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Kinetics of ferric Mycobacterium leprae truncated hemoglobin O (trHbO—Fe(IIl)) oxidation by H,0, and of
trHbO—Fe(IV)=0 reduction by ‘NO and NO, ™ are reported. The value of the second-order rate constant for
H,0,-mediated oxidation of trHbO—Fe(lll) is 2.4 x 10> M~! s~'. The value of the second-order rate con-
stant for ‘"NO-mediated reduction of trHbO—Fe(IV)=0 is 7.8 x 10 M~! s~. The value of the first-order
rate constant for trHbO—Fe(III)—ONO decay to the resting form trHbO—Fe(Ill) is 2.1 x 10" s~*. The value

ﬁywzrds" L d of the second-order rate constant for NO, -mediated reduction of trHbO—Fe(IV)=0 is 3.1 x 103 M~'s 1,
h g’;‘;g‘:gﬁ;ﬁug eprae truncate As a whole, trHbO—Fe(IV)=0, generated upon reaction with H,0,, catalyzes ‘NO reduction to NO,. In

turn, 'NO and NO, ™~ act as antioxidants of trHbO—Fe(IV)=0, which could be responsible for the oxidative
damage of the mycobacterium. Therefore, Mycobacterium leprae trHbO could be involved in both H,0,
and ‘NO scavenging, protecting from nitrosative and oxidative stress, and sustaining mycobacterial

H,0, and "NO scavenging
Nitrosative and oxidative stress

Kinetics
respiration.

© 2008 Elsevier Inc. All rights reserved.

During infection, Mycobacterium leprae is faced with the host
macrophagic environment, where low pH, low pO,, high CO, levels,
combined with the toxic activity of reactive nitrogen and oxygen
species, including nitrogen monoxide (‘NO), superoxide (O, ™),
and hydrogen peroxide (H,0,), contribute to limit the growth of
the bacilli. Remarkably, reactive nitrogen and oxygen species pro-
duced in vivo during the respiratory burst by monocytic/macro-
phagic cells are an important cause of host tissue toxicity (i.e.,
nerve damage) [1-12].

The ability of M. leprae to persist in vivo in the presence of
reactive nitrogen and oxygen species implies the presence in this
elusive mycobacterium of (pseudo-)enzymatic detoxification sys-
tems, including truncated hemoglobin O (trHbO) [8-10,13-18].
M. leprae trHbO has been reported to facilitate ‘"NO and peroxyni-
trite scavenging using O, and ‘NO as cofactors [10,16-19]. As
reported for some heme-proteins (e.g., hemoglobin (Hb) and myo-
globin (Mb)) [20-28], M. leprae trHbO may undergo oxidation by
H,0,, leading to the formation of the highly oxidizing ferryl
derivative (trHbO—Fe(IV)=0), which could be responsible for the
oxidative damage of the mycobacterium. Remarkably, recent
studies [29-36] suggest that 'NO and nitrite (NO, ™) can serve as
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antioxidants of the highly oxidizing heme-Fe(IV)=0 derivative of
heme-proteins.

Here, we report kinetics of M. leprae trHbO—Fe(III) oxidation by
H,0, and of ‘NO- and NO, -mediated reduction of M. leprae
trHbO—Fe(IV)=O0. As a whole, M. leprae trHbO—Fe(IV)=0, obtained
by treatment with H,0,, catalyzes ‘NO detoxification. In turn, ‘NO
and NO, ™~ act as antioxidants of M. leprae trHbO—Fe(IV)=0. There-
fore, M. leprae trHbO can undertake within the same cycle not only
‘NO and peroxynitrite scavenging [9,10,16-19] but also H,0,
detoxification (present study).

Materials and methods

Mycobacterium leprae trtHbO—Fe(IIl) was prepared as previously
reported [37]. The M. leprae trHbO—Fe(Ill) concentration was
determined by measuring the optical absorbance at 409 nm
(€409nm =1.15 x 10° M~' cm™!) [16]. M. leprae trHbO—Fe(IV)=0
was prepared by adding 10-25 equivalents of H,O, to a buffered
M. leprae trHbO—Fe(Ill) solution. After a reaction time of 10-
20 min, the trHbO—Fe(IV)=0 solution was stored on ice and used
within 1 h [33-35]. The H,0,, 'NO, and NO,~ solutions were pre-
pared as previously reported [10,16,34].

Kinetics of H,0,-mediated oxidation of trHbO—Fe(Ill) was
determined by mixing the trHbO—Fe(Ill) (final concentration,
23 x10°°M) solution with the H,O, (final concentration,
1.0 x 107> to 5.0 x 10> M) solution [23-25].

The time course of H,0,-mediated oxidation of trHbO—Fe(III)
was fitted to a single-exponential process (Scheme 1) [23-25].


mailto:ascenzi@uniroma3.it
http://www.sciencedirect.com/science/journal/0006291X
http://www.elsevier.com/locate/ybbrc

198 P. Ascenzi et al./Biochemical and Biophysical Research Communications 373 (2008) 197-201

Values of k were determined according to Eq. (1) [23-25]:
[trHbO—Fe(IIN)], = [trHbO—Fe(IlN)]; x e ™**t (1)

The value of k., was determined according to Eq. (2) [23-25]:
k = kon x [H202] (2)

Kinetics for ‘NO-mediated reduction of trHbO—Fe(IV)=0 was
determined by mixing the trHbO—Fe(IV)=0 (final concentration,
1.2x107°M) solution with the -‘NO (final concentration,
5.0 x 1076 to 2.0 x 107> M) solution [29-35].

The time course of ‘NO-mediated reduction of trHbO—Fe(IV)=0
was fitted to a two-exponential process (Scheme 2) [29-35].

Values of h and [ were determined according to Egs. (3)-(5) [29-
35,38]:

[trHbO—Fe(IV)=0), = [trHbO—Fe(IV)=0], x e ! 3)
[trHbO—Fe(Il)—ONOJ, = [trHbO—Fe(IV)=0],

x (hx ((e™/(I—h))+ (e™/(h—1)))) (4)
[trHbO—Fe(II1)], = [trHbO—Fe(IV)=0J,

— ([trHbO—Fe(IV)=0], + [trHbO—Fe(1ll)—ONO,) (5)

The value of h,, was determined according to Eq. (6) [29-35]:
h = hey x ['NO] (6)

Kinetics for NO, -mediated reduction of trHbO—Fe(IV)=0 was
determined by mixing the trHbO—Fe(IV)=0 (final concentration,
2.9 x10°% M) solution with the NO,~ (final concentration,
2.5 x 1075 to 2.0 x 10~* M) solution [33-35].

The time course of NO, -mediated reduction of
trHbO—Fe(IV)=0 was fitted to a single exponential process
(Scheme 3) [33-35].

Values of b were determined according to Eq. (7) [33-35]:

[trHbO—Fe(IV)=0], = [trHbO—Fe(IV)=0]; x e **! (7)
The value of b,, was determined according to Eq. (8) [33-35]:
b = boy x [NO3] )

All the experiments were obtained at pH 7.2 (5.0 x 10~2 M phos-
phate buffer) and 20.0 °C.

Results

Mixing of the M. leprae trHbO—Fe(Ill) and H,0, solutions is
accompanied by a shift of the optical absorption maximum of the
Soret band from 409 nm (i.e., trHbO—Fe(II)) [19] to 419 nm (i.e.,
trHbO—Fe(IV)=0) and a change of the extinction coefficient from
€400nm=1.15x 10° M Tem™! (i.e, trHbO—Fe(lll)) [19] to
€419nm = 1.06 x 10° M~ ' cm™! (i.e., trHbO—Fe(IV)=0).

Over the whole H,0, concentration range explored, the time
course for H,0,-mediated oxidation of M. leprae trHbO—Fe(III) cor-

kOH
trHbO-Fe(Ill) + H,0, —> trHbO-Fe(IV)=0
Scheme 1.
hon )
trHbO-Fe(I1V)=0 + *NO — trHbO-Fe(II)-ONO — trHbO-Fe(1II) + NO,~
Scheme 2.
hon

trHbO-Fe(IV)=0 + NO, — trHbO-Fe(III)

Scheme 3.

Table 1
Values of kinetic parameters for H,0,-mediated oxidation of heme-Fe(III)

Heme-protein Kon (M~ 's71)

Mycobacterium leprae trHbO?* 2.4 x10°
Horse heart Mb® 5.4 x 10?
Sperm-whale Mb® 6.6 x 10%
Human Mb¢ 3.4 x 10*
Horseradish peroxidase® 1.7 x 107
Human myeloperoxidase’ 1.9 x 107
Human eosinophil peroxidase® 43 x 107
Bovine lactoperoxidase® 1.1 x 107
Catalase 1.7 x 107

@ pH 7.2 and 20.0 °C. Present study.
> pH 6.0 and 25.0 °C. From [24].
¢ pH 7.0 and 37.0 °C. From [25].
4 pH 7.3 and 37.0 °C. From [23].
€ pH 7.0 and 25.0 °C. From [21].
f pH 7.0 and 15.0 °C. From [27].
% pH 7.0 and 15.0 °C. From [26].
" pH 7.0 and 15.0 °C. From [28].
i pH 7.0 and 20.0 °C. From [20].

responds to a monophasic process between 360 and 460 nm
(Scheme 1). Values of k are wavelength-independent at fixed
[H20-]. The plot of k versus [H,0,] is linear; the slope corresponds
to kon=2.4 x 10> M~ s (Table 1).

Mixing of the M. leprae trHbO—Fe(IV)=0 and ‘NO solutions
brings about a shift of the optical absorption maximum of the Soret
band from 419nm (i.e., trHbO—Fe(IV)=0) to 411 nm (i.e,
trHbO—Fe(IlI)—ONO) and a change of the extinction coefficient
from &419nm=1.06 x 10°M'cm™! (i.e., trHbO—Fe(IV)=0) to
€411nm = 1.41 x 10° M~ cm™! (i.e., trHbO—Fe(Il)—ONO). Then, the
M. leprae trHbO—Fe(IlI)-ONO solution undergoes a shift of the
optical absorption maximum of the Soret band from 411 nm (i.e.,
trHIbO—Fe(IlI)—ONO) to 409 nm (i.e., trHbO—Fe(Ill)) [19] and a
change of the extinction coefficient from &411nm=1.41 x
10°M~'cm™!  (ie, trHbOUI)—ONO) to  &sggnm=1.15 x
10°M~'em! (i.e., trtHbO—Fe(IIl)) [19].

Over the whole ‘NO concentration range explored, the time
course for '‘NO-mediated reduction of M. leprae trHbO—Fe(IV)=0
corresponds to a biphasic process between 360 and 460 nm. The
first step (indicated by h,, in Scheme 2) is a bimolecular process,
while the second step (indicated by I in Scheme 2) is a monomolec-
ular process.

Values of h are wavelength-independent at fixed ['NO]. The plot
of h versus ['NO] is linear; the slope corresponds to ho,=7.8
x 10 M~1s~! (Table 2). In contrast, values of I are wavelength-
and ['NOJ-independent; the average value of | s
(2.1£0.2) x 10! s~! (Table 2).

Table 2
Values of kinetic parameters for '"NO-mediated reduction of heme-Fe(IV)=0
Heme-protein hon (M~ 's71) I(s™h)
Mycobacterium leprae trHbO? 7.8 x 10° 2.1 x 10'
Glycine max Lb® 1.8 x 10° >5.0 x 10!
Horse heart Mb® 1.7 x 107 6.0
Human Hb? 2.4 x 107 4.8 x 107!
1.2x 107!
Horseradish peroxidase® 1.0 x 10° Fast
Human myeloperoxidase’ 8.0 x 10° Fast
Porcine eosinophyl peroxidase® 1.7 x 10* Fast
Bovine lactoperoxidase® 8.7 x 10* Fast

@ pH 7.2 and 20.0 °C. Present study.

> pH 7.0 and 20.0 °C. From [35].

¢ pH 7.0 and 20.0 °C. From [33].

9 pH 7.0 and 20.0 °C. Biphasic kinetics of heme-Fe(ll)—ONO decay has been

attributed to o- and B-chains. From [34].

€ pH 7.4 and 20.0 °C. From [29].

f pH 7.0 and 25.0 °C. From [30].

% pH 7.0 and 25.0 °C. From [32].
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Table 3

Values of kinetic parameters for NO, -mediated reduction of heme-Fe(IV)=0
Heme-protein bon (M~ 's™1)
Mycobacterium leprae trHbO?* 3.1 x 10°
Glycine max Lb® 2.1 x 10?
Horse heart Mb® 1.6 x 10"
Human Hb? 7.5 x 102
Human myeloperoxidase® 5.5 x 10?

2 pH 7.2 and 20.0 °C. Present study.
> pH 7.0 and 20.0 °C. From [35].
¢ pH 7.5 and 20.0 °C. From [33].
4 pH 7.0 and 20.0 °C. From [34].
¢ pH 7.0 and 15.0 °C. From [31].

Mixing of the M. leprae trHbO—Fe(IV)=0 and NO,~ solutions
shows a shift of the optical absorption maximum of the Soret band
from 419 nm (i.e., trHbO—Fe(IV)=0) to 409 nm (i.e., trHbO—Fe(III))
[19] and a change of the extinction coefficient from & 419nm =
1.06 x 10° M~ 'cm™! (i.e., trHbO—Fe(IV)=0) to &sg9nm=1.15 x
10° M cm ! (i.e., trHbO—Fe(1lI)) [19].

Over the whole NO,~ concentration range explored, the time
course for NO, -mediated reduction of M. leprae trHbO—Fe(IV)=0
corresponds to a monophasic process between 360 and 460 nm
(Scheme 3). Values of b are wavelength-independent at fixed
[NO5~]. The plot of b versus [NO, ] is linear; the slope corresponds
to bon=3.1 x 10> M~ ! s~1 (Table 3).

Discussion

Heme-proteins share the ability of detoxifying reactive nitrogen
species. Under aerobic conditions, the reaction of the ferrous oxy-
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Fig. 1. Kinetics of H,0,-mediated oxidation of trHbO-heme-Fe(IIl), at pH 7.0 and
20.0 °C. (A) Normalized time courses for H,0,-mediated oxidation of trHbO-heme-
Fe(Ill). The time course analysis according to Eq. (1) allowed to determine the
following values of k=23 x 10725 (trace a), 49 x 1072s~! (trace b), and
9.8 x 107257 (trace c). Values of k were obtained at [H,0,]=1.0 x 10> M (trace
a), 2.0 x 107> M (trace b), and 4.0 x 10> M (trace c). (B) Dependence of k on the
H,0, concentration. The analysis of data according to Eq. (2) allowed to determine
kon=24x10°M 151,

genated derivative of heme-proteins (heme-Fe(Il)—0,) with ‘NO
occurs, reflecting the superoxide character of the heme-Fe(Il)-
bound 0,. The products of this reaction are heme-Fe(Ill) and
NO3~. Under anaerobic conditions, ‘NO has been reported to be
converted to N,O. ‘NO scavenging is considered as a ‘pseudo-enzy-
matic process’ since it needs a reductase partner(s) to restore
heme-Fe(Il) and starting a new catalytic cycle [10,39-47].

Since M. leprae survives inside macrophages, it is supposed to
avoid the deleterious effects of reactive oxygen species (e.g.,
H,0,), even though how this protection can be accomplished by
M. leprae is a still open question. Since M. leprae lacks a functional
catalase (katG) gene [48], three alternative mechanisms have been
proposed to contribute to H,O, resistance in M. leprae: (i) the
reduced production of H,O, by M. leprae-infected macrophages
[49], (ii) the production of alternative (katG-independent) catalase
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Fig. 2. Kinetics of 'NO-mediated reduction of trHbO-heme-Fe(IV)=0, at pH 7.0 and
20.0 °C. (A) Normalized time courses for ‘NO-mediated reduction of trHbO-heme-
Fe(IV)=0. The time course analysis according to Eq. (3)-(5) allowed to determine
the following values of h=39x10's' and [=22x10's™! (trace a),
h=78x10's! and [=20x10's"! (trace b), and h=1.5x10%s"! and
1=2.2 x 10" s~! (trace c). Values of h and | were obtained at [NO]=5.0 x 107 M
(trace a), 1.0 x 107> M (trace b), and 2.0 x 10~ M (trace c). (B) Dependence of h on
the ‘NO concentration. The analysis of data according to Eq. (6) allowed to
determine hop=7.8 x 10° M~! s'. (C) Dependence of | on the ‘NO concentration.

Values of [ are independent of ['NO], the average I value is (2.1 £0.2) x 10" s~
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Fig. 3. Kinetics of NO, -mediated reduction of trHbO-heme-Fe(IV)=0, at pH 7.0
and 20.0 °C. (A) Normalized time courses for NO, -mediated reduction of trHbO-
heme-Fe(IV)=0. The time course analysis according to Eq. (7) allowed to determine
the following values of b=7.6 x 1072s™! (trace a), 1.5 x 10" s™! (trace b), and
3.1 x 10! s~ (trace c). Values of b were obtained at [NO, ] =2.5 x 107> M (trace
a), 5.0 x 107 M (trace b), and 1.0 x 10~* M (trace c). (B) Dependence of b on the
NO,~ concentration. The analysis of data according to Eq. (8) allowed to determine
bon=3.1x10°M~1s71

activity [50], and (iii) the scavenging activity of cell-wall-associ-
ated glycolipids [51]. Here, we propose that under anaerobic and
highly oxidative conditions, as in the macrophagic environment
where M. leprae is faced with H,0, [1-12], the rapid formation of
M. leprae trHbO—Fe(IV)=0 occurs, which in turn facilitates ‘NO
scavenging, leading to the formation of heme-Fe(Ill) and NO, .
Moreover, we suggest that ‘NO acts as an antioxidant of the
heme-Fe(IV)=0 group generated upon reaction of trHbO with
H,0, ([33-35] and present study). This reaction does not require
partner oxido-reductive enzymes, since the heme-protein oscil-
lates between the heme-Fe(lll) and heme-Fe(IV)=0 form, being
helped by "NO in keeping efficient the rate of H,0O, reduction. In
this framework, it becomes comprehensible why M. leprae
trHbO—Fe(Ill) does not require a reductase system(s), which in-
deed has not yet been identified in this elusive mycobacterium
[9,10]. In other words, M. leprae heme-Fe(Ill) oxidation to heme-
Fe(IV)=0 is mediated by H,0, (Fig. 1 and Table 1), while heme-
Fe(IV)=0 reduction to heme-Fe(Ill) is facilitated by ‘NO (Fig. 2
and Table 2) ([33-35] and present study). Interestingly, catalytic
parameters for ‘NO scavenging by heme-Fe(Il)—0, [10] and
heme-Fe(IV)=0 (Table 2) are similar and high enough to indicate
that both reactions could take place in vivo.

Moreover, the reaction of heme-Fe(IV)=0 with NO,~ (Fig. 3),
although being significantly slower than that with ‘NO (Tables 2
and 3), may play a role when ‘"NO has been consumed completely,
and large concentrations of NO,™ are present. In contrast to the
antioxidant role of "NO, the reaction with NO,  generates ‘NO,
which could contribute to tyrosine nitration [33]. Intriguingly, high
levels of NO, Tyr are detectable in mycobacterial lesions [8,12].

Heme-Fe(IV)=0 peroxidases and catalase also facilitate ‘NO and
NO,~ detoxification [29,30,32,36]. However, the rate constants are

1-2 orders of magnitude lower than those reported for the heme-
Fe(IV)=0 derivative of O,-carriers (e.g., Hb and Mb) (Tables 2 and
3). The structural basis for this difference is not clear and it has
been proposed that it might be related to the strong hydrogen
bond present in peroxidases between the proximal histidyl residue
and a conserved aspartate residue [34]. However, it must be
pointed out that in the case of catalase this structural feature is
not observed, even though a similar H-bond network has been pro-
posed in the proximal side of the heme [52].

Moreover, the analysis of data reported on Table 2 indicates that
the dissociation of the heme-Fe(IlI)-ONO species and O-nitrito
isomerization is significantly faster in peroxidases than in heme-
Fe(Ill) O,-carriers, the rate limiting step being represented by
heme-Fe(IlI)-ONO formation [29,30,32-35].

As a whole, M. leprae trHbO—Fe(IV)=0 facilitates ‘NO detoxifi-
cation. In turn, 'NO and NO,~ can serve as antioxidants of the
highly oxidizing heme-Fe(IV)=0 species. Therefore, M. leprae
trHbO could be involved in both "NO and H,0, scavenging without
needing a reductase partner(s).
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