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Hervé Rivano
Inria Urbanet

Université de Lyon
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Abstract—Delay-Tolerant Networks (DTN) model systems that
are characterized by intermittent connectivity and frequent
partitioning. Routing in DTNs has drawn much research effort
recently. Since very different kinds of networks fall in the
DTN category, many routing approaches have been proposed.
In particular, the routing layer in some DTNs have information
about the schedules of contacts between nodes and about data
traffic demand. Such systems can benefit from a previously
proposed routing algorithm based on linear programming that
minimizes the average message delay. This algorithm, however,
is known to have performance issues that limit its applicability
to very simple scenarios. In this work, we propose an alternative
linear programming approach for routing in Delay-Tolerant
Networks. We show that our formulation is equivalent to that
presented in a seminal work in this area, but it contains fewer
LP constraints and has a structure suitable to the application
of Column Generation (CG). Simulation shows that our CG
implementation arrives at an optimal solution up to three orders
of magnitude faster than the original linear program in the
considered DTN examples.

I. INTRODUCTION

Underwater, rural, vehicular, interplanetary and sensor net-
works are examples of systems that frequently have high
latency, intermittent connectivity, low bandwidth, high packet
drop rates and inexistence of end-to-end paths at any given
point in time. Delay-Tolerant Network [1], or DTN, is a model
that takes into account these characteristics. Consequently,
DTN routing algorithms can present better performance in
many of these networks than traditional protocols, such as TCP,
that rely on a more stable environment.

Delay-Tolerant Networks can have known connectivity
schedules, such as Low Earth Orbit satellites and ground
stations, or unpredictable and opportunistic, such as sensor
devices carried by wild animals. Recently, an increasing num-
ber of network traces from real installations have inspired the
creation of routing algorithms [2], [3]. Connectivity patterns
between nodes extracted from those traces help to improve
the performance of protocols in networks without a fixed node
contact schedule.

Routing algorithms applied in a typical DTN, except in
the simplest cases, are fundamentally sub-optimal because
they lack access to information normally unavailable during
their execution. Examples of such information include buffer
usage at every node in the network at any given time and
future data traffic demand. These could be used to route

messages in such a way to avoid collisions and packet drop
due to the unavailability of buffer space at some node. Using
network traces, a routing algorithm could have access to that
information and produce optimal routing, which can be used
as benchmark for comparison with other routing protocols.

A recent effort in this direction was done by Ferreira et
al. [4], where evolving graphs were used to provide reference
routing algorithms and protocols. Using the evolving graphs
model, they can provide optimal lower bounds for delivering
packets. However, when there are flows, the choice of which
packet should be routed first is not trivial, and the problem
becomes NP-complete again. Even with this limitation, it was
possible to provide interesting tools which give approximative
bounds [5] extremely fast. However, there is still the need for
algorithms that provide optimal solutions.

An exact routing algorithm that minimizes the average
message delay has been proposed by Alonso et al. [6] and Jain
et al. [7]. This linear programming-based approach computes
an optimal result, therefore requiring information about exact
contact times between nodes, buffer occupancy at each node at
each time, and sizes and injection times of all messages present
in the system during the observation period. This optimal
routing can be of great value since it can serve as reference
against other protocols. According to Jain et al., however,
even a simple scenario, which contains only a remote village
exchanging messages with a city through three communication
options, produced an LP formulation with close to 500,000
constraints and 550,000 variables and took 16,000 CPLEX
iterations. Instances of realistic size are hence intractable.

Previous work [8] suggests that more investigation of
solutions is needed. The largest fraction of research works
citing the seminal paper of Jain et al. [7] reference it only
to illustrate the existence of articles in the same topic as their
own, typically in their related work section. There are some
exceptions to this rule, but none of them, to the best of our
knowledge, investigated alternative formulations to the same
problem as that tackled by the optimal algorithm proposed by
Jain et al.

In this work, we present an alternative LP formulation that
has a smaller number of constraints and whose structure is suit-
able to the application of the well-known LP technique called
Column Generation (CG). Using CG, the LP variables are not
all explicitly listed. Instead, they are generated “as needed”
during successive executions of much smaller subproblems of
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the original problem.

This paper is organized as follows. The Related Work
Section II discusses a classification of DTN routing protocols
into flooding and forwarding. Then it mentions algorithms
from the forwarding category and draws an alternative way
to model one of these algorithms from the literature. Then it
discusses another work which has investigated this model and
hints at the key ideas of a well-known technique that can be ap-
plied to improve the performance of the discussed forwarding
algorithm. The Problem Model Section III describes the linear
programming formulation by the seminal work of Jain et al.
[7], then defines a time-expanded graph model that can be used
to create an alternative formulation to the same problem, which
is also described in this Section. Then the two problem sizes
are compared. The application of column generation on the
new formulation is also described. Section IV, Experiments,
presents three examples of simple networks used as input
to the implementation of the original linear program and o
the column generation implementation and their performance
differences are discussed. Section V gives a summary of the
observations described in this paper.

II. RELATED WORK

DTNs can be classified in two categories: flooding and
forwarding. Routing algorithms can operate in environments
that are unreliable and unpredictable. The lack of informa-
tion about the network removes from routing algorithms the
possibility to know where to send a data packet with a high
probability that it will eventually reach its destination. One
way to increase that probability is to send multiple copies of
each message to neighbor nodes. That way, a single packet
drop is not sufficient for the message to be lost. Creating a
larger number of copies, in ideal storage conditions, increases
the chance that at least one copy reaches its destination. Also,
on average, it decreases message delay, since there is a higher
probability that some copies of the message will traverse the
good, low-latency paths between source and destination. On
the other hand, in real network installations, a large number
of message copies can quickly fill node buffer storage. As a
consequence, the network can become congested and a large
packet drop rate may be observed.

DTN routing protocols classified as forwarding operate in
more predictable environments. Some networks have stable
topology or, at least, one that follows a known pattern. This
allows algorithms to devise good forwarding paths between a
message source and its destination. In some cases, the source
node uses topology information to determine a good path
and encodes this path into the message so that intermediate
nodes know where to send it. In other cases, per-hop routing
may be applied, in which a new trajectory for the message
is calculated at each node in the message’s path. A mixed
approach is sometimes employed so that intermediate nodes
can choose whether to follow the previously-calculated route
or forward the message according to its own routing decisions,
which may be based on more updated information about the
network. Typical forwarding algorithms use only a single copy
for each message. The obvious shortcoming of this approach
is its limited applicability to networks in which the required
information is available. If this cannot be provided a priori,

the protocol needs some way to retrieve it during execution
and disseminate it to other nodes.

Jain et al. [7] propose six forwarding algorithms with
increasing levels of knowledge requirements. They use an
abstraction called Knowledge Oracle to encapsulate a specific
kind of information used by some of these algorithms. The
simplest of them, called First Contact, uses no information
about the network to forward messages except the list of
neighbors each node has. Nodes employing this algorithm
randomly choose one of their neighbors and forwards the
message to it. Other proposed algorithms use information such
as average time a node must wait until a certain edge becomes
available for use or exact knowledge about at which point in
time each edge will be available. As expected, they show in
simulations that algorithms with access to more information
have better performance.

One of the algorithms proposed by Jain et al. [7] is based
on linear programming and uses all the available knowledge
oracles, i.e. exact information about when contacts happen
between any pair of nodes, contact durations, instantaneous
buffer occupancy at any node and meta-data about all possible
messages that are in the system during the execution of the
algorithm. This algorithm is able to produce optimal routings
with minimum average message delay, even considering buffer
usage at all network nodes and avoiding congestion. However,
this algorithm relies on a time-discretization step and the
linear programming formulation depends on the number of
nodes, edges and time intervals, which makes it very large. To
illustrate, the authors observed that even a very simple instance
with a city communicating with a remote village through three
link options produced 500,000 constraints, 550,000 variables
and 16,000 iterations. Creating alternative ways to tackle this
same problem more efficiently is a main goal of this paper.

The linear program presented in the referred work [7] is not
a standard multi-commodity minimum flow problem because
the network is dynamic, which means edges may be available
during some time intervals and unavailable in others. The
classic network flows text by Ford and Fulkerson [9], however,
suggests a way to expand the original network creating copies
of each node for each time point. This way, copies of the
original edges can be transported to the time-expanded graph
between those nodes associated with time points at which the
edges are available. Using this technique to model the dynamic
properties of the network, a multi-commodity minimum cost
flow solution can be used as if the network were static. This
allows the application of well-known network flows techniques
to increase performance.

Hay and Giaccone [10] describe a similar time-expanded
graph to routing in DTNs. Although this graph represents
the dynamic properties of a DTN, it can itself be used in
a static context, which is exploited by the authors. They
focus on a single source, single destination problem model
(yet, as they mention, their model can be used to compute
multi-commodity flows by applying linear programming). Al-
gorithms are presented which compute a minimum delay path
(with or without the minimum number of hops), maximum
bandwidth path (with or without minimum delay), among
others. Such procedures are based on graph theory such as
Dijkstra’s shortest path algorithm, breadth-first search and
maximum flow algorithms.
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Malandrino et al. [11] also apply a time-expanded
graph in a DTN context. They model a system comprising
communications-enabled vehicles and base stations connected
to the Internet as a time-expanded graph and use this graph in
an algorithm to find optimal routing of data that is downloaded
from Internet-based servers to the vehicles. Such data includes
news reporting, navigation maps or multimedia files. The
authors then apply this linear programming-based algorithm to
evaluate the performance of content downloading by analyzing
the impact of different system settings, such as the penetration
rate of vehicular communication technology.

In this work, we use linear programming and focus on the
multi-commodity flow problem applied to the time-expanded
graph. We apply the column generation technique as described
by Ahuja et al. [12]. Since the LP arc flow formulation can
become very large due to the amount of time-expanded nodes
and edges, we use an equivalent path flow formulation, which
has a smaller number of constraints but a much larger number
of variables, since there is one variable for each possible path
in the network between the pair of source and destination
nodes of each message. Using column generation, however,
we are able to solve the problem without having to explicit list
all the variables. Instead, an iterative solving of subproblems
takes place, each of which contains a solution that is closer
to the original problem’s optimal solution than the that of the
subproblem from the previous iteration. At each iteration, an
optimality check is performed which generates a new variable
to consider in the following subproblem in order to improve
the solution if the current one is non optimal. The Dijkstra’s
shortest path algorithm is the relevant optimality check.

III. PROBLEM MODEL

In this Section, we give the problem model as described
by Jain et al. [7]. Then we discuss some of its characteristics
and the motivation and insights for our alternative formulation,
which is also presented in this Section.

A. Original Linear Programming Formulation

Alonso, Jain, Fall and Patra [6], [7] proposed a linear
programming formulation that assigns messages to edges and
times in a DTN multigraph G(V,E) in such a way to minimize
the average message delivery delay. For ease of reference, since
their model is the result of a combination of two papers, and
to establish the nomenclature used in this work, we provide
the formulation as described by Jain et al.

Multiple edges may exist between vertices because multiple
options may exist in the network to transfer data between
nodes. The variables in this formulation are defined in terms of
the set of messages, the set of edges and the set of disjoint time
intervals that partition the entire observed time period. The
considered set of time intervals I is determined as described
by Alonso et al. [6]. For an explanation about the objective
function and linear constraints, we refer the reader to the
original articles.

Input data: Values of the following sets and functions are
retrieved from each network definition and are considered input
to the algorithm.

• V , the set of network nodes.

• E, the set of network edges.

• I, the set of time intervals, obtained as described by
Alonso et al. [6]. Each time interval is defined in terms
of its borders (i.e. Iq ∈ I =⇒ Iq = [tq−1, tq)).

• c : E ×R+ → R+, where ce,t is the capacity of edge
e ∈ E and time t ∈ R.

• d : E × R+ → R+, where de,t is the delay of edge
e ∈ E and time t ∈ R.

• bv is the storage capacity of the node v.

• Iv is the set {(w, v) ∈ E} of edges whose destination
node is v.

• Ov is the set {(v, w) ∈ E} of edges whose source
node is v.

• K is the set of messages.

• ω(k), s(k), d(k), m(k), for k ∈ K, are, respectively,
the injection time, source node, destination node and
size of message k.

Variables: The following are the variables used in the linear
programming formulation.

• Nk
v,t is the size of the portion of message k occupying

buffer at node v at time t ∈ I.

• Xk
e,I is the size of the portion of message k transmitted

(at the source of the edge) over edge e during the
interval I ∈ I.

• Rk
e,I is the size of the portion of message k received

(at the destination of the edge) over edge e during the
interval I ∈ I.

Objective function: The goal is to minimize the average
delivery delay, which is equivalent to minimizing the sum of
the delays for all messages:

Min
∑
v∈V

∑
k∈K

∑
Iq∈I

(tq−1 − ω(k))(
∑
e∈Iv

Rk
e,Iq −

∑
e∈Ov

Xk
e,Iq ) (1)

LP constraints:∑
e∈Iv

Rk
e,Iq −

∑
e∈Ov

Xk
e,Iq =

{
Nk

v,tq −Nk
v,tq−1

+m(k) if s(k) = v, ω(k) = tq
Nk

v,tq −Nk
v,tq−1

otherwise

k, v, Iq (2)

Rk
e,Iq⊕de,tq−1

= Xk
e,Iq k, e, Iq (3)∑

k∈K

Nk
v,tq−1

≤ bv v, Iq (4)∑
k∈K

Xk
e,Iq ≤ ce,tq−1 · |Iq| e, Iq (5)

Nk
v,t0 =

{
m(k) if v = s(k), t0 = ω(k)

0 otherwise
k, v (6)

Nk
v,th =

{
m(k) if v = d(k)

0 otherwise
k, v (7)
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In these constraints, ⊕ represents the shifting operation.
I.e. Iq ⊕ s = Ip ⇐⇒ [tp−1, tp) = [tq−1 + s, tq + s). The
set of constraints (3) indicates that every part of message k
transmitted at the beginning of edge e during time interval
Iq should be received at the end of the same edge after the
delay imposed by e at time tq−1. For certain feasible problems,
however, they may yield an infeasible formulation. Since the
delay of an edge may change over time, it is possible that
there are intervals Ip, Iq ∈ I such that Ip ⊕ de,tp−1

= Iq ⊕
de,tq−1

. In this case, if tq > tp and de,tq−1
= 0 and de,tp−1

>
0, the formulation becomes infeasible since Rk

e,Iq⊕de,tq−1
is

constrained to have two potentially different values. Because of
this, in our implementation, we substitute (3) by the following
without hurting the original intent:

Rk
e,Ip =

∑
Iq∈Se,p

Xk
e,Iq

where Se,p = {Iq ∈ I : Iq ⊕ de,tq−1 = Ip} k, e, Ip (8)

We make another modification inspired by the formulation
presented in the previous work by Alonso et al. [6] (equations
numbered (6) in that paper, page 5). We replace equations (2)
by the following.∑

e∈Iv
Rk

e,Iq −
∑

e∈Ov
Xk

e,Iq =


Nk

v,tq −Nk
v,tq−1

−m(k) if s(k) = v, ω(k) = tq−1

Nk
v,tq −Nk

v,tq−1
+m(k) if d(k) = v, tq = th

Nk
v,tq −Nk

v,tq−1
otherwise

(9)

These equations represent the fact that, if v is the source of
message k, which is generated at the moment tq−1, then the net
flow of node v (i.e.

∑
e∈Ov Xk

e,Iq
+Nk

v,tq − (
∑

e∈Iv Rk
e,Iq

+

Nk
v,tq−1

)) is the size of message k. In other words, all the
flow for k that is transmitted away (

∑
e∈Ov Xk

e,Iq
) by v

plus the flow that remains stored (Nk
v,tq ) in v minus what

is received (
∑

e∈Iv Rk
e,Iq

) by v minus what was previously
stored (Nk

v,tq−1
) in v is the size of message k, which means

that m(k) units of flow are introduced in the system. If v is the
destination of k, then the net flow of v for message k should be
the negative of the size of k at th (the end of the simulation),
which means the message is consumed by v (removed from
the system). If v is not destination nor source for k, then its
net flow for k should be zero.

By creating an extra time interval in I such that ∀k ∈ K
ω(k) > t0, we can drop equations (6). Equations (7) can also
be dropped in light of the new set of equations (9).

B. Time Expanded Graph

The main difference between the formulation from Section
III-A and that of the standard min-cost multicommodity flow
is the dependency on time intervals. The classic network flows
book by Ford and Fulkerson [9] describes a way to model the
time factor without creating different types of variables other
than those that account for the amount of flow transmitted
at each edge of the network graph. Instead, if T = |I|, the
original network graph G = G(V,E) is expanded into G(T ) =
G(V (T ), E(T )) so that each vertex and edge has a copy for
each time point. This way, our dynamic problem is reduced to

a regular (static) min-cost multicommodity flow on the time-
expanded graph G(T ).

Consider the example from Figure 1. Each edge in this
example is annotated with its capacity c and delay d in
the format (c, d). Edge (0, 1), for instance, has capacity 2
and delay 1. Suppose that this network is observed dur-
ing a time period composed of four time intervals, namely
{[0, 1), [1, 2), [2, 3), [3, 4)}. We want to represent the fact that
the flow transmitted at the source of an edge in this network
arrives at its destination after the edge’s delay. Also, we need
a way to allow some flow to be stored in nodes for some time
period until a good opportunity for transmission arises.

Fig. 1. Network example

The time-expanded network for the example in Figure 1 is
displayed in Figure 2. Each of the four nodes has four copies,
one for each time point. Each edge also has copies for time
points. The edge (0, 2), for example, has two copies: one that
connects node 0 at time 0 with node 2 at time 2 (since its delay
is 2) and another that connects node 0 at time 1 with node 2
at time 3. An edge from the original network has a copy for
each time point except those that would mean that some flow
would arrive at its destination after the last time period. For
example, units of flow can only be transmitted from node 0 to
node 2 at time 0 or 1 through edge (0, 2). If it was transmitted
at time 2, for example, it would arrive at its destination after
a delay of 2, which means time 4, which is outside our set of
observed time intervals.

Fig. 2. Time-expanded network example

Another important characteristic of this time-expanded
graph are the edges between pairs of nodes with the same label.
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Each copy of node 0 is connected by an edge with another of
its copies associated with the next time point. These hold-over
edges represent buffer storage during one time interval. If some
flow units pass through the edge that connects node 0 at time
0 and node 0 at time 1, that means that these units were stored
in node 0 during the interval [0, 1).

If we solve a standard (static) multi-commodity flow prob-
lem in the time-expanded graph, we can interpret its result in
terms of the dynamic properties of the original network.

G(T ) is constructed as follows. Assume that II is the set of
time-points formed by the extreme points of the time intervals
in I. Also, for p = 0, 1, ..., T , tp is the value of the (p+1)-th
time-point in II , i(t) ∈ {0, 1, ..., T} is the index of time-point
t ∈ II , de,p := de,tp and ce,p := ce,tp .

Each vertex v ∈ V has a copy v(p) ∈ V (T ) for
p ∈ {0, 1, ..., T}. Each edge e = (v, w) ∈ E has a copy e(p) =
(v(p), w(i(tp + de,p))) ∈ E(T ) for p ∈ {0, 1, ...i(tT − de,p)}.
Also, for each vertex v ∈ V , we create hold-over edges
(v(p), v(p + 1)) ∈ E(T ) for p ∈ {0, 1, ..., T − 1}. When
some flow passes through one of these hold-over edges, it
means that data is stored in v’s buffer for one time-step. The
capacity of edge e(p) = (v(p), w(i(tp + de,p))) ∈ E(T )
is defined as c(e(p)) = ce,p. Similarly, the delay of that
edge is d(e(p)) = de,p. The capacity of the hold-over edge
(v(p), v(p + 1)) ∈ E(T ) is bv , which is the buffer storage
capacity of node v ∈ V . The delay of the same edge is 0.

C. Alternative Formulation

Using a time-expanded graph as in Section III-B, we can
see that the following formulation is equivalent to the one
described in Section III-A.

Min
∑
k∈K

dxk∑
k∈K

xke ≤ c(e) ∀e ∈ E(T ) (10)

Nxk = ak ∀k ∈ K (11)
0 ≤ xke ≤ c(e) ∀e ∈ E(T ),∀k ∈ K

Here, xk is an array with dimension |E(T )| such that xke is
the size of the portion of message k ∈ K transmitted through
edge e ∈ E(T ). d is also an array with dimension |E(T )| such
that de is the delay of edge e ∈ E(T ). N is the incidence
matrix of G(T ), such that its dimension is |V (T )| × |E(T )|
and:

Nv,e =

{
+1 if e = (v, w) for some w ∈ V (T )
−1 if e = (w, v) for some w ∈ V (T )
0 otherwise

The array ak has dimension |V (T )| and is defined as
follows.

akv(tq) =


m(k) if v = s(k) and tq = ω(k)

−m(k) if v = d(k) and tq = th
0 otherwise

(12)

For simplicity, define, for each t ∈ II and each e =
(v, w) ∈ E of the original graph G, e(t) := e(i(t)) ∈ E(T )

and v(t) := v(i(t)) ∈ V (T ). This way, e(t) = (v(t), w(t +
de,t)). To see that this formulation is equivalent to the one
described in Section III-A, we can interpret the values of xk
as following equalities.

Xk
e,Iq = xke(tq−1)

∀Iq ∈ I (13)

Rk
e,Iq =

∑
tp∈Se,q−1

xke(tp) ∀Iq ∈ I (14)

where Se,q = {tp ∈ II : tp + de,tp = tq}
Nk

v,tq = xk(v(tq−1),v(tq))
∀q ∈ {1, ..., T} (15)

The first equality follows directly from the definition of
the variables Xk

e,Iq
and xk. The second equality follows from

the first equality and the constraint set (8). The last equality
follows from the definition of the hold-over edges (v(p), v(p+
1)) in G(T ). We also have, for i = v(tq−1):∑

{j:(j,i)∈E(T )}

xk(j,i) =
∑
e∈Iv

Rk
e,Iq +Nk

v,tq−1
(16)

∑
{j:(i,j)∈E(T )}

xk(i,j) =
∑
e∈Ov

Xk
e,Iq +Nk

v,tq (17)

The right side of equation (16) accounts for the sum of
flows of all edges that arrive at node v ∈ V of the original
graph at time tq−1 plus the flow that stays stored in v during
[tq−2, tq−1). This is equal to the sum of flows that arrive at
v(tq−1) in the expanded graph. Analogously, the right side of
equation (17) accounts for the sum of flows of all edges that
leave node v at time tq−1 plus the flow that stays stored in
v during [tq−1, tq), which is equal to the sum of flows in the
expanded graph on edges that leave node v(tq−1). From this,
we have, for i = v(tq−1):

−aki
(11)
=

∑
{j:(j,i)∈E(T )}

xk(j,i) −
∑

{j:(i,j)∈E(T )}

xk(i,j)

(16), (17)
=

∑
e∈Iv

Rk
e,Iq −

∑
e∈Ov

Xk
e,Iq +Nk

v,tq−1
−Nk

v,tq

(12)
=


−m(k) if v = s(k) and tq−1 = ω(k)

m(k) if v = d(k) and tq = th
0 otherwise

This shows that equations (11) are equivalent to equa-
tions (9). The effect of equations (8) are captured by how
edges are constructed in the time-expanded graph (e(p) =
(v(p), w(tp + de,p)) ∈ E(T ) for p ∈ {0, ..., i(tT − de,p)}
and e = (v, w) ∈ E). This implies that the flow transmitted
at the source of an edge arrives at the edge’s destination after
de,p. Equations (10) and the construction of the capacities of
hold-over edges capture equations (4) and (5) with the remark
that, by construction, all intervals Iq ∈ I have the same length,
which means that capacities can be redefined to drop the |Iq|
factor from (5).

In the original formulation, each Rk
e,Iq

variable has cost
coefficient tq−1 − ω(k). Each Xk

e,Iq
has cost coefficient

−(tq−1 − ω(k)). To determine the cost coefficients of the
new formulation, we observe, from equations (13) and (14)
that each variable xke(tq−1)

associated with a non-hold-over
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edge e ∈ E(T ) in the new formulation should appear in the
objective function with two coefficients:

(tq−1 − ω(k))Xk
e,Iq

(13)
= (tq−1 − ω(k))xke(tq−1)

(tp−1 − ω(k))Rk
e,Ip

(14)
=

∑
tq−1∈Se,p−1

(tp−1 − ω(k))xke(tq−1)

where Se,p = {tq ∈ II : tq + de,tq = tp}
Since tp−1 = tq−1 + de,tq−1 in the above, the cost coefficient
of xke(tq−1)

for e ∈ E should be the difference

(tp−1 − ω(k))− (tq−1 − ω(k)) =
(tq−1 + de,tq−1 − ω(k))− (tq−1 − ω(k)) =
tq−1 − tq−1 + de,tq−1

− ω(k) + ω(k) =

de,tq−1

Since de,tq−1
= d(e(tq−1)) from the definition of edge delays

in the time-expanded graph, and the fact that both the Nk
v,tq

variables in the original formulation and the delays of the hold-
over edges in the time-expanded graph are equal to 0, the
edge delays in the time-expanded graph are appropriate cost
coefficients in the new formulation.

D. Problem Sizes

We can compare the sizes of the two problems in terms of
the number of variables and the number of linear constraints.
Since the formulation from Section III-B has one variable for
each message and for each edge in the time-expanded graph,
we need to determine how this number compares to the number
of variables in the original formulation.

There are two kinds of edges e ∈ E(T ). Those created
from edges in the original graph (not time-expanded) and
hold-over edges. From the construction of the former type
of edges, there are at most |E| · (|I| + 1) of them, namely,
(v(tp), w(tp+de,p)), ∀p ∈ {0, ..., T}, ∀e = (v, w) ∈ E. From
the construction of hold-over edges, there are |V | · |I| of them,
which are (v(p), v(p + 1)), ∀p ∈ {0, ..., T − 1}, ∀v ∈ V .
In total, |E(T )| ≤ |E| + |I| · (|E| + |V |). Consequently, the
alternative formulation has |K| · |E(T )| ≤ |K| · |E| + |K| ·
|I| · (|E|+ |V |) variables. The original formulation has three
kinds of variables: |K| · |E| · |I| variables Rk

e,Iq
, |K| · |E| · |I|

variables of type Xk
e,Iq

and |K| · |V | ·(|I|+1) variables of type
Nk

v,tq . This sums up to 2·|K|·|E|·|I|+|K|·|V |·(|I|+1). The
difference between the number of variables in the alternative
and the original formulations is

|K||E|+ |K||I||E|+ |K||I||V |
− (|K||V |+ 2|K||I||E|+ |K||I||V |)
= |K||E| − |K||V | − |K||I||E| ≤ 0

The number of constraints in the original formulation is:

|K| · |V | · |I| for constraints (2)
+ |K| · |E| · |I| for constraints (3)
+ |V | · |I| for constraints (4)
+ |E| · |I| for constraints (5)
+ |K| · |V | for constraints (6)
+ |K| · |V | for constraints (7)
= |I| · (|K|+ 1) · (|V |+ |E|) + 2 · |V | · |K|

The difference between |K| · |V (T )| + |E(T )| = |K| · |V | ·
(|I| + 1) + |E| + |I| · (|E| + |V |), which is the number of
constraints in the alternative formulation, and the number of
constraints in the original formulation is

|K||V |(|I|+ 1) + |E|+ |I|(|E|+ |V |)
− |I|(|K|+ 1)(|V |+ |E|) + 2|V ||K|
= |E| − |K||I||E| − |K||V | ≤ 0

The conclusion is that the alternative formulation is no
larger than the original formulation. Moreover, since |I| may
be exponentially large, the alternative formulation may be
significantly smaller than the original, although both problems
have sizes of the same order of magnitude.

E. Column Generation

The arc flow formulation described in Section III-C can be
represented as the path flow formulation (a well known fact
from the literature).

Min
∑
k∈K

∑
P∈Pk

d(P )f(P )

∑
k∈K

∑
P∈Pk

δe(P )f(P ) ≤ c(e) ∀e ∈ E(T ) (18)∑
P∈Pk

f(P ) = m(k) ∀k ∈ K (19)

f(P ) ≥ 0 ∀k ∈ K,P ∈ Pk

In this formulation, Pk is the set of all paths between the
source and destination of message k ∈ K. If v ∈ V is message
k’s source in the original graph G, w ∈ V is its destination
and t ∈ II is its injection time, we say that v(t) ∈ V (T ) is
its source in the time-expanded graph and w(th) ∈ V (T ) is
its destination. f(P ) is the variable in this formulation and
represents the amount of flow passing through path P ∈ Pk

for all k ∈ K. d(P ) represents the delay of path P and is
equal to

∑
e∈P d(e). δe(P ) is an indicator whose value is 1 if

e ∈ P and 0 otherwise.

This path flow formulation has fewer constraints than the
arc flow formulation. Specifically, the arc flow formulation has
|E(T )|+ |V (T )| · |K| constraints while the path flow formu-
lation has only |E(T )|+ |K|. On the other hand, the number
of variables in much larger in the path flow formulation, since
there is one for each possible path between the pair of nodes
associated with each message. However, only a small number
of these variables carries flow in the optimal solution [12].
This can be exploited by the column generation technique,
which allows us to never explicitly list all the variables in the
formulation.

Column generation is an algorithmic technique for solving
linear programs with an exponentially large set of variables
which takes its roots in the duality theory [13]. Each linear
program, denoted primal in this context, has an associated and
unique dual program. For each constraint of the primal, there
is a dual variable that is defined. These variables are related to
the slack variables which arise in the simplex solving method,
even though this is more general. Similarly, for each variable

ha
l-0

08
35

89
0,

 v
er

si
on

 1
 - 

20
 J

un
 2

01
3



of the primal, there is a constraint in the dual, which binds the
dual variables related to the primal constraints in which the
concerned primal variable appears. This is done in a way that
the duality association is reflexive (the dual of the dual of a
LP is the original LP).

In our case, the dual of the linear program (18)-(19) is

Max
∑

e∈E(T )

c(e)w(e)−
∑
k∈K

m(k)σk

∑
e∈P

we + σk ≤ d(P ) ∀P ∈ Pk, ∀k ∈ K (20)

σk, we ≥ 0 ∀k ∈ K, ∀e ∈ E(T )

Each instantiation of the primal variables is similarly
associated to an instantiation of the dual variables such that
the primal values represent a sub-optimal feasible solution if
and only if the dual values is a non feasible solution, i.e. at
least one constraint of the dual is violated. Both set of primal
and dual values represent a feasible solution if and only if
there are both optimal (with the property that the primal and
dual optimal objectives values are the same).

Exploiting this property, the column generation principle
is to first solve the primal on a restricted set of variables (also
called columns, hence the column generation), considering
that the variables outside this set are zero. In our case, it
corresponds to considering a restricted set of paths P0. Solving
of the primal on this restricted set of variable is thus fast and,
if there exists a feasible solution f0, it is related to a set of dual
values D0 = (w0, σ0). If f0 is suboptimal, the aforementioned
property of the duality claims that D0 is a non feasible solution
of the dual. There is then at least one constraint that is violated
and which is in bijection with a variable of the primal, hence
a path p0. The separation theorem claims that solving again
the primal on the set of paths P1 = P0 ∪ {p0} will improve
the solution [13]. The process loops until no such path exists.
When reaching this state, it means that the dual variables
represent a feasible solution. Since the primal does too, duality
theory claims that both the primal and the dual are optimal.

Going back to our problem, deciding if the solution is
optimal consists in finding a k ∈ K and a path P ∈ Pk such
that (20) is violated, i.e.

∑
e∈P we+σk ≥ d(P ) which can be

rewritten as ∑
e∈P

(d(e)− we) ≥ σk (21)

We interpret
∑

e∈P (d(e) − we) as the cost of path P in
terms of the modified cost d(e) − we of each of its edges
e ∈ P . Then we check whether condition (21) is satisfied
for all paths not in the basis by identifying, among all paths
P ∈ Pk, one with the minimum modified cost and verifying
whether its modified cost is greater than or equal to σk. If it is,
the algorithm can stop since it has found an optimal solution.
If not, this path can enter the primal set of variables while the
value of the objective function decreases. In this case, a new
iteration can take place with this new set and so on. To identify
such a path we use Dijkstra’s minimum cost path algorithm
on the time-expanded graph once for each message k ∈ K
considering d(e)− we as edge costs.

The execution time of a column generation approach de-
pends on the number of generated columns, which is different
for each input. Since not all columns are listed by this
approach, however, the reduction in the number of constraints
in comparison with the original formulation has dramatic
impact on the solving time. While the arc flow formulation has
|K| · |V (T )| + |E(T )| constraints, the path flow formulation
has only |E(T )|+ |K| constraints.

IV. EXPERIMENTS

An implementation of the original linear program presented
by Jain et al. [7] with the modifications from Section III-A was
created and used to solve three instances of simple routing
problems. The same three instances were also used as input
to an implementation of the column generation approach with
the objective to compare execution times and problem sizes in
terms of number of variables and number of constraints. Both
implementations are based on IBM ILOG Optimization Suite’s
CPLEX callable library.

The first network instance is inspired by the Remote Village
example described by Jain et al. [7]. In this example, a city
with constant Internet access communicates with a remote
rural village through three different channels. A store-and-
forward Low-Earth Orbit satellite becomes in range of the
city and the village for a number of time periods per day
offering connection between them. A motorcycle courier visits
the remote village with a storage device such as a flash drive
and collects and deploys network data to and from the village
during his visit. Then he travels to the city and forwards
the data and collects responses. These trips are also made a
number of times per day. The other routing option is a dial-up
connection which is available during one time period per day.
The observation period is 48 hours.

Since some of the delays in these connection options are
in the order of seconds, the number of time intervals necessary
for a 48 hours period is large. In this instance, the time
discretization step described by Alonso et al. [6] resulted in
187,802 time intervals. Considering only two messages being
routed, the LP size and solving time on a computer with 24
Intel R©Xeon R©processors at 2.4 GHz and 128 GB of RAM can
be found in the Scenario 1 column of Table I.

The same network instance was used as input to the column
generation implementation. As expected, it created the same
number of time interval, since both implementations share the
same time-discretization step. The path flow problem size with
two messages and its solving time in the same computer can
be found in the Scenario 1 column of Table II.

Another simple network example used as input for the
experiments is an adapted version of the instance borrowed
from Ahuja et al. [12]. It is a simple network with 6 nodes, 7
edges and 2 messages. Such a simple example took almost no
time to execute in linear programming implementations when
a small observation period of 40 time units was used. When
we used a larger period of 200,000 time units to represent the
duration of contacts between nodes, we could see significant
differences between the implementations. Columns Scenario 2
of Tables I and II show problem sizes and execution times of
the application of this network as input for the original linear
program and the column generation, respectively.
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TABLE I. PROBLEM SIZES AND SOLVING TIME OF THE ORIGINAL
FORMULATION INSTANCES REPRESENTING EACH OF THE THREE

DESCRIBED NETWORKS.

Scenario 1 Scenario 2 Scenario 3
Constraints 6 M 7.8 M 11.5 M
Variables 5.63 M 8 M 11 M
Solving Time 24m4s 30s 110m

TABLE II. PROBLEM SIZES OF PATH FLOW FORMULATIONS
REPRESENTING EACH OF THE THREE DESCRIBED NETWORKS AND THEIR

COLUMN GENERATION SOLVING TIMES.

Scenario 1 Scenario 2 Scenario 3
Constraints 2.2 M 1.4 M 5.7 M
Generated Paths 2 5 1
Solving Time 4.4s 3.6s 32s

An artificial network example was created with 70 nodes.
Between each pair of nodes, a directed edge was created with
50% probability, which resulted in 1035 edges. Each edge was
assumed to be active during 1 hour and 30 minutes starting
at time 0 with uniformly random delays between 1 and 5
seconds. The original linear program took 1.5 million iterations
to produce an optimal routing of only one message. Its problem
size and execution time can be found in column Scenario 3
of Table I. The column with the same name in Table II shows
this network’s path flow problem size and column generation
execution time.

As can be seen in Tables I and II, the column generation
problem sizes have much smaller number of linear constraints
than the original formulation. Furthermore, execution time of
the column generation implementation can be three orders of
magnitude faster in some cases.

V. CONCLUSION

We proposed a linear programming arc flow formulation
to routing in Delay Tolerant Networks that minimizes average
message delay, which is based on the linear program presented
by Jain et al [7]. Our usage of a time-expanded graph allows
us to apply standard multi-commodity minimum cost static
flow theory and interpret the results in terms of the dynamic
properties of the network used to build the graph. We compared
the size of the problem in the original formulation with that
of the arc flow formulation and concluded that the latter is no
larger than the former in terms of number of constraints and
number of variables.

We applied the column generation technique on the path
flow representation of our arc flow formulation. The advantage
of a path flow representation is a much smaller number of LP
constraints. On the other hand, it has an exponencial number
of variables, each of which represents one of the possible paths
in the network between a message source and its destination.
However, column generation allows us to solve the problem
on a restricted set of such variables. Since all the variables are
never explicitly listed by the algorithm, an optimal solution is
typically found much faster than solving the original arc flow
formulation.

Simulation on example network instances show that the
difference between execution times of the column generation
implementation and the implementation of the original for-
mulation presented by Jain et al. [7] can reach up to three
orders of magnitude using the IBM ILOG CPLEX callable

library. We also observed that the path flow formulation used
by column generation produced a much smaller number of
constraints than the original formulation. Exact solutions that
cannot feasibly be identified in some network instances using
previous formulations are now possible.

For future work, we plan to compare the optimal flows
identified by our linear programming approach with the output
from the very fast routing method based on evolving graphs
[4], which may not give optimal routings in the presence
of flows. We would also like to expand our experiments to
validate our method using real mobility traces.
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