helicopters, balloons, small aircraft or 
unmanned aerial vehicles and are used to image small city-sized areas at approximately 0.5 
meters per pixel and about 1 or 2 frames per second. The geo-spatial-temporal datasets produced 
by these systems allow for the observation of many dynamic phenomena that were previously 
inaccessible in street-level video data but the efficient exploitation of this data poses significant 
technical challenges for image and video analysis and for data mining. Content of interest is 
defined in very abstract terms related to how human's interpret video imagery, but the data is 
defined in very physical terms related to the imaging device. This difference in representations is 
often called the semantic gap. In this review article we describe advances that have been made, 
and the advances that will be needed, to produce the hierarchy of computational models required 
to narrow the semantic gap in wide-area motion imagery.  
 

1. Introduction 
As airborne wide-area imaging systems become cost effective, increasingly large areas of the 
earth can be imaged at relatively high frame rates. Wide-Area Motion Imagery (WAMI) 
exploitation systems have some similarity with surveillance systems that use multiple, fixed, 
high frame-rate, narrow field-of-view video cameras. Both datasets have persistent data 
collection, which allows systems to build and exploit statistical models of normal behavior over 
time, and both systems have a fixed frame of reference, which means models of the observable 
area can be used to provide contextual information relevant to many activities of interest. WAMI 
systems also have unique challenges. In particular, airborne collection platforms introduce 
challenges such as geo-registration, parallax and lower levels of spatial and temporal resolution. 
In addition, vehicle activities exist within the structured environment of a road network and 
within the contextual background of a geo-spatial information system which can be a challenge 
to exploit.  

At an application level, the predominant objects and scales of interest in WAMI (people and 
vehicles moving across a city) have different dynamics and associated activity characteristics 
than those associated with narrow-field systems. Vehicle activities include the general 
classification of vehicle routes into categories such as commuter, commercial, or tourist, and also 
include multiple vehicle interactions such as meetings and coordinated driving patterns. Due to 
the wide field of view, and the long dwell times, it is also possible to observe the interactions 
between multiple activities which may suggest the presence of particular scenarios. Example 
scenarios include a delivery route, get-away, surveillance and counter-surveillance. Scenarios of 
interest are typically rare, ill-defined and subject to change and evidence of these scenarios is 
subtlety dispersed among immense amounts of data.  

WAMI exploitation requires a hierarchy of spatiotemporal models that can move between sensor 
and scenarios. For the purposes of discussion we divide this hierarchy into three stages, which 
are illustrated in Figure 1. As we move from sensor data in stage 1 through to scenarios in stage 
3, we attempt to model phenomena over larger and larger spatial and temporal distances. In stage 
1 we try to detect events, the geo-spatial locations of vehicles and people at each point in time. In 



stage 2 we try to detect groups, or  patterns, of events which correspond to activities of interest 
e.g. vehicle tracks, or to multi-vehicle activities such as meetings and coordinated driving. In 
stage 3 we are interested in groups of activities, or scenarios that may unfold over days and 
weeks.  

In image and video processing, machine learning and several other research communities, 
solution methods for the three stages have developed relatively independently for a number of 
years. This is a necessary first step and has helped the research communities gain a better 
understanding of individual components. With the dramatic rise of WAMI collection systems we 
have new opportunities, but also a much greater need to consider how these components can 
work together. For computational systems to successfully detect and predict scenarios we require 
a hierarchy of models that can scale from instantaneous pixels through to week-long, city-sized 
scenarios and provide fluid and dynamic allocation of computational resources across boundaries 
within this hierarchy. This type of computational system is yet to be seen, and it will require 
progress on several fronts.  
A key observation is that a well trained user, given enough resources and time, can in fact 
succeed at the task and identify many of the relevant scenarios. This suggests a path forward 
using approaches that efficiently exploit the complementary strengths of humans and machines 
during the scenario extraction task. A data-driven model translates image pixels into a more 
abstract representation. This representation focuses on characterizing the dynamic objects within 
the scene (e.g. vehicle tracks), it is general purpose and error prone. To move towards scenarios, 
end-users are engaged: Users interact with data-driven tools to focus additional computation and 
provide context to resolve ambiguities and correct representation errors. We call this the user-
driven model. 
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Figure 1: WAMI Exploitation in three stages: Characterizing Events, Activities, and Scenarios. See 
Figure 9 for a zoomed -in view of the right-most image.  

 



Most WAMI research has focused on developing the data-driven model. We describe the key 
components and WAMI specific challenges in Section 2. Current and future research is starting 
to focus on user-driven models. In Section 3 we describe the key components and suggest how 
the user-driven model might interact with the data-driven model to narrow the semantic gap.  

 
2. Data-Driven Models: Tracking all the vehicles 
WAMI is typically acquired by multiple independent cameras, physically arranged to have 
overlapping fields of view, and co-mounted on an airborne platform. As images are collected, 
they are passed through a series of feed-forward models that produce a higher-level compact 
representation that quantifies content and variation of interest. At a minimum this feed-forward 
model includes 1) geo-registration and stabilization, 2) detection of vehicles and people, and 3) 
tracking of vehicles and people. The feed-forward models have much in common with narrow-
field, high frame rate video processing pipelines that have been described by several authors in 
this magazine [1], and elsewhere [2].  WAMI introduces some additional sets of challenges 
which we describe in the next few sections.  

2.1 Geo-registration and Stabilization Challenges 
The first step is to stitch images from the multiple cameras into a single frame.  Although camera 
models are optimized prior to data collection, physical and environmental stresses during 
collection can lead to significant deviations.  The airborne collection systems often have real-
time requirements and limited communication bandwidths which preclude in-flight correction of 
camera models. Recently there has been significant effort to develop single camera wide-field 
systems which will reduce some of these problems and eliminate others e.g. image stitching is 
not required. 

A second set of challenges is introduced by the collection geometry: there is significant variation 
in ground plane elevation due to the wide field of view, and buildings and other tall landmarks 
suffer from parallax due to oblique viewing angles. Elevation maps are often used to compensate 
for some of these effects, but they are rarely up to date or at the resolutions required.  Plausible 
solutions to such problems include structure-from-motion techniques to estimate an elevation 
map using the imagery as it is collected [3] and bundle-adjustment [4]. 

In Figure 2 we show the geo-registration and stabilization pipeline developed to support a real-
time collection, communication and distribution system for imagery that is required on the 
ground with minimal latency. The main application is visual inspection. Data from 6 cameras, a 
Global Positioning System (GPS), and an Inertial Measuring Unit (IMU) are combined with a 
digital elevation model to form a single image sequence.  The pipeline design is open-loop to 
minimize latency and computational complexity. A six degrees-of-freedom affine transformation 
characterizes the intrinsic model of each camera. An extrinsic model with 15 degrees-of-freedom 
characterizes the angles between the cameras. All of the model parameters are estimated off-line 
on the ground using test patterns. In the field, the resulting stabilization quality is sufficient for 
some end users.  However, before passing the imagery to an automated moving object detection 
and tracking system, one must do additional closed loop processing to estimate refined time 
dependent model parameters [5].  

Although in principle geo-registration and data stabilization are relatively well defined, they are 
extremely difficult optimization problems, and further improvements will be required. It is likely 



that current commercial data collectors are using specialized solution methods that are tailored to 
their particular sensors and collection platforms [6], [7].  

 
Figure 2: A real-time WAMI geo-registration and stabilization pipeline. 

 
2.2 Object Detection Challenges 
Robust object detection in WAMI faces several challenges: 1) low spatial resolution means 
objects of interest such as vehicles and people, cover very few pixels, 2) low temporal resolution 
means point-like moving objects can move significant distances between frames, and 3) geo-
registration and stabilization errors introduce a large amount of motion clutter.  

The spatial and temporal resolution of WAMI lies between narrow-field high frame rate video, 
and broad-area satellite imagery and WAMI moving object detection can draw from the 
collective toolboxes of background subtraction from video analysis and change detection from 
satellite image analysis. These two solution methods are complementary. Background 
subtraction exploits the long-term temporal statistics of each pixel and can suppress specific 
spatial locations such as trees swaying in the wind [8]. Change detection can mitigate sudden 
pervasive differences by exploiting the fact that these differences affect a large fraction of the 
image such as illumination, and mis-registration [9]. WAMI has both types of unwanted 
differences and, as shown in Figure 3, building detectors using both temporal and spatial 
statistics can improve performance [10].  

Moving object detection can be used to produce short tracks through uncluttered portions of the 
data. However when objects stop, or maneuver erratically, or there is a large number of objects 
in close proximity, appearance cues need to be exploited. Appearance cues can also mitigate geo-
registration and stabilization errors (since they are applied to frames independently) and can be 
used to differentiate, or classify different types of objects e.g. vehicles versus people.  

The low spatial resolution of WAMI data currently limits the sophistication of appearance based 
object detectors. Figure 4 illustrates typical challenges faced by appearance based detectors. The 
large WAMI data volume also requires algorithms that can be applied extremely efficiently. One 
class of algorithms that address these criteria to some extent are interest point detectors [11]. The 
specificity of these algorithms is low (e.g. a simple interest point detector is a Difference-of-



Gaussians or "blob" detector) and there has been considerable effort to optimize them for speed 
[12]. As WAMI spatial resolution and the image quality improve, the large body of appearance 
based object detection and recognition algorithms will become more relevant. Both implicit 
appearance models built from example imagery (e.g. edge histograms [13]) and explicit 2d or 3d 
models of vehicle geometry have been found to be useful in vehicle detection and categorization 
[14]. 

Another way to improve the performance of both moving object and appearance based detectors 
is to supplement wide-area panchromatic imagery with data from other sensors such as thermal, 
infrared, synthetic aperture radar, and even multi- and hyper-spectral imagery [15]. These 
sensors not only provide better fingerprints for specific objects of interest, but also extend the 
viable operating conditions of wide-area systems beyond daylight hours and also help deal with 
non-ideal weather conditions such as clouds.  

Figure 3: WAMI moving object detection requires algorithms that can mitigate 
motion clutter from a large number of sources. 

  

 



 
Figure 4: Challenges for WAMI based appearance detectors (a) A well separated vehicle on a 
road. (b) Five densely packed vehicles at a junction. (c) A pair of vehicles with the system 
temporarily out of focus. (d) A pair of low contrast vehicles. (e) An ambiguous object in a back 
garden. (f) A large, roof-mounted air-conditioning unit. 

 
2.3 Tracking Challenges 
Tracking all vehicles within a WAMI dataset from the point of origin to their final destination 
faces many challenges including: The low-frame rate means vehicles travel several vehicle-
lengths between frames, the low specificity of object detectors means all vehicle detections are 
treated equally, and motion clutter introduces large numbers of false detections. To help address 
these challenges, multi-target tracking systems can utilize both movement and appearance cues, 
prior information related to the geographic location such as road maps, as well as normalcy 
models. The design choices for multi-target tracking algorithms in WAMI are considerable and 
the full design space has yet to be explored. Figure 5 illustrates the kind of quantitative 
comparisons required. Data for the plot are drawn from a low frame rate video sequence of 
traffic in a busy intersection through an entire cycle of its traffic signals. The track error rate 
values represent comparison to frame by frame annotations from a human analyst. As we write in 
the caption, such an analysis enables one to compare the benefits of adding various new features 
to the traffic models underlying the algorithms. 

One of the most interesting choices concerns the sophistication of the state-transition-model: the 
model that propagates the position, velocity and other attributes of vehicles though time. In 
current WAMI exploitation systems, this model typically involves the independent propagation 
of each vehicle with constant velocity. More sophisticated models that have been shown to 
improve performance include: 

Interacting-Multiple-Models (IMM): the vehicle dynamics depends on the current mode of the 
vehicle e.g. driving straight, turning and coming to a stop [16].  

Multi-vehicle Interactions: the vehicle dynamics is dependent on the number and geometry of 
surrounding vehicles e.g. vehicle motion is constrained to reduce the probability of collisions 
with other cars [17].  



Models that are dependent over space and time: the dynamics depends on the geospatial 
location e.g. structural constraints of the road network. If elevation maps are available they can 
be used to simulate shadow and occlusions [15], and help track linking [18]. Since the geospatial 
environment changes much more slowly than the vehicle dynamics, it is also possible to derive 
geospatial context from moving object detections and vehicle tracks. In Figure 6 tracks are 
accumulated as a geo-spatial map which can be used as a spatially-variable prior [19]. In sparse 
spatial environments, dynamically allocated models can provide a more efficient representation 
[20].  

 
 Figure 5: Performance of Standard (independent constant velocity models with greedy data 
association), Interacting Multiple Models (IMM) and Multiple Hypothesis Tracking (MHT) as a 
function of detection quality. With perfect detections (0 FA and 0 MD),  Standard (the red surface) 
obtains an error rate of approximately 50%. MHT (blue surface) obtained 47%, and IMM, (black 
surface), obtained 40%. When both MHT and IMM were employed, an error of 39% was 
obtained. This indicates that IMM provides a significant improvement in performance and the 
additional improvement from MHT is negligible. Note that the additional computational cost of 
IMM is small, while the additional computational cost of MHT is large.  

2.4 Moving Beyond Tracking  
For the purposes of this review article, our data-driven model ends at tracking, however this is 
clearly just the beginning. One approach is to continue to increase the sophistication of the state-
transition-model. Much like with Interacting Multiple Models, one can introduce additional state 
variables that capture abstract phenomena of interest e.g. a vehicle has a route type: commuter, 
shopper, tourist etc. One problem with this approach is that the more abstract variables propagate 
at different spatial and temporal scales than the vehicle position and velocity variables. This has 
led several researchers to develop multi-scale and hierarchical state-transition-models. These 
models provide a useful formalism but are currently hand crafted and are therefore most effective 
when there is a lot of prior knowledge or inherent structure in the application, e.g., tracking 
people at multiple scales through rooms, floors and buildings [21]. This type of approach will be 
useful in WAMI exploitation for modeling known neighborhoods, or specific activities. 
However, there still remains a largely unstructured and unknown hierarchy of activities within 
wide-area urban environments which must be captured. We now describe other key ingredients 



and additional challenges to automatically extending data driven models and discovering 
unstructured hierarchies within WAMI.  

 

 
Figure 6: exploiting the persistent nature of WAMI to build spatially variable models of the 
scene. At each pixel, a velocity histogram is estimated from historical track data. The speed (left) 
and direction (right) of the histogram mode at each location. These models can be used as spatially 
variable priors within the multi-target tracking system, and used to detect anomalous tracks within 
a dataset. 

3. User-Driven Models: Towards Scenarios 
Scenarios of interest in WAMI datasets, such as the preparations for a terrorist attack, are often 
extremely rare, and instances are often unique. This means we must make very few assumptions 
when building abstract models. It also means that human analysts are integral to the process and 
will ultimately be responsible for using context, and domain expertise to make judgments and 
initiate follow-up analysis. In this situation, it is natural to ask how computational systems might 
assist, rather than replace human users. The main objective is to help increase the user's situation 
awareness and the main performance criterion is user productivity i.e. how much data the user 
can reliably monitor. These are unsolved problems in WAMI exploitation and we suggest three 
main areas of research will be required:  

1) Search Tools: The aim is to provide users with computational tools that help identify 
components of scenarios (e.g. activities) and automate some of the more tedious and labor 
intensive parts of exploitation. For example, a user monitoring a particular building would like to 
know if any vehicle enters or leaves the parking-lot without having to look at every frame. In a 
second example the user has identified a particular driving pattern of interest and would like to 
find other occurrences. These search tools operate on the outputs from the data-driven model, 
and are typically made available to the user as customized queries. This is currently an active 
topic of research in computer vision and is the focus of a 2009 DARPA solicitation Persistent 
Stare Exploitation and Analysis System (PerSEAS).  

2) Analysis Environment: The aim is to provide an analysis environment where tools can be 
applied, data visualized, and human users empowered to monitor more data in less time. Due to 
the geo-spatial nature of WAMI, many techniques developed for geo-spatial information systems 



are relevant to this aspect of the problem and their extension to WAMI's increased temporal 
resolution is an active research topic. For example, data aggregation maps such as those in 
Figure 6 can be used to focus a user’s attention. Visual Analytics is another area of research that 
aims to complement, rather than replace users in data exploitation, and many emerging ideas will 
be relevant to WAMI in the near future [22].  

3) Human-Computer Interaction: The third and least developed area of research involves the 
interaction between the user, the Search Tools and the Analysis Environment. This interaction 
contains valuable information about the user’s preferences and priorities and also contains the 
user’s domain knowledge of the dataset and collection area. As progress is made in Search Tools 
and the Analysis Environment, folding this domain knowledge back into the data-driven model to 
maximize the joint human-computer productivity will become increasingly important for robust 
scenario extraction.  

3. 1 Search Tools 
Multi-target tracking systems are currently unable to track all vehicles within the field of view 
from their point of origin to their final destination with any reasonable computational budget. 
Tracks estimated by current systems last on the order of tens of seconds (minutes at most), and a 
complete vehicle route is comprised of tens to hundreds of track segments. However, given an 
initial tracking result, a number of activity detection tools can be provided to WAMI users. 
Motivated by the current track quality, we divide these tools into four broad categories which are 
illustrated in Figure 7. These categories have different applications and different solution 
methods. 

 

 
Figure 7: A categorization of activity queries tools based on the type of track data used as input.  

 
Database Queries: In some applications track segments contribute independently to the final 
results. For example, a user who wants to estimate traffic density on a certain road can calculate 
simple aggregations of track segments within a spatial area. This type of tool can be 



implemented with relatively standard database queries, and the main challenge is to provide 
efficient and scalable representations for the track segments [23].  

Meeting Queries: The second category of query also works directly with track segments and it 
is used to identify particular stopping and starting behavior. Like database queries, meeting 
queries are relatively local in space-time which makes them computationally tractable, however 
unlike database queries, these queries involve relationships between multiple track segments e.g. 
relative arrival times, departure order etc. In addition, due to the sudden change in vehicle 
dynamics associated with vehicle starts and stops, there is high track uncertainty at meeting 
locations which leads to high number of false alarms. One way to mitigate these errors is to take 
advantage of the fact that false alarms are spatially dependent e.g. false alarms are highest at 
intersections. Much like in Figure 6 vehicle stops and starts can be accumulated over time to 
estimate the false alarm rate. This can then be used to prioritize meeting query results and reduce 
user effort by an order of magnitude [24].  

Track Queries: The third category of query is associated with a single vehicle, but it requires 
the characteristics of multiple track segments to be combined e.g. a vehicle u-turn can be broken 
into two segments due to the sudden change in vehicle dynamics at low frame rates. In general, 
track queries become more useful as the track length (or the number of segments that can be 
reliably associated) increases. For example, inefficient routes become more and more obvious 
over longer time periods. However increasing the length of tracks without additional sensors or 
sources of information is extremely difficult. One way to mitigate track segment association 
errors is to introduce additional context into the query, such as normalcy models and geo-spatial 
attributes, e.g. we are only interested in inefficient routes in particular neighborhoods. Another 
way to improve query robustness is to minimize the dependence on any particular segment by 
working with moving object detections, or breaking tracks into small overlapping windows [25]. 

Coordinated Track Queries: The fourth category of query focuses on multiple vehicles driving 
similar or related routes (e.g. coordinated driving), driving to and from common locations, and 
also particular formations such as convoys, or pursuit. These are the most difficult queries since 
they typically involve multiple vehicles over multiple track segments. Applying statistical tools, 
such as Hidden Markov Models, to track-segments and lower level representations can reveal 
more complex activities [26]. However query robustness must be balanced with the ability to 
incorporate user needs: statistical models provide robust detectors by using the data to define 
activities, but user's work at an abstract level where tracks represent complete routes. One way 
statistical models can be tailored towards activities of interest is by choosing an appropriate input 
representation [27]. 

3.1.1 Query Refinement  
An important mechanism to mitigate uncertainty in the data-driven model is to engage users to 
visually validate, and correct query results. This also helps users direct generic queries towards 
their specific content of interest. Figure 8 illustrates the query refinement process. The query has 
a number of parameters, some easily understood by a user, such as prioritizing candidates by the 
duration of meeting, and some not as easily understood, such as weights to combine multiple 
priorities. The user inspects each candidate in turn and provides feedback. In the simplest case 
the user saves the activity for follow-up analysis, or deletes the activity as a false alarm. This 
feedback is then used to adjust query parameters (usually such parameters are not used or 
understood by users) so that the activities that were saved are given higher priority. This 



approach has been shown to dramatically reduce the user search time in several domains [28]. A 
challenge for query refinement within WAMI is that the activities of interest are often rare which 
means there may be very few positive examples with which to refine queries. This type of one-
sided query is also encountered in the exploitation of astronomical sky survey datasets, and other 
application domains where it has been called rare category detection [29] and suggested solution 
methods typically involve active learning in the semi-supervised domain [30].  

 

 
 

Figure 8: A hypothetical three-step example of relevance feedback using the query system 
described in [24]. 1) A user initiates a generic query for 3 vehicle meetings, 2) the query tool 
produces a prioritized list of candidates for the user to inspect and 3), the user annotates particular 
meetings of interest which automatically reweights the prioritization scheme to rank similar 
meetings higher.  

3.2 Analysis Environment 
When interpreting WAMI, users exploit considerable geo-spatial context from the urban 
environment. Queries must therefore draw on, and combine geo-spatial information and a tight 
coupling with the Geospatial Information Systems (GIS) is essential. There has been growing 
interest to support the analysis of movement behaviors and mobility patterns within the GIS 
community [31]. as well as a number of data aggregation techniques for helping users understand 
and discover spatio-temporal activities [32]. However there is an important distinction between 
WAMI and current GIS trends: the data-driven model. The GIS community is largely focused on 
movement data from GPS-based consumer products, and therefore solutions do not address the 
model and track uncertainty challenges faced in WAMI.  



GIS researchers have also developed interactive visual displays relevant to spatio-temporal 
patterns [33]. A challenge in this area for WAMI is to move seamlessly from high-level 
visualization and abstract data representations all the way down to raw image data. This enables 
users to validate all pieces of the scenario, and helps users mitigate errors that are propagating 
through the hierarchy. For example, in Figure 9, a high level query predicts a potential link 
between two activities based on their spatial and temporal proximity. Potential vehicle routes are 
then estimated from the data-driven model and areas of high uncertainty shown to the user for 
validation / correction.  

 
Figure 9: A hypothetical interactive display that allows users to navigate between high-level 
abstractions (left) to track and pixel data (right). Users are empowered to combat the 
combinatorial growth of potential scenarios at a high level of abstraction, while also being 
empowered to help identify and validate key vehicle routes within these scenarios.  

 
3.3 Human-Computer Interaction 
Relevance feedback is a first step in extending the data-driven model. It optimizes the query with 
respect to the noise characteristics of the particular dataset and the data-driven model, and it 
captures user domain knowledge. Due to the persistent nature of WAMI datasets we suggest that 
this approach can be taken a lot further. By accumulating user feedback over a given geographic 
area and over long periods of time, each new user does not need to start from scratch. This is 
similar to the memory learning framework for image retrieval [34] where it was shown that 
accumlated relevance feedback helps to define higher-level representations [35]. WAMI has the 
additional advantages and challenges of the geo-spatial reference frame.  

A conceptually simple way to use the accumulated query feedback to extend the data-driven 
model in WAMI, is to identify the most popular queries, and push these back into the data-driven 
model. This has two advantages: 1) it makes the query results immediately available to all users 



since they are calculated as part of the automated feed-forward model, and 2)  the data-driven 
model can use the query result to improve performance. For example, a meeting query can be 
used to selectively apply a more expensive multi-vehicle interaction state-transition model. 
While conceptually simple, a mathematical basis for the above idea is yet to be seen. The data 
driven model is typically a generative model and the query is typically a discriminative model on 
the generative model parameters. How these models should be optimally combined is an open 
question.  

Another ambitious role for accumulated feedback appears in Figure 10. The system not only 
records relevance feedback from the queries, but also the sequence of interactions between the 
user and the WAMI information system. Over time these user interactions accumulate and 
common sequences of tool usage are captured in a user-model [36]. In addition, the geo-spatial 
reference frame provides a valuable link between data-driven and user-driven models [37]. In 
other domains this type of approach has been called Programming by Demonstration and its 
success will depend on how tools are presented and applied by users within the WAMI analysis 
envionment [38].  

 
Figure 10: Hypothetical history of a user’s tool-usage provides a second spatio-temporal dataset 
which can be exploited to define compound queries, discover new spatio-temporal relationships 
and maximize the joint human-computer system performance.  

4.  Summary 
Wide Area Motion Imagery provides unique opportunities for researchers interested in 
narrowing the semantic gap between image data and user applications. Unlike narrow-field and 
multi-sensor surveillance systems, the WAMI field-of-view provides relatively uniform 
observations of spatio-temporal phenomena over a large and new dynamic range. However, the 
WAMI exploitation challenges are considerable and span several, currently independent, 
research communities from image registration to knowledge management. In this review article 
we have outlined the current state-of-the-art in data-driven models. While the number of 
commercial and government entities actively involved in wide-area video exploitation has been 
relatively small, it will grow fast as data becomes more generally available and experts in 
narrow-field video exploitation can turn their attention to wide-field systems.  



In the second half of this article we also identified the challenges that must be overcome in user-
driven models. Two of the key open questions are how and if user-models can be integrated with 
data-driven models in a way that provides scalable and dynamic model adaptation and 
refinement for particular end-users and particular applications. Answers to these questions will 
not only help build the hierarchy of models required in WAMI exploitation, but also provide 
important insights into how we might close the semantic gap in a wide range of signal processing 
applications.  
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