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Abstract

It is shown that the process of pulse shaping in a nonlinear fiber with zero dispersion can be controlled by means of
appropriate choice of initial chirp. A simplified model was used which admits the general solution of an initial value
problem with arbitrary initial profiles of intensity and chirp in terms of elementary functions. A particular example of an
initially chirped pulse is discussed in order to demonstrate the qualitative features of the process. q 1999 Elsevier Science
B.V. All rights reserved.

PACS: 42.79.Sz; 42.81.Qb

1. Introduction

The propagation of pulses in one-mode optical fibers
with positive dispersion is usually described by some form

Ž .of the nonlinear Schrodinger NLS equation¨
1 22 < <i´ q q ´ q yg q qs0, 1Ž .Ž .x t t2

where x and t are dimensionless coordinates of space and
retarded time, respectively, q is the slowly varying electric
field envelope, and the parameter ´ measures the relative

Ž w x.strength of the dispersion term see, e.g., Refs. 1–3 . The
usual case of the Kerr nonlinearity corresponds to the

Ž < < 2. < < 2nonlinearity function g q s q . It is well known that
Ž .Eq. 1 can be transformed into the hydrodynamic-type

system by means of the so-called Madelung transformation
w x4–7

i t X X'q x ,t s r x ,t exp u x ,t d t . 2Ž . Ž . Ž . Ž .Hž /´
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Indeed, simple calculation yields

r q ru s0, 3Ž . Ž .tx

2 2E u r rt t t2u q qg r y´ y . 4Ž . Ž .x 2ž /E t 2 4r 8r

Ž .Eq. 3 can be treated as a continuity equation with
exchanged space and time coordinates for a fluid with

Ž .density r and velocity u. Eq. 4 corresponds to the Euler
hydrodynamical equation for inviscid fluid with the fol-
lowing dependence of the pressure on density

d g r
X

r Ž .
X Xp r s r d r , 5Ž . Ž .H Xd r

and additional ‘quantum mechanical pressure’ proportional
to ´ 2. So in the limit ´™0, which means that nonlinear-
ity dominates over dispersion, we come to the usual Euler

Ž .hydrodynamics with ‘material’ equation of state 5 . These
equations have been investigated intensively in classical

Ž w x.dynamics of compressible fluids see, e.g., Refs. 8,9 , and

0030-4018r99r$ - see front matter q 1999 Elsevier Science B.V. All rights reserved.
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can be applied to describe the evolution of pulses as long
as their t-dependence is smooth enough. However, strong
nonlinearity leads inevitably to the so-called wave-break-
ing point, when such a dependence becomes very sharp
with infinite derivative d rrd t at this point. Hence, some
other physical mechanism must be taken into account at
the wave-breaking point. In classical fluid dynamics it is
viscosity, which leads to the formation of the well-known
shock waves. If viscosity is small enough, as it occurs in
optical systems, then the dispersion becomes crucial for
the description of the fluid behavior in the vicinity of the
wave-breaking point and leads to the so-called ‘dissipa-
tionless shock waves’, i.e., an expanding region of fast
oscillations which connects two regions with different
values of density r. Such dispersive hydrodynamics was
investigated in the cases of the Korteweg-de Vries equa-

w x w xtion 10–13 , NLS equation 14–16 , and derivative NLS
w xequation 17,18 with the use of the Whitham approach

w x19 . A similar approach has been applied to modulation-
Ž w x.ally unstable systems see Refs. 20–23 . Recently these

Ž .ideas were applied to non-return-to-zero NRZ optical
w xcommunication systems in Refs. 24–26 .

w xIn Ref. 24 Kodama and Wabnitz used the simple
self-similar solution of the hydrodynamical equations cor-
responding to the zero dispersion limit of the NLS equa-
tion for the description of the evolution of an initially
rectangular pulse in an optical fiber. It has been shown that
with increasing space coordinate the pulse becomes longer
and acquires chirp. This corresponds to the ‘dam’ problem
in the fluid dynamics terms and means that the gaseous
layer of finite width begins to expand after removal of the
container’s walls and acquires some distribution of veloc-
ity in the direction perpendicular to the layer. This intu-
itively attractive picture shows immediately that initial

Ž .chirp velocity distribution of opposite sign can prevent to
some extent the expansion of the pulse. This idea was

w xrealized in Refs. 25,26 in the case of simple initial
Ž .conditions at xs0 with initially rectangular intensity
Ž .distribution dependence on t and constant chirp of oppo-

site signs in both halves of the pulse. In this case the edges
of the pulse do not expand as fast as without chirp, but
such simple choice leads to immediate creation of the
dispersive shock wave in the center of the pulse due to the
‘collision’ of its two halves. It is clear that one can avoid
this problem using a smoother chirp function vanishing at
the center of the pulse. However, such an approach de-
mands the development of a more complete theory than

w xthe simple self-similar solutions used in Refs. 24–26 . In
principle, one can obtain the general solution of the Cauchy
problem for the hydrodynamical equations corresponding

Ž w x.to the NLS equation see Ref. 16 , but this solution is
very complicated and has not been received in a suffi-
ciently convenient form. Therefore we want to present here
a complete solution of the problem of evolution of the
pulse with arbitrary initial intensity profiles and chirp for

Ž .such a choice of Eq. 1 which admits a solution in

elementary functions and can be easily applied to a wide
class of initial conditions. Though such modeling of real
situation is not exact, it preserves the main physical fea-
tures of the problem and gives a simple description of the
behavior of the pulse. The general solution is illustrated by
one particular example which reveals the qualitative fea-
tures of the process.

2. The general solution of the model hydrodynamical
equations

The propagation of a pulse in different physical sys-
tems is often modeled by the generalized NLS equation
with power nonlinearity function

< < 2 < < hg q s q , 6Ž .Ž .
which in the dispersionless limit leads to the following

Ž Ž . Ž ..hydrodynamical equations see 3 , 4 ,

r qru qur s0, 7Ž .x t t

u quu q hr2 r hr2y1r s0. 8Ž . Ž .x t t

Ž .In hydrodynamical terms Eq. 8 corresponds to the equa-
Ž Ž ..tion of state see Eq. 5

h
hr2q1p r s r . 9Ž . Ž .

hq2

Ž w x.It is well known see Refs. 8,9 that the general solution
Ž . Ž .of Eqs. 7 , 8 can be expressed in terms of elementary

Žfunctions, if the exponent kshr2q1 is such that 3y
. Ž . Žk r ky1 is an even integer number 2n, i.e. hs4r 2n
.q1 , ns0,1,2, . . . . Unfortunately, the NLS equation with

hs2 corresponds to ks2 and does not satisfy this
condition. But the choice ns1, i.e. hs4r3, gives the
value ks5r3 rather close to ks2, and one can hope that
this choice leads to a qualitatively satisfactory approxima-
tion to the real situation 2. Therefore we choose hs4r3

Ž .with Eq. 8 replaced by

ru qruu qc2r s0, 10Ž .x t t

where

d p
22 2r3c s s r ,3d r

c being the ‘sound velocity’ variable.

2 This expectation is confirmed by a comparison of simple
self-similar solutions for both cases hs2 and hs4r3. Such a
comparison is presented in the Appendix.



( )A.M. KamchatnoÕ, H. SteudelrOptics Communications 162 1999 162–168164

Ž . Ž .To solve the system 7 , 10 , we shall use the classical
w xhodograph method described in Ref. 9 . To this end, it is

convenient to introduce instead of r the variable
Xc rr Ž .

X 1r3'Õs d r s 6 r s3c, 11Ž .H X
r0

Ž . Ž .so that Eqs. 7 and 10 take the form

1 1
Õu quÕ qÕ s0, uu q ÕÕ qu s0. 12Ž .t t x t t x3 3

Now we execute the hodograph transformation, consider-
ing t and x as functions of independent variables Õ and u:

ts t Õ ,u , xsx Õ ,u . 13Ž . Ž . Ž .
Simple calculation leads to the system

y Õr3 E xrE ÕquE xrE uyE trE us0,Ž .
yuE xrE Õq Õr3 E xrE uqE trE Õs0, 14Ž . Ž .

Ž .linear with respect to the unknown functions 13 . Taking
Ž .into account Eq. 11 , we can write this system in the form

E tyux rE uq 1r2Õ2 E Õ3x rE Õs0,Ž . Ž .Ž .
E tyux rE Õq 1r2Õ2 E Õ3x rE us0. 15Ž . Ž . Ž .Ž .

Ž .The second equation in 15 allows one to introduce the
Ž .potential V Õ,u , so that

E V Õ E V
tyuxs , xsy . 16Ž .

E u 2 E Õ

Then substitution of these expressions into the first equa-
Ž .tion in 15 yields the equation for the potential:

E 2V E 2V 2 E V
y q s0. 17Ž .2 2 Õ E ÕE Õ E u

It is easy to see that ÕV satisfies the wave equation and,
Ž .hence, the general solution of Eq. 17 has the form

w xV Õ ,u s f Õqu qg Õyu rÕ , 18Ž . Ž . Ž . Ž .
Ž . Ž . Ž .where f j and g h jsÕqu, hsÕyu are arbitrary

Ž .functions. Thus, the general solution of the system 12
can be written in an implicit form

w X X xtyuxs f j yg h rÕ , jsÕqu , hsÕyu ,Ž . Ž .

w x 2 w X X xÕxr2s f j qg h rÕ y f j qg h rÕ ,Ž . Ž . Ž . Ž .
19Ž .

and contains two arbitrary functions which have to be
determined from initial conditions.

3. The general solution of the initial value problem

Let the time dependence of intensity and chirp at xs0
be described by the functions

Õ 0,t sÕ t , u 0,t su t . 20Ž . Ž . Ž . Ž . Ž .0 0

Ž . Ž .Our task is to determine the functions f j and g h in
Ž . Ž .terms of these two initial value functions Õ t and u t0 0

or, equivalently, in terms of

j t sÕ t qu t , h t sÕ t yu t . 21Ž . Ž . Ž . Ž . Ž . Ž . Ž .0 0 0 0

Ž .To this purpose we have to fulfil Eqs. 19 specified to
xs0,

X X 1f j yg h s jqh t ,Ž . Ž . Ž .2

fqg
X Xf j qg h s2 '2 BB t . 22Ž . Ž . Ž . Ž .

jqh

Both these equations are identities in t, and in the second
Ž .we introduced a new function BB t . Then we may write

t t
X Xf j sBBq jqh , g h sBBy jqh .Ž . Ž . Ž . Ž .

4 4
23Ž .

Ž .Due to the identity fqgs jqh BB, c.f. the second of
Ž .Eqs. 22 , it is natural to write

f j sAA t qj BB t , g h syAA t qh BB tŽ . Ž . Ž . Ž . Ž . Ž .
24Ž .

Ž .with another new function AA t . By differentiation of the
Ž . Ž .first of Eqs. 24 with respect to j where ts t j is

Ž .understood as the reverse function to j t and, similarly,
differentiation of the second equation with respect to h we
find

d t d t
X X X Xf sBBq AA qj BB , g sBBq yAA qh BB .Ž . Ž .

dj dh

25Ž .

Ž . Ž .For simplicity we assume that both j t and h t are
monotonic functions. Otherwise we had to cut out pieces
of the t interval where these conditions are fulfilled. The

Ž . Ž .combination of Eqs. 25 with Eqs. 23 leads to

X 1 X X 1 X X
AA s j hqjh ts Õ Õ yu u t ,Ž . Ž .0 0 0 04 2

X 1 X X 1 X
BB s j yh ts u t , 26Ž . Ž .04 2

and AA, BB are determined by quadrature,

t X X1AA t s Õ t Õ t yu t u t t d t ,Ž . Ž . Ž . Ž . Ž .H 0 0 0 02

t X1BB t s u t t d t . 27Ž . Ž . Ž .H 02

Ž . Ž . Ž .Finally f j , g h are found from Eq. 24 with t ex-
pressed respectively in terms of j or h. One should notice

Ž .that this solution is valid within the region in the u,Õ -
Ž .plane, enclosed by the initial value curve 20 and two

characteristics Õqusj and Õyush going from the
Ž w x.end points of this curve see Ref. 9 .
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4. Example

We are interested in the investigation of the influence
of an initial chirp on the evolution of the pulse. Therefore
let us choose the initial profiles of intensity and chirp in
the following simple form

2 < <a 1y trT , t FTŽ .Ž .
Õ t s 28Ž . Ž .0 ½ < <0, t GT ,

and

2b trT , t-0,Ž .
u t s 29Ž . Ž .0 2½yb trT , t)0.Ž .

Here 2T is the pulse duration, a measures the intensity in
Ž Ž . 3 3r2 .the center of the pulse r 0 sa r6 , and b describes

the chirp. To diminish distortion of the pulse caused by
nonlinearity, we take b)0, i.e. chirp is negative at t)0,

Žand positive at t-0. The pulse is symmetric chirp is
.antisymmetric , so it is enough to consider the evolution of

the part of the pulse with t)0 only.
Ž .According to definitions 21 we find

ayj ayh
t j sT , t h sT . 30Ž . Ž . Ž .( (aqb ayb

Ž .From 27 we obtain

a2 a2yb2 b
3 5 3AA t sy t q t , BB t sy t .Ž . Ž .2 4 23T 5T 3T

Ž .Their substitution into 24 leads to the expressions for the
Ž . Ž . Ž .functions f j and g h and, subsequently, Eqs. 19

Ž .yield the solution of Eqs. 12 :

1r2T ayj abq 3aq2b jŽ .
tyuxs ž /6Õ aqb aqb

1r2ayh aby 3ay2b hŽ .
y , 31Ž .ž /ayb ayb

3r22T ayj
w xxsy 2 aq3b aq 3aq2b jŽ . Ž .3 ½ ž /aqb15Õ

3r2ayh
w xy 2 ay3b aq 3ay2b hŽ . Ž .ž / 5ayb

1r2T ayj abq 3aq2b jŽ .
y 2 ž /aqb aqb3Õ

1r2ayh aby 3ay2b hŽ .
q , 32Ž .ž /ayb ayb

in an implicit form.
Ž . Ž .Expressions 31 and 32 give us the space x and time

t coordinates as functions of the variables Õ and u. If we

Ž .fix the value of space coordinate xsconst , then these
Ž .expressions define some curve in the u,Õ -plane in a

parametric form with t as a parameter. For example, at
Ž .xs0 we obtain the initial value curve defined by Eqs. 28

Ž .and 29 , which in our case is the segment of the straight
Ž .line recall that we consider only the region with t)0

Õsa 1qurb . 33Ž . Ž .
Ž . Ž .At the end points yb,0 and 0,a of this segment the

values of j and h are equal to jsyb or jsa and hsb
or hsa, respectively. The solution found above is valid

Ž .inside the rectangle in the u,Õ -plane with the sides
defined by the equations for characteristics

Õqusyb , Õqusa, Õyusb , Õyusa. 34Ž .
ŽIf as"b, then one of two sets of characteristic lines

Ž .becomes parallel to the initial value line 33 , the rectangle
Ž .reduces to this line, and the solution 32 loses its region of

. Ž .applicability. The initial value curve 33 is a diagonal of
this rectangle and divides it into two triangles: one triangle

Ž .corresponds to the negative values of space variable x-0
Ž .and the other to the positive values x)0 . The triangle in

Ž .the u,Õ -plane for the case Ts1, as1, bs0.2 is shown
Žin Fig. 1 its angles are distorted because of different

.scales of u and Õ axes . The solid lines represent the
Ž . Ž .solution curves 31 , 32 for fixed values of x as already

Ž .discussed. The straight line xs0 is the initial curve 33 ,
and the two dashed lines Õqus1 and Õyus0.2 repre-

Ž .Fig. 1. The hodograph u,Õ -plane for the evolution of the pulse
Ž . Ž .with initial chirp bs0.2 . Solid lines represent the solution 31 ,

Ž .32 at different values of x. The solution is valid inside the
triangle with sides defined by the initial value curve xs0 and the
characteristics Õyus0.2 and Õqus1. The vertical dashed line
at us0 distinguishes regions with positive and negative chirp.
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Fig. 2. The same as in Fig. 1, but for the pulse without initial
Ž .chirp bs0 .

Ž .sent the two characteristics 34 . The vertical dashed line
Ž .at us0 distinguishes two regions of negative u-0 and

Ž .positive u)0 chirp. As we can see, at sufficiently small
x a considerable part of the pulse has negative chirp what
means its contraction. But the part of the pulse with a

Ž .higher intensity large Õ , where initial negative chirp was
small, acquires some positive chirp already at small x due
to nonlinearity effects, and this region of positive chirp
increases with increasing x. At sufficiently large x almost
all pulse has positive chirp what means its steepening and
expansion in the direction of positive x. This figure should
be compared with a similar plot corresponding to the pulse

Ž .without initial chirp Fig. 2 . Now the initial value curve
Ž .corresponds to the segment of Õ-axis 0FÕF1 and from

the very beginning the whole pulse acquires positive chirp
and steepens faster than in the case with initial chirp
shown in Fig. 1.

The dependence of the ‘intensity’ variable Õ on time t
for one half of the pulse with and without chirp is shown

Žin Fig. 3 at xs0.4. Only the parts corresponding to the
Ž . Ž . .solution 31 , 32 are depicted. One can see that the

Ž .lower intensity part of the pulse with chirp bs0.2
moves in the negative direction of x, whereas the pulse
without chirp steepens compared to the initial profile
Ž .dashed line .

The dependence of the chirp variable u on t at xs0.4
is shown in Fig. 4. In accordance with the above results,

Ž .the non-zero initial chirp dashed line evolves into the
Žcurve with negative values at large t weak influence of

.nonlinearity and strong influence of initial chirp and
Žpositive values at small and intermediate t strong influ-

.ence of nonlinearity and weak influence of initial chirp ,

Fig. 3. Solid lines show the dependence of the ‘intensity’ variable
Õ on time t at distance xs0.4 for pulses with initial chirp
Ž . Ž .bs0.2 and without it bs0 . The dashed line represents the

Ž .initial profile of Õ t at xs0.

whereas the zero initial chirp evolves into the curve with
positive chirp along the whole pulse due to the influence
of nonlinearity.

This example shows how one can control the pulse
evolution by means of change of initial chirp. The initial

Ž . Ž .functions 28 , 29 were chosen due to their analytical
Ž .simplicity and other maybe, more efficient or realistic

initial functions can be considered in a similar way.

Fig. 4. Solid lines show the dependence of the chirp variable u on
Žtime t at distance xs0.4 for pulses with initial chirp bs0.2,

. Žinitial chirp is presented by the dashed line and without it bs0,
.initial chirp is presented by the t-axis .
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5. Conclusion

The particular example discussed above leads to some
general conclusion. One can see from Fig. 2 that the
maximal chirp arising due to nonlinear effects in the pulse
without initial chirp is almost proportional to x even at
rather large x,

u,a x .

The proportionality constant a depends on the nonlinear-
Ž .ity function in 1 and in our case is equal to a,0.36–0.38

in the region of x under consideration. The initial chirp u0

influences the pulse evolution as long as it has the same
order of magnitude as the chirp due to nonlinearity effects,
i.e. u ,a x, what gives us an estimation of distance0

x,u ra ,0

within which one can control the evolution of the pulse.
Ž .Stronger nonlinearity e.g., Kerr-like one will increase the

value of the constant a , but one may expect that the
general qualitative picture will remain the same. For inves-
tigation of details of the pulse evolution for other types of
nonlinearity function, a complete theory analogous to the
one worked out here should be developed.
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Appendix A

To justify the qualitative validity of our approximation
Žwith replacement of the exponent hs2 corresponding to

. Žthe Kerr nonlinearity to the exponent hs4r3 admitting
.a complete analytical solution in an elementary form , let

us compare the solutions of the same simple problem of
rarefaction wave for both these cases. Let the initial condi-
tion at xs0 be

r at t-0,0
rs A.1Ž .½ 0 at t)0,

i.e. the step-like pulse without initial chirp ‘‘enters’’ into
Žthe medium at xs0 note that we use a coordinate system

.moving with the group velocity of the pulse .
Ž . Ž . Ž .a In case of hs2 Eqs. 6 and 8 read

r qru qur s0, u quu qr s0. A.2Ž .x t t x t t

Ž .Since the initial condition A.1 does not contain any
Žparameters with time dimension i.e. we consider a pulse

.with infinitely sharp front , the variables r and u can only
depend on the self-similar variable js trx. Whence Eqs.
Ž .A.2 reduce to

uyj r
X qruX s0, r

X q uyj uX s0, A.3Ž . Ž . Ž .

where the prime denotes differentiation with respect to j .
This system has nontrivial solution only if

'uyjs" r , A.4Ž .

and our initial condition corresponds to the ‘‘plus’’ sign.
X XŽ . 'Then any equation of A.4 gives r u qr s0 and inte-

gration yields

'us2 r y r , A.5' Ž .Ž .0

Ž .where r is an integration constant. Thus Eqs. A.4 and0
Ž .A.5 give us the desired solution

2
t t22 2

rs 1y r , us r q ,'Ž . 0 03 3 ž /ž / x2 r x' 0

A.6Ž .

for the rarefaction wave problem in the case hs2. Just
w xthis solution was used by Kodama and Wabnitz 24–26 in

their theory of evolution of a rectangular pulse in nonlinear
optical fibers. We see that the point with vanishing inten-

Ž .sity rs0 moves with the ‘‘velocity’’ trx s2 r'Ž . 00

which describes the pulse widening due to ‘‘nonlinear
pressure’’, and the opposite point of the non-uniform
region which matches with the region of constant intensity
rsr propagates into the latter region with the ‘‘sound0

velocity’’ trx sy r . The whole non-uniform re-'Ž . 0r 0

gion acquires the chirp u linearly dependent on js trx.
Ž . Ž .b In case of hs4r3, instead of A.2 we obtain the

system

r qru qur s0, u quu q 2r3 ry1r3r s0.Ž .x t t x t t

A.7Ž .

Again r and u depend only on js trx, and simple
calculation analogous to that of the case hs2 leads to the
solution

3
t t33 3 2 1r3rs 1y r , us r q .(Ž . 0 04 4 31r3 ž /ž /' x6 r x0

A.8Ž .

Ž .Qualitatively, this solution has the same structure as A.6
and describes the same ‘‘rarefaction’’ wave but for differ-

Ž . 5r3 Ž .ent ‘‘material equation’’ ps 2r5 r hs3r4 instead
Ž . 2 Ž .of ps 1r2 r hs2 . Correspondingly, the characteris-
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tic velocities are changed: the pulse widens with the
1r3'velocity 6 r , and the ‘‘sound velocity’’ is equal now0

1r3'to 2r3 r . Nevertheless, the qualitative picture remains0

the same: the pulse widens due to nonlinearity and ac-
quires chirp u linearly dependent on js trx inside the
non-uniform region. Therefore this chirp due to the nonlin-
earity can be compensated to some extend by the initial
chirp as it was considered in the present paper.

The general validity of the hydrodynamical approach
w xwas confirmed in Refs. 24,25 by means of a numerical

solution of the NLS equation. It was found that small
dispersion can be neglected as long as the hydrodynamical
solution does not lead to the wave-breaking and formation
of the shock wave.
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