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1 IntroductionThere is a growing demand for distributed computer control in sophisticated embedded controlsystems such as high-end passenger vehicles, numerical control machines, and avionics y-by-wiresystems. These systems are often equipped with tens of microcontrollers which oversee diversefunctional units connecting hundreds, sometimes thousands, of analog and digital sensors and ac-tuators. There are signi�cant merits in designing such complex embedded control systems in adistributed fashion. First, it is more cost e�ective to build an embedded control system withseveral customized, inexpensive microcontrollers than to do so with a single high performance mi-croprocessor. For example, a passenger vehicle consists of various functional components includingengine control, anti-lock brake, and cruise control units. Since each of these units requires spe-ci�c functionalities such as digital signal processing or interrupt driven event processing, functionalunits with dedicated microcontrollers can reduce the overall hardware cost. Second, a distributedembedded control system is more reliable than a centralized one since it is possible to isolate thebreakdown of one subsystem from others in a distributed control system.The distributed control systems architecture, if properly designed, o�ers additional bene�ts:(1) composability: large systems can be built in an incremental manner by integrating a set ofwell-speci�ed and tested subsystems; (2) extensibility: existing systems are open to incrementalmodi�cation and extensible without some prede�ned upper limit; and (3) maintainability: it ispossible to implement well-de�ned error-containment regions and to achieve fault tolerance byreplicating nodes.Unfortunately, such bene�ts come with a serious cost { increased software complexity. Thismakes software systems in a distributed embedded control system get extremely complicated tohandle the added complexity as well as inherent one. Note that embedded control software mustoperate in a harsh environment, run on a wide variety of microcontrollers, and interface withheterogeneous I/O devices. Thus, it is very di�cult, though not impossible, to design a distributedembedded control system without supports from real-time operating systems, well-de�ned networkprotocols, and component-based middleware systems.Such software complexity can be partially addressed with recently emerging component-basedmiddleware technologies such as CORBA [6], DCOM [4], and Java RMI [16]. They can provideembedded system designers with platform independence and component reuse through interfaceinheritance and software bus abstraction mechanisms. However, these technologies cannot be di-rectly applied to embedded control system design without careful customization and tuning sincethey were originally conceived and developed for use in a general purpose distributed computingenvironment.In this paper, we propose an environment speci�c CORBA for distributed embedded controlsystems on the CAN (controller area network) bus. The CAN [3] is a rapidly emerging standard2



for embedded real-time network substrates and widely used in the automotive industry worldwide.In designing the new CAN-based CORBA, we put our emphasis on meeting three key requirementsinherent to the CAN-based embedded systems. First, the ORB implementation on each processingnode should have a small memory footprint not exceeding a few hundred kilobytes. Second, themessage tra�c per service invocation should be kept low. Note that on the CAN the highestnetwork bandwidth is only 1 Mbps and the payload of each message is only eight bytes long. Last,the ORB should support group communication to facilitate easy dissemination of sensory data.The standard CORBA lacks group communication capabilities.To meet these requirements, we redesign the general inter-ORB protocol (GIOP) into an envi-ronment speci�c IOP (ESIOP) for the CAN bus and de�ne a compact common data representation(CCDR) format. We name the protocol the embedded inter-ORB protocol, or EIOP. We alsodevelop a new transport protocol on the CAN to support group object communication. The pro-posed CORBA design is compliant to the OMG (object management group) standard at the IDL(interface de�nition language) level and strictly follows the guidelines on ESIOP as given by OMG.1.1 Related WorkThree areas in CAN-based systems and middleware come close to our work: (1) high-level protocoldesigns for CAN, (2) object-oriented modeling schemes on CAN, and (3) group communicationsupports for the standard CORBA.Since the CAN standard speci�es protocols only up to the data link layer, it lacks high-levelprotocol services such as distribution of media access identi�ers and establishment of communicationtransports. Thus, it is laborious to build a distributed application, even with modest size andcomplexity, on the CAN. To address this problem, several commercial, high-level protocol suiteshave been developed and widely used in industry [1, 10, 9]. DeviceNet [1] by Allen-Bradley is oneof such protocols for the CAN. One of noticeable features of DeviceNet is a high-level abstractioncalled device pro�les. A CAN node in DeviceNet is assigned one of the standard device pro�les,e.g., a photoelectric sensor pro�le, which speci�es the type and behavior of a software componentin the node. Together with many other features of DeviceNet, device pro�les provide a desiredlevel of abstraction for CAN programmers. These pro�les are systematically de�ned by the OpenDeviceNet's Vendor Association (ODVA) and distributed to end users by the vendors.In a distributed real-time control system, it is typical that sensor data are periodically producedwithout speci�c requests from its consumers and then disseminated among di�erent controllers. Insuch an operating environment, subscription-based group communication is more important thanconnection-oriented point-to-point communication. In the literature, group communication forreal-time systems has been well studied on various network media [17, 18]. Particularly, in [13, 14],Kaiser et al. propose a real-time object invocation scheme and a publisher/subscriber scheme on3



the CAN 2.0B bus. These are one of seminal attempts to develop systematic paradigms for real-time object models on the CAN. Their approach in [14] uses an abstraction called an event channel,which establishes a virtual connection between publishers and subscribers. Each event channel isidenti�ed with a global event tag which takes up 14 bits in the 29-bit CAN 2.0B identi�er. Theremaining 15 bits are used for a message priority and a node identi�er. A drawback of this approachis that it cannot be e�ectively applied to the CAN 2.0A bus which has only 11-bit identi�ers: itwould be able to o�er at most 64 event channels in CAN 2.0A even if only �ve bits were usedfor a message priority and a node identi�er. This poses an important practical problem. Notethat the CAN 2.0A bus is preferred to the 2.0B bus since the extended 2.0B identi�ers increasebus arbitration overhead [1]. Though our approach uses a similar abstraction called an invocationchannel, it di�ers from the event channel since publishers access an invocation channel via theirown port. Under a given upper layer protocol, our group communication scheme can support upto 512 ports in CAN 2.0A.DeviceNet also supports group communication. However, it requires that an explicit bidirec-tional connection should be established between producers and consumers. Such a bidirectionalconnection is created by combining two one-way connections in reverse directions. This requirementmakes it impossible to support anonymous communication such as the publisher/subscriber model.There are several research results which address the group communication problem for CORBA.In [8], Harrison et al. present the implementation of the CORBA event channel [5] for real-timesystems. The CORBA event channel is an intermediary object which accepts event data froma supplier and retransmits it to related consumers. The event channel has the responsibility ofgrouping consumers and multicasting messages to them. It may well increase the communicationoverhead since every message is transmitted at least twice due to message indirection. Though ourapproach also relies on an intermediary object for managing subscriber groups, it does not incurmessage redirections since each subscriber receives messages directly from a publisher.In [15], Ma�eis presents the Electra ORB (object request broker) which supports reliable mul-ticasts in CORBA. In Electra, required multicast services are provided by sophisticated lower-leveltoolkits such as Horus and Isis [20, 2]. In order to incorporate a group communication semanticsinto Electra ORB, the approach extends the de�nition of CORBA object references so that ob-ject groups are addressed in a uniform manner. While Electra provides valuable features such asgroup objects, reliable multicast communication, and object replication, it is not appropriate forembedded systems built on a broadcast network with low bandwidth such as CAN.The remainder of the paper is organized as follows. Section 2 introduces the target systemhardware model on which our CORBA is developed. Section 3 briey overviews the layered con-�guration of CORBA and outlines the proposed approach. Section 4 presents the design of theCAN-based transport protocol and our publisher/subscriber scheme. Section 5 explains our em-bedded inter-ORB protocol. Finally, Section 6 concludes this paper.4
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Figure 1: Example distributed embedded control system: Passenger vehicle control system.2 Target System Hardware ModelA typical distributed embedded control system consists of a large number of function control unitsinterconnected by embedded control networks. In this section, we present our distributed embeddedcontrol system model. We design the CAN-based CORBA on this system model.2.1 Functional Control UnitFigure 1 demonstrates a typical distributed embedded control system which makes the electroniccontrol system of a passenger vehicle. It consists of several functional control units (FCU) which areinterconnected by embedded control networks. Each FCU conducts a dedicated control mission byinterfacing sensors and actuators and executing prescribed control algorithms. As shown in Figure 1,it has one or more microprocessors and microcontrollers attached to an on-board system bus. Itis also equipped with a bus adaptor which enables the FCU to participate in communication viaembedded control networks (ECN). Depending on con�guration, an FCU works as a data producer,a consumer, or both.2.2 Embedded Control NetworkAs shown in Figure 1, embedded control networks (ECN) connect FCUs through inexpensive busadaptors. Such embedded control networks usually operate in an extremely harsh environmentsuch as on factory oor, in a machining tool, and in a vehicle. Also, they are often required toprovide real-time message delivery services, and subject to very stringent operational and functionalconstraints. In this paper, we have chosen the CAN [12] as our embedded control network substratesince it is an internationally accepted industrial standard satisfying such constraints.5



The CAN standard speci�es physical and data link layer protocols in the OSI reference model[3]. It is well suited for real-time communication since it is capable of bounding message transferlatencies via predictable, priority-based bus arbitration. A CAN message is composed of identi�er,data, error, acknowledgment, and CRC �elds. The identi�er �eld consists of 11 bits in CAN 2.0Aor 29 bits in 2.0B and the data �eld can grow up to eight bytes. When a CAN network adaptortransmits a message, it �rst transmits the identi�er followed by the data. The identi�er of a messageserves as a priority, and a higher priority message always beats a lower priority one.The CAN possesses two important characteristics. First, it o�ers a consistent broadcast mecha-nism in a straightforward manner via a serial broadcast medium and non-destructive priority-basedbus arbitration. Second, it supports the anonymous producer/consumer model of data transmissionwhich is often referred to as the publisher/subscriber communication model [14, 1]. In the CANprotocol, a producer of a message is totally unaware of its consumers and simply broadcasts mes-sages over the bus without specifying their destinations. A CAN bus adaptor can be programmed toaccept only a speci�c subset of messages that carry prede�ned identi�er patterns with them. This�ltering mechanism, which is made possible via a mask register mounted on a CAN interface chip,allows consumer nodes on the CAN to select desired messages among all the broadcast messages.This addressing method, also known as subject-based addressing [14, 1], renders the CAN suitedto the publish/subscriber communication model.In this paper, we intentionally consider only the CAN 2.0A standard. While some CAN con-trollers support both 2.0A and 2.0B, the 29-bit identi�er format gains little support from most ofcommercial high level protocol products such as DeviceNet. This is because CAN 2.0B networksincur a compatibility problem with already installed 2.0A networks. More importantly, the extra 18bits of 2.0B messages increase the bus arbitration overhead and reduce determinism by increasingpotential jitter during message transmission.3 Overview of the Proposed ApproachThe proposed CAN-based CORBA design stems from the standard CORBA and possesses mostof essential components of it. Figure 2 illustrates layer-to-layer comparison between the standardCORBA and the proposed one. Speci�cally, Figure 2 (b) shows our new CORBA design. Botharchitectures consist of four layered components.At the top of both hierarchies lies an application layer. While the standard CORBA provides theclient/server model for application programmers, the proposed one o�ers the publisher/subscribermodel. The object abstraction layer just below the application layer encapsulates computationalprocesses into CORBA objects. A CORBA object is a building block, or a component, of adistributed application. While the implementation of a CORBA object is hidden from clients,its services are publically announced through an OMG IDL interface. A client process invokes a6
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Figure 2: Comparison between two CORBA con�gurationsCORBA object using an object reference, which serves as a handle used to identify and locate aCORBA object.At the inter-ORB protocol layer, a remote method invocation is transformed into a networkedmessage representation according to a syntax called common data representation (CDR). The gen-eral IOP (GIOP) de�nes the contents of CORBA messages. For example, a CORBA service requestmessage contains a message header, method parameters, and optional contextual information. Thetransport layer at the bottom actually delivers these messages over the network.CORBA is based on the connection-oriented transport model and an object reference denotesonly a single CORBA object. In order to extend CORBA to accommodate group communication,we extend the object reference and develop a new publisher/subscriber protocol on the CAN bus. Inorder to make CORBA a�ordable on low-bandwidth embedded networks, we customize the GIOPand CDR of the standard CORBA. We summarize the noticeable features of our new CORBA asbelow.� Group object reference: An object reference in CORBA refers to a single object. It isinternally translated into an interoperable object reference (IOR) denoting a communicationend-point the object resides on. In our design, an object reference may refer to a groupof receiver objects. An intermediary object named a conjoiner is responsible for managingobject groups and implementing the internal representation of their references.7



� CAN-based transport protocol: A new CAN-based transport protocol is designed tosupport group communication in CORBA. This protocol makes use of the CAN identi�erstructure to realize a subject-based addressing scheme, which supports the anonymous pub-lisher/subscriber communication model. In this protocol, a sender is totally unaware of itsreceivers and simply sends out messages via its own communication port.� Publisher/subscriber scheme: A new publisher/subscriber communication scheme is alsodesigned on top of the transport protocol. This scheme relies on an abstraction named aninvocation channel. It denotes a virtual communication channel which connects a group ofcommunication ports and a group of receivers. Since each port is owned by a publisher,this scheme supports the one-way, many-to-many communication model. In this scheme,a conjoiner object takes care of group management, dynamic channel binding, and addresstranslation. An invocation channel is uniquely identi�ed as a channel tag in an IDL program.� Compact common data representation (CCDR): Common data representation is asyntax which speci�es how IDL data types are represented in CORBA messages. In CDR,method invocations often take up tens of bytes in messages. Since a CAN message has onlyan eight-byte payload, a method invocation may well trigger a large number of CAN messagetransfers. To deal with this problem, we de�ne the compact CDR. It exploits packed dataencoding which avoids byte padding for data alignment, and introduces new data types forvariable length integers to encode four-byte integers in a dense form.� Embedded inter-ORB protocol (EIOP): In addition to CCDR, we customize GIOP bysimplifying messages types and reducing the size of the IOP headers of messages.4 CAN-based Publisher/Subscriber Protocol for CORBAWhile CORBA relies on the point-to-point transport service provided by standard protocols suchas TCP, distributed control systems require group communication capabilities. In this section, wedesign a publisher/subscriber protocol for our CAN-based CORBA. We �rst de�ne the protocolheader format using the CAN identi�er structure. We then present the conjoiner-based announce-ment/subscription mechanism which allows for dynamic binding between publishers and a groupof anonymous subscribers.4.1 De�ning the Protocol HeaderIn order to overcome the limitations of the standard CAN protocol, several vendors o�er commercialhigh-level protocol suites for the CAN [1, 10, 9]. These protocols de�ne packet fragmentationschemes, types of service including client/server, master/slave, and peer-to-peer communications,8
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Figure 3: Protocol header format using CAN identi�er structureand sometimes object models. In doing so, they invariably use the CAN identi�er as a networkidenti�er to denote a connection, a message, or an object group. In our design, we also make useof the CAN identi�er structure for this purpose.The greatest challenge in de�ning the protocol header using the 11-bit CAN identi�er structureis in its limited size. We put the greatest emphasis on making e�cient use of the bits in the identi�er.Also, we attempt to simplify the protocol design to warrant the small execution overhead and codesize of the protocol stack as long as it can provide desired services for higher level CORBA layers.Figure 3 shows our protocol header format. We divide the CAN identi�er structure into threesub-�elds: a protocol ID, a transmitting node address, and a port number. They respectivelyoccupy two, �ve and four bits amounting to 11 bits. The Proto �eld denotes an upper layerprotocol identi�er. The data �eld following the identi�er in a CAN message is formatted accordingto the upper layer protocol identi�er by Proto. In our current design, among four possible valuesof the Proto �eld, only 102 and 112 are used for the EIOP and the channel binding protocol,respectively. The other two are reserved for potential user-de�ned protocols.The TxNode �eld is the address of the transmitting node. In our design, one can simultaneouslyconnect up to 32 distinguishable nodes with the CAN bus under a given upper layer protocol.The TxPort �eld represents a port number which is local to a particular transmitting node. SinceTxNode serves as a domain name which is globally identi�able all across the network, TxNode andTxPort collectively make a global port identi�er. This allows ports in distinct nodes to have thesame port number and helps increase modularity in software design and maintenance. As theTxPort �eld supports the maximum of 16 local ports on each node, up to 512 global ports coexistin the network under a speci�c upper layer protocol.Note that the header does not include any form of destination addresses and that receiving CANnodes can select and accept messages sent from a speci�c set of ports, using the message �lteringmechanism of the CAN bus adaptor. In this way, anonymous publisher/subscriber communicationis e�ectively supported.The layout of the CAN data �eld is determined by Proto which designates the upper layer9



protocol. A CORBA object invocation message longer than eight bytes should be fragmentedinto multiple CAN messages. Since the CAN o�ers reliable and ordered message transmissionbased on physical error detection and recovery, message re-assembly at a receiving end is done ina straightforward manner.4.2 Conjoiner-based Channel Binding MechanismOur publisher/subscriber model relies on an intermediary object we name a conjoiner. A conjoineris a pseudo-CORBA object which establishes an invocation channel from publishers to a collectionof anonymous subscribers. It must be started right after network initialization, and then operationalduring the entire system service period. It maintains a global binding database where each CORBAobject in the system has a corresponding entry. One of important roles of the conjoiner object is totranslate a CORBA object name string into a global port number consisting of TxNode and TxPort.This is done by looking up the global binding database. Figure 4 illustrates the conjoiner-basedpublisher/subscriber framework and the global binding database.As shown in the �gure, an entry in the global binding database is a quadruple consisting ofa channel tag, an OMG IDL interface identi�er, and TxNode and TxPort. The channel tag is aunique symbolic name associated with each invocation channel. An invocation channel is a virtualbroadcast channel from publishers to a group of subscribers. Each publisher is attached to aninvocation channel via its own port. A channel tag is statically de�ned by programmers when theywrite the application code. Both publishers and subscribers use it as a search key in the globalbinding database later on. The OMG IDL interface identi�er is a unique identi�er associatedwith each IDL interface in the system. The IDL compiler generates IDL interface identi�ers.The CORBA run-time system uses these identi�ers to perform type checking upon every methodinvocation. This ensures strong type safety as required by the CORBA standard. The channel tagand the interface ID together work as a unique name for each invocation channel. It is programmers'responsibility to de�ne a system-wide unique name for an invocation channel.The conjoiner object oversees object registration, consumer subscription, and dynamic channelbinding between publishers and subscribers. When a publisher wants to get attached to an invoca-tion channel, it �rst obtains a communication port from its local free port pool, and then registersit to the conjoiner object. This procedure is illustrated in Figure 4 by an arrow labeled as (1)announce(). Such a registration process leads to the creation of an entry, or the modi�cation ofone if it exists, in the global binding database. Thus, a publisher's registration message contains allnecessary information to construct a database entry such as a channel tag, an OMG IDL interfaceID, and a global port number.A subscriber wishing to subscribe to an invocation channel also accesses the conjoiner object,as depicted in Figure 4 by an arrow labeled as (2) subscribe(). A subscriber's message contains10
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TxNode-TxPortinterface idchannel tag0x0003FE 0x0001BC 0x08-0x30x1C-0xB...... ...Figure 4: Conjoiner-based object binding scheme.a channel tag and an IDL interface identi�er. If a matching entry is found in the global bindingdatabase, the conjoiner provides the subscriber with the binding information of the invocationchannel. The subscriber ends its subscription process by updating the mask register of the CANbus adaptor so that it can accept subscribed messages later on.After subscription, subscribers are asynchronously informed of changes in invocation channels.Note that a publisher may be dynamically attached to an invocation channel or detached from it.As shown in Figure 4, a binding agent in a subscriber reacts to such asynchronous updates.A subscriber maintains its own local binding database, which contains the binding informationof all the invocation channels it currently subscribes to. Unlike the group communication schemein [8], subscribers in our scheme receive messages directly from publishers using the local bindingdatabases. As an example, consider update temperature() method in Figure 4. The publishersof temperature data invoke this method to send out messages via an invocation channel. Thesubscribers receive the temperature data when their update temperature()methods are executed.Since a subscriber knows the port addresses of all of its publishers using its local binding database,it can conveniently pick up subscribed messages from the broadcast bus. Note that every subscriberintending to receive the temperature data should possess the update temperature() method. Thecommon interface of such subscribers is de�ned in an IDL program.
11



// IDLinterface TemperatureMonitor {// Update temperature value for a location.oneway void update_temperature(in short locationID, in short temperature, in int time);} Figure 5: IDL program for subscriber interface.4.3 Example Publisher/Subscriber CodeWe present an example program which demonstrates the usage of our publisher/subscriber scheme.The program consists of publisher and subscriber objects which respectively perform temperaturesampling and updating. The source program consists of an IDL interface de�nition and sub-scriber/publisher code. Figure 5 shows the IDL code which de�nes the interface of the subscriberobjects. It speci�es the signature of method update temperature() which updates temperaturevalues in the subscriber objects. This method is de�ned as a oneway operation which does not haveoutput parameters.Figure 6 shows the publisher/subscriber code in C++. In both source �les, there exist aunique channel tag TEMP MONITOR TAG and an IDL interface identi�er TEMP MONITOR IFACE. Notethat TEMP MONITOR TAG is de�ned by programmers, while TEMP MONITOR IFACE is generated by ourOMG IDL compiler.5 Embedded Inter-ORB ProtocolRemote method invocation in CORBA is handled through the general inter-ORB protocol whichallows for interoperability among various CORBA implementations. The CORBA 2.2 GIOP de�nesa transfer syntax called common data representation (CDR) and eight messages types which coverall the ORB request/reply semantics. However, the GIOP is not suitable for our embedded CORBAsince it triggers a large number of CAN message transfers upon every method invocation. In thissection, we present a new inter-ORB protocol by de�ning a new transfer syntax and two messagetypes. They are called the embedded inter-ORB protocol (EIOP) and the compact common datarepresentation (CCDR).5.1 Compact Common Data RepresentationCDR is a transfer syntax which maps data types de�ned in OMG IDL into a networked messagerepresentation so that GIOP sends IDL data types over the network. It also addresses inter-platform12



// Subscriber code in C++// Define a channel tag for temperature monitoring.#define TEMP_MONITOR_TAG 0x01// Initialize the object request broker (ORB).CORBA::ORB_ptr orb = CORBA::ORB_init(argc,argv);// Get a reference to the conjoiner.Conjoiner_ptr conjoiner = Conjoiner::_narrow(orb->get_initial_reference("Conjoiner"));// Create a servant implementing a temperature monitor object.TemperatureMonitor_impl monitor_servant;// Assign a local CORBA object name to the monitor object.PortableServer::ObjectId_ptr oid =PortableServer::string_to_ObjectId("Monitor1");// Register the object name and servant to a portable object adaptor (POA).poa->activate_object_with_id(oid, &monitor_servant);// Bind the monitor object to the TEMP_MONITOR_TAG.conjoiner->subscribe(TEMP_MONITOR_TAG, &monitor_servant);// Receive temperature valueswhile(1) {...}// Publisher code in C++// Define a channel tag for temperature monitoring.#define TEMP_MONITOR_TAG 0x01// Initialize the object request broker (ORB).CORBA::ORB_ptr orb = CORBA::ORB_init(argc,argv);// Get a reference to the conjoiner.Conjoiner_ptr conjoiner = Conjoiner::_narrow(orb->get_initial_reference("Conjoiner"));// Obtain a reference to the temperature monitor group// TEMP_MONITOR_IFACE is an interface identifier generated// by the IDL compiler.HeatMonitor_ptr monitor =conjoiner->announce(TEMP_MONITOR_TAG, TEMP_MONITOR_IFACE);while(1) {...// Invoke a method of subscribers.monitor->update_temperature(placeA, value, currentTime);} Figure 6: Publisher/subscriber code13
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Figure 7: Example encodingtwo Size Max. ValueMSBs (bytes) (unsigned)00 1 26-101 2 214-110 3 222-111 5 232-1Table 1: Variable-length integer representationsissues such as byte ordering and memory alignments in such a way that it can support fast encodingand decoding of IDL data types. Speci�cally, CDR aligns integers on 32-bit boundaries and supportsboth little and big endian byte orderings rather than mandating a common network byte ordering.As a result, marshalling and unmarshalling of a GIOP message becomes very fast if it is performedon processors supporting the same ordering and alignment. Clearly, the generality and e�ciencyof CDR are achieved at the expense of increased network load.In order to make CDR a�ordable on a slow network such as CAN, we propose compact commondata representation (CCDR). We optimize CDR in two ways. First, we add packed data encodinginto CCDR in that integers need not be aligned on 32-bit boundaries. This saves padding bytes.Figure 7 illustrates the saving when method invocation foo->op('c',1234,'d',"Hi") is encodedin CCDR. In this example, we can save six padding bytes which are needed to align two integers1234 and 6 in CDR. (Integer 6 is internally used to specify the string length.) This packed encodingscheme may increase the processing overhead of message encoding and decoding and require extrabu�er space on nodes. This drawback can be minimized if the encoded message �ts in a singleCAN message, which is often the case in an embedded control system.Second, we introduce a variable-length encoding scheme for integers. While an integer is storedin four bytes in CDR, most of integer instances in IDL programs are smaller than 232 � 1. Forexample, in CDR, integers are very frequently used to represent the sizes of string and sequencedata types of IDL. Obviously, these integer values are very small in most cases. We thus devise a14



Message Originator EIOPtype supportRequest Client yesReply Server noCancelRequest Client yesLocateRequest Client noLocateReply Server noCloseConnection Server noMessageError Client or Server noFragment Client or Server noTable 2: CORBA 2.2 GIOP message typesvariable-length integer encoding scheme in that an integer occupies one to �ve bytes depending onthe actual value it represents. As shown in Table 1, we use �rst two MSBs to denote the actualbyte-length of an integer. We decide to support only the big endian byte ordering in CCDR toreduce the encoding/decoding overhead. Revert to the method invocation example in Figure 7.We observe that extra �ve bytes are saved through the variable-length encoding scheme and thatthese two schemes together yield total eleven-byte saving in this simple method invocation. As aresult, the method invocation can �t in a single CAN message in CCDR while it needs three CANmessages in CDR.5.2 EIOP MessagesIn CORBA, every message transmitted over the network starts with a GIOP header. A GIOPheader is subdivided into a 12-byte common pre�x and a type-speci�c header which varies in sizedepending on message types. Table 2 shows eight message types supported in the CORBA 2.2GIOP. We make two customizations on GIOP.As the �rst customization, we reduce the number of supported message types into two inEIOP. To do so, we eliminate from GIOP LocateRequest, LocateReply, CloseConnection, andFragment messages which are meaningful only in connection-oriented point-to-point communica-tion. We also eliminate Reply and MessageError messages since our CORBA supports only asyn-chronous communication. As a result, EIOP supports only Request and CancelRequest messages,as summarized in Table 2.The second customizatin we make on GIOP is to reduce the length of the message header of theRequest type. Note that messages of this type are most frequently seen in the system since theycarry method invocation information. Figure 8 shows both the common pre�x and the type-speci�cheader of the Request message in GIOP. Since the header is included in every Request message,it is crucial to reduce its size. We �rst modify the common pre�x by reducing the 4-byte magic15



module GIOP {...struct MessageHeader_1_1 {char magic[4]; // The string "GIOP"Version GIOP_version;octet flags;octet message_type;unsigned long message_size;};struct RequestHeader_1_1 {IOP::ServiceContextList service_context;unsigned long request_id;boolean response_expected;octet reserved[3];sequence<octet> object_key;string operation;Principal requesting_principal;};} Figure 8: GIOP message format
module EIOP {...struct MessageHeader_1_0 {octet magic; // 0xE0octet flags; // Includes bit fields for// version number and message type.unsigned long message_size;};struct RequestHeader_1_0 {unsigned long interface_id;unsigned long operation_id;};} Figure 9: EIOP message format
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�eld into one-byte magic code and merging GIOP version, flags, and message type �elds intothe one-byte flags. MessageHeader 1 0 in Figure 9 de�nes this new header format.We then modify the type-speci�c header of the request message in two ways. First, we re-move optional and reserved �elds such as service context and requesting principal from theGIOP request header. They are used to store information required only when add-on servicessuch as Security and Transaction are provided. Second, we encode name strings appearing inthe GIOP request header into integer identi�ers. As shown in Figure 8, RequestHeader 1 1 in-cludes string �elds such as object key and operation. The object key �eld contains an interfacename, an object name, an object adaptor name, etc, and the operation �eld holds the methodname. Since programmers tend to use long and self-explanatory strings for these names to enhancethe readability of programs, string �elds in a request message header may well occupy excessivelylarge space. We use integer-encoded interface id and operation id �elds in EIOP. EIOP relieson the IDL compiler to obtain proper identi�ers for them. Finally, we remove request id andresponse expected �elds since the Reply messages are not supported in EIOP.6 ConclusionWe have presented the design of an environment speci�c CORBA for distributed embedded systemsbuilt on the CAN bus. The design goal we had in our mind during the development of the newCORBA was to minimize its resource demand and make it support anonymous publisher/subscribercommunication without losing the IDL level compliance to the OMG standards. To achieve thesegoals, we have developed a transport protocol on the CAN and a group communication schemebased on the well-known publisher/subscriber model. This transport protocol makes e�cient useof the CAN identi�er structure to realize a subject-based addressing scheme, which supports theanonymous publisher/subscriber communication model. In the proposed communication scheme,publishers are completely unaware of its subscribers and simply send out messages via their owncommunication ports. This scheme uses an invocation channel to establish a virtual broadcastchannel which connects publishers and a group of subscribers.We have also customized GIOP and CDR so as to reduce message tra�c generated for eachmethod invocation. Speci�cally, we have de�ned the compact CDR which exploits the packed dataencoding scheme and the variable-length integer representation. In addition to the CCDR, we havesimpli�ed messages types and reduced the size of the header of GIOP messages. We have shownthat the proposed EIOP along with CCDR contributes to signi�cantly reducing the size of requestmessages. In spite of these vast modi�cations, the new CORBA is still compliant to CORBA atthe application program and IDL level.The new CORBA design clearly demonstrates that it is feasible to use CORBA in develop-ing distributed embedded systems on real-time networks with severe resource limitations. We are17
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